军事卫星通信中的多址技术
卫星通信的多址方式
对方用户所在的地球站,并由该站与对方局连通。
3.3 时分多址技术
3.3.1 时分多址的概念及其应
用特点 1.TDMA的基本概念
如图3-14所示的是TDMA系统模型。从中可 以清楚地看出,在按时分多址方式工作的系统中, 由于分配给各地球站的是特定的时隙,而不是特 定的频带,因而每个地球站必须在分配给自己的 时隙中用相同的载波频率向卫星发射信号,并经 放大后沿下行链路重新发回地面。
4.随机分配
它是指通信中各种终端随机地占用卫星信道 的一种多址分配制度。
3.1.2 多址技术
在卫星通信中的信号分割和识别是以载波
频率出现的时间或空间位置为参量实现的,归
纳起来可分为频分多址(FDMA)、时分多址
(TDMA)、码分多址(CDMA)和空分多址 (SDMA)。
频分多址访问(FDMA)方式是卫星通信多 址技术中的一种比较简单的多址访问方式。在 FDMA中是以频率来进行分割的,其在时间和空 间上无法分开,故此不同的信道占用不同的频段, 互不重叠。 时分多址访问(TDMA)方式是以时间为参 量来进行分割的,其频率和空间是无法分开的, 那么不同的信号占据不同时间段,彼此互不重叠。
① 系统传输速率Rb
② 帧长
这就要求在KTs时间内能够存入的KS比 特与Tf时间内读出的比特数L相等,即 L=KS,故
【例3-1】 已知一个TDMA系统,采用QPSK 调制方式。设帧长Tf=250μs,系统中所包含的站 数m=5,各站所包含的通道数n = 4相同,保护时 间Tg = 0.1μs,基准分帧的比特数Br与各报头的比 特数Bp均为90比特,每个通道传输24路(PCM 编码,每取样值编8比特码,一群加一位同步比 特)。求PCM编码器输出速率Rs,系统传输的比 特率Rb、分帧长度Tb、帧效率ηf及传输线路要求 带宽B。
卫星通信中的多址技术
1.多址技术的概念和问题的本质
• 多址技术一直都是无线通信的关键技术之一, 甚至是移动通信换代的一个重要标志。 • 多址技术所要解决问题的特点是:通信(子) 网中的登记用户数常常远大于同一时刻实际请 求服务的用户数。其实就是研究如何将有限的 通信资源在多个用户之间进行有效的切割与分 配,在保证多用户之间通信质量的同时尽可能 地降低系统的复杂度并获得较高系统容量的一 门技术。其中对通信资源的切割与分配也就是 对无线信号空间的划分,在不同的维上进行不 同的划分就对应着不同的多址技术。
• 扩频多址(SSMA)系统的共同特点之一是扩 频,也就是说用于传输信息的信号带宽远大于 信息带宽;共同特点之二是在扩频的实现上, 不论通过什么途径扩频,但基本都是用一组优 选的扩频码进行控制,正因为此,扩频多址又 称为码分多址(CDMA)。或者说,CDMA是 在信号的扩展维——编码维上对无线信号空间 进行划分。顾名思义,码分多址就是给每个用 户分配一个唯一的扩频码(或称地址码),通 过该扩频码的不同来识别用户。
1.2 跳频码分多址(FH-CDMA)
• 跳频码分多址(FH-CDMA)在民用 通信中并不多见,但在军事抗干扰通 信中则是一种常见的通信方式。FH- CDMA的基本原理是优选一组正交跳 频码(地址码/扩频码),为每个用户 分配一个唯一的跳频码,并用该跳频 码控制信号载频在一组分布较宽的跳 频集中进行跳变。事实上,我们可以 简单地将FH-CDMA看作是一种由跳 频码控制的多进制频移键控(MFSK)。
CDMA(DSቤተ መጻሕፍቲ ባይዱCDMA)
• ---OFDM与多址技术的融合往往可以起到优 势互补的作用,是未来移动通信技术应用 的方向。具体的融合方案有多种,比较多 的是OFDM与DS-CDMA的融合,而这又 有三种[12]:MC-CDMA、MC-DS- CDMA和MT-CDMA。此外还有FH- OFDM(慢跳频与OFDM的融合)和TDMA -OFDM(TDMA与OFDM的融合)。
卫星通信 第3章 多址技术
如果没有back-off,那么K= BTR / Bc =12
19
三、时分多址技术(TDMA)
卫星通信系统时分多址技术:用不同时隙来区分地球 站的地址,只允许各地球站在规定的时隙内发射信号,这 些射频信号通过卫星转发器时,在时间上是严格依次排列、 互不重叠的。 卫星将在一个TDMA帧内的不同子帧时隙接收并转发 来自各地球站(它们都采用相同的载波)的突发脉冲串。 也就是说,每一地球站只在TDMA帧的一个子帧内接收和 发送突发脉冲。为了保证每一地面终端的突发(子帧)能 在所指定的子帧时隙到达卫星,对系统定时和信号格式将 有严格的要求。为此,每帧内的第一个子帧将由基准站发 出“基准”子帧以作为同步和网控之用。
(二)多址联接
• 频分多址(FDMA):各站、台发出的射频信号在指定的射频频带内, 但在频谱上互不重叠地排列,共同分用该射频频带,接收端用带通滤 波器分离各路射频信号。 • 时分多址(TDMA):以不同的时隙来区分地址,每站有一指定时隙, 各站只是在自己的时隙内发射信号。 • 码分多址(CDMA):每个用户有一个特定结构的码字作为地址,不 同用户的不同波形信号以同一频率发射出去,各站的接收是根据相应 的信号波形分离出自己需要的信号。 • 空分多址(SDMA):利用天线的方向性和用户的地区隔离性实现信 号的分离。
TDMA的效率
• 系统效率:在发射数据中信息所 占的百分比,不包括系统开销; • 帧效率:发送数据比特在一帧中 所占的百分比;
帧效率 一帧中的有效信息比特数 一帧中的总比特数
26
TDMA系统的信道数
总的信道数:总的TDMA时隙数。即每一 信道的TDMA时隙数乘以有效信道数。 N=m*[ (Bt + B保护)/(Bc+B保护)] m为每个信道所支持的TDMA用户数,Bt 为信道带宽,B保护保护带宽,Bc用户带 宽。
卫星通信第三卫星通信的多址技术
30
TDMA系统的不足
(1) 必须保持各地球站之间的精确同步,才 能让所有用户实现共享卫星资源的目的。 (2) 为了保证用户信息传递的连续性,要求 采用突发解调器(系统中各站在规定的 时隙内以突发的形式发射其已调信号)。 (3) 初期的投资较大,系统实现复杂,技术 设备复杂。
31
帧:整个系统的所有地球站时隙在卫星内占 据的整个时间段称为卫星的一个(TDMA)时帧。 一个TDMA帧是由一个同步分帧和若干个业 务分帧组成的。 基准分帧(同步分帧) :TDMA帧内的第一 个时隙,不含任何业务信息,仅用作同步 和网络控制。 数据分帧 :除基准地球站外其他地球站占 据的时隙。 保护时间:在各个时隙之间留有很小的时间 32 间隔,称为“保护时间”。
3.4.2 跳频码分多址系统
跳频(FH,Frequency Hopping)。在发送端, 利用PN码控制频率合成器,使频率在一个宽 范围内伪随机地跳变,跳频系统占用了比信 息带宽要宽得多的频带。在接收端,本地PN 码产生器提供一个和发端相同的 PN码,驱动 本地频率合成器产生同样规律的频率跳变, 和接收信号混频获得已调信号。
3.3.4 频分多址-时分多址 (FDMA-TDMA)方式 是指若干个窄带TDMA方式工作的地球站, 以频分多址方式共用一个转发器的一种技术。 传送相对较低速率(10Mbit/s以下)的信号。 特点:改变业务样式灵活,特别适合传输数 据,每个帧内的信道都可以采用按需分配方 式。但是由于要求功率放大器有输出补偿, 所以卫星转发器的效率低于单纯的TDMA系 统。 37
卫星通信中的多址接入技术
卫星通信中的多址接入技术在当今高度互联的世界中,卫星通信作为一种重要的通信手段,发挥着不可或缺的作用。
无论是在偏远地区的通信覆盖,还是在紧急救援、航空航天等领域,卫星通信都展现出了其独特的优势。
而在卫星通信系统中,多址接入技术则是实现多个用户同时有效通信的关键所在。
多址接入技术,简单来说,就是要解决如何在有限的卫星通信资源下,让众多用户能够有序、高效地进行通信。
想象一下,卫星就像是一个繁忙的交通枢纽,而多址接入技术就是负责指挥交通的规则和系统,确保每一辆车(用户)都能顺利通行,且不会发生混乱和碰撞。
常见的卫星通信多址接入技术主要包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)和空分多址(SDMA)。
频分多址(FDMA)是最早被应用的多址接入技术之一。
它的工作原理就像是在一个宽敞的大厅里划分出不同的区域,每个区域分配给不同的用户使用。
在卫星通信中,就是将卫星的可用频段划分成若干个互不重叠的子频段,每个用户被分配到一个特定的子频段进行通信。
这种方式的优点是技术相对简单,容易实现。
但它也存在一些缺点,比如频谱利用率不高,因为为了防止相邻频段之间的干扰,需要在子频段之间留出一定的保护频带。
时分多址(TDMA)则像是在时间轴上进行划分。
将时间分割成周期性的帧,每一帧再分成若干个时隙,每个用户在指定的时隙内进行通信。
这样一来,不同用户按照时间顺序轮流使用卫星资源。
TDMA的优点是频谱利用率相对较高,因为不需要留出保护频带。
但它对系统的同步要求比较严格,如果同步出现偏差,就可能导致通信错误。
码分多址(CDMA)是一种基于扩频技术的多址接入方式。
每个用户被分配一个独特的码序列,通过扩频技术将用户的信号扩展到较宽的频带上。
在接收端,只有使用相同码序列的用户才能正确解调出自己的信号。
CDMA 的优点是抗干扰能力强,容量大,可以实现多个用户同时通信而相互之间的干扰较小。
但它的实现相对复杂,需要较高的处理能力。
卫星通信中的多址接入技术研究
卫星通信中的多址接入技术研究在当今高度信息化的时代,卫星通信作为一种重要的通信手段,发挥着不可或缺的作用。
无论是在偏远地区的通信覆盖,还是在应急通信、航空航天通信等领域,卫星通信都展现出了其独特的优势。
而在卫星通信系统中,多址接入技术是实现多个用户共享卫星通信资源的关键技术,它直接影响着卫星通信系统的性能和容量。
多址接入技术的基本概念,简单来说,就是如何在卫星通信中让多个用户能够同时有效地使用有限的通信资源,如频率、时隙、码序列等。
这就好比在一个繁忙的公路上,要让众多车辆有序地行驶,避免碰撞和拥堵,需要有一套合理的交通规则。
在卫星通信中,多址接入技术就是这样一套“规则”。
常见的卫星通信多址接入技术主要包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)和空分多址(SDMA)。
频分多址技术是将卫星通信的可用频率资源划分成若干个互不重叠的频段,每个用户分配一个特定的频段进行通信。
这种方式就像是为不同的用户开辟了专属的“车道”,每个“车道”的宽度就是分配给用户的频段。
频分多址的优点是实现简单,技术成熟,但缺点是频谱利用率相对较低,容易受到频率选择性衰落的影响。
时分多址技术则是将时间分割成周期性的时隙,每个用户在指定的时隙内进行通信。
这类似于在公路上为不同的车辆安排特定的通行时间,在规定的时间内,该车辆独占道路资源。
时分多址的优点是频谱利用率较高,能够灵活分配时隙资源,但对定时和同步要求较高,否则容易产生时隙冲突。
码分多址技术是通过为每个用户分配不同的扩频码来实现多址接入。
多个用户可以在同一频段、同一时隙内同时通信,只要它们的扩频码相互正交。
这就好像给每个用户都赋予了一个独特的“密码”,只有拥有正确“密码”的接收端才能正确解调出相应的信号。
码分多址具有抗干扰能力强、频谱利用率高、保密性好等优点,但也存在着系统容量受限、远近效应等问题。
空分多址技术是利用卫星天线的方向性,将空间分割成不同的区域,每个区域对应一个用户。
多址技术及应用
多址通信技术及其应用摘要:新一代无线通信系统要求大容量、高速率、综合业务、适用于各种环境。
在大、中型通信网中,众多的通信台、站利用同一颗卫星(或几颗卫星)的一个(或几个)信道的转发器复用方式,实现相互之间的长距离、大范围的多址通信。
这种通信方式,既不受地域的限制,又不受气候的影响,十分方便、灵活,又便于通信保密。
关键词:频分多址时分多址码分多址空分多址多址通信,就是通信网中各个通信台、站利用同一指定射频信道,进行相互间的多址通信。
最典型的多址通信方式是卫星通信。
在卫星通信中,多址通信技术就是指通信网中每个地面站利用同一颗卫星的信道(譬如一个转发器的信道)进行多边通信。
所以多址通信实质上就是各地面站对一个转发器的复用方式。
多址通信,按分配方式分,粗分有预分配制多址(Preassigned Multiple Acces.简称PMA)和按需分配制多址(Demand assignment Multiple Access,简称DAMA)两种。
预分配制多址方式,是将有关两站间需要的线路,预先分配成固定的(也是相对的)专用线路,只供该两地面站间使用,又分为固定预分配多址和时间预分配多址等几种方式。
按需分配制多址方式,是有关地面站需要通信时,临时分配给线路进行通信,当通信结束,此线路立即撤销。
显然,按需分配制可以充分地发挥线路的利用率。
按需分配多址又分为接收站可变多址、发送站可变多址、全可变多址等多种方式。
多址通信,按复用方式分,主要有频分多址、时分多址、码分多址和空分多址等四种。
上述这些多址技术的实现都是基于对信号的某种参量(从广义上讲),例如频率、时间、波型(或码型)和空间,进行一定的分割和识别,以达到多址通信的目的,下面将上述四种多址方式分别进行介绍。
一、频分多址(Frequency Division Multiple Access.简称FDMA)各地面使用不同的载频(即将卫星转发器分成互不重叠的若干个频带)所构成的多址通信信道,称之为频分多址。
卫星通信的多址方式
图3-16 TDMA系统帧结构
(1)同步分帧
同步分帧中包括载波、位定时恢复(CR和BTR)、独特码(UW)、站址识别码(SIC)和指令信号(CW)。
(2)数据分帧
一个数据分帧包含了若干个业务分帧,并且每个业务分帧由分帧报头和多个PCM数据信道构成。
图3-11 SPADE终端设备组成图
公共信令信道的信令格式
03
为了实现按需分配,各地球站是按TDMA方式工作的,即按时分多址方式工作的。
04
按需分配方式下的信息传递过程
01
如图3-11所示,各地球站设置有按TDMA方式(在后面将详细介绍)工作的公用信令信道和话音传输信道。
02
公共信道工作特性
由上面的分析可知,SPADE系统可为48个地球站提供397条双向通路(如图4-10所示),这就是说,每个地球站可以每隔50ms向信道申请一次。
按需分配方式下的通信过程 在SPADE系统中,当某用户通过长途台将呼叫通信请求送至SPADE终端时,SPADE终端为其从397条卫星线路中选择任意一条空闲信道,并进行连通,同时通过此信道将呼叫请求帧送到对方用户所在的地球站,并由该站与对方局连通。
02
要求采用突发解调器(系统中各站在规定的时隙内以突发的形式发射其已调信号)。
03
模拟信号需转换成数字信号才能在网络中传输。
初期的投资较大,系统实现复杂。
05
3.3.2 TDMA地球站设备
01.
如图3-15所示为一个TDMA地球站设备组成示意图。
02.
图3-15 TDMA地球站设备
2
1
卫星通信—第五讲 卫星通信多址方式
卫星通信多址方式卫星通信体制•根据基带信号类型及复用方式多址方式模拟或数字TDM或FDM2. 中频调制方式PSK 3. 多址连接方式 TDMA CDMA信道分配或交换制度PA)DA)或随 4. 机多址连接方式•多址连接的基础是信号分割而各地球站接收端能从混合的信号中识别出本站所需信号•利用信号的频率码型的正交性可实现有效的多址连接时隙越小–占有的空间是卫星覆盖波束所占据的范围•卫星通信中常用的通信体制–FDM/FM/FDMA/PA–TDM/PSK/FDMA/PA•存在各种组合形式的多址连接–TDMA/FDMATDMA/FDMA/SDMA频分多址FDMAÉ豸¼òµ¥²úÉú»¥µ÷ÔëÉùºÍ¿É¶®´®»°²¢ÇÒ´óСվÄÑÒÔ¼æÈÝƵÂÊ·ÖÅä²»Áé»î频分多址FDMA(2)•卫星的频带和功率资源是有限的这样的卫星通信系统称为功率受限系统–存在幅度的非线性和相位的调幅--调相变换作用–幅度的非线性所带来的影响•多载波输入时小载波要受到大载波的抑制•多载波输入会产生新的频率分量其输出可能增大–多载波输入时其包络是有起伏的在一定条件下即产生新的频率分量减小互调干扰的主要措施•采用适当的补偿•采用能量扩散信号–未调波的功率谱为单一谱线互调噪声也被扩散–对多路信号调制的已调波说通话量减少时使互调干扰噪声广为扩散将载频做不等间隔排列线性器线性器的作用•一般多载波工作的情况下装有线性器的转发器在同样交调干扰水平下输出回退只要3dB •可用功率P可用=单载波饱和功率的50%•为了提高系统灵活性–SCPC(Single Channel Per Carrier)–PCM/SCPC/PSK/FDMA/DA (SPADE Single Channel Per Carrier PCM multiple Access Demand assignmentEquipment)时分多址•在SPADE,SCPC-DAMA系统中实际上已经采用TDMA为CSC通道.在海事卫星中也采用TDMA.1985年INTELSAT已开通120Mb/sTDMA•TDMA的主要特点可充分转发器工作在单载波状态充分利用转发器的频带上行功率无需精确控制便于大小站兼容需要精确的同步接收站能正确识别站址和迅速建立载波和时间的同步系统定时•初始捕获保证此突发正确进入指定的时隙•分帧同步保证各分帧之间维持精确的时间关系•一般由基准站发送基准突发作为系统定时计算机轨道预测法空分多址SDMA•基本特征它们分别指向不同区域地球站卫星天线增益高不同区域地球站所发信号在空间不重叠扩大系统的通信容量具有很大的灵活性•难点卫星天线及馈线装置比较庞大和复杂而且由于空间故障难以恢复码分多址基带信号调制和地址码的调制•地址码采用较多的是m序列伪随机码CDMA/DSÓÐÒ»¶¨µÄ±£ÃÜÄÜÁ¦Æµ´øÀûÓÃÂʽϵͶԵØÖ·ÂëµÄ²¶»ñºÍͬ²½ÐèÒªÒ»¶¨µÄʱ¼ä随机多址(ALOHA方式)本质上仍为TDMA,适用于各种数据率,不同长度,随机发生的数据的传输和交换.在SCPC/DAMA系统中用作公用信令通道在VSAT系统中用于入向通道一纯ALOHA方式(Pure-ALOHA)若干地球站共用一个卫星转发器的频段,各站在时间上随机地发送数据组.若发生碰撞,则延迟一段时间后重复,碰撞的两个站延时不同.二时隙ALOHA(Slotted-ALOHA, S-ALOHA)各站发送的数据组必须落入某时隙内(不是完全随机的).因此碰撞概率减小,但全网需要定时和同步,且各个数据分组长度固定.三预约ALOHA(R-ALOHA)各站要求发长报文时,申请预约,分配给它一段时隙,对于短报文则使用非预约的时隙,按S-ALOHA方式进行传输.典型例子是ARPA系统四 ALOHA方式的性能度量1 吞吐量:送到用户的信息比特与总发送比特之比,即发送成功的突发段与总发送数之比.2 延时:开始发信息到成功地送抵用户所需的时间.个分组但是由于存在重发•假设一分组在t=t0时刻出现•考虑了碰撞的因素。
第4章:卫星通信多址技术
任何两个地球站之间都构成双向线路,线路容量改动比较容 易,只需改动对应的载波即可; 比较适合用于大小站兼容的卫星通信网中,如大载波分给容 量大的大站,小载波分给容量小的站; 转发器和地球站中工作载波数目太多,设备多,交调大。
西安交通大学信息与通信工程系
16
微波与卫星通信
–FDMA中单址载波的实现方式
交调的产物
(1)只要是频分多址,就会产生交调干扰,产 物主要为:2f1-f2,2f2-f1和f1+f2-f3等形式; (2)只要以上产物落入有用频带内,就会形成 干扰。
微波与卫星通信
西安交通大学信息与通信工程系
22
产生交调的原因
(1) 输入-输出非线性引起的干扰;
–为提高输出功率,希望放大器(地球站或卫 星上,行波管或速调管)工作在饱和输出状 态;有多个载波时,由于非线性,出现压缩 并产生交调产物
微波与卫星通信
西安交通大学信息与通信工程系
17
多址载波
– 各地球站将其要发送给其他各站的信号采用多路 复用的方法形成基带多路信号,然后调制到一个 载波频率上发射,其他各站接收时,经解调后只 取与本站有关的信号。
– 每个地球站只发一个载波(不论多少通信方向),N 个地球站,每站只发一个载波,因而转发器只需 转发N个载波 – 特点:
微波与卫星通信
西安交通大学信息与通信工程系
5
常用的多址连接技术
– 频分多址(FDMA):各站、台发出的射频信号在 指定的射频频带内,但在频谱上互不重叠地排列, 共同分用该射频频带,接收端用带通滤波器分离各 路射频信号。 – 时分多址(TDMA):以不同的时隙来区分地址, 每站有一指定时隙,各站只是在自己的时隙内发射 信号。 – 码分多址(CDMA):每个用户有一个特定结构的 扩频码作为地址,不同用户的不同波形信号以同一 频率发射出去,各站的接收是根据相应的信号波形 分离出自己需要的信号。 – 空分多址(SDMA):利用天线的方向性和用户的 地区隔离性实现信号的分离。
第3章 卫星通信的多址技术
18
预分配频分复用-调频-频分多址 (FDM-FM-FDMA)
每个地球站分配一个专用载波,首先把
所有要发射的基带模拟信号以频分复用 方式复用在一起,然后以调频方式调制 到一个载波频率上,最后再以FDMA方 式发射和接收。 优点:技术成熟、设备简单、不需网同 步、工作可靠、可直接与地面频分制线 路接口、工作于大容量线路时效率高, 特别适用于站少而容量大的场合。
第3章 卫星通信的多址技术
zy29209@
第3章 卫星通信的多址技术
3.1 多址技术与信道分配技术的概述 3.2 频分多址(FDMA)方式 3.3 时分多址(TDMA)方式 3.4 码分多址(CDMA)方式 3.5 空分多址(SDMA)方式 3.6 ALOHA方式
3.4.2 跳频码分多址系统
跳频(FH,Frequency Hopping)。在发送端, 利用PN码控制频率合成器,使频率在一个宽 范围内伪随机地跳变,跳频系统占用了比信 息带宽要宽得多的频带。在接收端,本地PN 码产生器提供一个和发端相同的 PN码,驱动 本地频率合成器产生同样规律的频率跳变, 和接收信号混频获得已调信号。
30
TDMA系统的不足
(1) 必须保持各地球站之间的精确同步,才 能让所有用户实现共享卫星资源的目的。 (2) 为了保证用户信息传递的连续性,要求 采用突发解调器(系统中各站在规定的 时隙内以突发的形式发射其已调信号)。 (3) 初期的投资较大,系统实现复杂,技术 设备复杂。
31
帧:整个系统的所有地球站时隙在卫星内占 据的整个时间段称为卫星的一个(TDMA)时帧。 一个TDMA帧是由一个同步分帧和若干个业 务分帧组成的。 基准分帧(同步分帧) :TDMA帧内的第一 个时隙,不含任何业务信息,仅用作同步 和网络控制。 数据分帧 :除基准地球站外其他地球站占 据的时隙。 保护时间:在各个时隙之间留有很小的时间 32 间隔,称为“保护时间”。
通信系统中的多址技术与多用户接入
通信系统中的多址技术与多用户接入一、引言通信系统的发展和应用范围的不断扩大,对多址技术和多用户接入提出了更高的要求。
本文将介绍通信系统中的多址技术以及多用户接入的原理和应用。
二、多址技术多址技术是指多个信号在同一个通信信道中共享带宽的技术。
它通过合理的资源分配,实现多个用户同时传输数据,提高信道的利用率。
常见的多址技术有时分多址(TDMA)、频分多址(FDMA)、码分多址(CDMA)和波分多址(WDMA)等。
1. 时分多址(TDMA)时分多址技术将时间划分为若干个时隙,每个时隙分配给不同的用户进行数据传输。
它通过时间的复用实现多用户同时接入,减少信道冲突。
在实际应用中,TDMA广泛应用于蜂窝通信系统中,提供高质量的语音和数据传输服务。
2. 频分多址(FDMA)频分多址技术将频段划分为若干个子信道,每个用户占据一个独立的子信道进行数据传输。
它通过频率的复用实现多用户同时接入,减少信道冲突。
FDMA适用于不同频段带宽资源充足的通信环境,如卫星通信系统等。
3. 码分多址(CDMA)码分多址技术将不同用户的信号编码成不同的扩频码,并在整个频带内同时进行传输。
接收端通过解码来提取所需的用户数据。
CDMA 具有较强的抗干扰能力和较高的频谱利用率,因此在3G和4G等移动通信系统中得到广泛应用。
4. 波分多址(WDMA)波分多址技术将不同用户的信号通过不同的波长进行传输,实现多用户同时接入。
它采用光纤链路进行传输,可以提供高带宽和低延迟的通信服务,广泛应用于光纤通信系统中。
三、多用户接入多用户接入是指多个用户同时连接到通信网络中的过程。
多用户接入的方式主要包括集中式接入和分布式接入。
1. 集中式接入集中式接入是指多个用户通过同一个网络节点接入通信系统。
常见的集中式接入方式有集中式交换机接入和基于无线局域网的接入。
集中式交换机接入是指多个用户通过交换机连接到通信系统,实现数据交换和路由选择。
它可以提供较高的带宽和网络控制能力,适用于大型企业和机构的局域网接入。
7.2.5 卫星通信的多址方式_现代通信技术(第2版)_[共2页]
第7章微波通信和卫星通信提高市电的可靠度。
市电经配电柜分别给动力、通信、照明、空调等各种设备供电,其中,至通信设备的电源必须具有UPS设备。
一旦市电中断,立即启动应急电源设备,因为应急电源设备从起动到正常供电需要一定时间,这段过渡时间需由UPS向各用电设备供电电源设备。
另外,为了确保电源设备的安全以及减少噪声、交流声的来源,所有电源设备都应良好地接地。
7.2.5卫星通信的多址方式卫星通信的多址方式是指在卫星覆盖区内的多个地球站,通过一颗卫星的中继,建立双址和多址之间的通信。
多路复用和多址方式都是利用一条信道同时传输多个信号,不同的是,多路复用是群频即基带信道的复用,而多址方式是射频信道的复用。
多址方式与多路复用有何区别?请加以讨论。
探 讨卫星天线中已应用的多址方式主要有频分多址(FDMA)、时分多址(TDMA)、空分多址(SDMA)和码分多址(CDMA)等方式。
1.频分多址卫星通信系统使用的频分多址(FDMA)是将通信卫星使用的频带分割成若干互不重叠的部分,再将它们分别分配给各地球站。
各地球站按所分配的不同射频载波频率发送信号,接收端的地球站根据不同射频载波频率识别发信站,并从接收到的信号中提取发给本站的信号。
由于频分多址方式可以直接利用地面微波中继通信的成熟技术和设备,也便于与地面微波系统直接连接,所以,频分多址方式是国际卫星通信和一些国家的国内卫星通信采用较多的一种多址方式。
它的主要缺点是存在互调干扰。
克服互调干扰的最根本方法是不采用频分多址方式,而采用时分多址方式。
频分多址方式可分成多址载波方式和单址载波方式。
卫星通信系统频分多址的多址载波方式是指每个地球站只分配给一个载波,载波频率不同,并且频谱无重叠,因而各站的发射和接收频谱是已知且是确定的,每个地球站利用基带中的频分多路复用或时分多路复用将发往不同站的信号安排在不同的群路上,以便各对方站识别并取出发到该站的信号。
复用后的信号调制到分配给该站的载波上经高功放由天线发往卫星。
卫星通信—第五讲卫星通信多址方式
卫星通信—第五讲卫星通信多址方式卫星通信多址方式卫星通信体制根据基带信号类型及复用方式多址方式模拟或数字TDM或FDM2. 中频调制方式PSK3.多址连接方式TDMACDMA信道分配或交换制度PA)DA)或随4.机多址连接方式多址连接的基础是信号分割而各地球站接收端能从混合的信号中识别出本站所需信号?利用信号的频率码型的正交性可实现有效的多址连接时隙越小–占有的空间是卫星覆盖波束所占据的范围卫星通信中常用的通信体制–FDM/FM/FDMA/PA –TDM/PSK/FDMA/PA存在各种组合形式的多址连接–TDMA/FDMATDMA/FDMA/SDMA频分多址FDMAéè±??òμ¥2úéú?¥μ÷??éùoí?é??′??°2¢?ò′óDò???èY μ?ê·2?áé??频分多址FDMA(2)卫星的频带和功率资源是有限的这样的卫星通信系统称为功率受限系统–存在幅度的非线性和相位的调幅--调相变换作用–幅度的非线性所带来的影响多载波输入时小载波要受到大载波的抑制多载波输入会产生新的频率分量其输出可能增大–多载波输入时其包络是有起伏的在一定条件下即产生新的频率分量减小互调干扰的主要措施采用适当的补偿采用能量扩散信号–未调波的功率谱为单一谱线互调噪声也被扩散–对多路信号调制的已调波说通话量减少时使互调干扰噪声广为扩散将载频做不等间隔排列线性器线性器的作用一般多载波工作的情况下装有线性器的转发器在同样交调干扰水平下输出回退只要3dB ?可用功率P可用=单载波饱和功率的50%为了提高系统灵活性–SCPC(Single Channel Per Carrier)–PCM/SCPC/PSK/FDMA/DA (SPADE Single Channel Per Carrier PCM multiple Access Demand assignmentEquipment)时分多址在SPADE,SCPC-DAMA系统中实际上已经采用TDMA为CSC通道.在海事卫星中也采用TDMA.1985年INTELSAT已开通120Mb/sTDMATDMA的主要特点可充分转发器工作在单载波状态充分利用转发器的频带上行功率无需精确控制便于大小站兼容需要精确的同步接收站能正确识别站址和迅速建立载波和时间的同步。
卫星通信第三卫星通信的多址技术PPT共71页
卫星通信第三卫星通信的多址技术
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
三种卫星系统多址方式论文
三种卫星通信系统中运用的多址技术1.1引言在卫星通信中,卫星起到了类似基站的作用。
通常,一颗卫星可以同时与多个地球站(用户终端)通信,因此从卫星到地球站(用户终端)是多路的,而用户终端到卫星则是单路的。
通过卫星转发器的中继,多个用户信号在射频信道上进行复用,建立各自的信道,以实现点到多点的多边通信。
这就是多址技术。
多址技术是在通信信号复用的基础上,处理由不同地球站信号发往共用卫星时,通信容量的分配和建立各用户之间通信链路的技术。
2.1 多址联接的种类目前,卫星通信中常用的多址联接人式是:频分多址(FDMA,Frequency Division Multiple Access)、时分多址(TDMA,Timc Division Multiple Access)、空分多址也称卫星交换—时分多址(SDMA or SS-TDMA,Spsce Division Multiple Access))、码分多址(CDMA,Code Division Multiple Access))和ALOHA(Additive Links on-line Hawaii Area)方式。
而一些混合多址技术,即上述四种多址技术结合起来的研究,始终是发展中的新技术问题,其研究成果有的已应用,如频分多址—时分多址(FDMA-TDMA)。
多址方式2.2 频分多址技术(FDMA)频分多址是最基本、最“古老”的一种多址方式,其突出的优点是简单、可靠、便于实现。
因此,在卫星通信发展的初期,几乎都采用这种多址方式,至今也仍然是一种主要的多址方式。
,使用FDMA方式无须对各载波间实施同步控制,因而与TDMA方式相比设备结构比较简单。
尽管FDMA简单,易于实现,但系统小存在的一些关被问题必须妥善解决就形成了FDMA 若干特点。
首先,要求系统进行严格的功率控制。
这个问题,在功率受限时尤为突出。
因为系统中某一地球站发射的功率大于额定值,就会侵占卫星上发给其他地球站的功率;反之,发射功率过小,又会影响通信质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
3.1 多址联接方式概述
2)频分多址(FDMA)
5
3.1 多址联接方式概述
2)频分多址(FDMA) 接收端的信号选择
制弱信号现象,因此,大站、小站不易兼容; (5)灵活性小,要重新分配频率比较困难; (6)需要设置保护频带,频带利用不充分; (7)转发器存在交调于扰。
24
3.3 时分多址(TDMA)
1) 基本原理
TDMA方式示意图
25
3.3 时分多址(TDMA)
2) 帧结构与帧长选择
帧结构示意图
26
3.3 时分多址(TDMA)
19
3.2 频分多址(FDMA)
1) 基本原理 地球站传输多路信号方式
① 每载波单路方式(SCPC,Single-Channel-PerCarrier )。
② 每载波多路(MCPC,Mutiple-Channel-PerCarrier )。
20
3.2 频分多址(FDMA)
2) FDMA方式的类型 (1) 频分复用/调频/频分多(FDM/FM/FDMA)
22
3.2 频分多址(FDMA)
2) FDMA方式的类型 (3)按申请分配/单路单载波/频分多址SPADE 按申请分配:分散控制。
23
3.2 频分多址(FDMA)
频分多址系统的特点
(1)设备简单,技术成熟; (2)系统工作时不需要网同步,且性能可靠; (3)在大容量线路工作时效率较高; (4)各站的发射功率要求基本一致,否则会引起强信号抑
8
3.1 多址联接方式概述
4)空分多址(SDMA)
9Hale Waihona Puke 3.1 多址联接方式概述4)空分多址(SDMA) 接收端的信号选择
1 i j
X
Si
i
(
s)
X
j
(
s)ds
0
i j
实现方法:空间选择(窄波束天线)。 保护空间
10
3.1 多址联接方式概述
5)码分多址(CDMA) 接收端的信号选择
1 i j
MCPC/FDMA
FDM-FM-FDMA方式
21
3.2 频分多址(FDMA)
2) FDMA方式的类型 (2) 单路单载波/频分多址(SCPC/FDMA)
话音激活技术:只在讲话时,才发射载波,否则不发。 优点:通话路数增加2.5倍;使整个卫星转发器内的载
波排列具有某种随意性,从而可以减少互调的影响。
27
3.3 时分多址(TDMA)
2)帧结构与帧长选择
(1) 消息突发 d) 指令信号(OW) 传送通道分配等指令。 e) 勤务联络(SC) 为各站间传送勤务联络信息。
(2) 基准突发 除没有勤务联络信外,其它与消息突发的报头的结构一 样,它的独特码是作为一帧开始的时间基准。
28
3.3 时分多址(TDMA)
2)帧结构与帧长选择
帧与分帧长度
29
3.3 时分多址(TDMA)
2)帧结构与帧长选择
系统传输的比特速率为
Rb
br mbp NL Tf (m 1)Tg
第i分帧的长度为
m
N ni
i
Tbi
Tg
(bp
ni
L)
1 Rb
n1 n2 n
Tb1 Tb2 Tb
Tb
T f Tr m
14
3.1 多址联接方式概述
多址联接方式的局限性
(1) 仅有有限的频带可利用。 (2) 时间的分割与占用频带有关。 (3) 窄波束空间分割有限。 (4) 能有效使用的地址码不是无限多的。
15
3.1 多址联接方式概述
选择多址联接方式主要考虑的因素
(1) 通信容量的要求 。 (2) 卫星频带、功率的有效利用 。 (3) 相互联接能力的要求 。 (4) 便于处理各种业务,并对业务量及网络的不断增长有灵
第3章 军事卫星通信中的多址 技术
1
主要内容
3.1 多址连接方式概述 3.2 频分多址 3.3 时分多址 3.4 空分多址 3.5 码分多址 3.6 多址分配制度
2
3.1 多址联接方式概述
1)多址联接方式的实现 信号设计 信号识别
3
3.1 多址联接方式概述
1)多址联接方式的实现 信号之间的差别可集中反映在无线电信号的最
1 i j
X i ( f ) X j ( f )df
f i
0
i j
实现方法:频率选择(滤波器)。 保护频带
6
3.1 多址联接方式概述
3)时分多址(TDMA)
7
3.1 多址联接方式概述
3)时分多址(TDMA) 接收端的信号选择
1 i j
Xi
Ti
(t)
X
j
(t )dt
0
i j
实现方法:时间选择(时间闸门)。 保护时隙
31
3.3 时分多址(TDMA)
2)帧结构与帧长选择
(1) 消息突发 a) 载波恢复(CR)和比特定时恢复(BTR)信号 传送收端同步检测所必需的载波同步和比特定时同 步信号。 b) 独特码(UW) 作为该突发的时间基准,从而可判断出数据部分开 始的时间。 c) 站址识别(SlC)信号 典型的SIC是8比特长,其中6比特表明什么站,另2 比特表明该突发基准站还是备分基准站,还是普通 站。
30
3.3 时分多址(TDMA)
2)帧结构与帧长选择
帧效率
f
帧长
-
基准分帧长
-
总的报头时间 帧长
-
总的保护时间
T f Tr mT p (m 1)Tg Tf
在Tr、Tp、Tg、m一定的条件下,Tf 越长效率就越高, 帧效率越高,缓冲存贮器的存贮量K越大,但这意味着
成本增加。帧结构决定了TDMA的基本特性。
活的自适应能力 。 (5) 成本和经济效益 。 (6) 技术的可实现性 。 (7) 其它的某些特殊要求,如军事上的保密、抗干扰等 。
16
3.2 频分多址(FDMA)
1) 基本原理
17
3.2 频分多址(FDMA)
1) 基本原理 建立连接方式:单址载波
18
3.2 频分多址(FDMA)
1) 基本原理 建立连接方式:多址载波
T Ci (t) C j (t)dt 0 i j
实现方法:地址识别(相关检测法)。
11
3.1 多址联接方式概述
6)各种组合形式的多址联接
TDMA/FDMA
12
3.1 多址联接方式概述
6)各种组合形式的多址联接
TDMA/SDMA
13
3.1 多址联接方式概述
6)各种组合形式的多址联接
TDMA/FDMA/SDMA