安捷伦相干光通信测试方案
安捷伦2M测试仪表使用方法
+
Company Confidential
13
两种测试 N x 64 kb/s的方法
方法 1
MULTIPLE PRBS PRBS PRBS PRBS
Tx 0 12 34
2 Mb/s Frame Rx
0 12 34
2 Mb/s Frame
方法 2 OCTETS
SINGLE 1 2 3 4 PRBS
Tx 0 123 4
安捷伦公司 2M 传输测量仪表培训
安捷伦科技通信系统集团
+
Company Confidential
1
内容安排
•2M测试的基本理论 •ProBER II 的主要功能及特点 •如何利用仪表来维护网络 •仪表主要操作步骤
+
Company Confidential
2
2 Mb/s 标准
T ITU-T 在 G.703中定义了相关的接口特性。 T 传输是 “比特顺序无关的” 或可以说成是 “透明通路" 但是: T 对于复用和性能监测来说帧结构是非常重要的。
SIG
FAS
FAS
FAS FAS
10
利用帧内的开销字节 检测2M链路的质量
Tx
Rx CRC-4 Rx
CRC-4, E & A bits Rx
在线监测
E A
TTxx
E7580 2Mb/s test set
仪表在线监测的结构能够表明链路双向的通信质量
+
Company Confidential
11
N x 64 kb/s 帧结构
11
1 1 AS S S S S
12
C3 0 0 1 1 0 1 1
安捷伦Cary 60 光纤测试样品
安捷伦Cary 60 紫外-可见分光光度计配置微光纤探头测定4°C下微量DNA的纯度应用摘要医药/生物技术作者*Fyfe, DJ 和Comerford, JC***Fyfe 科技公司, West Lakes Shore, SA 5020, 澳大利亚**安捷伦科技公司,679 Springvale Road, Mulgrave 3179, 澳大利亚总结安捷伦Cary 60 紫外-可见分光光度计是在储存环境(如冰箱)下直接测定微量生物样品的理想仪器。
本应用报告展示了如何使用Cary 60 及其微光纤探头附件测定4 °C下的DNA 纯度——结果表明,使用该仪器能够大幅节省时间和成本,同时数据精确度和重现性毫无损失。
•不再需要比色皿•直接测定4 °C冰箱中的样品•节省每次分析的时间与成本前言多年以来,紫外-可见分光光度计一直是生物技术领域中测定DNA 纯度和浓度的一项重要工具。
该方法最早由Warburg 和Christian 在1942 年开发1,随后由Sambrook 等人在1989 年进行了优化,使其可用于实验室中简便、快速的测定2。
分光光度法的主要优点在于测定过程:1) 简便;2) 准确;3) 不破坏样品。
这一方法可以节省时间而不损失数据质量,并且在测定过程中无需使用大体积的样品或额外的耗材,从而带来经济效益。
在之前的文章中,我们介绍了安捷伦Cary 50 紫外-可见分光光度计配置Hellma (德国Hellma GmbH & Co.)的Traycell 微量比色池紫外-可见在室温下准确、可重现地测定微量DNA 的方法3。
在本研究中,我们采用带光纤探头的Cary 60 紫外-可见分光光度计进行了方法扩展研究,在4 °C 以及普通实验室环境光照条件下测定了小体积样品。
本方法使得用户可以将仪器靠近样品,而不是像传统光谱方法那样将样品放入仪器中,从而能够在很短的时间内完成分析。
安捷伦光时域反射仪使用方法及原理介绍
可视光源子模块
-faultlocationonnear-end terminalequipment
多模模块
-LAN/datacomapplications
33
高性能
. Noiselevel(Peak)
Initialbackscatterlevel
Measurement
range
Dynamicrange
断裂
光纤 尾端
机械固定连 接头
相对光功率
脉冲发生器 光监测器
数据分析及其显示
OTDR测试显示
OTDR是基本的光纤链路安装和 维护的测试工具
.
4
背向散射
熔接
弯折 活动连
机械固
断裂
光纤尾端
ZOOM
MODIFY/ENTER
接器
定接头
OTDR测量显示
背向散射是由于光纤的瑞利散射现象而引起的 部分光信号返回OTDR的现象 5
11
测量范围
背向散射电平初始点
噪声电平(峰值)
动态范围 (峰值)
测量范围
与动态范围的一般关系
动态范围 (信噪比=1)
熔接衰耗(0.5dB熔接点): 衰减系数:
(SNR=1) 范围-6.0dB 范围-6.0dB
非反射光纤尾端:
范围-4.0dB
反射光纤尾端:
范围-2.5dB
~1.8dB
噪声电平 (均方根值)
全功能的光仪表--集光源、光功率计、可视光源、
OTDR功能于一体
28
AgilentE6000C:前视图
Handle
Run/Stop Cursor Select
Batterychargingred Poweronlight(green)
安捷伦 信号完整性分析 PPT
55.接收性能测试分析23PCI-E 1/2/3、RapidIOPCI-E 1/2/3AGP x8DDR2/3、FBD10/100 EthernetGig Ethernet10 Gig ESCSI SAS1/2Fiber ChannelSAS1/2SATA2/3SATA4’97 ’98 ’99 ‘00 ’01 ’02 ’03 ’Parallel SerialProprietaryIBADatacenter Clusters10 Gig E所有的I/O 总线都向串行发展数据速率越来越快(>1Gbps)上升时间越来越快反射越来越大5要在频域进行数据的分析6+5 VoltSupplyGround+5 VoltSupplyGround7。
¾过孔;8¾电磁辐射;•。
可见,信号完整性设计的考虑因素是多方面的,设计中应把握主要方面,减少不确定性。
9 10典型信号完整性现象3:串行信号眼图问题原因很多:阻抗不连续,损耗阻抗不连续,损耗 (11)眼图概念12串行数据的软件时钟恢复方式138参考: Bell Communications Research, Inc (Bellcore), “Synchrouous Optical Network (SONET) Transport Systems: Common Generic Criteria, TR-253-CORE”, Issue 2, Rev No. 1, December19971415•热噪声(RJ)•占空比失真(DCD)•电源噪声(RJ, PJ)•芯片内部耦合(PJ, ISI)•匹配错误(ISI)另外一个含义是指数字信号的上升与下降(或称信号的跳变)非常之快16,当信号的上升时间小于6倍(有说4倍)信号传输延时(电长度)时即认为信号是高速信号,而与信号的频率无关。
t rise<t prop delay• 617安捷伦信号完整性测试分析全套解决方案18Receiver M tl b V il A20CardPackage•Matlab, Verilog_A结果测量•TDR and TDT•2-port and 4-port VNA•Eye Diagram•Advanced JitterDecoder ReceiverEqualizerSignal Recovery建模——传输线Account for impedance, delay, conductor loss, dielectric loss, and couplingMultilayer Interconnect Models use a built-in field-solver, and have both layout and schematic representationsMomentum EM simulator for arbitrary planar structures. Has layout and schematic representationsAnalytic models are fast,and have a layout andschematic representation21•2D Via model vertical current•3D Via model vertical and horizontal currents •Advanced Slot Via modeling22频域通道仿真•S-Parameter Measurements•Z-Parameters Measurements•Y-Parameter Measurements•Group Delay23Monte Carlo Simulation Dielectric Constant variation (10%) High Frequency Response Degradation Rise/Fall Performance is EffectedTDR/TDT仿真24I/O驱动+ 互连仿真For illustration purpose we used Virtex-II Pro I/O simulation in this example25Allegro PCB Design Environment ADS design and simulation environment 262D/3D电磁场仿真isolated traceharmonic signal0.4 GHzoutput27S(1,1)isolated traceS(1,2)isolated trace 仿真结果查看——眼图和模板280810001E-3129-400-2000200400-6006000.20.40.60.80.0Time, fsecDDJHistDDJFHistDDJRHist-6-4-20246-88200400600800Time, psecTJHistRJPJHistDDJHist0.20.40.60.80.0 1.0UI308参考: Bell Communications Research, Inc (Bellcore), “Synchrouous Optical Network (SONET) Transport Systems: Common Generic Criteria, TR-253-CORE”, Issue 2, Rev No. 1, December19973132PeriodicJitter (PJ)Data DependentJitter (DDJ)Inter-symbolInterference (ISI)Duty CycleDistortion (DCD)Sub Rate Jitter(SRJ)UncorrelatedPJ33•热噪声(RJ)•占空比失真(DCD)•电源噪声(RJ, PJ)•芯片内部耦合(PJ, ISI)•匹配错误(ISI) 86100C 一键式抖动测试和分析34EZJIT+:基本抖动分析SignalTrendHistogramSpectrum 35EZJIT+:高级抖动分析36s3775050100150200250Actual TJ (ps)Fa数字信号的眼图38眼图模板39串行数据的时钟恢复方式40以恢复的每一个时钟累积显示可到实时眼图同时可以调用模板测试41模板测试有问题,可以定位具体有问题的数据位42以恢复的时钟为基准可以进行8b/10b解码43可以进行串行触发和搜索44并行总线时钟恢复和眼图形成例中:DDR 建立时间/保持时间模板读写分开,隔离3态45创新的图形化触发功能:InfiniiScanZone Qualify “must / must not pass” zonesGeneral Serial Software Trigger can isolate eventsup to 80 bitRunt software finder 46finds Runt signal like the hardware solutionNon-monotonic Edge finder isolates non-monotonic edge no hardware solution canDDR2Read/Write触发–InfiniiScan47READ・WRITE SignalsExisting TogetherWRITE Only Trigger48340MHz 3.4GHz均衡测试结果3.4Gb/s signal49Eye Pattern without Equalizer Eye Pattern with Equalizer示波器和逻辑分析仪集成调试90000系列示波器13 GHz16900系列逻辑分析系统9000系列示波器5016800系列逻辑分析仪5000/6000/7000 便携式示波器100 MHz4、本底噪声是同类仪器的1/3~1/2!52本底噪声是同类仪器的5、触发抖动是同类仪器的1/10;6、40GSa/s 采样下,波形捕获速率比同类仪器快100倍。
安捷伦射频测试方案简介_图文
射频通信测试研讨会•测试框架介绍•射频电路测试部分•元器件测试部分NA 316Agilent RestrictedNov. 2005宽带无线通信的框架发射机电路测试解决方案54830A数字示波器16900A逻辑分析仪N1912A功率计89650A矢量信号分析仪接收机电路测试解决方案E8267D矢量信号源或者E4438C N5102A数字接口E8257D微波信号源或者N5181A信号产生方式基带信号数据模拟或数字IQ 信号射频信号输出输出信号基带信号建立基带信号输出Internal Baseband Generators Baseband StudioSignal Studio Software射频信号输出Today, signal generation solutions are best described by the individual subcomponents that comprise the solution. Signal generation can be broken down or modeled into three main elements, Signal Creation , where software or firmware creates the bits, Signal Generation , which turns the bits into low frequency I/Q signal, and Signal Generation , that upconverts to the RF or MW frequency of interest. AgilentAgilent信号源分类 Basic Performanc e MidPerformanc e High Performanc e RF Analog RF RF RF MW N9310A 3 GHz freq. range AM, FM, PM, and Pulse N5181A MXG 1,3, or 6 GHz freq. range Fast switching AM, FM, PM, and Pulse E4428C ESG 3 or 6 GHz freq. range High power Spectral purity AM, FM, PM, and Pulse E8663B 3.2 or 9 GHz freq. range High power World class SSB phase noise AM, FM, PM, Pulse, and Narrow pulse 20,32,40,50 or 67 GHz freq. range Extensions up to 325 GHz High power World class SSB phase noise AM, FM, PM, Pulse, Narrow pulse, Scan E8257D PSG RF RF RF MW Vector N9310A 3 GHz freq. range External I/Q only 80 MHz ext I/QN5182A MXG 3 or 6 GHz freq. range Fast switching Best ACPR 100 MHz BBG BW 160 MHz ext I/Q ARB BBG 64 MSa waveform playback 100 MSa waveform storage 3G, WiMAX, WLAN, Digital Video, and more E4438C ESG 1,2,3,4, or 6 GHz freq. range High power Spectral purity 160 MHz ext I/Q 80 MHz BBG BW Real-time & ARB BBG 64 MSa waveform playback 1 GSa waveform storage BERT & Digital I/Q I/O 3G, WiMAX, WLAN, Digital Video, and more E8267D PSG 20,32, or 44 GHz freq.range High power World class SSB phase noise 2 GHz ext I/Q 80 MHz BBG BW Real-time & ARB BBG 64 MSa waveform playback 1 GSa waveform storage Digital I/Q I/O Pulse building, NPR/multitone, 3G, WiMAX, WLAN, Digital video, and more 6矢量信号产生过程 Baseband Signal Generator (internal or external n I RAM n LPF n ReFIR sampling n DAC I/Q modulator I RF/MW LO I/Q Waveform File n LPF Q RAM n n Resampling 90° ALC FIR n DAC Q Q I Driven by the popularity of digital modulation schemes in today’s commu nications systems, vector signal generators have become the instrument of choice to provide real-world test stimuli for modern wireless transceivers and their components. This is primarily due to the ease with which a wide variety of test signals can be created using wideband arbitrary waveform generators. Virtually any complex modulation scheme is easily achieved using waveform simulation software and then easily downloaded to the signal generator for playback. Most vector signal generators are equipped with internal arbitrary IQ waveform generators and IQ modulators to support these complex modulation schemes. They provide both baseband and RF/microwave test signals in a single integrated instrument. External baseband generators can also be used, when they add value to a test configuration. At a high level, a vector signal generator is composed of several fundamental blocks: waveform memory, resampling, FIR filters, digital-toanalog converters, analog IQ filters, I/Q modulator, attenuator, and an automatic level control (ALC circuit. To accurately generate repeatable calibrated test stimuli, it is essential to identify the primary sources of error in the signal path and find methods to contend with and/or correct for those imperfections. Fortunately, proper conditioning of the waveform can ultimately avoid and/or correct for many additive impairments inherent in the baseband and RF/microwave signal generator hardware. 7N8241A 任意波形发生器 --“N6030A LXI Version” N6030A输出信号杂波抑制性能型号 N8241A -125 N8241A -125 N8241A -062 N8242A -125 N8242A -062 带宽500MHz 500MHz 250MHz 500MHz 250MHz 采样时钟 1.25GS/s 1.25GS/s 625MS/s 1.25GS/s 625MS/s 分辨率 15Bits 15Bits 15Bits 10Bits 10Bits 8N5102A 数字接口卡 N5102A Digital Signal Interface Module ESG or PSG Digital IQ Analog I/Q DUT RF 与被测件匹配的数字接口• 串行或并行数据方式• LV TTL,LV CMOS (3.3V, 2.5V, 1.8V, 1.5V, or LVDS • IQ 或数字IF信号• 2’s complement or offset binary • MSB or LSB • 4 to 16-bit words • 并行状态:1 to 100 MHz 采样速率• 串行状态:400M采样速率• 可使用内部和外部时钟信号• 每个数据位最多4个采样时钟• Adjustable clock-to-data skew ESG or PSG Analog I/Q DUT RF N5102A Digital IQ/IF With the Baseband Studio digital signal interface module, the E4438C ESG can be configured to accept your digital inputs to modulate the RF carrier. Now you can use the E4438C as a custom golden transmitter to verify your transceiver’s baseband coding algorithms. For inputs, the digital signal interface module features flexible data formats, clocking, and physical interface to simplify connecting to your devices digital outputs. Also with the Baseband Studio digital signal interface module, the E4438C ESG can be configured to provide digital outputs to test your radio’s baseband subsection with the same test signals used to derive your RF test signals. Using consistent test signals for the baseband and RF subsection of your radio design yields less test ambiguity at theRF/baseband integration stage of your transceiver design cycle. For outputs, the digital signal interface module features flexible data formats, clocking, and physical interface to simplify connecting to your devices digital inputs. 9Agilent信号产生能力 Mobile Communications Wireless ConnectivityAudio/Video Broadcasting Detection, Positioning, Tracking & Navigation GeneralRF/MW 3GPP W-CDMA 3GPP W-CDMA 3GPP W-CDMA HSPA LTE CPRI BTS TD-SCDMA CDMA2000 & IS-95-A cdma2k & 1xEV-DO GSM/EDGE Real-Time TDMA: GSM/EDGE GPRS/EGPRS NADC PDC/PHS DECT/TETRA ARB TDMA: GSM/EDGE NADC PDC/PHS DECT/TETRA APCO PWT CDPD 802.16e Mobile WiMAX 802.16d Fixed WiMAX 802.15 MB-OFDM UWB Bluetooth 802.11a/b/g/p/j/n WLAN & MIMO DVB-T/H/C/S ISDB-T DTMB ATSC T-DMB S-DMB Pulse Building GPS Digital, RF, & MW Fading Toolkit Jitter Injection Multitone Distortion (Enhanced Multitone and NPR Multitone Calibrated AWGN Custom Modulation = Signal Studio = Embedded SW Agilent has committed to continued development of signal creation software solutions. We offer the largest selection of signal creation software in theindustry and continue to update and expand our offering. Key contributions: •most complete format coverage for mobile communications. •continue to meet the time-to-market windows for emerging wireless connectivity formats. •recently introduced solution for Audio/Video broadcasting and plan to continue to enhance our product offering in this area. •solutions for detection, positioning, tracking and navigation with our pulse building and GPS signal creation software products. •variety of general purpose signal creation software for custom signal generation, distortion test, additive impairments, and signal correction. 10Transmitter Test RF完整的信号产生解决方案Digital Baseband Analog Baseband 90ºScrambling/Spreading CoderQ I Data IN PSARFOUT DAC DACΣE4438C ESGLODSP ASICDigital I/Q Analog I/QPA test plane Component/amplifier/transmitter testRF完整的信号产生解决方案Digital Baseband Analog Baseband test plane E4438C ESGLODe-scramble/De-spread Decoder90ºReceiver Test RF INDSP ASICData OUT ADCADCDigital I/QAnalog I/QPRBS BERT LNA Q I ASIC/DSP/receiver test射频电路测试解决方案54830A数字示波器16900A逻辑分析仪N1912A功率计89650A矢量信号分析仪射频/微波被测信号数字形式被测信号Agilent PSA频谱分析仪•分析频段:3Hz~26.5GGHz•全数字化信号处理,滤波器矩形系数4.1•相位噪声,噪声系数测试功能•提供信号功率;带宽;CCDF;频谱模板;杂散等参数测试功能•将26.5G信号下变频为70M,IQ等形式•解调分析带宽10M,36M,80M 可选Agilent 54855B高带宽示波器Agilent 54832D混合示波器16700/168x系列逻辑分析仪•宽带示波器:20G采样; 4个模拟通道;•混合示波器:4G采样,16个数字通道测试•数字形式信号分析•将所有输入信号的量化结果输出Agilent 89641A•95M采样速率•测试频率范围: 6GHz,带宽为36MHz (单通道;72MHz (双通道Agilent 89601A矢量分析软件•对信号数据进行频域;时域;解调分析功能•与各种分析仪表及用户采样数据,信号源等连接•对各种模拟调制;数字调制信号进行解调•对各种瞬变信号进行捕捉;存储;事后重放,存储空间为1GB •脉冲压缩雷达信号脉内调制精度分析•测试分析功能扩展性宽带信号(<10GHz多路信号(I/Q信号1394火线LAN/GPIBf ≤6 GHzAgilent PSG 矢量信号源•合成20G范围微波信号•AM;FM;PM调制信号•数字调制信号•脉冲调制,脉内可编程调制•32MB任意波发生器•将分析仪捕捉的信号重建恢复•最大1GHz调制带宽复杂信号合成LAN/GPIBf ≤26..5 GHz(可扩展Agilent信号分析仪家族FFT(快速傅立叶变换并行滤波器组处理full spectral display A f f 1f 2A ff 1f 2滤波器扫描测试LCD shows fullspectral display扫频频谱仪信号的频域分析技术VCO各种相噪优化模式,适用不同测试要求ADC采用Dither 技术Analog IFFilter数字中频滤波处理9带宽1Hz 到8MHz 9160个设置值9一致性好9相位线性好数字检波方式Normal RMS Avg Peak Min SampleFFT扫频方式和FFT 方式9小RBW 实现9良好的滤波器选择性9速度快输入衰减器2dB 步进变化,对最大测试动态范围的优化DANL -151dBm3GHz 前置放大器to -169dBm •全数字中频处理技术•FFT/扫频双工作模式数字对数放大处理9线性好9>100dB 动态范围PSA 频谱分析仪的技术业内精度最高的频谱分析仪“Great guaranteed specs”±0.38 dB Flatness to 3 GHz±0.24 dB Absolute amplitude accuracy(±0.05 dB Amplitude Ref±0.00 dB Ref. Level±0.07 dB Scale Fidelity±0.03 dB RBW switching±0.62 dB Total accuracy (up to 3 GHz±0.24 dB95% Confidence±0.17 dB Typical最大的可用动态范围2 dB stepattenuator160 RBW settings W-CDMA ACP 81 dB dynamic range *Over a wide range of input power & frequenciesMXA 系列频谱分析仪幅度频率时间¾频域测量宽频率范围信号搜索信号杂散测试信号功率参数信号占用频率带宽¾时域测量信号变化过程¾解调测量信号调制参数信号调制精度信号的基本分析方法基于VXI的矢量信号分析仪 89640A 89641A 89610A 89610A/opt 89611A VXI 系统 VXI系统灵活配置的系统 RF+IQ信号分析能力 2×E1439B 2×89605B E2730A 或E2731A E8491B:1394接口 E8404A :13 Slot 机箱频率范围: DC-2700 MHz 分析带宽:36M 频率范围: DC-6000 MHz 分析带宽:36M 频率范围:频率范围:双通道测试 DC-40 MHz 56~88 MHz 频率范围:分析带宽:39M DC~40 MHz 分析带宽:36M 分析带宽:78M 21Agilent 89650矢量信号分析仪 Agilent独特的200M/14BitADC处理 Agilent独特的200M/14BitADC处理对信号进行IQ解调处理对信号进行IQ解调处理分析频率范围: DC~26.5G(频谱仪决定分析频率范围: DC~26.5G(频谱仪决定分析带宽: 80M 分析带宽: 带宽内0.1dB幅度和0.7度相位的平坦度带宽内0.1dB幅度和0.7度相位的平坦度最高测试精度 The 71910A Wideband Receiver can be used to extend the frequency range and bandwidth of the 89600 VSA. The 71910A covers 26.5 GHz and acts as a microwave downconverter. The 71910A also has an option for providing analog I and Q outputs. These I and Q outputs can drive a dual (two channel 89610A VSA. Using the 89610A I + jQ mode, the two 39 MHz bandwidth inputs can be stacked together to provide true 78 MHz information bandwidth. 22集成电路测试方案研讨会•测试测试框架介绍•射频电路测试部分•器件以及材料测试部分 NA 316 Agilent Restricted Nov. 2005 23Agilent 器件测试解决方案 ENA系列网络分析仪 9KHz to 4.5GHz 9KHz to8.5GHz PNA系列网络分析仪 10MHz to 20GHz 10MHz to 40GHz 24网络分析仪的测量功能 a1 b1 输入反射 S 21 传输 b2 b2 a2 S 11 DUT S 22 反射输入 b1 传输 S 12 反射特性传输特性工作频率信号功率利用测试仪表,是为评估电子系统中各种关键部件的性能参数。
相干光通信技术
式中, AL为本振光的幅度、ωL为本振光的频率φL为本振光的相位。 保持信号光的偏振方向不变,控制本振光的偏振方向, 使之与信号光的偏振方向相同。
单击此处添加大标题内容
2.相移键控(PSK)
基带信号只控制光载波的相位变化,称为相移键控(PSK)。 PSK的光场表达式为: ES(t)=AScos[ωSt+φ(t)] (7.35) 在PSK中,AS保持不变,只对相位进行调制。传输“0”码和传输“1”码时,分别用两个不同相位(通常相差180)表示。 如果传输“0”时,光载波相位不变,传输“1”码时,相位改变180,这种情况称为差分相移键控(DPSK)。 与ASK使用的MZ干涉型调制器相比,设计PSK使用的相位调制器要简单得多。这种调制器只要选择适当的脉冲电压,就可以使相位改变δφ=π。但是在接收端光波相位必须非常稳定,因此对发射和本振激光器的谱宽要求非常苛刻。
图7.39 干涉后的瞬时光功率变化
图7.39 干涉后的瞬时光功率变化
由此可见,中频信号功率分量带有信号光的幅度、频率或相位信息。在发射端,无论采取什么调制方式,都可以从接收端的中频功率分量反映出来。所以,相干光接收方式是适用于所有调制方式的通信体制。 相干检测有零差检测和外差检测两种方式。
图7.42 外差异步解调接收机方框图
光检
测器
带通
本振光
w
L
信号光
w
S
低通
基带信号
包络
检波
7.5.3 误码率和接收灵敏度 相干光通信系统光接收机的性能可以用信噪比(SNR)定量描述。 系统总平均噪声功率(均方噪声电流)为:
式中, 和 分别为散粒噪声功率和热噪声功率,e为电子电荷,Id为光检测器暗电流,B为等效噪声带宽,kT为热能量,RL为光检测器负载电阻,I为光电流,由式(7.31)或式(7.32)确定。
光纤通信测试法
光纤通信测试法(OTDR)的参数设置及常用方法光纤通信是以光波作载波以光纤为传输媒介的通信方式。
光纤通信由于传输距离远、信息容量大且通信质量高等特点而成为当今信息传输的主要手段,是“信息高速公路”的基石。
光纤测试技术是光纤应用领域中最广泛、最基本的一项专门技术。
O TDR是光纤测试技术领域中的主要仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
OTDR具有测试时间短、测试速度快、测试精度高等优点。
1 支持OTDR技术的两个基本公式OTDR(Optical Time Domain Reflectometer,光时域反射仪)是利用光脉冲在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的高科技、高精密的光电一体化仪表。
半导体光源(LED或LD)在驱动电路调制下输出光脉冲,经过定向光耦合器和活动连接器注入被测光缆线路成为入射光脉冲。
入射光脉冲在线路中传输时会在沿途产生瑞利散射光和菲涅尔反射光,大部分瑞利散射光将折射入包层后衰减,其中与光脉冲传播方向相反的背向瑞利散射光将会沿着光纤传输到线路的进光端口,经定向耦合分路射向光电探测器,转变成电信号,经过低噪声放大和数字平均化处理,最后将处理过的电信号与从光源背面发射提取的触发信号同步扫描在示波器上成为反射光脉冲。
返回的有用信息由OTDR的探测器来测量,它们就作为被测光纤内不同位置上的时间或曲线片断。
根据发射信号到返回信号所用的时间,再确定光在石英物质中的速度,就可以计算出距离(光纤长度)L(单位:m),如式(1)所示。
式(1)中,n为平均折射率,△t为传输时延。
利用入射光脉冲和反射光脉冲对应的功率电平以及被测光纤的长度就可以计算出衰减a(单位:dB/km),如式(2)所示:2 保障OTDR精度的五个参数设置2.1 测试波长选择由于OTDR是为光纤通信服务的,因此在进行光纤测试前先选择测试波长,单模光纤只选择1 310 nm或1 550 nm。
安捷伦N9000A测试 EMI预兼容
技术论文--概述 越来越多的电子制造公司认识到频繁地进行电磁兼容(EMC)/电磁干扰(EMI )检测,整改,已经成为了降低产品研发成本,缩短产品开发周期的主要瓶颈。
而在从研发,样品生产到正式生产的整个过程中进行EMI 预兼容测试就是突破这一瓶颈的最常规的手段。
尽管进行EMI 预兼容测试已经成为了电子行业的共识, 但是大多数公司的尝试都遭遇了成本的阻碍。
只有很少的大型电子企业有足够的经费建造,购买电波暗室,标准接收机以及相应外设,从而建设一套和EMC标准实验室类似的测试系统。
而大量中小型的企业和电子产品设计室一直在寻找一套低成本而高效的EMI 预兼容测试方案。
典型的EMI 测试系统 大多数的电子产品都需要通过传导泄露和辐射泄露两类EMI 测试。
其本质都是使用频谱分析仪或者接收机测量由测量附件拾取到的干扰信号。
基于安捷伦CXA 信号分析仪的EMI 预兼容测试方案安捷伦N9000A CXA 信号分析仪和 W6141A EMI 预兼容方案主要优势 和普通的频谱测量不同的是, EMI 测量的响应标准对软硬件功能有一系列强制要求,包括EMC 专用检波器(准峰值检波器,EMC 平均检波器和RMS 检波器), CISPR 6 dB 带宽滤波器,对数频率轴显示,标准相关限制线,以及可变扫描点数以取得足够的频率分辨率。
用一台不具备专业功能的普通频谱仪进行EMI 相关测试,可能得到的结果会大相径庭。
安捷伦最新推出的基于N9000A CXA 信号分析仪的W6141A EMC 测量应用软件,提供完全符合CISRP-16-1要求的专业功能,良好的射频性能,和快速的测试速度,能够捕捉到小幅度,瞬态的干扰信号,从而使低成本的专业EMI 预兼容测试不再只是梦想。
W6141A EMC 测量应用软件除了提供CISPR-16-1要求的所有功能,还具有一系列附加功能, 使预兼容测试更为简单易行。
1) 根据标准的预设扫描列表 不熟悉EMC 标准的用户只需要在列表中选择频段就可以自动设置所有参数。
06_光无源器件的测试技术及安捷伦针对多端口器件ILPDL的测试新方案
Notes Straight type Angled type Single window 1300/1500 type Through path -10 dB path
PDL 测试方式(1):全偏振状态扫描法
Optical source
•选择稳定的光源. •尽量避免光的相干影响.
Ratio (optional)
•光连接头类型:FC, SC, LC, MU, Bare-Fiber •独创“离线”光连接方式,让测试 和连接同步进行,提升效率
无源器件产线光功率自动测试的革新
以前
现在
•17 ports (or 34 dual) in 5 rack units •25 µs 最小平均时间 •100k 采样点/通道 •GPIB 数据传输 •30-40dB的动态范围 •光纤的连接和仪表的测试分时操作
两步: 1. 参考路径测量 2. DUT路径测量
+ 快 (TLS可连续扫描工作) + 可得到高分辨率的PDL VS. WL的测试
PDL 测试方式(2):穆勒矩阵分析法原理
Invented by Favin & Nyman; described in Hentschel, Lightwave, 60, January 1988
PDL = 10 logPmax Pmin
PDL 测试方式(1):全偏振状态扫描测试系统
全偏振状态扫描
+ 测试建立简单 + 可针对任何波长 +精度高 - 速度慢 - 仅适合固定波长 / l-stepped 的光源 - 无法完成高分辨率的PDL VS. WL的测试 - 挠偏器影响IL的测试精度
全偏振状态扫描法需要长时间的扫描
• 波长选择接收机( 4x25G 1300nm WDM 接收机, 10x10G 1550nm WDM 接收机)
Agilent 毫米波实验室方案
Agilent 毫米波实验室系统方案第一章:毫米波技术应用背景毫米波,太赫兹(THz)是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。
由于其频率范围处于电子学和光子学的交叉区域,太赫兹波的理论研究处在经典理论和量子跃迁理论的过渡区,其性质表现出一系列不同于其他电磁辐射的特殊性,从而具有许多方面不同的应用。
主要应用在光谱、成像和通信领域。
太赫兹的特殊性质及其有关的应用表现在:(1)对衣物、塑料、陶瓷、硅片、纸张和干木材等一系列物质,具有较好的穿透性能,从而可以探测X射线、可见光和红外不可探测的材料内部缺陷和隐藏物;(2)利用适当的小孔或针尖,可以达到较高的空间分辨率,获得微波成像难以得到的高分辨清晰图像;(3)太赫兹波的光子能量很低,穿过物质时不易发生电离,所以可以进行安全的无损检测;(4)由于对水分的吸收很敏感,探测含有水分的物质(例如树叶、生物组织等)时,可以表征水分的含量和分布,从而可以用于生物医学成像和光检测;(5)不同物质在太赫兹波谱区域,具有不同的吸收和色散性质,很多凝聚态物质和生物大分子的振动和转动能级落在太赫兹波段,可以通过太赫兹光谱测量获得其特征光谱,用于区分材料的结构和种类等;(6)太赫兹频谱范围介于微波和红外之间,是电子学与光子学研究的交叉领域,其瞬态性和相干性提供了进行时间分辨光谱测量的条件,从而可以通过电光取样获得时间分辨的电场变化信息,同时得到其电场振幅和相位的测量,这为太赫兹时域光谱学提供了基础。
图一.射频到太赫兹的频谱分布第二章:毫米波技术典型应用2.1 毫米波雷达总体测试仪表毫米波雷达的总体测试要求主要包括了对发射和接收链路中的各有关节点的射频指标进行测试,这些指标主要包括了频谱,杂散,相噪,功率,噪声系数等指标,而对这些指标的测试精度和能力是保证一部雷达总体性能的核心。
完成对这些雷达关键指标测量的主要仪器包括了毫米波频谱仪,信号源,功率计,噪声系数分析仪等等,下面分别为这些仪表的原理和组成。
安捷伦LTE技术与测量原理
LTE 3GPP物理层标准(Rel‐8)
36.2XX 物理层标准
•TS 36.201 Long Term Evolution (LTE) physical layer; General description.
•TS 36.211 Physical channels and modulation. •TS 36.212 Multiplexing and channel coding. •TS 36.213 Evolved Physical layer procedures. •TS 36.214 Measurements
Page 15
You take LTE forward. Agilent leads the way
2011-10-31
LTE Overview
OFDMA
LTE Major Features
LTE Air Interface
FDMA
MIMO
You take LTE forward. Agilent leads the way
OFDM技术
FFT
Guard Intervals Symbols
5 MHz Bandwidth Sub-carriers
…
…
Frequency
Time
25.892 Figure 1: Frequency-Time Representation of an OFDM Signal
OFDM的基本原理是将高速的数据流分解为N个并行的低速数据 流,在N个子载波上同时进行传输。这些在N子载波上同时传输的 数据符号,构成一个OFDM符号
• 安捷伦LTE整体解决方案 • LTE物理层及射频测试
Agilent LVDS传输系统测试方案
Agilent LVDS传输系统测试方案安捷伦应用工程师李凯LVDS是低压差分信号的简称,由于其优异的高速信号传输性能,目前在高速数据传输领域得到了越来越多的应用。
其典型架构如下:一般LVDS的传输系统由FPGA加上LVDS的Serdes芯片组成, LVDS的Serializer芯片把FPGA的多路并行数据通过时分复用的方法变成较少路数、较高速率的串行LVDS信号进行传输,接收端的de-Serializer芯片再把接收到的串行LVDS信号解成多路并行数据。
其好处在于FPGA通过外挂的LVDS芯片可以方便可靠地以高速率把内部数据传输出去,如NS、TI等公司大量提供这种LVDS的Serdes芯片。
对于LVDS系统的测试,主要涉及以下几个方面:1/ FPGA内部逻辑和并行接口测试,用于保证数据处理和控制的正确性;2/ 高速串行LVDS信号质量测试,用于保证LVDS信号的正确传输;3/ 高速互连电缆和PCB的阻抗测试,用于保证传输链路的信号完整性;4/ 系统误码率测试,用于验证系统实际传输的误码率;下面就几个方面分别介绍:1/ FPGA内部逻辑和并行接口测试,用于保证数据处理和控制的正确性;传统上的FPGA内部信号调试有2种方法:直接探测和软逻辑分析仪的方案。
直接探测的测试方法:是通过在逻辑代码里定义映射关系,把内部需要调试的信号映射到外部未使用的I/O管脚上,通过相应PCB走线和连接器把这些I/O管脚的信号引出,再送给逻辑分析仪做信号测试和分析仪。
这种方法的好处是简便直观,可以利用逻辑分析仪的触发和存储功能,同时信号的时序关系都得到保留;但缺点在于FPGA内部要探测的信号节点很多,而外部的未用I/O数量是有限的,因此调试完一组节点后需要修改逻辑代码中的映射关系到另一组节点,并重新综合、布线,当工程比较复杂时综合、布线等花的时间非常长,所以对于比较复杂的设计测试效率比较低。
软逻辑分析仪的方案:是FPGA厂家提供的一种测试方案,其原理是在FPGA逻辑代码设计阶段或综合完成后在工程中插入一个软逻辑分析仪的核,软逻辑分析仪的核需要占用一定的块RAM资源,可以用工作时钟把内部信号信号采集到块RAM里,采完以后再通过FPGA的JTAG接口把块RAM里的数据读到外部PC上显示波形。
【好】安捷伦N9000A测试_EMI预兼容
1) 根据标准的预设扫描列表
不熟悉EMC标准的用户只需要在列表中选择频段 就可以自动设置所有参数。如图三所示。损坏
2) 信号列表
专用的EMC检波器如准峰值检波器,都需要在每个扫 描点上驻留一定时间进行时域加权。这就造成一个全频 段的扫描需要数小时的时间。而W6141A测量应用软件, 采取了先用普通正峰值检波器预扫,而后自动对超过限 制线的峰值信号进行专用检波器测量的办法,通常只需 要数分钟时间, 大幅度提高了测试效率。而根据理论,经 过最大保持后的正峰值检波器的幅度读数值一定会等于 或大于EMC专业检波器的读数值。所以用这种办法可以 保证不会有误测或者漏测。
两者的测试结果无法进行数学推导换算。这样我们就不能 图五 使用近场探头进行EMI故障诊断
直接把近场测试结果和远场测试结果进行直接转换。但是
一个基本原则是,近场的辐射越大,远场的辐射也必然越 大。这就为近场探头测试提供了理论依据。而使用近场探 头测试,我们需要把新被测件测试结果和一个已知合格被 测件的近场探头测试结果进行比较。针对这一步测试,推 荐使用电场探头或者尺寸较大的磁场探头。这两类探头灵 敏度一般更高,而对距离不太敏感。
基于安捷伦CXA信号分析仪的 EMI 预兼容测试方案
技术论文
两条测试线的效果
概述
越来越多的电子制造公司认识到频繁地进行电磁兼容(EMC)/电 磁干扰(EMI)检测,整改,已经成为了降低产品研发成本,缩短产 品开发周期的主要瓶颈。而在从研发,样品生产到正式生产的整 个过程中进行EMI预兼容测试就是突破这一瓶颈的最常规的手段。
通过近场探头我们可以较容易的找到辐射源存在的可疑区 域。如果需要进一步查找是哪一段电路,管脚甚至芯片是罪魁祸 首,我们可使用示波器探头或者高频探头需要做接触式测量。 安捷伦85024A和U1818A高频探头可以分别测试到最高3 GHz和6 GHz的信号,非常适合进行电路接触式测量,尤其是针对具有 高频时钟信号的电路。但是使用高频探头测试的时候,需要注
安捷伦光无源器件CDPMD的测试方案(可编辑)
安捷伦光无源器件CDPMD的测试方案安捷伦光无源器件CD/ PMD的测试方案付军高级应用工程师安捷伦科技电子测量仪器部Fred-fj_fu@agilent 光纤中的色散种类L late arrivalE early arrival 模间色散Modal dispersion MMF输出光脉冲输入光脉冲L EL光传播 E路径色度色散Chromatic dispersion CDELn 1L光频率E 偏振模色散Polarization-mode dispersion PMDLL偏振模式EEPage 2 色度色散对光传输的影响 2.5Gbit/s光纤10Gbit/s 更宽的频谱更多展宽更窄的比特间隙对展宽更敏感Bit rate Gb/s 2.510 401Dispersion limit2. dispersion ps/nm 16,000 1,00063Bitrate. length SMF km 94159 4Page 3 色度色散的定义相对群延时tg群延时Grouppsdelay:调制光波的传输时间,如“调制包络上1g的一点”D?L零色散波长色度色散系数Dps/nm-km色散斜率Page 4 光纤的偏振模式色散PMD 是由于光纤的双折射性而引起, 它导致的光脉冲的一部分能量比另一部分能量传输速度快而导致光脉冲失真SlowIdealcoreSlow axisaxisOvalcore Fast axis 偏振模式色散对数字通道的影响DGDDtEye DiagramEye DiagramDigital PulsePage 6 光纤的偏振模式耦合Fast长光纤的偏振模式色散可按照数段双折射短光纤的方式累计SlowtFast4 delaySlowcomponents‘t2 delaycomponents‘Idealized偏振模式色散按光纤长度的开方累计tinput pulse 实测:不同波长上的DGD 随时间的变化M.Karlsson, et al., IEEE. J. Lightwave Techn127km buriedDSF OpticalDEMUXOpticalMUX光传输系统的DGD分量Long Fiber .6SONET SONETps per root kmADMs ADMsEDFAs 1 psOptical Optical& Isolators 2MUX 1-20 ps DEMUX 1-20 pspsShort ConnectorFiber .02 ps .01 psPage 9 偏振模式色散的参数 :DGD ,PMD ,PMD系数衡量极化模式色散影响的最直接、最原始参数为DGD 。
安捷伦8960测量原理及操作说明
目录第1章基础知识 (1)1.1 GSM测量频率频道范围 (1)1.2 频率频道换算 (1)1.3 复用方式 (1)1.4 移动台输出功率控制 (2)1.5 单位换算 (3)第2章8960呼叫参数设置 (4)2.1 常用按键说明 (4)2.2 设置CABLE LOSS (4)2.3 GSM呼叫参数设置 (5)2.3.1 设置广播信道参数(BCH PARAMETERS) (6)2.3.2 设置业务信道参数(TCH PARAMETERS) (6)2.4 GSM CONTROL设置 (9)2.4.1 设置OPERATING MODE (9)2.4.2 设置CONNECTION TYPE (9)2.4.3 ORIGINATE CALL (10)2.4.4 PAGING IMSI (12)2.4.5 HANDOVER SETUP (12)2.5 GPRS呼叫参数设置 (13)2.6 GPRS CONTROL设置 (16)2.6.1 设置GPRS OPERATING MODE (16)2.6.2 设置GPRS CONNECTION TYPE (17)2.6.3 START DATA CONNECTION (18)2.6.4 PAGING IMSI (20)2.6.5 HANDOVER SETUP (20)第3章8960测量方法 (21)3.1 GSM的测量 (21)3.1.1 GSM TRANSMIT POWER 输出功率测量 (21)3.1.2 POWER VS TIME 功率时间测量 (23)3.1.3 PHASE & FREQUENCY ERROR (30)3.1.4 OUTPUT RF SPECTRUM (34)3.1.5 GSM BIT ERROR (40)3.2 GPRS的测量 (42)3.2.1 GPRS POWER VS TIME 功率时间测量 (42)3.2.2 GPRS BLOCK ERROR测量 (45)3.3 GSM/GPRS与WCDMA切换 (46)第1章基础知识1.1 GSM测量频率频道范围PGSM TX Channel :1-124 频率:890.2MHz—914.8MHz RX Channel :1-124 频率:935.2MHz—959.8MHz EGSM TX Channel :1-124 975-1023 频率:880.2MHz—889.8MHz RX Channel :1-124 975-1023 频率:925.2MHz—934.8MHzDCS TX Channel :512-885 频率:1710.2MHz—1784.8MHz RX Channel :512-885 频率:1805.2MHz—1879.8MHz PCS TX Channel :512-810 频率:1850.2MHz—1909.8MHz RX Channel :512-810 频率:1930.2MHz—1989.8MHz 1.2 频率频道换算1.PGSM-900TX=Fl(n)=890+0.2*n (1<=n<=124) 62ch=902.4MHzRX=Fu(n)=Fl(n)+45 62ch=947.4MHz2.EGSM-900TX=Fl(n)=890+0.2*n (1<=n<=124) 37ch=897.4MHzTX=Fl(n)=890+0.2*(n-1024) (975<=n<=1023)RX=Fu(n)=Fl(n)+45 37ch=942.4MHz3.DCS-1800TX=Fl(n)=1710.2+0.2*(n-512) (512<=n<=885) 698ch=1747.4MHzRX=Fu(n)=Fl(n)+95 698ch=1842.4MHz4.PCS-1900TX=Fl(n)=1850.2+0.2*(n-512) (512<=n<=810) 661ch=1880MHzRX=Fu(n)=Fl(n)+80 661ch=1960MHz1.3 复用方式GSM使用TDMA(时分多址)和FDMA(频分多址)。
相干光通信,平衡探测器。。
3
Instrumentation and Development Vol. 3 Nr. 10/1998
Instrumentación y Desarrollo Vol. 3 No. 10/1998
Balanced photoreceiver for coherent optical communications. A. Arvizu, et. al., 3-14
3. OPTICAL HETERODYNING AND THE INTERMEDIATE FREQUENCY CURRENT
As shown in Fig. 3, coherent reception consists of the
In IM/DD systems the information is contained in the optical power variations. In contrast in coherent detection other parameters of the received electrical field can be modulated , such as, its amplitude, frequency or phase. Coherent detection can be performed using two different techniques; heterodyne, i.e., different signal and local oscillator frequencies, or, homodyne detection, where the signal and local oscillator frequencies are equal. The
BALANCED PHOTORECEIVER FOR COHERENT OPTICAL COMMUNICATIONS
Agilent毫米波实验室方案
Agilent毫米波实验室系统方案第一章:毫米波技术应用背景毫米波,太赫兹(THz)是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。
由于其频率范围处于电子学和光子学的交叉区域,太赫兹波的理论研究处在经典理论和量子跃迁理论的过渡区,其性质表现出一系列不同于其他电磁辐射的特殊性,从而具有许多方面不同的应用。
主要应用在光谱、成像和通信领域。
太赫兹的特殊性质及其有关的应用表现在:(1)对衣物、塑料、陶瓷、硅片、纸张和干木材等一系列物质,具有较好的穿透性能,从而可以探测X射线、可见光和红外不可探测的材料内部缺陷和隐藏物;(2)利用适当的小孔或针尖,可以达到较高的空间分辨率,获得微波成像难以得到的高分辨清晰图像;(3)太赫兹波的光子能量很低,穿过物质时不易发生电离,所以可以进行安全的无损检测;(4)由于对水分的吸收很敏感,探测含有水分的物质(例如树叶、生物组织等)时,可以表征水分的含量和分布,从而可以用于生物医学成像和光检测;(5)不同物质在太赫兹波谱区域,具有不同的吸收和色散性质,很多凝聚态物质和生物大分子的振动和转动能级落在太赫兹波段,可以通过太赫兹光谱测量获得其特征光谱,用于区分材料的结构和种类等;(6)太赫兹频谱范围介于微波和红外之间,是电子学与光子学研究的交叉领域,其瞬态性和相干性提供了进行时间分辨光谱测量的条件,从而可以通过电光取样获得时间分辨的电场变化信息,同时得到其电场振幅和相位的测量,这为太赫兹时域光谱学提供了基础。
图一.射频到太赫兹的频谱分布第二章:毫米波技术典型应用2.1毫米波雷达总体测试仪表毫米波雷达的总体测试要求主要包括了对发射和接收链路中的各有关节点的射频指标 进行测试,这些指标主要包括了频谱,杂散,相噪,功率,噪声系数等指标,而对这些指 标的测试精度和能力是保证一部雷达总体性能的核心。
完成对这些雷达关键指标测量的主要仪器包括了毫米波频谱仪,信号源,功率计,噪 声系数分析仪等等,下面分别为这些仪表的原理和组成。
安捷伦将光复杂调制测试解决方案扩展到领先的63 GHz
安捷伦将光复杂调制测试解决方案扩展到领先的63 GHz 佚名
【期刊名称】《现代电信科技》
【年(卷),期】2012(000)009
【摘要】安捷伦科技公司日前推出业界首款63 GHz带宽实时光调制分析仪。
这款新仪器可帮助研究人员以160 GSa/s的采样率和63 GHz的电带宽对最新相干接收机和超快速发射机进行表征。
【总页数】1页(P62-62)
【正文语种】中文
【中图分类】TN929.533
【相关文献】
1.安捷伦推出业界首款63GHz带宽实时光调制分析仪 [J],
2.安捷伦推出可提升测试效率的下一代光调制分析仪软件——新软件可以简化复杂调制光信号的测试设置与分析 [J],
3.安捷伦科技推出业界首款针对下一代存储设备和电信元器件及系统的波形分析解决方案——新功能包括先进的抖动和复杂的调制分析,以及业界首款16X光纤通道解决方案 [J],
4.泰克携最前沿、最完整的解决方案亮相CIOE2015,助力解决当今高速光通信测试挑战涉及宽带OFDM光通信系统测试、40G/100G光通信一致性测试以及
400G/1T的多载波相干光调制测试在内的全面光测试前沿解决方案 [J],
5.安捷伦推出测试速度更快的63GHz硬件带宽磷化铟实时示波器 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
安捷伦CDMA2000测试解决方案
安捷伦CDMA2000测试解决方案1、CDMA2000系统概述起源于北美、由高通公司开发的CDMA一码分多址数字通信系统引入了全新的通信概念,如今CDMA已扩展应用到第三代移动通信技术。
和传统的模拟以及普通第二代数字蜂窝技术相比,CDMA技术提供了更高的系统容量和频谱利用率,并有着接近有线系统的话音质量,手机辐射功率小。
在CDMA2000系统中采用了新技术。
比如移动台发射导频信道;采用真正的QPSK调制,而在cdmaOne中,采用的是两路BPSK;另外,采用速率更高的卷积编码;在传送高速数据业务的时候,还采用处理增益比卷积编码更高的TURBO编码;同时,CDMA2000前向和反向链路都采用闭环功率控制。
由于CDMA2000的反向链路包含导频、接入、业务、控制等信道,采用OQPSK已经不能有效降低发射信号的峰均比。
为了降低反向信道的峰均比,采用了HPSK调制方式。
2、CDMA2000测试要求对于CDMA/CDMA2000手机测试而言,依据的是手机最低性能要求测试规范IS-98E。
手机空中接口测试主要包括发射机和接收机的测试。
CDMA2000基站的测试包括系统测试和元器件、部件的测试。
其中,系统测试同样也分为发信机和收信机的测试。
表1针对手机和基站的主要测试指标进行对比介绍。
表1手机和基站的主要测试指标对比补充:1.利用矢量信号分析仪的强大的调制分析功能,包括频域、时域、相位和矢量图、星座图、相位图,矢量误差等深层次分析可以找出问题或故障的根源。
2.分析仪器:安捷伦89600系列矢量信号分析仪,或可用E4445A配以89601A矢量分析软件。
3.安捷伦仪器的AWGN和CDMA信号之间的相对精度,完全满足IS-98E标准的要求(+/-0.2dB)。
另外,平均功率测试的精度,满足标准对仪器0.2dB精度的要求。
3、CDMA2000系统研发过程以及安捷伦公司测试解决方案CDMA2000研发一般可分为四个阶段:●系统设计与仿真阶段●元器件/电路/部件设计与验证阶段●系统集成和联合调试阶段●预认证和一致性测试阶段根据研发过程中不同阶段的不同特点,需要应用不同的测试解决方案3.1系统设计和仿真阶段以及安捷伦公司测试解决方案Agilent ADS(Advanced Design System)是专门针对电子系统,电路设计仿真的EDA工具,可以提供目前最为完整的系统及电路计算机和半实物仿真功能,把系统设计和硬件原型紧密地结合在一起,就可以更快、更高效地完成产品设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【通信产业网讯】随着40Gb/s的大规模部署的开始,业界又涌现出多种新型的100G/s调制编码格式。面对众多特征各异的传输码型,在综合考虑其他系统设计参数的基础上,业界主要从传输距离、通路间隔、与40Gb/s和10Gb/s系统的兼容性、模块成本与传输性能的平衡等方面进行综合选择。通过业界一两年来对于100Gb/s模块的紧锣密鼓的研究和开发,100G/s的偏振复用四相相移键控相干模块(CoherentPM-QPSK)正在变成业界的主要选择。
N4391A组成
N4391A是基于安捷伦的高带宽实时示波器90000X和光相干接收机作为仪表的硬件部分,加上安捷伦的矢量信号分析软件VSA能够在光口测试各种复杂的调制信号,并给出光星座图,IQ信号的眼图,载波的频谱,矢量调制误差等。N4391A光调制信号分析仪可以看做相干光通信参考接收机,由三部分组成:宽带偏振复用相干接收机技术;基于安捷伦Infiniium90000X系列实时示波器的设计的高速数据采集系统;基于Agilent89600矢量解调软件的光信号矢量解调分析软件。
■编辑点评
随着光网络的快速发展,对于40G和100G的测试需求越来越突出。安捷伦的相干光通信测试方案把光频段划分为许多频道,从而使光频段得到充分利用。
调制格式的改变导致了测试方式的改变。传统的幅度调制的方式采用光采样示波器测试数字信号的眼图,测试消光比,上升沿时间,下降沿时间等等。而差分相移键控(DPSK)调制以及偏振复用四相相移键控相干模块(CoherentPM-QPSK)则需要新测试仪表和新测试参数来表征。
相干光通信系统可以把光频段划分为许多频道,从而使光频段得到充分利用,即多信道光纤通信。无线电技术中相干通信具有接收灵敏度高的优点,相干光通信技术同样具有这个特点,采用该技术的接收灵敏度可比直接检测技术高18dB。
ቤተ መጻሕፍቲ ባይዱ干光通信主要优点
相干光通信充分利用了相干通信方式具有的混频增益、出色的信道选择性及可调性等特点。由以上介绍的相干光通信系统的基本原理分析且与IM/DD系统相比,得出相干光通信系统具有以下独特的优点:第一,灵敏度高,中继距离长;第二,选择性好,通信容量大;第三,具有多种调制方式;第四,可以使用电子学的均衡技术来补偿光纤中光脉冲的色散效应。
相位调制信号分析系统
相对于传统光纤通信领域,安捷伦在相干光通信领域也是一个先行者。安捷伦公司于2009年OFC会议上推出了业界第一台相干接收机N4391A光调制分析仪,这是一台新型测试仪表,可以对差分相移键控(DPSK)调制以及偏振复用四相相移键控相干模块(CoherentPM-QPSK)等各种相位调制的信号作全面的测试和分析。