金属凝固理论课件
合集下载
金属凝固原理
宏观上,物质从液态转变为固态。微观上,激烈运动的液 态原子恢复到规则排列的过程称为凝固。
2 研究对象:
研究液态金属或合金转变为固态金属或合金这一凝固过程 的理论和技术,定性地特别是定量地揭示其内在联系和规 律,发现新现象,探求未知参数,开拓新的凝固技术和工 艺。 凝固学是材料成形技术的基础,也是近代新型材料开拓和 制备的基础。
第一节 单向凝固工艺 第二节 单晶生长 第三节 柱状晶的生长 第四节 自生复合材料
第八章 快速凝固
第一节 快速凝固技术及其传热特点 第二节 快速凝固的热力学 第三节 快速凝固的动力学及界面形貌稳定性 第四节 快速凝固晶态合金的显微结构特征与 应用 第五节 快速凝固的非晶态合金
绪论
研究对象
1 凝固:
两个原子的相互作用势能 W(R) 的曲线如图 1-1b 所示。可 用下式计算相互作用力,当 R 增加 dR 时,力 F 就靠势能 W(R)减小作外功FdR。因此得到: 或 当R=R0 时,F(R0)=0,即 对应于能量的极小值,状态稳定。原子之间倾向于保持一 定的间距,这就是在一定条件下,金属中的原子具有一定 排列的原因。当R=R1时,吸引力最大,即
第二章 凝固热力学
第一节 液态金属结构 第二节 二元合金的稳定相平衡 第三节 溶质平衡分配系数 第四节 液-固相界面成分及界面溶质
分配系数
第三章 凝固动力学
第一节 自发形核 第二节 非自发形核 第三节 固-液相界面结构 第四节 晶体生长方式
第四章 单相合金的凝固
第一节 凝固过程的溶质再分配 第二节 金属凝固过程中的“成分过冷” 第三节 界面稳定性与晶体形态 第四节 胞晶组织与树枝晶 第五节 微观偏析 第六节 固-液界面非线性动力学理论
表1-1 一些金属的熔化潜热和汽化潜热的比较
2 研究对象:
研究液态金属或合金转变为固态金属或合金这一凝固过程 的理论和技术,定性地特别是定量地揭示其内在联系和规 律,发现新现象,探求未知参数,开拓新的凝固技术和工 艺。 凝固学是材料成形技术的基础,也是近代新型材料开拓和 制备的基础。
第一节 单向凝固工艺 第二节 单晶生长 第三节 柱状晶的生长 第四节 自生复合材料
第八章 快速凝固
第一节 快速凝固技术及其传热特点 第二节 快速凝固的热力学 第三节 快速凝固的动力学及界面形貌稳定性 第四节 快速凝固晶态合金的显微结构特征与 应用 第五节 快速凝固的非晶态合金
绪论
研究对象
1 凝固:
两个原子的相互作用势能 W(R) 的曲线如图 1-1b 所示。可 用下式计算相互作用力,当 R 增加 dR 时,力 F 就靠势能 W(R)减小作外功FdR。因此得到: 或 当R=R0 时,F(R0)=0,即 对应于能量的极小值,状态稳定。原子之间倾向于保持一 定的间距,这就是在一定条件下,金属中的原子具有一定 排列的原因。当R=R1时,吸引力最大,即
第二章 凝固热力学
第一节 液态金属结构 第二节 二元合金的稳定相平衡 第三节 溶质平衡分配系数 第四节 液-固相界面成分及界面溶质
分配系数
第三章 凝固动力学
第一节 自发形核 第二节 非自发形核 第三节 固-液相界面结构 第四节 晶体生长方式
第四章 单相合金的凝固
第一节 凝固过程的溶质再分配 第二节 金属凝固过程中的“成分过冷” 第三节 界面稳定性与晶体形态 第四节 胞晶组织与树枝晶 第五节 微观偏析 第六节 固-液界面非线性动力学理论
表1-1 一些金属的熔化潜热和汽化潜热的比较
第三章纯金属的凝固
3.3.1 均匀形核
均匀形核(均质形核)是指在均匀单一的母相中形 成新相结晶核心的过程。
1.均匀形核的能量条件
在过冷的液态金属中,晶胚形成的同时,体系自由 能的变化包括转变为固态的那部分体积引起的自由能下 降和形成晶胚新表面引起的自由能的增加。假设单位体
积自由能的下降为 ΔGv(ΔGv<0) ,比表面能为σ,晶 胚假设为球体,其半径为r ,则晶胚形成时体系自由能
3.2.2 结晶的热力学条件
根据液固金属自由能
G与温度关系曲线如图 3-3可知,GL=Gs 所对 应的温度Tm即理论平衡 结晶温度,当T<Tm时, Gs<GL两者之差值即为结
晶的驱动力。过冷度越 大,结晶的驱动力也越 大,过冷是结晶的热力 学条件。
第三节 形核规律
形核方式有两种:一种是均匀形核,即新 相晶核在母相内自发地形成;另一种是非均匀 形核,即新相晶核在母相与外来夹杂的相界面 处优先形成。工程实际中材料的凝固主要以非 均匀形核方式进行,但均匀形核的基本规律十 分重要,它不仅是研究晶体材料凝固问题的理 论基础,而且也是研究固态相变的基础。
假定固相晶胚α以球冠状形成于 基底B的平面上,如图3-8所示,设 固相晶核表面的曲率半径为r,晶
核与基体面的接触角为θ,球冠底
圆半径为R..
当晶核形成时,体系增加的表面能 为ΔGs ,
ΔGs=AαLσαL+AαwσαW-AαwσLW
式中 AαL,Aαw 分别为晶核α 与液相L 及B之间的界面积 ;σαL , σαW , σLW 分别为各相应界面的表面能,在其 相交点处,表面张力达到平衡。
3.1.2 纯金属的结晶过程
液态金属的结晶过程是一个形核及核长大的过程。 当液态金属冷却至熔点以下,经过一定时间的孕育,就 会涌现一批小晶核,随后这些晶核按原子规则排列的各 自取向长大,与此同时又有另一批小晶核生成和长大, 直至液体全部耗尽为止。
第四章纯金属的凝固
(二)临界晶核 设晶胚为半径r的球形,形核时总能量变化为: ΔG=-ΔG体积+ΔG表面 =-433GV42
ΔGV-单位体积自由能,σ-比表面能 ΔG是r的函数。
由 Gf(r) 的函数作图可知,在r=rc时△G取 得极大值。
讨论: 1.当r<rk则晶胚生长 ,将导致体系 ΔG ,晶胚重新熔化而消失。 2.若r>rk 晶胚r ,体系的ΔG,结晶 自发进行,此时的晶胚就成为晶核
2.金属熔化时的体积变化:大多数金属熔化时体积变化仅为
3%-5%,熔化前后原子间距变化不大,熔化前后原子间结 合力较为接近。
3.金属熔化熵值变化小:
金属熔化时结构变化小,只是相对“无序度”增加.
液态金属结构与固态相似存在近程有序,近程密堆, 远程无序.
二.材料凝固的过冷现象
过冷现象-实际结晶温度低于理论结 晶温度的现象。
假设:晶核是依附过冷液相现成基底B上形成晶核S;
设晶核为半径为r的球缺体;S1为球冠面积; S2为晶核与基底接触的面积; θ为晶核与基体的润湿角。
晶核形成稳定存在的瞬间(不 熔化、长大),三相交点处, 表面张力应达到平衡:
σLB=σSB+σLScosθ
非均匀形核示意图
σLB、σsB、σLs分别为L/B、S/B、L/S间的表面张力
均为自发过程.
结论:过冷是结晶的必要条件, 而 ΔT≥ΔTc是结晶的充分必要条件。
过冷度对临界晶核与 最大相起伏的影响
(五)临界晶核的形核功
ΔG=-ΔG体积+ΔG表面 =-433GV42
将
k
2 GV
代入上式可得:
3
2
G k4 3 L 2 m T T m G 4 L 2 m T T m 化简得
金属凝固理论
20、液态金属的热速处理:
21、模数:折算厚度R=V1/S1,R又称为模数。
22、理想液态金属:指没有任何杂质及缺陷的纯金属熔体。
23、流动性:液态金属本身的流动能力,称为“流正常偏析相反的溶质分布情况,当k0<1时,表面或底部含溶质元素多,而中心部分或上部含溶质较少,这种现象称为逆偏折。
15、动态晶粒细化:动态晶粒细化方法主要是采用机械力或电磁力引起固相发生相对运动,导致枝晶破碎或与从型壁脱落,在液相中形成大量的晶核,达到细化晶粒的目的。
16、铸造应力:铸件在凝固及冷却过程中,由于线收缩及固态相变会引起体积的收缩或膨胀,而这种变化往往受到外界的约束或铸件各部分之间的相互制约而不能自由地进行,于是在产生变形的同时还产生应力。
30、规则共晶合金:也称非小面--非小面共晶,多由金属--金属或金属--金属间化合物相组成,该类合金在结晶过程中,共晶两相均具有非小面生长的粗糙界面。
8、成分过冷:这种由溶质再分配导致界面前方熔体成分及其凝固温度发生变化而引起的过冷称为成分过冷.
9、枝晶间距::枝晶间距指的是相邻同次分枝之间的垂直距离,实际上则用金相视野下测得的各相邻同次分枝之间距离的统计平均值来表示。是树枝晶组织细化程度的表征,枝晶间距越小,组织就越细密,分布于其间的元素偏析范围也就越小。
25、密度偏析:密度偏析,也称重力偏析,是液体和固体共存或者是相互不混合的液相之间存在着密度差时产生的化学成分不均匀现象,一般形成于金属凝固前或刚刚开始凝固时。
26、变质处理:变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒,达到提高材料性能的目的。变质是通过改变晶体的生长机理,从而影响晶体形貌。
《金属的凝固特点》课件
。
连铸工艺
连铸工艺是将液态金属通过连续浇注 的方式,在连铸机内冷却凝固成所需 形状和性能的金属制品的工艺方法。
连铸工艺的应用范围广泛,可生产各 种规格的钢材,如板材、管材、型材 等。
连铸工艺具有高效、节能、环保等优 点,是现代钢铁工业中的重要生产工 艺之一。
定向凝固工艺
定向凝固工艺是一种通过控制热 流方向,使液态金属在特定方向 上凝固,从而获得具有定向组织
结构的金属制品的工艺方法。
定向凝固工艺主要用于制备高性 能的金属材料,如高温合金、单
晶叶片等。
定向凝固工艺具有组织细密、力 学性能优异、耐高温等特点,广 泛应用于航空、航天、能源等领
域。
05
金属的凝固应用
在机械制造中的应用
01
02
03
零件制造
金属凝固后具有良好的强 度和耐久性,因此在机械 制造中广泛应用于制造各 种零件和工具。
金属的凝固速率
01
影响因素
冷却速率、金属的纯度和结晶温度。
02
规律
冷却速率越快,凝固速率越高;金属纯度越高, 凝固速率越高;结晶温度越高,凝固速率越高。
金属的凝固缺陷
01 凝固过程中由于各种原因导致金属内部结构的不 完善或异常。
02 主要类型:缩孔、疏松、偏析、裂纹等。
02 对金属的性能产生不良影响,如降低机械性能、 耐腐蚀性能等。
01 结晶温度
金属开始从液态向固态转变的温度点。
02 影响因素
金属的纯度、冷却速率和金属的种类。
03 规律
纯金属的结晶温度较高,合金的结晶温度较低; 冷却速率越大,结晶温度越高。
金属的凝固结构
金属的固态晶格结构。
影响因素:金属的原子半 径、晶体结构和化学键类 型。
连铸工艺
连铸工艺是将液态金属通过连续浇注 的方式,在连铸机内冷却凝固成所需 形状和性能的金属制品的工艺方法。
连铸工艺的应用范围广泛,可生产各 种规格的钢材,如板材、管材、型材 等。
连铸工艺具有高效、节能、环保等优 点,是现代钢铁工业中的重要生产工 艺之一。
定向凝固工艺
定向凝固工艺是一种通过控制热 流方向,使液态金属在特定方向 上凝固,从而获得具有定向组织
结构的金属制品的工艺方法。
定向凝固工艺主要用于制备高性 能的金属材料,如高温合金、单
晶叶片等。
定向凝固工艺具有组织细密、力 学性能优异、耐高温等特点,广 泛应用于航空、航天、能源等领
域。
05
金属的凝固应用
在机械制造中的应用
01
02
03
零件制造
金属凝固后具有良好的强 度和耐久性,因此在机械 制造中广泛应用于制造各 种零件和工具。
金属的凝固速率
01
影响因素
冷却速率、金属的纯度和结晶温度。
02
规律
冷却速率越快,凝固速率越高;金属纯度越高, 凝固速率越高;结晶温度越高,凝固速率越高。
金属的凝固缺陷
01 凝固过程中由于各种原因导致金属内部结构的不 完善或异常。
02 主要类型:缩孔、疏松、偏析、裂纹等。
02 对金属的性能产生不良影响,如降低机械性能、 耐腐蚀性能等。
01 结晶温度
金属开始从液态向固态转变的温度点。
02 影响因素
金属的纯度、冷却速率和金属的种类。
03 规律
纯金属的结晶温度较高,合金的结晶温度较低; 冷却速率越大,结晶温度越高。
金属的凝固结构
金属的固态晶格结构。
影响因素:金属的原子半 径、晶体结构和化学键类 型。
第五章 纯金属的凝固
引言
多数金属制品的生产都需要经历熔炼和铸造两 个工艺过程。熔炼是为了获得符合要求的液态 金属。铸造是将液态金属注入铸模中使之凝固 成一定形状,尺寸的固态金属件或金属锭。 结晶:液态金属转变为固态金属晶体的过程。 结晶是铸锭,铸件,金属焊接生产的主要过程。 是材料制备的最主要工艺。 广义结晶定义:聚集态,晶态,非晶态—晶体 的过程。
dn / dt B2 exp(GA / KT ) I B exp[(G * GA ) / KT ]
下式中的ΔG*和ΔGA与扩散有关,但两项变化 趋势不同:ΔT↓时,ΔG*↑,而 ΔGA↓.
原子可动性 相变驱动力 e-ΔG*/KT
e-ΔGA/KT
I
温度T→Tm 温度 温度 I-t 曲线示意图
Tm Ts
无限缓慢
时间
过冷:金属开始凝固温度Ts,低于其熔点Tm的现 象. ΔT(过冷度)=Tm-Ts,Tm为熔点。 不同金属以及不同冷却条件,其凝固的过冷度 是不同的。 金属中纯度越高,无杂质,ΔT越大。冷却速 度越大,过冷度也越大。采取特殊手段,可使 金属的最大过冷度增加。象使液态金属细化成 液滴可使过冷度增加。如下表:
一,均匀形核
由均匀母相中形成新相结晶核心的过程,是一 种无择优位置的形核。 1,均匀形核的热力学分析 晶胚出现增添了一项表面自由能,系统自由 焓总变化为ΔG=-V·ΔGV+Aγ ,设晶胚的形状 为圆球,半径为γ0,ΔG=-4πr3ΔGV/3+ 4πr2γ(σ),该式给出给定温度下,晶胚半径与ΔG 之间的关系。(下图也能说明另一些问题)
d (G ) 4 r 2 Gv 8 r 0 dr 2 16 r 3 r* G* 2 Gv 3(Gv)
多数金属制品的生产都需要经历熔炼和铸造两 个工艺过程。熔炼是为了获得符合要求的液态 金属。铸造是将液态金属注入铸模中使之凝固 成一定形状,尺寸的固态金属件或金属锭。 结晶:液态金属转变为固态金属晶体的过程。 结晶是铸锭,铸件,金属焊接生产的主要过程。 是材料制备的最主要工艺。 广义结晶定义:聚集态,晶态,非晶态—晶体 的过程。
dn / dt B2 exp(GA / KT ) I B exp[(G * GA ) / KT ]
下式中的ΔG*和ΔGA与扩散有关,但两项变化 趋势不同:ΔT↓时,ΔG*↑,而 ΔGA↓.
原子可动性 相变驱动力 e-ΔG*/KT
e-ΔGA/KT
I
温度T→Tm 温度 温度 I-t 曲线示意图
Tm Ts
无限缓慢
时间
过冷:金属开始凝固温度Ts,低于其熔点Tm的现 象. ΔT(过冷度)=Tm-Ts,Tm为熔点。 不同金属以及不同冷却条件,其凝固的过冷度 是不同的。 金属中纯度越高,无杂质,ΔT越大。冷却速 度越大,过冷度也越大。采取特殊手段,可使 金属的最大过冷度增加。象使液态金属细化成 液滴可使过冷度增加。如下表:
一,均匀形核
由均匀母相中形成新相结晶核心的过程,是一 种无择优位置的形核。 1,均匀形核的热力学分析 晶胚出现增添了一项表面自由能,系统自由 焓总变化为ΔG=-V·ΔGV+Aγ ,设晶胚的形状 为圆球,半径为γ0,ΔG=-4πr3ΔGV/3+ 4πr2γ(σ),该式给出给定温度下,晶胚半径与ΔG 之间的关系。(下图也能说明另一些问题)
d (G ) 4 r 2 Gv 8 r 0 dr 2 16 r 3 r* G* 2 Gv 3(Gv)
第1章 凝固理论
扩散系数D=D0exp(-GA/KT),其中GA 为 扩散激活能,D0为随系统而变的常数
G * ni n exp KT
G * 4r *2 D0 exp G A C exp G A exp G * I n exp KT KT KT KT a2 a2
hkl ((hkl))ns 3 1 | d [uvw]i cos d [uvw]in | s 100% i 3 i 1 d [uvw]n
• 其中,(hkl)s是衬底的低指数晶面;[uvw]s是(hkl)s中低指数方向; (hkl)n是形核固相的低指数晶面;[uvw]n是(hkl)n中低指数方向; d[uvw]s和d[uvw]n分别是沿[uvw]s和[uvw]n的原子间距, 是[uvw]s 与[uvw]n之间夹角。
形核前后表面 G A A A r 2 2 3 cos cos 3 S LS 2 SC 1 LC 1 LS 自由能变化 形核前后体积 V G r 2 2 3 cos cos 3 GV V 自由能变化 VS 3 VS 3 3 形核时总的自 GV G he V GV G S 4r 4r 2 LS 2 3 cos cos 3 VS VS 4 由能变化为
CS Tm T mS
CL
Tm T mL
T1
K0
C S Tm T mS m L C L Tm T m L m S
S
A
CS
CL
C
均质形核之
形核功及临界半径
当液体金属中出现晶体 时,系统自由能的变化 液相与固相之间的摩尔体积自由能 差(GV),它是相变驱动力 由于出现固液界面,使系统增加了 界面能(GS),它是相变阻力
第三章 纯金属(晶体)的凝固
形核率可表示为: N= KN1. N2 ,
K为比例常数。
形核率与温度(或过冷度)之间的关系如图3-5所示。
过冷度较小时,形核率 主要受形核功因子控制; 当过冷度继续增大时, 形核率受扩散的几率因 子所控制。
图3-5 形核率与温度的关系
有效形核温度:
有些易流动的液体,形 核率随温度下降至某值T*突 然显著增大,该温度就称为 均匀形核的有效形核温度。
a.连续长大 粗糙界面,由于界面上约有一半的原子位置空着,
故液相的原子可以进入这些位置与晶体结合起来,晶体 便连续地向液相中生长,这种生长方式为垂直生长。垂 直生长的生长速率较高。
图3-10’ 粗糙界面
b. 二维形核 二维晶核是指一定大小的单分子或单原子的平面薄
层。如图3-11所示。这种生长机制主要是在光滑界面上进 行。形成二维晶核需要形核功,这种机制下晶体的生长 速率很慢。a.swf
实验结果表明,有效形
核过冷度△T*≈0.2 Tm(Tm用 绝 对 温 度 表 示 , △ T* = Tm-
T*),如图3-6表示。
图3-6 金属的形核率N与过 冷度△T的关系。
二、 非均匀形核 除非在特殊的试验条件下,液态金属的凝固大都是非
均匀形核。
非均匀形核体系自由能的变化也由体积自由能和表面 自由能两部分组成。如图3-7所示。
图3-12 螺型位错台阶机制 示意图
图3-13 螺型位错台阶机制示意图
三、纯金属的生长形态
纯金属凝固时的生长形态不仅与液-固界面的微观结 构有关,而且取决于界面前沿液相中的温度分布情况,温 度分布可有两种情况:正的温度梯度和负的温度梯度。
a.在正的温度梯度下 dT/dx>0,结晶潜热只能通过固相而散出,相界面的
K为比例常数。
形核率与温度(或过冷度)之间的关系如图3-5所示。
过冷度较小时,形核率 主要受形核功因子控制; 当过冷度继续增大时, 形核率受扩散的几率因 子所控制。
图3-5 形核率与温度的关系
有效形核温度:
有些易流动的液体,形 核率随温度下降至某值T*突 然显著增大,该温度就称为 均匀形核的有效形核温度。
a.连续长大 粗糙界面,由于界面上约有一半的原子位置空着,
故液相的原子可以进入这些位置与晶体结合起来,晶体 便连续地向液相中生长,这种生长方式为垂直生长。垂 直生长的生长速率较高。
图3-10’ 粗糙界面
b. 二维形核 二维晶核是指一定大小的单分子或单原子的平面薄
层。如图3-11所示。这种生长机制主要是在光滑界面上进 行。形成二维晶核需要形核功,这种机制下晶体的生长 速率很慢。a.swf
实验结果表明,有效形
核过冷度△T*≈0.2 Tm(Tm用 绝 对 温 度 表 示 , △ T* = Tm-
T*),如图3-6表示。
图3-6 金属的形核率N与过 冷度△T的关系。
二、 非均匀形核 除非在特殊的试验条件下,液态金属的凝固大都是非
均匀形核。
非均匀形核体系自由能的变化也由体积自由能和表面 自由能两部分组成。如图3-7所示。
图3-12 螺型位错台阶机制 示意图
图3-13 螺型位错台阶机制示意图
三、纯金属的生长形态
纯金属凝固时的生长形态不仅与液-固界面的微观结 构有关,而且取决于界面前沿液相中的温度分布情况,温 度分布可有两种情况:正的温度梯度和负的温度梯度。
a.在正的温度梯度下 dT/dx>0,结晶潜热只能通过固相而散出,相界面的
金属凝固原理课件
形核速率
描述形核过程的快慢,与温度、过 冷度等因素有关。
晶体的长大与生长形态
晶体长大
晶核形成后,周围的原子或分子 继续附着到晶核上,使晶体逐渐
长大的过程。
生长形态
晶体生长过程中形成的外观形态, 如树枝状、柱状、球状等。
生长速率
晶体长大的速度,通常与温度梯 度、溶质浓度等因素有关。
04
金属凝固过程中的组织与性能
02
金属凝固过程中的传热与传质
传热与传质的基本概念
传热
指热量从高温处传递到低温处的 现象,是热量传递的一种方式。
传质
指物质从一处传递到另一处的现 象,是物质传递的一种方式。
金属凝固过程中的传热与传质现象
传热现 象
在金属凝固过程中,热量从液态传递 到固态,使液态金属逐渐冷却并转变 为固态。
传质现 象
03
金属凝固过程中的形核与长大
形核的基本概念
形核
指在液态金属中形成固相 晶核的过程。
形核过程
在液态金属冷却过程中, 原子或分子的排列逐渐变 得有序,最终形成固体晶 格结构。
形核率
单位时间内形成的晶核数量。
形核机制与形核速率
均质形核
在液态金属中自发形成晶核的过 程,需要克服能量障碍。
异质形核
在金属中的杂质或界面上形成晶核 的过程,通常较容易发生。
02
金属凝固是金属材料制备和加工 过程中最重要的物理过程之一, 对金属材料的性能和应用具有重 要影响。
金属凝固的物理过程
01
02
03
冷却过程
金属液体在冷却过程中, 原子逐渐失去液态的无序 性,开始形成固态晶格结 构的过程。
形核过程
在金属液体冷却到熔点以 下时,原子开始聚集形成 晶核的过程,是金属凝固 的起始点。
描述形核过程的快慢,与温度、过 冷度等因素有关。
晶体的长大与生长形态
晶体长大
晶核形成后,周围的原子或分子 继续附着到晶核上,使晶体逐渐
长大的过程。
生长形态
晶体生长过程中形成的外观形态, 如树枝状、柱状、球状等。
生长速率
晶体长大的速度,通常与温度梯 度、溶质浓度等因素有关。
04
金属凝固过程中的组织与性能
02
金属凝固过程中的传热与传质
传热与传质的基本概念
传热
指热量从高温处传递到低温处的 现象,是热量传递的一种方式。
传质
指物质从一处传递到另一处的现 象,是物质传递的一种方式。
金属凝固过程中的传热与传质现象
传热现 象
在金属凝固过程中,热量从液态传递 到固态,使液态金属逐渐冷却并转变 为固态。
传质现 象
03
金属凝固过程中的形核与长大
形核的基本概念
形核
指在液态金属中形成固相 晶核的过程。
形核过程
在液态金属冷却过程中, 原子或分子的排列逐渐变 得有序,最终形成固体晶 格结构。
形核率
单位时间内形成的晶核数量。
形核机制与形核速率
均质形核
在液态金属中自发形成晶核的过 程,需要克服能量障碍。
异质形核
在金属中的杂质或界面上形成晶核 的过程,通常较容易发生。
02
金属凝固是金属材料制备和加工 过程中最重要的物理过程之一, 对金属材料的性能和应用具有重 要影响。
金属凝固的物理过程
01
02
03
冷却过程
金属液体在冷却过程中, 原子逐渐失去液态的无序 性,开始形成固态晶格结 构的过程。
形核过程
在金属液体冷却到熔点以 下时,原子开始聚集形成 晶核的过程,是金属凝固 的起始点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ho
当一当θ般θ==θ0远1º8时小0º,于时Δ18,G0hºe,Δ=GΔ0h,eG=h此eΔ远时G小在ho于无Δ过G冷ho情。况如下图即所可示形。核
学习交流PPT
18
• 非均质形核与均质形核时临
θ '> θ "
界曲率半径大小相同,但球
缺的体积比均质形核时体积 Δ T * " I h e " I h e '
学习交流PPT
2
凝固热力学与动力学
• 凝固热力学是研究金属形核过程中各种相变的热 力学条件;平衡条件或非平衡条件下的固、液两 相或固液界面的溶质成分;溶质平衡分配系数以 及压力、晶体曲率的影响等。
• 凝固动力学是研究形核、界面结构及晶体长大。
学习交流PPT
3
第4章 金属凝固热力学 与动力学
Chapter 4 Thermodynamics and kinetics of solidification
学习交流PPT
1
凝固是物质由液相转变为固相的过程,是液态成形技术的
核心问题,也是材料研究和新材料开发领域共同关注的问题。 严格地说,凝固包括:
(1)由液体向晶态固体转变(结晶) (2)由液体向非晶态固体转变(玻璃化转变)
常用工业合金或金属的凝固过程一般只涉及前者,本章主 要讨论纯金属结晶过程的形核及晶体生长热力学与动力学。
率迅速上升。
I Δ T *≈ 0 .2 T m
计算及实验均表明: ΔT*~0.2Tm
ΔT
均质形核的形核率 与过冷度的关系
学习交流PPT
16
4.2.2 非均质形核
非均匀(质)形核,晶核依附于夹杂物的界面或型壁上形成。 合金液体中存在的大量高熔点微小杂质,可作为非均质 形核的基底。这不需要形成类似于球体的晶核,只需在 界面上形成一定体积的球缺便可成核。非均质形核过冷
学习交流PPT
11
一、形核功及临界半径 二、形核率
学习交流PPT
12
一、形核功及临界半径
• 晶核形成时,系统自由能变化由两 部分组成,即作为相变驱动力的液 -固体积自由能之差(负)和阻碍 相变的液-固界面能(正):
GV GV VS
ASL
G3 4r3GV4r2SL
r< r*时,r↑→ΔG↑
r = r*时,ΔG达到最大值ΔG*
学习交流PPT
4
主要内容
4.1 凝固热力学 4.2 凝固动力学 4.3 纯金属的晶体长大
学习交流PPT
5
4.1 凝固热力学
4.1.1 液-固相变驱动力
4.1.2 溶质平衡分配系数(K0)
学习交流PPT
6
4.1.1 液-固相变驱动力
热力学条件:
LS, G<0, 过程自发进行
G vG LG S(H LTL)S(H STS)S HT S
r >r*时,r↑→ΔG↓
液相中形成球形晶胚时自由能变化
学习交流PPT
13
•
得临界晶核半径 r*: r 2 SL
GV
2 SL Tm
Hm T
得临界形核功G*:
G 136S3LHTm mБайду номын сангаас2
学习交流PPT
14
经推导得:
G
1 3
ASL
即:临界形核功ΔG*的大小为临界晶核表面能的三分之
一, 它是均质形核所必须克服的能量障碍。形核功由
实际液态金属的微观特点
“能量起伏” ——液态金属中各微观区域的能量处于此起彼 伏,变化不定的状态。这种微区内的能量短暂偏离其平均 能量的现象,叫做“能量起伏”。
“结构起伏”——液体中大量不停“游动”着的局域有序原子 团簇时聚时散、此起彼伏,称为“结构起伏”或“相起伏”。
“浓度起伏” ——同种元素及不同元素之间的原子间结合力 存在差别,结合力较强的原子容易聚集在一起,把别的原 于排挤到别处,表现为游动原子团簇之间存在着成分差异 。
在相变驱动力的驱使下,借助
于起伏作用来克服能量障碍
图2 金属原子在结晶过程 中的自由能变化
学习交流PPT
8
4.1.2 溶质平衡分配系数(K0)
K0定义为恒温T*下溶质在固液两相的物
质分数C*s与C*L 达到平衡时的比值。
K0
C
S
C
L
K0 的物理意义:
对于K0<1, K0越小,固相线、液相线
T
熔体中的“能量起伏”提供。因此,过冷熔体中形成的
晶核是“结构起伏”及“能量起伏”的共同产物。
学习交流PPT
15
二、形核率
形核率:是单位体积中、单位时间内形成的晶核数目。
ICex pK GA Tex pK G T
式中,ΔGA为扩散激活能 。
对于一般金属,温度降到某一程
度,达到临界过冷度(ΔT*),形核
• 均匀形核 :形核前液相金属或合金中无外来固相质 点而从液相自身发生形核的过程,所以也称“自发形 核” (实际生产中均质形核是不太可能的,即使是在区域
精炼的条件下,每1cm3的液相中也有约106个边长为103个原
子的立方体的微小杂质颗粒)。
• 非均匀形核:依靠外来质点或型壁界面提供的衬底 进行生核过程,亦称“异质形核”或“非自发形核”。
Iho
小得多。因此非均质形核在 I
Δ T *'
较小的过冷度下就可以得到
ΔT *
较高的形核率。
ΔT
非均质形核、均质形核 过冷度与形核率
学习交流PPT
19
二、非均质形核形核条件
• 结晶相的晶格与杂质基底晶格的错配度的影响
T * C 0K 0
C
* S
张开程度越大,固相成分开始结晶时
与终了结晶时差别越大,最终凝固组
织的成分偏析越严重。因此,常将
C0
∣1- K0∣称为“偏析系数”。
K
<
0
1
C
* L
C 0/K 0
C, %
学习交流PPT
9
4.2 凝固动力学
4.2.1 均质形核 4.2.2 非均质形核
学习交流PPT
10
4.2.1 均质形核
T=Tm时, G v H T m S0
S H/T mL/T m
GV L(TmTmT)LTmT
图1 液-固两相自由能与温度的关系
故ΔGV只与ΔT有关。因此液态金属(合金)凝固的驱动力是 由过冷度提供的,或者说过冷度ΔT就是凝固的驱动力。
学习交流PPT
7
△GA高能态区即为固态晶粒与 液态相间的界面,界面具有界面 能,它使体系的自由能增加,它 由金属原子穿越界面过程所引起
度ΔT比均质形核临界过冷度ΔT*小得多时就大量成核。
•
一、非均质形核形核功
•
二、非均质形核形核条件
学习交流PPT
17
一、 非均质形核形核功
非均质形核临界晶核半径: • 与均质形核完全相同。
r*2LC2LCTm
GV HmT
• 非均质形核功
f ()G G h e 1 4(2 3 co s co 3 )s G h o