函数概念与基本初等函数Ⅰ复习题及答案 (12)

合集下载

高中数学一轮复习:第二章 函数的概念与基本初等函数(必修1)课后跟踪训练12

高中数学一轮复习:第二章 函数的概念与基本初等函数(必修1)课后跟踪训练12

课后跟踪训练(十二)基础巩固练一、选择题1.若函数f (x )在区间[-2,2]上的图象是连续不断的曲线,且f (x )在(-2,2)内有一个零点,则f (-2)·f (2)的值( )A .大于0B .小于0C .等于0D .不能确定[解析] 若函数f (x )在(-2,2)内有一个零点,且该零点是变号零点,则f (-2)·f (2)<0,否则, f (-2)·f (2)>0,故选D.[答案] D2.(2019·湖北襄阳四校联考)函数f (x )=3x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3[解析] 由题意知f (x )单调递增,且f (0)=1+0-2=-1<0,f (1)=3+1-2=2>0,即f (0)·f (1)<0且函数f (x )在(0,1)内连续不断,所以f (x )在区间(0,1)内有一个零点.故选B.[答案] B3.(2018·吉林省实验中学段考)若函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C.⎣⎢⎡⎭⎪⎫2,52D.⎣⎢⎡⎭⎪⎫2,103[解析] 解法一:当f ⎝ ⎛⎭⎪⎫12·f (3)<0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有且仅有一个零点,即⎝ ⎛⎭⎪⎫54-a 2(10-3a )<0, 解得52<a <103;当⎩⎪⎨⎪⎧12<a2<3,Δ=a 2-4≥0,f ⎝ ⎛⎭⎪⎫12>0,f (3)>0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有一个或两个零点,解得2≤a <52; 当a =52时,函数的零点为12和2,符合题意; 当a =103时,函数的零点为13或3,不符合题意. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.故选D.解法二:令f (x )=0,则a =x 2+1x .令g (x )=x 2+1x , 而g ′(x )=1-1x 2.当x ∈⎝ ⎛⎭⎪⎫12,1时,g ′(x )<0;当x ∈(1,3)时,g ′(x )>0,∴g (x )在⎝ ⎛⎭⎪⎫12,1上单调递减,在(1,3)上单调递增,∴g (x )的值域为⎣⎢⎡⎭⎪⎫2,103.∴a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.故选D. [答案] D[解析] g (x )=f (x )-m 有三个不同的零点等价于f (x )=m 有三个不同的根,等价于函数y =f (x )与y =m 的图象有三个不同的公共点.在同一直角坐标系中画出函数y =f (x ),y =m 的图象(如图所示),观察其交点个数,显然当-14<m <0时,两个函数图象有三个不同的公共点.故选C.[答案] C5.(2018·安徽安庆二模)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点个数为( )A .3B .2C .1D .0[解析] 由f (x +1)=f (x -1),知f (x )的周期是2,画出函数f (x )和g (x )的部分图象,如图所示,由图象可知f (x )与g (x )的图象有2个交点,故F (x )有2个零点.故选B.[答案] B 二、填空题6.函数f (x )=ln(2x )-1的零点为________. [解析] 由ln(2x )-1=0,得2x =e ,所以x =e2. 故f (x )=ln(2x )-1的零点为e2. [答案] e27.(2019·四川绵阳模拟)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.[解析] 由题意,知函数f (x )在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以⎩⎨⎧f (1)<0,f (2)>0,即⎩⎨⎧-a <0,4-1-a >0,解得0<a <3,故填(0,3).[答案] (0,3)8.(2019·山东济宁高三期末)设x 1,x 2是方程ln|x -2|=m (m 为实常数)的两根,则x 1+x 2的值为________.[解析] 方程ln|x -2|=m 的根即函数y =ln|x -2|的图象与直线y =m 的交点的横坐标,因为函数y =ln|x -2|的图象关于x =2对称,且在x =2两侧单调,值域为R ,所以对任意的实数m ,函数y =ln|x -2|的图象与直线y =m 必有两交点,且两交点关于直线x =2对称,故x 1+x 2=4.[答案] 4 三、解答题9.(2019·烟台模拟)已知二次函数f (x )=x 2+(2a -1)x +1-2a , (1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围.[解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧ f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为{a ⎪⎪⎪⎭⎬⎫12<a <34.10.(2019·贵州调研)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. [解] (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2. (3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.能力提升练11.(2019·云南昆明一模)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若函数f (x ),g (x )的零点分别为a ,b ,则有( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0[解析] 易知函数f (x ),g (x )在定义域上都是单调递增函数,且f (0)=-1<0,f (1)=e -1>0,g (1)=-2<0,g (2)=ln2+1>0,所以a ,b 存在且唯一,且a ∈(0,1),b ∈(1,2),从而f (1)<f (b )<f (2),g (0)<g (a )<g (1),于是f (b )>0,g (a )<0,即g (a )<0<f (b ).[答案] A12.(2019·昆明市高三质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5][解析] 解法一:当x ≥1时,由ln x +1=2,得x =e ,由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.解法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象,如图,由图象知,要使f (x )=2有两个解.则a -3<2,得a <5,故选C.[答案] C13.(2019·河南名校联考)已知函数f (x )=x 2-m cos x +m 2+3m -8有唯一的零点,则实数m 的值为________.[解析] 由题意,函数f (x )为偶函数,在x =0处有定义且存在唯一零点,所以唯一零点为0,则02-m cos0+m 2+3m -8=0,解得m =-4或m =2.将m =-4代入解析式,得f (x )=x 2+4cos x -4,分离得两个函数y =-x 2+4,y =4cos x ,如图知f (x )存在3个零点,不符合题意,仅m =2时f (x )存在唯一零点.[答案] 214.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.[解] (1)作出g (x )=x +e 2x (x >0)的大致图象如图(1).图(1)可知若使y =g (x )-m 有零点,则只需m ≥2e.(2)若g (x )-f (x )=0有两个相异实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象如图(2).图(2)∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. ∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).拓展延伸练15.(2019·山西质量检测)已知f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,|ln x |,x >0,则方程f [f (x )]=3的根的个数是( )A .3B .4C .5D .6[答案] C16.已知函数f (x )=⎩⎨⎧|log 2(x -1)|,1<x ≤3,12x 2-92x +10,x >3,若方程f (x )=m 有四个不同的实根x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则⎝ ⎛⎭⎪⎫m x 1+m x 2(x 3+x 4)的取值范围为________.[解析] 方程f (x )=m 有四个不同的实数根x 1,x 2,x 3,x 4可转化为函数f (x )的图象与直线y =m 有四个不同的交点,且交点的横坐标分别为x 1,x 2,x 3,x 4,作出函数f (x )的大致图象如图所示,结合图象得0<m <1,且f (x 1)=f (x 2)=f (x 3)=f (x 4).由f (x 1)=f (x 2)可得,|log 2(x 1-1)|=|log 2(x 2-1)|,又1<x 1<2<x 2,所以log 2(x 1-1)+log 2(x 2-1)=0,得(x 1-1)(x 2-1)=1,整理得x 1x 2=x 1+x 2,所以1x 1+1x 2=1. 由f (x 3)=f (x 4)及二次函数图象的对称性,得x 3+x 4=9,所以⎝ ⎛⎭⎪⎫m x 1+m x 2(x 3+x 4)=m ⎝ ⎛⎭⎪⎫1x 1+1x 2(x 3+x 4)=9m ∈(0,9).[答案](0,9)。

2022届高考一轮复习第2章函数的概念及基本初等函数ⅰ第2节函数的单调性与最值课时跟踪检测理含解

2022届高考一轮复习第2章函数的概念及基本初等函数ⅰ第2节函数的单调性与最值课时跟踪检测理含解

第二章 函数的概念及基本初等函数(Ⅰ)第二节 函数的单调性与最值A 级·基础过关 |固根基|1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上是增函数. 2.如果函数f(x)=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫-14,+∞B .⎣⎢⎡⎭⎪⎫-14,+∞C .⎣⎢⎡⎭⎪⎫-14,0 D .⎣⎢⎡⎦⎥⎤-14,0 解析:选D 当a =0时,f(x)=2x -3在定义域R 上单调递增,故在(-∞,4)上单调递增; 当a≠0时,二次函数f(x)的对称轴为x =-1a ,因为f(x)在(-∞,4)上单调递增, 所以a<0,且-1a ≥4,解得-14≤a<0.综上,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.3.已知函数f(x)是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,23B .⎣⎢⎡⎭⎪⎫13,23C .⎝ ⎛⎭⎪⎫12,23 D .⎣⎢⎡⎭⎪⎫12,23 解析:选D 因为函数f(x)是定义在区间[0,+∞)上的增函数,满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13, 所以0≤2x-1<13,解得12≤x<23.4.设偶函数f(x)的定义域为R ,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )A .f (π)>f(-3)>f(-2)B .f (π)>f(-2)>f(-3)C .f (π)<f(-3)<f(-2)D .f (π)<f(-2)<f(-3) 解析:选A 因为f(x)是偶函数, 所以f(-3)=f(3),f(-2)=f(2). 又因为函数f(x)在[0,+∞)上是增函数, 所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).5.函数y =f(x)(x∈R)的图象如图所示,则函数g(x)=f(log a x)(0<a<1)的单调递减区间是( )A .⎣⎢⎡⎦⎥⎤0,12 B .[a ,1] C .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ D .[a ,a +1 ]解析:选B 由图象,知f(x)在(-∞,0)和⎣⎢⎡⎭⎪⎫12,+∞上单调递减,而在⎣⎢⎡⎦⎥⎤0,12上单调递增.又因为当0<a<1时,y =log a x 为(0,+∞)上的减函数,所以要使g(x)=f(log a x)单调递减,则需log a x ∈⎣⎢⎡⎦⎥⎤0,12,即0≤log a x ≤12,解得x∈[a ,1].6.定义新运算⊕:当a≥b 时,a ⊕b =a ;当a<b 时,a ⊕b =b 2,则函数f(x)=(1⊕x)x -(2⊕x),x∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得,当-2≤x≤1时,f(x)=x -2; 当1<x≤2时,f(x)=x 3-2.因为f(x)=x 3-2,f(x)=x -2在定义域内都为增函数,且f(1)<f(2), 所以f(x)的最大值为f(2)=23-2=6.7.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x≥1,2x ,x<1的值域为________.解析:当x≥1时,log 12x≤0;当x<1时,0<2x<2,故f(x)的值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)8.函数f(x)=x +2x -1 的值域为________. 解析:由2x -1≥0,得x≥12,∴函数的定义域为⎣⎢⎡⎭⎪⎫12,+∞. 又函数f(x)=x +2x -1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,∴当x =12时,函数取最小值f ⎝ ⎛⎭⎪⎫12=12,∴函数f(x)的值域为⎣⎢⎡⎭⎪⎫12,+∞.答案:⎣⎢⎡⎭⎪⎫12,+∞9.已知f(x)=xx -a(x≠a). (1)若a =-2,证明:f(x)在(-∞,-2)内单调递增; (2)若a>0且f(x)在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任取x 1<x 2<-2, 当a =-2时,f(x 1)-f(x 2)= x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴f(x)在(-∞,-2)上单调递增.(2)任取1<x 1<x 2,则f(x 1)-f(x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a>0,x 2-x 1>0,∴要使f(x 1)-f(x 2)>0,只需(x 1-a)(x 2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a 的取值范围是(0,1].10.(2019届福建师大附中模拟)定义在(0,+∞)上的函数f(x)满足下面三个条件: ①对任意正数a ,b ,都有f(a)+f(b)=f(ab); ②当x>1时,f(x)<0; ③f(2)=-1. (1)求f(1)的值;(2)用单调性的定义证明:函数f(x)在(0,+∞)上是减函数; (3)求满足f(3x -1)>2的x 的取值集合.解:(1)由f(a)+f(b)=f(ab),得f(1)+f(1)=f(1),则f(1)=0. (2)证明:任取x 1,x 2∈(0,+∞)且x 1<x 2,则f(x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1=f(x 2),所以f(x 2)-f(x 1)=f ⎝ ⎛⎭⎪⎫x 2x 1. 由x 2x 1>1,得f ⎝ ⎛⎭⎪⎫x 2x 1<0,即f(x 2)<f(x 1),∴f(x)在(0,+∞)上是减函数.(3)∵f(2)=-1,∴f(4)=f(2)+f(2)=-2,又f(4)+f ⎝ ⎛⎭⎪⎫14=f(1)=0,∴f ⎝ ⎛⎭⎪⎫14=2.又f(x)的定义域为(0,+∞),且在其上是减函数, ∴⎩⎪⎨⎪⎧3x -1<14,3x -1>0,解得13<x<512. 故满足要求的x 的取值集合为⎝ ⎛⎭⎪⎫13,512.B 级·素养提升 |练能力|11.设a>0且a≠1,则“函数f(x)=a x在R 上是减函数”是“函数g(x)=(2-a)x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f(x)=a x在R 上为减函数,则有0<a<1;若函数g(x)=(2-a)x 3在R 上为增函数,则有2-a>0,即a<2,所以“函数f(x)=a x在R 上是减函数”是“函数g(x)=(2-a)x 3在R 上是增函数”的充分不必要条件,故选A .12.已知在函数f(x)=lg(a x-b x)+x 中,常数a ,b 满足a>1>b>0,且a =b +1,那么f(x)>1的解集为( )A .(0,1)B .(1,+∞)C .(1,10)D .(10,+∞) 解析:选B 由a x-b x>0,a>1>b>0,得⎝ ⎛⎭⎪⎫a b x>1,解得x>0,所以函数f(x)的定义域为(0,+∞).因为a>1>b>0,所以y =a x单调递增,y =-b x单调递增,所以t =a x-b x单调递增.又y =lg t 单调递增,所以f(x)=lg(a x-b x)+x 为(0,+∞)上的增函数.而f(1)=lg(a -b)+1=lg 1+1=1,所以当x>1时,f(x)>1,故f(x)>1的解集为(1,+∞).故选B .13.如果函数y =f(x)在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y=f(x)是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f(x)=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]解析:选D 因为函数f(x)=12x 2-x +32的对称轴为x =1,所以函数y =f(x)在区间[1,+∞)上是增函数.又当x≥1时,f (x )x =12x +32x -1,令g(x)=12x +32x -1(x≥1),则g′(x)=12-32x 2=x 2-32x 2,由g′(x)≤0,得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].故选D . 14.定义运算:x y =⎩⎪⎨⎪⎧x ,xy≥0,y ,xy<0,例如:34=3,(-2)4=4,则函数f(x)=x2(2x -x 2)的最大值为________.解析:由已知,得f(x)=x2(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 2(2x -x 2)≥0,2x -x 2,x 2(2x -x 2)<0=⎩⎪⎨⎪⎧x 2,0≤x≤2,2x -x 2,x<0或x>2,易知函数f(x)的最大值为4. 答案:4。

(完整版)基本初等函数测试题及答案

(完整版)基本初等函数测试题及答案

基本初等函数测试题只有一项是符合题目要求的1.有下列各式:其中正确的个数是B .2.函数y = a x|(a>1)的图象是( )3.下列函数在(0,+^ )上是增函数的是()1 —4•三个数Iog 25,2。

丄2-1的大小关系是( )A . Iog 25<20.1<2-1B . Iog 25<2-1<20.1 C . 20.1<2-1<log 2| D . 20.1<log 21<2-15.已知集合 A = {yy = 2x , x<0}, B = { y|y = log 2x},贝U A n B =()A . {y|y>0}B . {y|y>1}C . {y|0<y<1}D . 6.设P 和Q 是两个集合,定义集合 P — Q = {x|x € P 且x?Q},如果P = {x|log 2x v 1} , Q ={x|1<x<3},那么 P — Q 等于()A . {x|0v x v 1}B . {x|0v x w 1}C . {x|1< x v 2}D . {x|2< x v 3}1 ______________7.已知 0<a<1, x = log a .'2+ log a . 3, y = 2log a 5, z = log a 一 21 — log a,'3,则()、选择题(本大题共 12个小题,每小题5分,共60 分.在每小题给出的四个选项中,①n a n= a ;②若 a €R ,则(a 2- a + 1)0= 1;③ 3 x 4—y 34x 3A . y = 3 xB . y =- 2xC . y = log o.1X DA. x>y>zB. x>y>xC. y>x>zD. z>x>y9.已知四个函数①y= f1(x):②y= f2(x);③y = f3(x):④y = f4(x)的图象如下图:1— -4-m3,十2e x -1log 3x 2- 1 , x > 2•则两的值为()A . 0B . 1C . 2D . 3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13. 给出下列四个命题: (1)奇函数的图象一定经过原点;(2 )偶函数的图象一定经过原点;1⑶函数y = lne x 是奇函数;(4)函数y x 3的图象关于原点成中心对称 . 其中正确命题序号为 ________ .(将你认为正确的都填上) 14. 函数 y log 1 (x 4)的定义域是 _______________________ . 15. 已知函数 y = log a (x + b)的图象如下图所示,贝Ua = ________ , b= ________ ,则下列不等式中可能成立的是 A . f l (x i + X 2)= f l (x i )+ f l (X 2) B . f 2(X 1 + X 2)= f 2(X 1) + f 2(X 2)C . f 3(X l + X 2)= f 3(X l ) + f 3(X 2)D . f 4(X l + X 2)= f 4(X l ) +10.设函数 f 』x) x 2 , f 2(x)= X -1, f 3(x)= X 2,则f 1(f 2(f 3(2010)))等于()A . 2010B . 20102 喘 D 為11 .函数 3X 2f(X)=?T*卜lg(3x + 1)的定义域是A. -m, B.13,D.X <2 ,12. (2010石家庄期末测试)设f(x) = ( )16. (2008上海高考)设函数f(x)是定义在R上的奇函数,若当x€ (0, )时,f(x) = lgx, 则满足f(x)>0的x的取值范围是___________ .三、解答题(本大题共6小题,共70分•解答应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10 分)已知函数f(x) = Iog2(ax+ b),若f(2) = 1, f(3) = 2,求f(5).118. (本小题满分12分)已知函数f(x) 2x6(1)求f(x)的定义域;(2)证明f(x)在定义域内是减函数.2x—119. (本小题满分12分)已知函数f(x) = 2^.(1)判断函数的奇偶性;⑵证明:f(x)在(— 8,+^ )上是增函数.220. (本小题满分12分)已知函数f x (m2 m 1)x m m 3是幕函数,且x€ (0,+^ ) 时,f(x)是增函数,求f(x)的解析式.21. (本小题满分12 分)已知函数f(x) = lg(a x—b x), (a>1>b>0).(1)求f(x)的定义域;⑵若f(x)在(1, +8 )上递增且恒取正值,求a, b满足的关系式.1 122. (本小题满分12分)已知f(x)= 2—1+ 2 x.(1)求函数的定义域;⑵判断函数f(x)的奇偶性;⑶求证:f(x)>0.参考答案答案速查:1-5 BCDBC 6-10 BCACC 11-12 CC1•解析:仅有②正确.答案:Ba x, x> 0 ,2•解析:y= a x|= -x °且a>1,应选C.答案:Ca , x<0 ,3•答案:D 4•答案:B5•解析:A = {y|y= 2x, x<0} = {y|0<y<1} , B= {y|y= log2x} = {y|y€ R} , /. A A B = { y|0<y<1}.答案:C6•解析:P = {x|log2x<1} = {x|0<x<2} , Q = {x|1<x<3} P—Q= {x|O<x W 1},故选B.答案:B17.解析:x= log a 2 + log a , 3= log a,6 = ^log a6, z= log a , 21 —log a寸3= log^/7 = *log a7.••• 0<a<1,二2log a5>?log a6>2log a7. 即y>x>z.答案:C8. 解析:作出函数y= 2x与y= x2的图象知,它们有3个交点,所以y= 2x—x2的图象与x轴有3个交点,排除B、C,又当x<—1时,y<0,图象在x轴下方,排除D.故选A.答案:A9. 解析:结合图象知,A、B、D不成立,C成立.答案:C10. 解析:依题意可得f3(2010) = 20102, f2(f3(2010))=f2(20102) = (20102f 1= 2010 2,——1 —1••• f1f2(f3(2010))) = f1(2010 2)= (2010 2)2= 2010 1=而.答案:C11.解析:x<11 —x>0 1由? 1 ? —-<x<1.答案:C 3x+1>0 x> —3 312.解析:f(2) = log3(22—1) = log33= 1, • f[f(2)] = f(1) = 2e0= 2. 答案:C13.解析:1(1)、(2)不正确,可举出反例,如y = -, y= x 2,它们的图象都不过原点. ⑶x中函数y= lne x= x,显然是奇函数.对于(4), y = x*是奇函数,而奇函数的图象关于原点对3称,所以⑷正确.答案:⑶(4)解析;由 log!( I -4) ^0-4^1,144 <故函教的总汇域为(4,打.15•解析:由图象过点(-2,0), (0,2)知,log a (- 2+ b)= 0, log a b = 2,二一2+ b = 1 ,二 b =3, a 2= 3,由 a>0 知 a = 3. — a = 3, b = 3.答案:」3 316.解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是一1<x<0或x>1.答案:(—1,0)U (1,+^ )log 2 2a + b = 12a + b = 2 a = 2,17.解:由 f(2)= 1, f(3) = 2,得??二 f(x)= log 2(2xlog 2 3a + b = 2 3a + b = 4b =— 2.-2),••• f(5)= log 28 = 3. 18.網;(丨)丁/( w> 二-2x T = -2 /v TA )的定3L 域为[0 r + an )(2}证明:令匕> MO,则) -/( ^ ) = -- ( - 2.t j )=2(耘-斤)T X 2>X 1》0 , • x 2 — X 1>0 , ,x 2+ . X 1>0 ,• f(X 1) — f(x 2)>0 ,• f(X 2)<f(X 1). 于是f(x)在定义域内是减函数.19. 解:(1)函数定义域为 R.所以函数为奇函数.⑵证明:不妨设一 8 <X 1<X 2< + ^,答案:(4,5]2—x — 1 f(— x)= 2 ― x + 1 1 — 2X1+ 2X2 — 1 2 + 1=— f(x),二2x2>2x1.2X2 ― 1 又因为f(x2)—f(x1)=忑—2X1 —1 = 2 2X2 —2X1 2x1 + 1 2x1 + 1 2x2 + 1•I f(X 2)>f(X 1).所以f(x)在(-8 , + 8 )上是增函数. 20. 解:•/ f(x)是幕函数, /• m 2— m — 1 = 1, m =— 1 或 m = 2, ••• f(x)= x —3或 f(x)= x 3,而易知f(x)= x —3在(0, + 8)上为减函数, f(x) = x 3在(o ,+ 8)上为增函数.• f(x)= x 3.a21. 解:(1)由 a x — b x >0,得 b x >1. a■/ a>1>b>0 ,• >1b • x>0.即f(x)的定义域为(0,+ 8).⑵•/ f(x)在(1 , + 8 )上递增且恒为正值, • f(x)>f(1),只要 f(1) > 0 , 即 lg(a — b)》0, • a — b 》1. • a 》b + 1为所求22. 解:(1)由2x — 1工0得X M 0,.函数的定义域为{X |X M 0, x € R}. (2)在定义域内任取 x ,则—x 一定在定义域内.1 1f(— x)= 2 —x — [+ 2 (— x)十 11 2x +1 而 f(x) = 2—7 + 2 x = 2 2x — 1 x ,• f(— x)= f(x). • f(x)为偶函数.⑶证明:当x>0时,2x >1 , . 1丄1--一 1 十 2 x>0. 又f(x)为偶函数, •当 x<0 时,f(x)>0.故当 x € R 且 x M 0 时,f(x)>0.1 — 2x2 (—x)=— x1 + 22 1 — 2x 2x + 1 x = 2 2x — 1 x.。

函数的概念、性质与初等函数试题及详细解答(基础)

函数的概念、性质与初等函数试题及详细解答(基础)

函数的概念、性质与初等函数第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数0.5log(4)y x=-的定义域是()A.[3,4)B.(,3]-∞C.[3,)+∞D.(,4]-∞2.下列函数中为偶函数的是()A.3y x x=+B.24y x=-C.y x=D.1y x=+3.已知函数()26f x x kx=--在[2,8]上是单调函数,则k的取值范围是()A.B.C.D.4.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A.①13y x=,②2y x=,③12y x=,④1y x-=B.①,②,③12y x=,④C.①,②3y x=,③,④12y x=D.①13y x=,②12y x=,③,④5.函数()1()lg xf x-=的大致图象是()A.B.C.D.6.已知2log6a=,5log15b=,7log21c=,则a,b,c的大小关系为()A.a b c<<B.c b a<<C.c a b<<D.b c a<<7.已知定义域R的奇函数()f x的图像关于直线1x=对称,且当01x≤≤时,3()f x x=,则212f⎛⎫=⎪⎝⎭()A.278-B.18-C.18D.2788.已知定义在R上的函数()f x在区间)[0,+∞上单调递增,且()1y f x=-的图象关于1x=对称,若实数a满足()()2log2f a f<,则a的取值范围是()A.10,4⎛⎫⎪⎝⎭B.1,4⎛⎫+∞⎪⎝⎭C.1,44⎛⎫⎪⎝⎭D.()4,+∞9.函数()2283,1log,1ax ax xf xx x⎧-+<⎪=⎨≥⎪⎩在x∈R内单调递减,则a的取值范围是()A.10,2⎛⎤⎥⎝⎦B.15,28⎡⎤⎢⎥⎣⎦C.1,12⎡⎫⎪⎢⎣⎭D.5,18⎡⎫⎪⎢⎣⎭10.设函数2,3()(1),3x xf xf x x⎧≥⎪=⎨+<⎪⎩,则()2log6f的值为()A.3B.6C.8D.1211.已知函数()1f x mx=+的零点在区间(1,2)内,则m的取值范围是()A.1(,)2-∞-B.11,2⎛⎫--⎪⎝⎭C.()1,-+∞D.1(,1)(,)2-∞-⋃-+∞12.已知定义在R上的函数()f x满足(1)(1)0f x f x++--=,(2)(2)0f x f x+--=.当(]0,2x∈时,()3xf x=,则(2018)(2019)f f-+=()A.6-B.3-C.3D.12第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知函数22,1()log(1),1xaxf xx x⎧+≤⎪=⎨->⎪⎩,若[(0)]2f f=,则实数a的值是_______.14.已知函数2xy a=-定义域为R,则实数a的取值范围是________.15.函数2212x xy-⎛⎫= ⎪⎝⎭的值域为________.16.设函数()21,02,0x xf xx x⎧-≥=⎨+<⎩,若函数()y f x a=-有两个不同的零点,则实数a的取值范围是_______.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(1)()0113630.0π625248-+++-;(2)lg142lg lg7lg183-+-.此卷只装订不密封班级姓名准考证号考场号座位号18.(12分)设22332100064lg42lg5a =⨯+++.(1)化简上式,求的值;(2)设集合,全集为,B A N =R ð,求集合中的元素个数.19.(12分)已知函数.(1)当时,在给定的直角坐标系内画出的图象,并写出函数的单调区间;(2)讨论函数零点的个数.20.(12分)已知二次函数.(1)若为偶函数,求值;(2)若在单调递增,求的取值范围;(3)若与轴交于两点(-3,0),(1,0),求当的值域.21.(12分)某银行柜台异地跨行转账手续费的收费标准为转账金额的,且最低1元笔,最高50元笔,王杰需要在该银行柜台进行一笔异地跨行转账的业务.(1)若王杰转账的金额为x 元,手续费为y 元,请将y 表示为x 的函数;(2)若王杰转账的金额为元,他支付的手续费大于5元且小于50元,求t 的取值范围.22.(12分)已知.(1)求的值域;(2)若对任意都成立,求m 的取值范围.答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】要使函数有意义,则0.5log (4)040x x -≥⎧⎨->⎩,解得34x ≤<,故答案选A .2.【答案】B 【解析】对于A ,()()()33f x x x x x f x -=--==-+-,是奇函数.对于B ,()()()2244f x x x f x -=--=-=,是偶函数.C 、D 是非奇非偶函数,所以选B .3.【答案】D【解析】根据题意,函数()26f x x kx =--的对称轴为2kx =,若()f x 在[2,8]上是单调函数,必有22k ≤或82k≥,解得k ≤4或k ≥16,即k 的取值范围是,故选D .4.【答案】B 【解析】②的图象关于y 轴对称,②应为偶函数,故排除选项C ,D ,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A ,故选B .5.【答案】B 【解析】由题()f x 是偶函数,其定义域是(,1)(1,)-∞-+∞ ,且()f x 在(1,)+∞上是增函数,故选B .6.【答案】B【解析】由于22log 6log 42a =>=,772log 211log 3c >==+,a c ∴>,552log 151log 3b >==+,33log 7log 5>,可得b c >,综合可得a b c >>,故选B .7.【答案】B 【解析】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②;在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--,再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--,()()()24f x f x f x ∴=-=-③;对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数,当01x ≤≤时,3()f x x =,得1128f ⎛⎫= ⎪⎝⎭,11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭ 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭,答案选B .8.【答案】C【解析】根据题意,()1y f x =-的图象关于1x =对称,则函数()f x 的图象关于y 轴对称,即函数()f x 为偶函数,又由函数()f x 在区间)[0,+∞上单调递增,则()()()()222log 2log 2log 2f a f f a f a <⇒<⇒<,即22log 2a -<<,解得144a <<,即a 的取值范围为1,44⎛⎫⎪⎝⎭,故选C .9.【答案】B 【解析】由题意,函数()2283,1log ,1ax ax x f x x x ⎧-+<⎪=⎨≥⎪⎩在x ∈R 内单调递减,则281220121813log 1a a a a -⎧-≥⎪⨯⎪<<⎨⎪⨯-⨯+≥⎪⎩,即2101580a a a ≥⎧⎪<<⎨⎪-≥⎩,解得1528a ≤≤,即实数a 的取值范围是15,28⎡⎤⎢⎥⎣⎦,故选B .10.【答案】D 【解析】函数2,3()(1),3x x f x f x x ⎧≥⎪=⎨+<⎪⎩,因为2log 63<,()()22log 61log 6f f =+,221log 6l 3og 12+=>,故得到()()2log 22122log 61log 612f f +===,故答案为D .11.【答案】B 【解析】由题知()f x 单调,故(1)(2)0f f ⋅<,(1)(21)0m m ++<,112m -<<-,故选B .12.【答案】A【解析】令1t x =+,由(1)(1)0f x f x ++--=可得()()f t f t =--,所以函数()f x 是定义在R 上的奇函数,所以(0)0f =.由(2)(2)0f x f x +--=可得(2)(2)f x f x +=-,所以(4)f x +=()()f x f x -=-,所以(8)()f x f x +=,故函数()f x 的周期为8,所以(2018)(25282)(2)(2)9f f f f -=-⨯-=-=-=-,(2019)(25283)(3)(1)3f f f f =⨯+===,所以(2018)(2019)6f f -+=-,故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案【解析】∵0(0)223f =+=,∴[(0)](3)log 2a f f f ==,∵[(0)]2f f =,∴log 22a =,因为0a >,所以解得a =.14.【答案】0a ≤【解析】 函数的定义域为R ,则20x a -≥恒成立,即2x a ≤恒成立,20x > ,0a ∴≤,故答案为0a ≤.15.【答案】(]0,2【解析】由题意,设222(1)11t x x x =-=--≥-,又由指数函数12ty ⎛⎫= ⎪⎝⎭为单调递减函数,当1t ≥-时,02y <≤,即函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2.16.【答案】[0,2)【解析】函数有两个不同的零点,即有两个不同的交点,所以函数与函数y =a有两个交点,如图所示:所以a 的范围是[0,2).三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)13364+;(2)0.【解析】(1)原式536113360.2512424+=+++-=.(2)原式2147lg lg107183⨯===⎛⎫⨯ ⎪⎝⎭.18.【答案】(1)218;(2)个.【解析】(1)原式22332100064lg42lg5=⨯+++.(2),{}|218R A x x =≤ð,,所以中元素个数为.19.【答案】(1)图像见解析,在1,2⎛⎫-∞ ⎪⎝⎭,上单调递增,在1,12⎛⎫⎪⎝⎭上单调递减;(2)①当或14a >时,函数零点的个数1个,②当或14a =时,函数零点的个数2个,③当104a <<时,函数零点的个数3个.【解析】(1)当时,()()()()()1,11,1x x x f x x x x ⎧-≥⎪=⎨-<⎪⎩,则函数的图象如图所示,由图易知函数在1,2⎛⎫-∞ ⎪⎝⎭,上单调递增,在1,12⎛⎫⎪⎝⎭上单调递减.(2)函数零点的个数等价于函数的图象与直线的交点个数,由(1)得①当或14a >时,函数零点的个数1个,②当或14a =时,函数零点的个数2个,③当104a <<时,函数零点的个数3个.20.【答案】(1)0;(2)[)2,-+∞;(3).【解析】(1)∵,为偶函数,()()f x f x ∴-=,0p ∴=.(2)∵的对称轴为2p x =-,因为函数在,2p⎡⎫-+∞⎪⎢⎣⎭上单调增,所以由已知在上单调增,12p∴-≤,2p ∴≥-,所以的取值范围为.(3)()f x x 与轴交于(-3,0)(1,0)两点,根据根与系数关系,()312p =--+=,3q =-,()223f x x x ∴=+-,()223g x x x ∴=+-,()45g ∴-=,()532g =,所以当时,的值域为.21.【答案】(1)1,02000.005,2001000050,10000x y x x x <≤⎧⎪=<≤⎨⎪>⎩;(2).【解析】(1)由题意得1,02000.005,2001000050,10000x y x x x <≤⎧⎪=<≤⎨⎪>⎩.(2)从(1)中的分段函数得,如果王杰支付的手续费大于5元且小于50元,则转账金额大于1000元,且小于10000元,则只需要考虑当时的情况即可,由,得,得,即实数t 的取值范围是.22.【答案】(1)[]4,5;(2)2233m -<<.【解析】(1)令2x t =,,1,44t ⎡⎤∴∈⎢⎥⎣⎦,原函数化为()2211g 5(2)444t t t t =-+=-+,1,44t ⎡⎤∈⎢⎥⎣⎦,,即的值域为.(2)由()232f x m am >++对任意都成立,得2324m am ++<对任意都成立,2320m am ∴+-<对任意都成立,令()232h a ma m =+-,,则()()2213201320h m m h m m -=--<=+-<⎧⎪⎨⎪⎩,解得2233m -<<.。

复习验收卷(二)函数概念与基本初等函数Ⅰ

复习验收卷(二)函数概念与基本初等函数Ⅰ

复习验收卷(二) 函数概念与基本初等函数Ⅰ(时间:120分钟 满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =2x +1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( )A.{y |1≤y <7}B.{y |1≤y ≤7}C.{1,3,5,7}D.{1,3,5}答案 D解析 由题意可知,函数的定义域为{0,1,2}, 把x =0,1,2代入函数解析式可得y =1,3,5, 所以该函数的值域为{1,3,5},故选D.2.定义在R 上的奇函数f (x )满足f (x )=x 2-2x (x ≥0),则函数f (x )的零点个数为( )A.0B.1C.2D.3答案 D解析 依题意,当x >0时,由f (x )=x 2-2x =0得x =2,即函数f (x )的一个零点为x =2.又函数f (x )为奇函数,于是-2也是函数f (x )的一个零点, 又f (0)=0,因此函数f (x )的零点个数为3,故选D.3.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 答案 A解析 由于函数f (x )在区间[0,+∞)上单调递增,且f (x )为偶函数, 则由f (2x -1)<f ⎝ ⎛⎭⎪⎫13得f (|2x -1|)<f ⎝ ⎛⎭⎪⎫13,即有-13<2x -1<13,解得13<x <23.故x 的取值范围是⎝ ⎛⎭⎪⎫13,23.4.(2020·北京海淀区一模)形如22n +1(n 是非负整数)的数称为费马数,记为F n ,数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,那F 5的位数是( )(参考数据:lg 2≈0.301 0) A.9 B.10C.11D.12答案 B解析 F 5=232+1,设m =232,则两边取常用对数得lg m =lg 232=32lg 2=32×0.301 0=9.632.m =109.632=109×100.632,所以F 5=109×100.632+1,又1<100.632<10,故F 5是10位数.5.将甲桶中的a 升水缓慢注入空桶乙中,t min 后甲桶剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4升,则m 的值为( )A.5B.6C.8D.10答案 A解析 根据题意知,因为5 min 后甲桶和乙桶的水量相等,所以函数f (t )=a e nt 满足f (5)=a e 5n =12a ,可得n =15ln 12,设当k min 后甲桶中的水只有a4升,所以f (k )=a 4,即15ln 12·k =ln 14,所以15ln 12·k =2ln 12,解得k =10,所以k -5=5,即m =5,故选A.6.(2021·安徽联盟联考)已知函数f (x )=10(x 2+1)x ·e |x |,则函数f (x )的图象大致为( )答案 A解析 函数f (x )的定义域为(-∞,0)∪(0,+∞),又f (-x )=10[(-x )2+1]-x ·e |-x |=-10(x 2+1)x ·e |x |=-f (x ),故函数f (x )为奇函数,则函数f (x )的图象关于原点对称,排除B ,因为f (1)=20e >0,且f (5)=52e 5<1,所以排除C ,D ,选A.7.设函数f (x )=x 3+bx 2+cx +d ,若2f (2)=3f (3)=4f (4),则f (5)-13f (1)的值等于( )A.8B.12C.20D.36答案 A解析 设2f (2)=3f (3)=4f (4)=k , 则xf (x )-k =(x -2)(x -3)(x -4)·(x -p ).令x =0,得p =-k 24,于是f (1)=-6+3k 4,f (5)=6+k 4, 即f (5)-13f (1)=8,故选A.8.已知函数f (x )=⎩⎨⎧ln (x +1)(x ≥0),x 3-3x (x <0),若函数y =f (x )-k 有三个不同的零点,则实数k 的取值范围是( ) A.(-2,2) B.(-2,1)C.(0,2)D.(1,3)答案 C解析 当x <0时,f (x )=x 3-3x ,则f ′(x )=3x 2-3, 令f ′(x )=0,所以x =-1(舍去正根),故f (x )在(-∞,-1)上单调递增,在(-1,0)上单调递减, 又f (x )=ln(x +1)在[0,+∞)上单调递增, 则函数f (x )的图象如图所示.当x <0时,f (x )极大值=f (-1)=2,且f (0)=0, 故当k ∈(0,2)时,y =f (x )-k 有三个不同的零点.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.在下列四组函数中,f (x )与g (x )表示同一函数的是( )A.f (x )=x -1,g (x )=x 2-1x +1B.f (x )=|x +1|,g (x )=⎩⎨⎧x +1,x ≥-1,-1-x ,x <-1C.f (x )=1,g (x )=(x +1)0D.f (x )=(x )2x ,g (x )=x(x )2答案 BD解析 对于A ,函数f (x )的定义域为R ,g (x )的定义域为{x |x ≠-1},f (x )与g (x )的定义域不相同,则不是同一函数;对于B ,函数f (x )的定义域为R ,g (x )的定义域为R ,f (x )与g (x )的定义域相同,f (x )=|x +1|=⎩⎨⎧x +1,x ≥-1,-1-x ,x <-1,对应关系相同,则f (x )与g (x )是同一函数;对于C ,函数f (x )的定义域为R ,g (x )的定义域为{x |x ≠-1},f (x )与g (x )的定义域不相同,则不是同一函数;对于D ,函数f (x )=(x )2x =1(x >0),g (x )=x(x )2=1(x >0)的定义域与对应法则均相同,是同一函数,故选BD.10.关于函数f (x )=-x 2+2x +3的结论正确的是A.定义域、值域分别是[-1,3],[0,+∞)B.单调增区间是(-∞,1]C.定义域、值域分别是[-1,3],[0,2]D.单调增区间是[-1,1]答案CD解析由-x2+2x+3≥0,可得x2-2x-3≤0,解得-1≤x≤3,即函数的定义域是[-1,3],由二次函数的性质可知,y=-x2+2x+3=-(x-1)2+4∈[0,4],∴函数的值域为[0,2],结合二次函数的性质可知,函数在[-1,1]上单调递增,在[1,3]上单调递减. 故选CD.11.设x,y,z为正实数,且log2x=log3y=log5z>0,则下列关系式可能成立的是()A.x2<y3<z5 B.z5<y3<x2C.y3<z5<x2 D.x2=y3=z5答案ABD解析令log2x=log3y=log5z=k>0,则x=2k>1,y=3k>1,z=5k>1,故x2=2k-1,y3=3k-1,z5=5k-1,若0<k<1时,f(x)=x k-1在(0,+∞)上单调递减,则z5<y3<x2,B项成立.若k=1时,x2=y3=z5=1,D项成立.若k>1时,则f(x)=x k-1在(0,+∞)上单调递增,∴x2<y3<z5,选项A成立.C不成立.12.(2021·福州质检)已知f(x)是定义在R上的偶函数,其图象关于点(1,0)对称.以下关于f(x)的结论正确的有A.f (x )是周期函数B.f (x )满足f (x )=f (4-x )C.f (x )在(0,2)上单调递减D.f (x )=cos πx2是满足条件的一个函数 答案 ABD解析 因为f (x )为偶函数,所以f (-x )=f (x ).又其图象关于点(1,0)对称,所以f (-x )=-f (2+x ),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )是以4为周期的周期函数,故A 正确; 由题意知,f (-x )=f (x )=f (x +4).又f (x +4)=f (-x +4),所以f (x )=f (4-x ),故B 正确;函数f (x )=cos πx 2是定义在R 上的偶函数,且由πx 2=k π+π2(k ∈Z),得x =2k +1(k ∈Z),所以(1,0)是它的一个对称中心,故D 正确;又f (x )在(0,2)上不能确定单调性,故C 错误.综上所述,故选ABD. 三、填空题(本题共4小题,每小题5分,共20分) 13.求值:log 315-12log 325=________. 答案 1解析 log 315-12log 325=log 315-log 32512 =log 315-log 35=log 33=1.14.若函数f (x )=⎩⎨⎧2x +2,x ≤1,2x -1,x >1,则f (f (0))=________.答案 5解析 ∵f (0)=3,∴f (f (0))=f (3)=5.15.已知函数f (x )的定义域为(0,1),则y =f [log 12(2x -1)]的定义域为______.答案 ⎝ ⎛⎭⎪⎫34,1解析 ∵函数f (x )的定义域为(0,1),∴0<log 12(2x -1)<1,即12<2x -1<1,解得34<x <1,∴函数y =f ⎣⎢⎡⎦⎥⎤log 12(2x -1)的定义域为⎝ ⎛⎭⎪⎫34,1. 16.已知函数f (x )=m ·9x -3x ,若存在非零实数x 0,使得f (-x 0)=f (x 0)成立,则实数m 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫0,12解析 由题意得关于x 的方程m ·9-x -3-x =m ·9x -3x 有非零实数解,整理得到m =3x(3x )2+1=13x +13x<12,又m >0,所以实数m 的取值范围是0<m <12.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知幂函数f (x )=(m -1)2x m 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x -k . (1)求m 的值;(2)当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要条件,求实数k 的取值范围. 解 (1)依题意得:(m -1)2=1⇒m =0或m =2, 当m =2时,f (x )=x-2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0.(2)由(1)得,f (x )=x 2,当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4), 当x ∈[1,2)时,g (x )∈[2-k ,4-k ), 即B =[2-k ,4-k ),因p 是q 成立的必要条件,则B ⊆A , 则⎩⎨⎧2-k ≥1,4-k ≤4,即⎩⎨⎧k ≤1,k ≥0,得0≤k ≤1. 故实数k 的取值范围是[0,1].18.(本小题满分12分)已知函数f (x )=x 2-4x +a +3,a ∈R. (1)若函数y =f (x )的图象与x 轴无交点,求a 的取值范围; (2)若函数y =f (x )在[-1,1]上存在零点,求a 的取值范围. 解 (1)若函数y =f (x )的图象与x 轴无交点,则f (x )=0的根的判别式Δ<0,即16-4(a +3)<0,解得a >1.故a 的取值范围为(1,+∞).(2)因为函数f (x )=x 2-4x +a +3图象的对称轴是直线x =2, 所以y =f (x )在[-1,1]上单调递减. 又y =f (x )在[-1,1]上存在零点, 所以⎩⎨⎧f (1)≤0,f (-1)≥0,即⎩⎨⎧a ≤0,a +8≥0,解得-8≤a ≤0.故实数a 的取值范围为[-8,0].19.(本小题满分12分)已知定义在R 上的奇函数f (x )和偶函数g (x )满足12f (x )-g (x )=x -1x 2+1. (1)求f (x ),g (x )的解析式;(2)若g (x +5)+g ⎝ ⎛⎭⎪⎫1x -1<g (x )+g ⎝ ⎛⎭⎪⎫1x ,求x 的取值范围.解 (1)因为12f (x )-g (x )=x -1x 2+1,所以12f (-x )-g (-x )=-x -1x 2+1,即-12f (x )-g (x )=-x -1x 2+1,所以f (x )=x -1x 2+1--x -1x 2+1=2x x 2+1,g (x )=1x 2+1. (2)因为g (x )+g ⎝ ⎛⎭⎪⎫1x =1x 2+1+11x 2+1=1,所以由g (x +5)+g ⎝ ⎛⎭⎪⎫1x -1<g (x )+g ⎝ ⎛⎭⎪⎫1x ,得1(x +5)2+1+(x -1)21+(x -1)2<1, 整理得1(x +5)2+1<11+(x -1)2,解得x >-2.结合分母不为零得x 的取值范围是(-2,0)∪(0,1)∪(1,+∞). 20.(本小题满分12分)已知定义在区间(-1,1)上的函数f (x )=x +ax 2+1为奇函数. (1)求函数f (x )的解析式,并判断函数f (x )在区间(-1,1)上的单调性; (2)解关于t 的不等式f (t -1)+f (t )<0. 解 (1)∵f (x )是在区间(-1,1)上的奇函数, ∴f (0)=a =0,∴f (x )=x1+x 2(经验证f (x )为奇函数).设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22 =(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22), ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,(1+x 21)(1+x 22)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在区间(-1,1)上单调递增. (2)∵f (t -1)+f (t )<0,且f (x )为奇函数, ∴f (t )<-f (t -1)=f (1-t ).又函数f (x )在区间(-1,1)上单调递增,∴⎩⎨⎧t <1-t ,-1<t <1,-1<1-t <1,解得0<t <12, ∴关于t的不等式的解集为⎩⎨⎧⎭⎬⎫t |0<t <12. 21.(本小题满分12分)已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.设f (x )=g (x )x .(1)求a ,b 的值;(2)若不等式f (2x )-k ·2x ≥0在x ∈[-1,1]上有解,求实数k 的取值范围. 解 (1)g (x )=a (x -1)2+1+b -a ,因为a >0,所以g (x )在区间[2,3]上是增函数,故⎩⎨⎧g (2)=1,g (3)=4,解得⎩⎨⎧a =1,b =0.(2)由(1)可得g (x )=x 2-2x +1, 所以f (x )=x +1x -2,所以f (2x )-k ·2x ≥0可化为2x +12x -2≥k ·2x ,即1+⎝ ⎛⎭⎪⎫12x 2-2·12x ≥k . 令t =12x ,则k ≤t 2-2t +1.因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤12,2.记h (t )=t 2-2t +1,因为t ∈⎣⎢⎡⎦⎥⎤12,2,所以h (t )max =1,所以实数k 的取值范围是(-∞,1].22.(本小题满分12分)已知定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x-x +33.(1)求f (x )的解析式;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.解 (1)当x <0时,-x >0, 则f (-x )=⎝ ⎛⎭⎪⎫12-x--x +33=2x+x -33.又f (x )为奇函数,所以-f (x )=2x+x -33,所以f (x )=-2x+3-x 3,所以f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x-x +33,x ≥0,-2x+3-x 3,x <0.(2)因为当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x-x +33,y =⎝ ⎛⎭⎪⎫12x单调递减,y =-x +33也单调递减,所以f (x )在[0,+∞)上单调递减. 又f (x )是定义在R 上的奇函数, 所以f (x )在(-∞,0]上单调递减, 所以f (x )在R 上单调递减.因为f (t 2-2t )+f (2t 2-k )<0在t ∈R 上恒成立, 所以f (t 2-2t )<-f (2t 2-k ). 又f (x )为奇函数, 所以f (t 2-2t )<f (k -2t 2),所以t 2-2t >k -2t 2在t ∈R 上恒成立,即3t 2-2t -k >0在t ∈R 上恒成立, 所以4+12k <0,即k <-13.所以实数k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-13.。

函数的概念与基本初等函数多选题练习题及答案

函数的概念与基本初等函数多选题练习题及答案

函数的概念与基本初等函数多选题练习题及答案一、函数的概念与基本初等函数多选题1.已知函数()sin sin x xf x e e =+,以下结论正确的是( )A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减 D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe '=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈;当2x ππ≤≤时,()()sin sin cos x xf x x e e -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e ⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确. 因()f x 在,2x ππ⎛⎫∈ ⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误. 对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x xπ=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin xx f x ee -=+,()()sin sin cos 0x x f x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.2.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.3.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>,所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.4.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x ex =+B .若()()33f x f x --=-,则()()32g x f x e =+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e-<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e-<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e -=-,()2120f e -=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点,即函数()()32g x f x e=+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e-<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.5.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同,而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.6.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;7.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数不是( ) A .2 B .3 C .4 D .5【答案】ABD 【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a. 【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t =(1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意;(2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =;综上所述:共有4个a . 故选:ABD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解8.已知函数1()xx f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项.【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1,故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.二、导数及其应用多选题9.某同学对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的是( )A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1x xx f x e e -=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 【详解】对于选项A :函数()sin e e x xxf x -=-的定义域为{}|0x x ≠,且()()sin sin x x x xx xf x f x e e e e ----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1xxx f x e e-=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee -----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,,()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.10.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1- B .0 C .1 D .2【答案】CD 【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出. 【详解】解:∵函数()()()221x f x x e a x =-+-, ∴()()()()()12112xx f x x e a x x e a '=-+-=-+,①若0a =,那么()()0202xf x x e x =⇔-=⇔=,函数()f x 只有唯一的零点2,不合题意; ②若0a >,那么20x e a +>恒成立, 当1x <时,()0f x '<,此时函数为减函数; 当1x >时,()0f x '>,此时函数为增函数; 此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+-()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <, 则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意; ③若02ea -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=, 即()()(1)20xf x x e a '=-+>恒成立,故()f x 单调递增,故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦(){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意; ④若2ea =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若2ea <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意; 综上所述,a 的取值范围为()0,∞+, 故选:CD. 【点睛】本题考查利用导数研究函数的零点问题,属于较难题.。

【理科专题二 】函数概念与基本初等函数(带答案)

【理科专题二 】函数概念与基本初等函数(带答案)

专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .505.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 10.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .11.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x +=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1m i i i x y =+=∑ A .0 B .m C .2m D .4m12.(2015福建)下列函数为奇函数的是A.y B .sin y x = C .cos y x = D .x x y e e -=-13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 14.(2015湖南)设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数15.(2015湖北)已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()g x f x =-()f ax (1)a >,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-16.(2015安徽)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <17.(2014新课标1)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .()f x |()g x |是奇函数C .|()f x |()g x 是奇函数D .|()f x ()g x |是奇函数18.(2014山东)函数1)(log 1)(22-=x x f 的定义域为A .)210(,B .)2(∞+,C .),2()210(+∞ ,D .)2[]210(∞+,, 19.(2014山东)对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有 ()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是A.()f x = B .2()f x x = C .()tan f x x = D .()cos(1)f x x =+20.(2014浙江)已知函数32()f x x ax bx c =+++,且0(1)(2)(3)3f f f -=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c21.(2015北京)下列函数中,定义域是R 且为增函数的是A .x y e -=B .3y x =C .ln y x =D .y x =22.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .323.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-124.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+ 25.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,126.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为 A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334-- 27.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .2 28.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]29.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .130.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞31.(2013山东)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+ ,则()1f -= A .-2 B .0 C .1 D .232.(2013福建)函数)1ln()(2+=x x f 的图象大致是A .B .C .D .33.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 34.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .1 35.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .436.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数37.(2013四川)函数133-=x x y 的图像大致是A B C D38.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 39.(2012福建)设1,0,()0,0,1,0,xf x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π40.(2012山东)函数1()ln(1)f x x =++ A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]- D .(1,2]-41.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 42.(2011江西)若()f x =,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 43.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是A .3y x =B .1y x =+C .21y x =-+D .2x y -=44.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)45.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于 A .-3 B .-1C .1D .346.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = (A)21 (B)32 (C)43 (D)1 47.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .348.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是49.(2010山东)函数()()2log 31x f x =+的值域为 A .()0,+∞ B .)0,+∞⎡⎣ C .()1,+∞ D .)1,+∞⎡⎣ 50.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 51.(2010广东)若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为偶函数,()g x 为奇函数C .()f x 与()g x 均为奇函数D .()f x 为奇函数,()g x 为偶函数52.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2二、填空题53.(2018江苏)函数()f x =的定义域为 .54.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 . 55.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____56.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.57.(2017新课标Ⅲ)设函数1,0()2,0x x x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.58.(2017江苏)已知函数31()2x xf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .59.(2017山东)若函数e ()xf x (e=2.71828 ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是①()2x f x -= ②()3xf x -= ③3()=f x x ④2()2=+f x x 60.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .61.(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.62.(2016江苏)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 . 63.(2015新课标Ⅰ)若函数()ln(f x x x =+为偶函数,则a =64.(2015浙江)已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.65.(2015山东)已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .66.(2015福建)若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .67.(2014新课标Ⅱ)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___.67.(2014湖南)若()()ax e x f x ++=1ln 3是偶函数,则=a ____________.68.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = . 70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是___. 71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(b a c b a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数;(Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab +2; (以上两空各只需写出一个符合要求的函数即可) 72.(2013安徽)函数1ln(1)y x =++的定义域为_____________. 73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = . 77.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________78.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈ ②222:,(),(,);f V R f m x y m x y V →=+=∈ ③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)79.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当(1,2]x ∈时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”. 其中所有正确结论的序号是 .80.(2010江苏)设函数()()xxf x x e ae -=+(x ∈R)是偶函数,则实数a =______.专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 2.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .3.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ; 令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .4.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 5.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 6.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a <-<,此时2()24a a m fb =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .7.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .8.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln33ln30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .9.D 【解析】当11x-剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=,所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .10.D 【解析】当0x ?时,令函数2()2x f x x e =-,则()4x f x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .11.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m miiiii i i mx y x ym ===+=+=+⋅=∑∑∑,故选B . 12.D【解析】∵函数y 的定义域为[0,)+∞,不关于原点对称,所以函数y =为非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.13.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.14.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.15.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.16.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.17.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .18.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 19.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 20.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 21.B 【解析】四个函数的图象如下显然B 成立.22.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .23.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.24.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x x f x -=-,则()22(22)()x x x x f x f x ---=-=--=-, 所以()f x =22xx--为奇函数,排除选项C ;选项D 中()22x x f x -=+,则()22()x x f x f x --=+=,所以()22x x f x -=+为偶函数,选D .25.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .26.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.27.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.28.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,202x x x ax ≤⎧⎨-≥⎩ 且0ln(1)x x ax>⎧⎨+≥⎩,由202x x x ax ≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B ,当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 29.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .30.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.31.A 【解析】()()112f f ---=-.32.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 33.C 【解析】1y x=是奇函数,x y e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 34.B 【解析】由已知两式相加得,()13g =. 35.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .36.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .37.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .38.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .39.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .40.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩或故选B .41.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .42.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 43.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.44.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.45.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .46.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.47.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .48.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B .49.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .50.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 51.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.52.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-.53.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞.54.【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos24f f f f f π=-===. 55.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.56.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.57.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞.58.1[1,]2-【解析】因为31()2e ()e xx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 59.①④【解析】①()2()2xxxx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②()3()3xxx x ee f x e -=⋅=在R 上单调递减,故()3x f x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22xg x ex=+,则22()(2)2[(1)1]0xxxg x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.60.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <, 综上可得,实数a 的取值范围是9(,]2-∞.61.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 62.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 63.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.64.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.65.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.66.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].67.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==. 68.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 69.1【解析】2311()()4()21222f f =-=-⨯-+=.70.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a . 71.【答案】(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b =+,可取()0)f x x =>.(Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.72.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 73.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x<<=.74.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞,故362aa -=⇔=-. 75.32【解析】331113()(2)()()1222222f f f f =-=-==+=.76.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.77.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- .78.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.79.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m m ,正确; ②取]2,2(1+∈m m x ,则]2,1(2∈m x ;mm x x f 22)2(-=,从而 x xf x f x f m m m -====+12)2(2)2(2)( ,其中, ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m n f ,假设存在n 使9)12(=+n f ,∵121[2,2)n n n ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==, 这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.80.-1【解析】设(),()x x g x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+3.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>4.(2017新课标Ⅰ)设,,x y z 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 5.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<6.(2017北京)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 7.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)A .3310B .5310C .7310D .9310 8.(2016全国I) 若1a b >>,01c <<,则A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c < 9.(2016全国III) 已知432a =,254b =,1325c =,则A .b a c <<B .a b c <<C .b c a <<D .c a b << 10.(2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+=A .3B .6C .9D .1211.(2015北京)如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤12.(2015天津)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为A .a b c <<B .a c b <<C .c a b <<D .c b a <<13.(2015四川)设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 14.(2015山东)设函数31,1()2,1xx x f x x -<⎧=⎨⎩≥,则满足()(())2f a f f a =的a 的取值范围是 A .2[,1]3B .[0,1]C .2[,)3+∞ D .[1,)+∞15.(2014山东)已知函数log ()a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图,则下列结论成立的是A .0,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<<16.(2014安徽)设3log 7a =, 1.12b =, 3.10.8c =,则A .c a b <<B .b a c <<C .a b c <<D .b c a <<17.(2014浙江)在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是18.(2014天津)函数212()log (4)f x x =-的单调递增区间是A .(0,)+¥B .(,0)-?C .(2,)+¥D .(),2-? 19.(2013新课标)设357log 6,log 10,log 14a b c ===,则A .c b a >>B .b c a >>C .a c b >>D .a b c >> 20.(2013陕西)设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是A .·log log log a c c b a b = B .·log lo log g a a a b a b = C .()log og g l lo a a a b c bc =D .()log g og o l l a a a b b c c +=+ 21.(2013浙江)已知y x ,为正实数,则A .y x yx lg lg lg lg 222+=+ B .lg()lg lg 222x y x y += C .y x yx lg lg lg lg 222+=∙ D .lg()lg lg 222xy x y =22.(2013天津)已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增.若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是A .[1,2]B .10,2⎛⎤ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]23.(2012安徽)23(log 9)(log 4)⋅=A .14 B .12C . 2D . 4 24.(2012新课标)当102x <≤时,4log xa x <,则a 的取值范围是A.(0,2 B.(2C. D. 25.(2012天津)已知122a =,0.212b -⎛⎫= ⎪⎝⎭,52log 2c =,则,,a b c 的大小关系为A .c b a <<B .c a b <<C .b a c <<D .b c a << 26.(2011北京)如果,0log log 2121<<y x 那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<27.(2011安徽)若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A .1(,)b a B .(10,1)a b - C .10(,1)b a+ D .2(,2)a b 28.(2011辽宁)设函数122,1()1log ,1x x f x x x -⎧=⎨->⎩≤,则满足()2f x ≤的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞)D .[0,+∞) 29.(2010山东)函数22x y x =-的图像大致是30.(2010天津)设5log 4a =,5(log 3)b =2,4log 5c =,则A .a <c <bB .b <c <aC .a <b <cD .b <a <c 31.(2010浙江)已知函数2()log (1),f x x =+若()1,f α=α=A .0B .1C .2D .332.(2010辽宁)设25abm ==,且112a b+=,则m = AB .10C .20D .10033.(2010陕西)下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是A .幂函数B .对数函数C .指数函数D .余弦函数34.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若a ,b ,c 均不相等,且()f a =()f b =()f c ,则abc 的取值范围是A .(1,10)B .(5,6)C .(10,12)D .(20,24)35.(2010天津)若函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)-+∞D .(,1)(0,1)-∞- 二、填空题36.(2018江苏)函数()f x =的定义域为 . 37.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.38.(2018上海)已知常数0a >,函数2()(2)xx f x ax =+的图像经过点6()5P p ,、1()5Q q -,,若236p qpq +=,则a =__________.39.(2016年浙江) 已知1a b >>,若5log log 2a b b a +=,b aa b =,则a = ,b = . 40.(2015江苏)不等式224x x-<的解集为_______.41.(2015浙江)若4log 3a =,则22aa-+=_______.42.(2014新课标)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__.43.(2014天津)函数2()lg f x x =的单调递减区间是________. 44.(2014重庆)函数2()log )f x x =的最小值为_________.45.(2013四川)____________.46.(2012北京)已知函数()lg f x x =,若()1f ab =,则22()()f a f b += .47.(2012山东)若函数()(0,1)x f x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =____.48.(2011天津)已知22log log 1a b +≥,则39ab+的最小值为__________. 49.(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________.专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数答案部分1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.B 【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a bab+<<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .3.D 【解析】因为2log e >1a =,ln 2(0,1)b =∈,12221log log 3log 13c e ==>>. 所以c a b >>,故选D .4.D 【解析】设235x y zk ===,因为,,x y z 为正数,所以1k >,则2log x k =,3log y k =,5log z k =, 所以22lg lg3lg913lg 23lg lg8x k y k =⨯=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg5lg 2515lg 25lg lg32x k z k =⨯=<,则25x z <,选D . 5.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C . 6.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln33ln30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .7.D 【解析】设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-≈,所以93.2810x =,即M N最接近9310,选D .8.C 【解析】选项A ,考虑幂函数c y x =,因为0c >,所以cy x =为增函数,又1a b >>,所以c c a b >,A 错.对于选项B ,c cab ba <()cb b aa ⇔<,又()xb y a=是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C .9.A 【解析】因为4133216a ==,2155416b ==,1325c =,且幂函数13y x =在R 上单调递增,指数函数16x y =在R 上单调递增,所以b a c <<,故选A . 10.C 【解析】由于2(2)1log 43f -=+=,22log 121log 62(log 12)226f -===,所以2(2)(log 12)f f -+=9.11.C 【解析】如图,函数2log (1)y x =+的图象可知,2()log (1)f x x +≥的解集是{|11}x x -<≤.。

第2章 函数概念与基本初等函数单元检测(苏教版必修1)(有答案,含部分试题解析)

第2章 函数概念与基本初等函数单元检测(苏教版必修1)(有答案,含部分试题解析)

第2章函数概念与基本初等函数Ⅰ单元测验(本卷满分160分)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.(2012•诸城市)已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是_________.2.(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=_________.3.已知图象变换:①关于y轴对称;②关于x轴对称;③右移1个单位;④左移一个单位;⑤右移个单位;⑥左移个单位;⑦横坐标伸长为原来的2倍,纵坐标不变;⑧横坐标缩短为原来的一半,纵坐标不变.由y=e x的图象经过上述某些变换可得y=e1﹣2x 的图象,这些变换可以依次是_________(请填上变换的序号).4.(2010•天津)设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是_________.5.已知函数f(x)=x2,x∈[﹣1,2],g(x)=ax+2,x∈[﹣1,2],若对任意x1∈[﹣1,2],总存在x2∈[﹣1,2],使f(x1)=g(x2)成立,则a的取值范围是_________.6.设定义域为R的函数f(x),若关于x的方程2f2(x)+2bf(x)+1=0有8个不同的实数根,则b的取值范围是_________.7.设函数f(x)=x3+x,若时,f(mcosθ)+f(1﹣m)>0恒成立,则m取值范围是_________.8.若不等式对于一切实数x∈(0,2)都成立,则实数λ的取值范围是_________.9.(2010•天津)设函数f(x)=x2﹣1,对任意,恒成立,则实数m的取值范围是_________.10.已知函数,,设F (x )=f (x+3)•g (x ﹣3),且函数F (x )的零点均在区间[a ,b](a <b ,a ,b ∈Z )内,则b ﹣a 的最小值为 _________ .11.不等式a >2x ﹣1对于x ∈[1,2恒成立,则实数的取值范围是 _________ .12.若函数y=f (x )存在反函数y=f ﹣1(x ),且函数y=2x ﹣f (x )的图象过点(2,1),则函数y=f ﹣1(x )﹣2x 的图象一定过点 _________ .13.定义在R 上的函数满足f (0)=0,f (x )+f (1﹣x )=1,,且当0≤x 1<x 2≤1时,f (x 1)≤f (x 2),则= _________ .14.(2010•福建)已知定义域为(0,+∞)的函数f (x )满足: (1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立; (2)当x ∈(1,2]时f (x )=2﹣x 给出结论如下:①任意m ∈Z ,有f (2m)=0; ②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n+1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k ﹣1).其中所有正确结论的序号是 _________二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.16.(本小题满分14分)已知函数()21f x x =-,2,0()1,0x x g x x ⎧≥=⎨-<⎩,求[()]f g x 和[()]g f x 的解析式.17.(本小题满分14分)设函数.)2(,2)2(,2)(2⎩⎨⎧>≤+=x x x x x f(1)求)9(f 的值; (2)若8)(0=x f ,求.0x18. (本题满分16分)已知函数32)(2-+-=mx x x f 为)3,5(n +--上的偶函数, (1)求实数n m ,的值; (2)证明:)(x f 在]0,5(-上是单调增函数19. (本题满分16分)(2012年高考(江苏))如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.20.(本小题满分16分)已知函数()log (1)log (3)a a f x x x =-++,其中01a <<,记函数)(x f 的定义域为D . (1)求函数)(x f 的定义域D ;(2)若函数()f x 的最小值为4-,求a 的值;(3)若对于D 内的任意实数x ,不等式2222x mx m m -+-+<1恒成立,求实数m 的取值范围.第2章函数概念与基本初等函数Ⅰ单元测验参考答案与试题解析一、填空题(共14小题)(除非特别说明,请填准确值)1.(2012•诸城市)已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是(13,49).﹣1)的图象关于点(1,0)对称,)的图象关于点(0,0)对称,)为奇函数,则f(﹣x)=﹣f(x),)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣)<﹣f(y2﹣8y)=f(8y﹣y2)恒成立,y2,4)2<4恒成立,,则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意d=表示区域内的点和原点的距离.,2.(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=1.3.已知图象变换:①关于y轴对称;②关于x轴对称;③右移1个单位;④左移一个单位;⑤右移个单位;⑥左移个单位;⑦横坐标伸长为原来的2倍,纵坐标不变;⑧横坐标缩短为原来的一半,纵坐标不变.由y=e x的图象经过上述某些变换可得y=e1﹣2x 的图象,这些变换可以依次是①⑧⑤或①③⑧或⑧①⑤或⑧⑥①或④⑧①或④①⑧(请填上变换的序号).的图象与函数y=e的图象,均在x轴上方,关于x轴对称变换,但观察到两个解析式,底数相同,指数部分含x项符号相反,故一定要进行)若第一步进行对称变换,第二步进行伸缩变换,第三步进行平移变换,平移变换为:右移个单位,即①⑧⑤;)若第一步进行对称变换,第二步进行平移变换,第三步进行伸缩变换,1个单位,即①③⑧;)若第一步进行伸缩变换,第二步进行对称变换,第三步进行平移变换,则平移变换为:右移个单位,即⑧①⑤;则平移变换为:左移个单位,即4.(2010•天津)设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是m<﹣1.时,有1+5.已知函数f(x)=x2,x∈[﹣1,2],g(x)=ax+2,x∈[﹣1,2],若对任意x1∈[﹣1,2],总存在x2∈[﹣1,2],使f(x1)=g(x2)成立,则a的取值范围是(﹣∞,﹣2]∪[2,+∞).,解得6.设定义域为R的函数f(x),若关于x的方程2f2(x)+2bf(x)+1=0有8个不同的实数根,则b的取值范围是﹣1.5<b<﹣.)∈(0,1)时,有四个不同的x与f(x)对应.再结合题中+1=0有8个不同实数解“,可以分解为形如关于有两个不同的实数根K1、K2,且K1和K2均为大于0且小于列式如下:,即<﹣<﹣7.设函数f(x)=x3+x,若时,f(mcosθ)+f(1﹣m)>0恒成立,则m取值范围是(﹣∞,1).时,,解得:8.若不等式对于一切实数x∈(0,2)都成立,则实数λ的取值范围是[4,+∞).+8)(8﹣x),y1=f(x),y2=λ(x+1).利用导数工具得出)单调增,原不等式对于一切实数x∈(0,2)都成立转化为:y1<f(x)都成立,从而得出实数λ的取值范围.x2+8)(8﹣x),y1=f(x),y2=λ(x+1(x)=24x2﹣4x3+64﹣16x>0.)时,f(x)单调增,=12 9.(2010•天津)设函数f(x)=x2﹣1,对任意,恒成立,则实数m的取值范围是.依据题意得上恒定成立,即在立,求出函数函数的最小值即可求出解:依据题意得在时,函数取得最小值,所以解得,﹣[,10.已知函数,,设F(x)=f(x+3)•g(x﹣3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为9.﹣﹣,=+…11.不等式a>2x﹣1对于x∈[1,2恒成立,则实数的取值范围是a≥3.12.若函数y=f(x)存在反函数y=f﹣1(x),且函数y=2x﹣f(x)的图象过点(2,1),则函数y=f﹣1(x)﹣2x的图象一定过点(3,﹣4).13.定义在R上的函数满足f(0)=0,f(x)+f(1﹣x)=1,,且当0≤x1<x2≤1时,f(x1)≤f(x2),则=.求出一些特值,),(,再利用条件将逐步转化到内,代入求解即可.)的图象关于中令),=可得因为所以所以故答案为:14.(2010•福建)已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时f(x)=2﹣x给出结论如下:①任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k﹣1).其中所有正确结论的序号是①②④,则)﹣((,﹣17. 解:(1)因为29>,所以1892)9(=⨯=f(2) ⅰ)若8220=+x ,则620=x ,即660-=或x ,而20≤x ,所以0x 的值不存在;ⅱ)若2,24,82000=>==x x x 所以则 综上得20=x 18. 解:(1)8,0==n m(2)由(1)知,32)(2--=x x f设215x x <<-,22212122)()(x x x f x f +-=- =))((22112x x x x +- 因为215x x <<-,所以0,02112<+>-x x x x所以0)()(21<-x f x f ,即)(x f 在]0,5(-上是单调增函数. 19. 解:(1)在221(1)(0)20y kx k x k =-+>中,令0y =,得221(1)=020kx k x -+.由实际意义和题设条件知00x>k >,. ∴2202020===10112k x k k k≤++,当且仅当=1k 时取等号. ∴炮的最大射程是10千米.(2)∵0a >,∴炮弹可以击中目标等价于存在0k >,使221(1)=3.220ka k a -+成立, 即关于k 的方程2222064=0a k ak a -++有正根. 由()()222=204640a a a ∆--+≥得6a ≤.此时,0k (不考虑另一根).∴当a 不超过6千米时,炮弹可以击中目标.20. 解:(1)要使函数有意义:则有1030x x ->⎧⎨+>⎩,解得13<<-x∴ 函数的定义域D 为)1,3(- ………………………………………2分(2)22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦13<<-x 201)44x ++≤∴<-(10<<a ,2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴,即min ()log 4a f x =, ……5分由log 44a =-,得44a-=,1424a -==∴. ………………………7分 (注:14242a -==∴不化简为14242a -==∴扣1分)(3)由题知-x 2+2mx -m 2+2m <1在x ∈)1,3(-上恒成立,2x ⇔-2mx +m 2-2m +1>0在x ∈)1,3(-上恒成立, ……………………9分令g (x )=x 2-2mx+m 2-2m+1,x ∈)1,3(-,配方得g (x )=(x -m )2-2m +1,其对称轴为x =m , ①当m ≤-3时, g (x )在)1,3(-为增函数,∴g (-3)= (-3-m )2-2m +1= m 2+4m +10≥0, 而m 2+4m +10≥0对任意实数m 恒成立,∴m ≤-3. ………………11分 ②当-3<m <1时,函数g (x )在(-3,-1)为减函数,在(-1, 1)为增函数, ∴g (m )=-2m +1>0,解得m <.21 ∴-3<m <21…………13分 ③当m ≥1时,函数g (x )在)1,3(-为减函数,∴g (1)= (1-m )2-2m +1= m 2-4m+2≥0, 解得m ≥2m ≤2 ∴-3<m <21………………15分 综上可得,实数m 的取值范围是 (-∞,21)∪[2+∞) ……………16分。

函数概念与基本初等函数Ⅰ复习题及答案 (13)

函数概念与基本初等函数Ⅰ复习题及答案 (13)

第 1 页 共 1 页 函数概念与基本初等函数Ⅰ复习题及答案
4.(2020·景德镇质检)已知函数f (x )=⎩⎨⎧3x ,x ≤0,
-⎝ ⎛⎭
⎪⎫12x ,x >0,则 f (f (log 23))=( )
A.-9
B.-1
C.-13
D.-127 解析 f (log 23)=-⎝ ⎛⎭⎪⎫12log 23=-2log 23-1=-13
<0, ∴f [f (log 23)]=f ⎝ ⎛⎭⎪⎫-13=3×⎝ ⎛⎭
⎪⎫-13=-1. 答案 B
5.(2020·黄冈调研)已知函数f (x +1)的定义域为(-2,0),则f (2x -1)的定义域为
( )
A.(-1,0)
B.(-2,0)
C.(0,1)
D.⎝ ⎛⎭
⎪⎫-12,0 解析 由题意,知-1<x +1<1,则f (x )的定义域为(-1,1).令-1<2x -1<1,得0<x <1.∴f (2x -1)的定义域为(0,1).
答案 C
6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为
( )
A.y =⎣⎢⎡⎦
⎥⎤x 10 B.y =⎣⎢⎡⎦⎥⎤x +310 C.y =⎣⎢⎡⎦⎥⎤x +410 D.y =⎣⎢⎡⎦
⎥⎤x +510 解析 代表人数与该班人数的关系是除以10的余数大于6,即大于等于7时要
增加一名,故y =⎣⎢⎡⎦
⎥⎤x +310. 答案 B。

高考数学大一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测(十二)函数与方程理【含答案】

高考数学大一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测(十二)函数与方程理【含答案】

课时达标检测(十二) 函数与方程[练基础小题——强化运算能力]1.已知函数f (x )=6x-log 2x ,在下列区间中,包含 f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4),故选C.2.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为( )A .0B .1C .2D .3解析:选B 令f (x )=0,得x 12=⎝ ⎛⎭⎪⎫12x ,在平面直角坐标系中分别画出函数y =x 12与y=⎝ ⎛⎭⎪⎫12x的图象(图略),可得交点只有一个,所以零点只有一个,故选B. 3.若f (x )是奇函数,且x 0是y =f (x )+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x-1 B .y =f (x )e -x+1 C .y =e xf (x )-1D .y =e xf (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e xf (x )-1的零点.4.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C.5.(2016·天津六校联考)已知函数y =f (x )的图象是连续的曲线,且对应值如表:则函数y 解析:依题意知f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)内均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.答案:3[练常考题点——检验高考能力]一、选择题1.设a 是方程2ln x -3=-x 的解,则a 在下列哪个区间内( ) A .(0,1) B .(3,4) C .(2,3)D .(1,2)解析:选D 令f (x )=2ln x -3+x ,则函数f (x )在(0,+∞)上递增,且f (1)=-2<0,f (2)=2ln 2-1=ln 4-1>0,所以函数f (x )在(1,2)上有零点,即a 在区间(1,2)内.2.已知a 是函数f (x )=2x-log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定解析:选C 在同一坐标系中作出函数y =2x,y =log 12x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log 12x 0,即f (x 0)<0.3.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个解析:选B 因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y=f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示:显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.4.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .5解析:选A 由已知条件得g (x )=3-f (2-x )=⎩⎪⎨⎪⎧|x -2|+1,x ≥0,3-x 2,x <0,分别画出函数y =f (x ),y =g (x )的草图,观察发现有2个交点.故选A.5.(2016·山西四校联考)函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f x +,x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f x +,x <0的图象如图所示,作出直线l :y =a -x ,向左平移直线l ,观察可得当函数y =f (x )的图象与直线l :y =-x +a 的图象有两个交点,即方程f (x )=-x +a 有且只有两个不相等的实数根时,有a <1,故选C.6.(2017·湖南衡阳模拟)函数f (x )的定义域为[-1,1],图象如图1所示,函数g (x )的定义域为[-2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m +n =( )A .14B .12C .10D .8解析:选A 由题图可知,若f (g (x ))=0,则g (x )=-1或g (x )=0或g (x )=1;由题图2知,g (x )=-1时,x =-1或x =1;g (x )=0时,x 的值有3个;g (x )=1时,x =2或x =-2,故m =7.若g (f (x ))=0,则f (x )=-32或f (x )=32或f (x )=0.由题图1知,f (x )=32与f (x )=-32各有2个;f (x )=0时,x =-1或x =1或x =0,故n =7.由此可得m +n =14.故选A.二、填空题7.若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.解析:要求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根,∴⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1.∴g (x )的零点为1+2,1.答案:1+2,18.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x的零点个数为________.解析:函数g (x )=f (x )-e x的零点个数即为函数y =f (x )与y =e x的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.答案:29.(2016·湖北优质高中联考)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:题设可转化为两个函数y =⎝ ⎛⎭⎪⎫12|x -1|与y =-2cos πx 在[-4,6]上的交点的横坐标的和,因为两个函数均关于x =1对称,所以两个函数在x =1两侧的交点对称,则每对对称点的横坐标的和为2,分别画出两个函数的图象易知两个函数在x =1两侧分别有5个交点,所以5×2=10.答案:1010.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧a x,x ≥0,kx +1,x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________.解析:函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y =f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.答案:(0,1) 三、解答题11.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解:设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解,∵f (0)=1>0, ∴f (2)≤0.又∵f (2)=22+(m -1)×2+1,∴m ≤-32.而当m =-32时,f (x )=0在[0,2]上有两解12和2,∴m <-32.②若f (x )=0在区间[0,2]上有两解, 则⎩⎪⎨⎪⎧ Δ≥0,0<-m -12<2,f ,∴⎩⎪⎨⎪⎧m -2-4≥0,-3<m <1,4+m -+1≥0.∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1.由①②可知实数m 的取值范围是(-∞,-1].12.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 解:(1)设x <0,则-x >0,∴f (-x )=x 2+2x . 又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解,即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个不同的解,只需-1<a <1,故a 的取值范围为(-1,1).。

高一数学函数概念与基本初等函数Ⅰ试题答案及解析

高一数学函数概念与基本初等函数Ⅰ试题答案及解析

高一数学函数概念与基本初等函数Ⅰ试题答案及解析1. (2010·浙江文,16)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________. 【答案】20【解析】本题考查了不等式的实际应用.由题意列出不等式:3860+500+2[500(1+x %)+500(1+x %)2]≥7000 (x >0) 整理可得:x 2+300x -6400≥0,解之得,x ≥20. ∴x 的最小值为20.【考点】一元二次不等式的应用点评:本题是应用题,题中涉及的量比较多,在仔细审题、正确列出不等式的同时还应考虑到实际意义得到x >0. 2. 若,则( ) A .B .C .D .【答案】B 【解析】化为指数式即,所以,故选B 。

【考点】本题主要考查对数函数的概念、对数式与指数式的互化。

点评:理解对数函数的定义,注意对数式与指数式的互化。

3. (2011·佛山质检)如图所示是函数y =()x 和y =3x 2图象的一部分,其中x =x 1,x 2(-1<x 1<0<x 2)时,两函数值相等.(1)给出如下两个命题: ①当x <x 1时,()x <3x 2; ②当x >x 2时,()x <3x 2,试判断命题①②的真假并说明理由; (2)求证:x 2∈(0,1).【答案】(1)当x =-8时, ()-8=28=256,3×(-8)2=192,此时()-8>3×(-8)2,故命题①是假命题.又当x ∈(0,+∞)时,y =()x 是减函数,y =3x 2是增函数,故命题②是真命题. (2)证明:令则,∴f (x )在区间(0,1)内有零点, 又∵函数在区间(0,+∞)上单调递增,∴x 2∈(0,1)【解析】首先从图象上直观观察很容易得到①是错误的②正确。

函数的概念与基本初等函数多选题(讲义及答案)附解析

函数的概念与基本初等函数多选题(讲义及答案)附解析

函数的概念与基本初等函数多选题(讲义及答案)附解析一、函数的概念与基本初等函数多选题 1.已知53a =,85b =,则( )A .a b <B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=, 又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b +>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.2.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.3.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1D【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.4.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.5.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.6.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .1122⎡-⎢⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞0<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=,由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为10,2⎡⎢⎣⎦,则“复区间长度”为()221b a -==+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得112x =,212x =,所以12a b ⎧=⎪⎪⎨+⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误;故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.7.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;8.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( )A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m m f n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010mn ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”;D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.二、导数及其应用多选题9.下列不等式正确的有( ) A2ln 3< B.ln π<C.15< D.3ln 2e <【答案】CD 【分析】 构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减 所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确;故选:CD【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.10.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( )A .1,2a b ==B .3,3a b =-=-C .0,2a b ><D .0,0a b <>【答案】ABC【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解.【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得1x =2x =当x 变化时,()'f x ,()f x 的变化情况如下表:f b b ⎛== ⎝,当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;要使函数()f x 有且只有一个零点,作草图 或则需0303a f a f⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a a b -<<, B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需0303a f a f⎧⎛-->⎪ ⎪⎝⎨-⎪>⎪⎩,即20332033a a b a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a a b ->>, D 选项,0,0a b <>,不一定满足,故D 不符合题意;故选:ABC【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.。

课标版(文理)数学 第一轮专题练习--第二章 函数概念与基本初等函数Ⅰ

课标版(文理)数学 第一轮专题练习--第二章  函数概念与基本初等函数Ⅰ

2023课标版(文理)数学高考第一轮专题练习第二章函数概念与基本初等函数I第一讲函数及其表示夯基础考点练透1.醐/WV5FT +土,义勸(A.[i l)U(l,+«>) B. [|, 2)C. [j l)U(l,2)D. (0, 2)2.[2022内蒙古赤峰二中模拟]若函数AAl)的定义域为[-1,1],则Alg W的定义域为(A.[-1,1]B. [1,2]C. [10, 100]D. [0, lg 2]3.[2022武汉市第-中学模拟]己知函数Ax)=Vax24-bx + c的定义域与值域均为[0, 4],则(A.-4B. -2C.-lD. 14.[2021 南昌市三模]若函数/-a)4^g2X,x^ 则AA-^))= ((4smx, x < 0, 4A.-|B. IC. 1D.|5.[2021合肥市三检]若函数0 2’满足/•U)=/X2'1),则/(2a)的值等于(k • X,X 2 ZA. 2B.OC. -2D. -4lnx, x > 1,6.[2021武汉市5月模拟]己知函数Ax)= 0, 0 < x < 1,若/彡0,则实数a的取值范围是(X, x < 0,A.[宁,+~)B.(-~,-j] U [0,甲]C.[0,宁]1.若函数: 2(a>0, a^l)的最人值是4,则a的取值范围是A.(0, 1)U(1,2]B.(0, 1)U(1,V2]C.(0, 1)D.(0, 1) U (1, V2]8.[开放题]当2^0吋,函数/满足K/aXe'-l,写出-个满足条件的函数M的解析式.1提能力考法实战9.[2022青岛市质检]将函数厂VU^-2(xe[-3,3])的图象绕点(-3, 0)逆时针旋转a (0彡a彡0),得到曲线C,对于每一个旋转角a,曲线(7都是一个函数的图象,则6最大吋的正切值为()A.|B. |C. 1D. V310.[2021洛阳市第三次统考]高斯是徳国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名了“尚斯函数”.设A-eR,用Ld表示不超过A•的最大整数,则尸[x]称为“高斯函数”,例如:[-2. 1]=-3,[3.1]=3.已知函数则函数尸[/W]的值域为()A.(0, -3(B. (0,-1)C. (0,-1,-2}D. {1,0,-1,-2)第二讲函数的基本性质夯基础考点练透1.[2022青岛市质检]己知双曲正弦函数则()A.f(x)为偶函数B./*(X)在区间(-OO, +OO)上单凋递减C./U)没有零点D./C Y)在区间(-~,+-)上单调递增2.[2022湖北部分重点中学联考]己知函数f(x)=\x2~(^ + l)x + 2,x<l,若函数/•&)在R上为减函数,则ka x, x > 1,实数a的取值范围为()A.[丢,1)B. [|, |]C. (0,!]D. [i 1)3.[2022西安复习检测]若定义域为R的奇函数Ax)满足All) =/(1+尤),且A3) =2,则f(4)+f(2 021) =()A. 2B. 1C. 0D. -24.定义在R上的偶函数/U)在[0, +°°)上单调递减,且/(-2)=0,若彡0的解集为[1,5],则6F ()A. -3B. -2C.2D. 35.[2022郑州一模]己知函数M的定义域为R,且/(x)不恒为0,若f⑽为偶函数,A3T»-1)为奇函数,则下列选项中一定成立的是()A. /(-|)=0B./(-l)=oC. r(2)=0D. /(4)=06.[2021四川成都石室中学三模]己知函数尸fCvl)的图象关子直线尸1对称,满足r(2-x)=rtx),且/U)在区间(-1, 0)上单调递减,若a=f&),Zz=/X-ln 2),c=Alog;(18),则a、b, c的大小关系为()A. a<c<bB. c<b<aC. a<b<cD. b<a<c7.[开放题]写出一个值域为[2, 3]的周期函数: .(不能用分段函数形式)8.[2022重庆凤鸣山中学模拟]己知函数f(x)是定义在R上的奇函数,且在区间[0, +~)上单调递减.若f(2a+l) + f(l)〈0,则实数a的取值范围是.9.[2021陕西宝鸡二模]己知函数^U)=A+^UeR),A-G[l,9L则〆x)的值域是 ____________ .设函数f(x)=|,若对于任意实数a,总存在沿£ [1,9],使得f(x<>)彡r成立,则实数t的取值范围是.提能力考法实战10.[2021广东茂名4月模拟]己知函数/U)是定义在R上的奇函数,且满足/U)=-A A4-1),数列UJ是首项为1,公差为1的等差数列,则/(&)+/•(&)+/*(&)+•••+/(&。

函数概念与基本初等函数Ⅰ复习题及答案 (102)

函数概念与基本初等函数Ⅰ复习题及答案 (102)

函数概念与基本初等函数Ⅰ复习题及答案(1)(角度1)已知a =20.2,b =0.40.2,c =0.40.6,则( )A.a >b >cB.a >c >bC.c >a >bD.b >c >a(2)(角度2)(2020·安徽江南名校联考)若e a +πb ≥e -b +π-a ,则有( )A.a +b ≤0B.a -b ≥0C.a -b ≤0D.a +b ≥0(3)(角度3)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________.(4)(角度3)已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图像经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为________.解析 (1)因为a =20.2>1,b =0.40.2<1,c =0.40.6<1,所以a >b ,a >c .又y =0.4x 是以0.4为底的指数函数,且在R 上单调递减,所以0.40.2>0.40.6,即b >c ,所以a >b >c .(2)令f (x )=e x -π-x ,则f (x )在R 上是增函数, 由e a +πb ≥e -b +π-a ,得e a -π-a ≥e -b -πb ,则f (a )≥f (-b ),所以a ≥-b ,则a +b ≥0.(3)原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x 在(-∞,-1]上是减函数,所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2. 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2. (4)把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎨⎧6=ab ,24=b ·a 3,结合a >0,且a ≠1,解得⎩⎨⎧a =2,b =3,所以f (x )=3·2x .要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在区间(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在区间(-∞,1]上的最小值不小于m 即可.因为函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 在区间(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 有最小值56.所以只需m ≤56即可.所以m 的最大值为56.答案 (1)A (2)D (3)(-1,2) (4)56。

(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)

 (完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)
【解析】因为 ,故 ,
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
7.【2020年高考全国I卷理数】若 ,则
A. B.
C. D.
【答案】B
【解析】设 ,则 为增函数,因为
所以 ,
所以 ,所以 .

当 时, ,此时 ,有
当 时, ,此时 ,有 ,所以C、D错误.
【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.
13.【2020年高考天津】函数 的图象大致为
A B
CD
【答案】A
【解析】由函数的解析式可得: ,则函数 为奇函数,其图象关于坐标原点对称,选项CD错误;
当 时, ,选项B错误.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
14.【2020年高考天津】设 ,则 的大小关系为
A. B.
C. D.
【答案】D
【解析】因为 ,


所以 .
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性: ,当 时,函数递增;当 时,函数递减;
A.10名B.18名
C.24名D.32名
【答案】B
【解析】由题意,第二天新增订单数为 ,设需要志愿者x名,

函数概念与基本初等函数I

函数概念与基本初等函数I

高考数学一轮复习单元训练:函数概念与基本处等函数I本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数的图象的大致形状是( )2.“b =c =0”是“二次函数y =ax 2+bx +c(a ≠0)经过原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数的单调增区间为( )A .B .C .D . 4.函数的图象必经过点( )A .(0,1)B .(1,1)C .(2,1)D .(2,2)5.函数f (x )cosx 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点6.的值为( )A .B .C .D .7.已知函数,若,则的所有可能值为( )A .1B .1或C .D . 1或)1(,||)(>=a x xa x f x212log (56)y x x =-+52⎛⎫+∞ ⎪⎝⎭,(3)+∞,52⎛⎫-∞ ⎪⎝⎭,(2)-∞,2y 1 (0,1)x a a a -=+>≠且82log 9log 3233223⎪⎩⎪⎨⎧≥<<-=-)1()11()sin()(12x e x x x f x π2)()1(=+a f f a 22-22±22±8.如图,函数、、的图象和直线将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧。

则函数的图象经过的部分是( )A .④⑦B .④⑧C .③⑦D .③⑧9.函数与的图像所有交点的横坐标之和等于( ) A . 2B . 4C . 6D . 810.设函数,则满足的x 的取值范围是( ) A .,2] B .[0,2] C .[1,+) D .[0,+)11.函数的图象大致是( )12.函数y =log (x 2-6x +17)的值域是( )A .RB .[8,+C .(-∞,-3D .[-3,+∞]第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若,,则下列性质对函数成立的序号是____________①; ②;③ ; ④. 14.对于在区间上有意义的两个函数和,如果对任意,均有, 那么我们称和在上是接近的.若与在闭区间上是接近的,则的取值范围是____________1y x=y x =1y =1x=y=11-=x y ()42sin 2≤≤-=x x y π⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x 2)(≤x f 1[-∞∞cos ()xf x x=21)∞]R x x ∈21,21x x ≠x x f 2)(=)()()(2121x f x f x x f ⋅=+)()()(2121x f x f x x f +=⋅0)()]()([2121>-⋅-x x x f x f )2(2)()(2121x x f x f x f +>+],[b a )(x f )(x g ],[b a x ∈1|)()(|≤-x g x f )(x f )(x g ],[b a )1(log )(2+=ax x f x x g 2log )(=]2,1[a15.在用二分法...求方程的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为____________ 16.已知集合是满足下列性质的函数的全体:存在非零常数k, 对定义域中的任意,等式=+恒成立.现有两个函数,,则函数、与集合的关系为三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.探究函数f (x )=x +,x ∈(0,+∞)的最小值,并确定取得最小值时x 的值.列表如下:请观察表中y 值随x 值变化的特点,完成以下的问题. 函数f (x )=x +(x >0)在区间(0,2)上递减;(1)函数f (x )=x +(x >0)在区间 上递增;当x= 时,= . (2)证明:函数f (x )=x +(x >0)在区间(0,2)上递减.(3)思考:函数f (x )=x +(x <0)有最值吗?如果有,那么它是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)3210x x --=4xx4x4y 最小x4x418.设函数(、)(1)若,且对任意实数均有0成立,求实数、的值.(2)在(1)的条件下,当时,是单调函数,求实数的取值范围.1)(2++=bx ax x f a R b ∈0)1(=-f x )(x f ≥a b []2,2-∈x kx x f x g -=)()(k19.已知二次函数的二次项系数为a ,且不等式的解集为(1,3). (1)若方程有两个相等的根,求的解析式; (2)若的最大值为正数,求a 的取值范围.20.已知函数,(1) 求的值; (2) 归纳猜想一般性的结论,并证明之.)(x f x x f 2)(->06)(=+a x f )(x f )(x f 331)x (f x+=)3(f )2(f ),2(f )1(f ),1(f )0(f +-+-+21.设函数的定义域为. (Ⅰ)若,,求实数的范围;(Ⅱ)若函数的定义域为,求实数的取值范围.22.计算求值:)1ln()(2++=ax x x f A 1A ∈3A -∉a =y ()f x R a -++++21(lg 8lg 1000)lg 53(lg 2)lg 6lg 0.006一C ,【答案】A 【答案】D 【答案】D 【答案】B 【答案】A 【答案】D 【答案】B 【答案】B 【答案D【答案】B 【答案】C二,【答案】①③④【答案】【答案】【答案】三17,【答案】(1)(2, +∞);2 ;4(2)任取x ,x ∈(0, 2)且 x <x 于是, f (x )-f (x )=(x +)-(x +)=(1)∵ x , x ∈(0, 2) 且 x <x ∴ x -x <0; x x -4<0; x x >0∴(1)式>0 即f (x )-f (x )>0,f (x )>f (x ) ∴f (x )在区间(0, 2)递减. (3)当x=-2时,有最大值-418,【答案】 (1)又对任意实数均有0成立恒成立,即恒成立(2)由(1)可知在[-2,2]时是单调函数,即实数的取值范围为19,【答案】(Ⅰ)①[0,1]3,22⎛⎫⎪⎝⎭12121211x 422x 4()()221211x x x x x x 4--12121212121212(1)0101f a b b a -=∴-+==+ 即x )(x f ≥240b a ∴∆=-≤2(1)0a -≤1,2a b ∴==22()21()(2)1f x x x g x x k x =++∴=+-+()g x ∈x 22[2,2](,][2,2][,)22k k --∴-⊂-∞-⊂+∞或222222k k --∴≤≤-或k (,2][6,)-∞-+∞ ).3,1(02)(的解集为>+x x f 因而且.0),3)(1(2)(<--=+a x x a x x f .3)42(2)3)(1()(2a x a ax x x x a x f ++-=---=由方程 ②因为方程②有两个相等的根,所以,即由于代入①得的解析式(Ⅱ)由 及 由 解得20,【答案】(1) (2)猜想 证明:+=21,【答案】(Ⅰ)由题意,得所以. 故实数的范围为. (Ⅱ)由题意,得在上恒成立, 则.09)42(06)(2=++-=+a x a ax a x f 得094)]42([2=⋅-+-=∆a a a .511.01452-===--a a a a 或解得51.1,0-==<a a a 将舍去)(x f .535651)(2---=x x x f aa a a a x a a x a ax x f 14)21(3)21(2)(222++-+-=++-=.14)(,02aa a x f a ++-<的最大值为可得⎪⎩⎪⎨⎧<>++-,0,0142a a a a .03232<<+---<a a 或)1(f )0(f +33=)2(f )1(f +-33=)3(f )2(f +-33=)x 1(f )x (f -+33=331331)x 1(f )x (f x1x+++=-+-331x+=xx3333⋅+++⋅=3333x xx 3333⋅+xx 33333⋅++)33(333x x ++=33=⎩⎨⎧≤+->++0139011a a 310≥a a ),310[+∞012>++ax x R 042<-=∆a解得.故实数实数的范围为.22,【答案】原式=(3lg2+3lg10)lg5+3(lg2)2+lg(6-1×0.006) = [3lg2+3(lg2+lg5)]lg5+3(lg2)2+lg0.001 =3(lg5)2+6lg2·lg5+3(lg2)2-3 =3(lg5+lg2)2-3 =3-3 =022<<-a a ]22[,-。

函数与基本初等函数测试题及答案

函数与基本初等函数测试题及答案

函数与基本初等函数测试题一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =)23(log 21-x 的定义域是( ) A .[)+∞,1 B .),32(+∞ C .⎥⎦⎤⎢⎣⎡1,32 D .(32,1] 答案 D2.下列同时满足条件①是奇函数;②在[0,1]上是增函数;③在[0,1]上最小值为0的函数是 ( ) A .y =x 5-5x B .y =sin x +2xC .y =xx 2121+- D .y =x-1答案B3.(2008·湛江模拟)下列函数在其定义域内既是奇函数又是增函数的是 ( )A .21x y =(x ∈(0,+∞))B .y =3x (x ∈R )C . 31x y =(x ∈R )D .y =lg|x |(x ≠0) 答案C4.(2008·杭州模拟)已知偶函数f (x )满足条件:当x ∈R 时,恒有f (x +2)=f (x ),且0≤x ≤1时,有 ,0)(>'x f 则f )15106(),17101()1998f f ,(的大小关系是( ) A .)17101()15106()1998(f f f >> B .)17101()1998()15106(f f f >> C .)15106()1998()17101(f f f >> D .)1998()17101()15106(f f f >> 答案 B5.如图为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是 ( )A .m <0,n >1B .m >0,n >1C .m >0,0<n <1D .m <0,0<n <1 答案D6.已知f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=2x -1,则f (log 212)的值为 ( )A .31 B .34C .2D .11 答案 A7.(2008·杭州模拟)已知函数f (x )=(x 2-3x +2)g (x )+3x -4,其中g(x )是定义域为R 的函数,则方程f (x )=0在下面哪个范围内必有实数根( )A.(0,1)B.(1,2)C.(2,3)D.(2,4)答案B8.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是( )A.a<-1B.a>1C.-1<a<1D.0≤a<1答案 B9.f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是 ( )A.5B.4C.3D.2答案 B10.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1 市场供给表单价(元/kg) 2 2.4 2.8 3.2 3.6 4供给量(1 000 kg)50 60 70 75 80 90表2 市场需求表单价(元/kg ) 4 3.42.92.62.32需求量(1 000 kg )50 60 65 70 75 8根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间 ( ) A .(2.3,2.4)内 B .(2.4,2.6)内C .(2.6,2.8)内D .(2.8,2.9)内 答案C11.(2008·成都模拟)已知函数f (x )=log a (12+x +bx ) (a >0且a ≠1),则下列叙述正确的是 ( )A.若a =21,b =-1,则函数f (x )为R 上的增函数B.若a =21,b =-1,则函数f (x )为R 上的减函数C.若函数f (x )是定义在R 上的偶函数,则b =±1 D .若函数f (x )是定义在R 上的奇函数,则b =1答案A12.设函数f (x )=,0,20,2⎪⎩⎪⎨⎧>≤++x x c bx x若f (-4)=f (0),f (-2)=-2,则关于x的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4 答案 C二、填空题(本大题共4小题,每小题4分,共16分) 13.设函数f (x )=(]⎪⎩⎪⎨⎧+∞∈∞-∈-).,1(,log ,1,,281x x x x 则满足f (x )=41的x 值为 . 答案 314.已知函数f (x )=⎪⎩⎪⎨⎧<+≥)4()1()4()21(x x f x x ,则f (log 23)的值为 .答案 24115.(2008· 通州模拟)用二分法求方程x 3-2x -5=0在区间[2,3]内的实根,取区间中点x 0=2.5,那么下一个有实根的区间是 . 答案 (2,2.5)16.(2008·福州模拟)对于函数f (x )定义域中任意的x 1,x 2 (x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③;0)()(2121>--x x x f x f④2)()()2(2121x f x f x x f +<+当f (x )=2x 时,上述结论中正确结论的序号是 . 答案 ①③④三、解答题(本大题共6小题,共74分)17.(12分)设直线x =1是函数f (x )的图象的一条对称轴,对于任意x ∈R ,f (x +2)=-f (x ),当-1≤x ≤1时,f (x )=x 3. (1)证明:f (x )是奇函数;(2)当x ∈[3,7]时,求函数f (x )的解析式. (1)证明 ∵x =1是f (x )的图象的一条对称轴, ∴f (x +2)=f (-x ).又∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-f (-x ),即f (-x )=-f (x ).∴f (x )是奇函数. (2)解 ∵f (x +2)=-f (x ),∴f (x +4)=f [(x +2)+2] =-f (x +2)=f (x ),∴T =4.若x ∈[3,5],则(x -4)∈[-1,1],∴f (x -4)=(x -4)3.又∵f (x -4)=f (x ),∴f (x )=(x -4)3,x ∈[3,5].若x ∈(5,7],则(x -4)∈(1,3],f (x -4)=f (x ).由x =1是f (x )的图象的一条对称轴可知f [2-(x -4)]=f (x -4) 且2-(x -4)=(6-x )∈[-1,1],故f (x )=f (x -4)=f (6-x )=(6-x )3=-(x -6)3.综上可知f (x )=⎪⎩⎪⎨⎧≤<--≤≤-.75,)6(,53,)4(33x x x x18.(12分)等腰梯形ABCD 的两底分别为AB =10,CD =4,两腰AD =CB =5,动点P 由B 点沿折线BCDA 向A 运动,设P 点所经过的路程为x ,三角形ABP 的面积为S. (1)求函数S =f (x )的解析式;(2)试确定点P 的位置,使△ABP 的面积S 最大.解 (1)过C 点作CE ⊥AB 于E , 在△BEC 中,CE =2235-=4,∴sin B =54.由题意,当x ∈(0,5]时,过P 点作PF ⊥AB 于F ,∴PF =x sin B =54x ,∴S =21×10×54x =4x , 当x ∈(5,9]时,∴S =21×10×4=20. 当x ∈(9,14]时,AP =14-x ,PF =AP ·sin A =5)14(4x -, ∴S =21×10×(14-x ) ×54=56-4x .综上可知,函数S =f (x )=(](](]⎪⎩⎪⎨⎧∈-∈∈14,9456.9,5205,04x x x x x(2)由(1)知,当x ∈(0,5]时,f (x )=4x 为增函数, 所以,当x =5时,取得最大值20. 当x ∈(5,9]时,f (x )=20,最大值为20.当x ∈(9,14]时,f (x )=56-4x 为减函数,无最大值. 综上可知:当P 点在CD 上时,△ABP 的面积S 最大为20.19. (2008·深圳模拟)(12分)据调查,某地区100万从事传统农业的农民,人均收入3 000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进企业工作,那么剩下从事传统农业的农民的人均收入有望提高2x %,而进入企业工作的农民的人均收入为3 000a 元 (a >0).(1)在建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x 的取值范围;(2)在(1)的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农民的人均年收入达到最大. 解(1)由题意得(100-x )·3 000·(1+2x %)≥100×3 000, 即x 2-50x ≤0,解得0≤x ≤50. 又∵x >0,∴0<x ≤50.(2)设这100万农民的人均年收入为y 元, 则y =100000300)1(0003601000003%)21(0003)100(2+++-=++⨯⨯-x a x ax x x=-0003)1(301062+++x a x .∴若25(a +1)≤50,即0<a ≤1时,当x =25(a +1)时,y max =.37537503750003)1(25)1(30)1(25106222++=++⨯+++⨯-a a a a a 若a >1时,函数在(]50,0上是增函数.∴当x =50时,y max =106-×502+30(a +1) ×50+3 000=-1500+1 500a +1 500+3 000=1 500a +3 000.答 若0<a ≤1,当x =25(a +1)时,使100万农民人均年收入最大.若a >1,当x =50时,使100万农民的人均年收入最大. 20.(12分)设a ,b ∈R ,且a ≠2,定义在区间(-b ,b )内的函数f (x )=xax211lg ++是奇函数. (1)求b 的取值范围; (2)讨论函数f (x )的单调性. 解 (1)f (x )=lgxax211++(-b <x <b )是奇函数等价于:对任意x ∈(-b ,b )都有⎪⎩⎪⎨⎧>++-=-②0211①)()(,,x axx f x f ①式即为axxx ax ++=--121lg 211lg,由此可得axxx ax ++=--121211,也即a 2x 2=4x 2,此式对任意x ∈(-b ,b )都成立相当于a 2=4,因为a ≠2,所以a =-2,代入②式,得x x2121+->0,即-21<x <21,此式对任意x ∈(-b ,b )都成立相当于-21≤-b <b ≤21, 所以b 的取值范围是(0, 21]. (2)设任意的x 1,x 2∈(-b ,b ),且x 1<x 2,由b ∈(0,21],得-21≤-b <x 1<x 2<b ≤21, 所以0<1-2x 2<1-2x 1,0<1+2x 1<1+2x 2, 从而f (x 2)-f (x 1)=.01lg )21)(21()21)(21(lg 2121lg 2121lg12121122=<-++-=+--+-x x x x x x x x 因此f (x )在(-b ,b )内是减函数,具有单调性.21.(12分)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x .(1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(2)设有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析表达式.解 (1)因为对任意x ∈R , 有f (f (x )-x 2+x )=f (x )-x 2+x , 所以f (f (2)-22+2)=f (2)-22+2又由f (2)=3,得f (3-22+2)=3-22+2,即f (1)=1. 若f (0)=a ,则f (a -02+0)=a -02+0,即f (a )=a .(2)因为对任意x ∈R ,有f (f (x )-x 2+x )=f (x )-x 2+x .又因为有且只有一个实数x 0,使得f (x 0)=x 0.所以对任意x ∈R ,有f (x )-x 2+x =x 0. 在上式中令x =x 0,有f (x 0)-x 20+x 0=x 0.又因为f (x 0)=x 0,所以x 0-x 20=0,故x 0=0或x 0=1.若x 0=0,则f (x )-x 2+x =0,即f (x )=x 2-x .但方程x 2-x =x 有两个不同实根,与题设条件矛盾, 故x 0≠0.若x 0=1,则有f (x )-x 2+x =1,即f (x )=x 2-x +1. 易验证该函数满足题设条件.22.(2008·南京模拟)(14分)已知函数y =f (x )是定义在区间[-23,23]上的偶函数,且x ∈[0,23]时,f (x )=-x 2-x +5(1)求函数f (x )的解析式;(2)若矩形ABCD 的顶点A ,B 在函数y =f (x )的图象上,顶点C ,D 在x 轴上,求矩形ABCD 面积的最大值.解 (1)当x ∈[-23,0]时,-x ∈[0,23]. ∴f (-x )=-(-x )2-(-x )+5=-x 2+x +5.又∵f (x )是偶函数,∴f (x )=f (-x )=-x 2+x +5.∴f (x )=⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈+--⎥⎦⎤⎢⎣⎡-∈++-.23,0,50,23,522x x x x x x (2)由题意,不妨设A 点在第一象限,坐标为(t ,-t 2-t +5),其中t ∈(0,23].由图象对称性可知B 点坐标为(-t ,-t 2-t +5).则S (t )=S 矩形ABCD =2t (-t 2-t +5)=-2t 3-2t 2+10t .)(t S '=-6t 2-4t +10.由)(t S '=0,得t 1=-35(舍去),t 2=1.当0<t <1时,)(t S '>0;t >1时,)(t S '<0.∴S (t )在(0,1]上单调递增,在[1,23]上单调递减.∴当t =1时,矩形ABCD 的面积取得极大值6, 且此极大值也是S (t )在t ∈(0,23]上的最大值,从而当t =1时,矩形ABCD 的面积取得最大值6.。

高三数学函数的概念与基本初等函数多选题(讲义及答案)及答案

高三数学函数的概念与基本初等函数多选题(讲义及答案)及答案

高三数学函数的概念与基本初等函数多选题(讲义及答案)及答案一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:1212a b ⎧-=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a的可能取值是( ) A .0 B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =,故1()2f x =-,()f x =()f x =,当1()2f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =,故2()3f x =-,()f x =()f x ,当2()3f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.3.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) − (1+a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根 B .当151522a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得152a -<, 故当15a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根; 当15a --=21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根;1a <<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A1a <<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当a =3个根,C 正确;当4a ≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.4.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.5.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt t y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫ ⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.6.已知21,1, ()ln,1,x xf xx x⎧-≤⎪=⎨>⎪⎩,则关于x的方程2[()]()210f x f x k-+-=,下列正确的是()A.存在实数k,使得方程恰有1个不同的实数解;B.存在实数k,使得方程恰有2个不同的实数解;C.存在实数k,使得方程恰有3个不同的实数解;D.存在实数k,使得方程恰有6个不同的实数解;【答案】ACD【分析】令()0f x t=≥,根据判别式确定方程2210t t k-+-=根的个数,作出()f x的大致图象,根据根的取值,数形结合即可求解.【详解】令()0f x t=≥,则关于x的方程2[()]()210f x f x k-+-=,可得2210t t k-+-=,当58k=时,()14210k∆=--=,此时方程仅有一个根12t=;当58k<时,()14210k∆=-->,此时方程有两个根12,t t,且121t t+=,此时至少有一个正根;当58k>时,()14210k∆=--<,此时方程无根;作出()f x的大致图象,如下:当58k=时,此时12t=,由图可知()f x t=,有3个不同的交点,C正确;当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.7.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y=+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121x y z m ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.8.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m mf n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩,所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.二、导数及其应用多选题9.对于函数2ln ()xf x x=,下列说法正确的有( ) A .()f x在x =12eB .()f x 有两个不同的零点 C.(2)f f f <<D .若21()f x k x>-在(0,)+∞上有解,则2e k <【答案】ACD 【分析】利用导数求出函数的单调区间,进一步求出函数的极值可判断A ;利用函数的单调性和函数值的范围判断B ;利用函数的单调性比较出函数值的大小关系判断C ;利用不等式有解问题的应用判断D . 【详解】函数2ln ()x f x x =,所以2431ln 212ln ()(0)x x xx x f x x x x⨯-⨯-'==>, 令()0f x '=,即2ln 1x =,解得x =当0x <<()0f x '>,故()f x在上为单调递增函数.当x >()0f x '<,故()f x在)+∞上为单调递减函数.所以()f x在x =12f e=,故A 正确;当0x <<()0f x '>,()f x在上为单调递增函数,因为()10f =,所以函数()f x在上有唯一零点,当x ≥2ln ()0xf x x=>恒成立,即函数()f x在)+∞上没有零点, 综上,()f x 有唯一零点,故B 错误.由于当x >()0f x '<,()f x在)+∞上为单调递减函数,因为2>>>(2)f f f <<,故C 正确;由于21()f x k x >-在(0,)+∞上有解,故221ln 1()x k f x x x +<+=有解,所以2ln 1()max x k x +<,设2ln 1()x g x x +=,则32ln 1()x g x x --'=,令()0g x '=,解得x =当x >()0f x '<,故()f x在)+∞上为单调递减函数.当0x <<时,()0f x '>,故()f x在上为单调递增函数.所以()22max e eg x g e ==-=. 故2ek <,故D 正确.故选:ACD . 【点睛】方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.10.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( )A .()()()m x f x g x =-在0x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1-D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x+'∴=+=>, 当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误; 对于D ,函数()f x 和()h x的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线方程为(2ey k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2ey =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 1 页 函数概念与基本初等函数Ⅰ复习题及答案
1.下列所给图像是函数图像的个数为( )
A.1
B.2
C.3
D.4
解析 图像①关于x 轴对称,x >0时,每一个x 对应2个y ,图像②中x 0对应2个y ,所以①②均不是函数图像;图像③④是函数图像.
答案 B
2.(2020·太原一中月考)设函数f (x )=⎩⎨⎧x 2-1(x ≥2),log 2
x (0<x <2), 若f (m )=3,则实数m 的值为( )
A.-2
B.8
C.1
D.2
解析 当m ≥2时,m 2-1=3,解得m =2或m =-2(舍);当0<m <2时,log 2m =3,解得m =8(舍).综上,m =2.
答案 D
3.如图是张大爷晨练时离家距离(y )与行走时间(x )之间的函数关系的图像.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )
解析 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意. 答案 D。

相关文档
最新文档