南通市中考数学试卷及答案
江苏省南通市2021年中考数学试题(解析版)
江苏省南通市2021年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 计算,结果正确的是()A. 3B. 1C.D.【答案】C【解析】【分析】原式利用有理数的减法法则计算即可得到结果.【详解】解:,故选:C.【点睛】本题考查了有理数的减法,熟练掌握有理数的减法法则是解本题的关键.2. 据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A. B. C. D.【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将1370000用科学记数法表示为:1.37×106.故选:D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是()A. B. C. D.【答案】B【解析】【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. ,选项计算错误,不符合题意;B. ,选项计算正确,符合题意;C.,选项计算错误,不符合题意;D. ,选项计算错误,不符合题意;故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.4. 以下调查中,适宜全面调查的是()A. 了解全班同学每周体育锻炼的时间B. 调查某批次汽车的抗撞击能力C. 调查春节联欢晚会的收视率D. 鞋厂检测生产的鞋底能承受的弯折次数【答案】A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:A、了解全班同学每周体育锻炼的时间适合全面调查,符合题意;B、调查某批次汽车的抗撞击能力适合抽样调查,不符合题意;C、调查春节联欢晚会的收视率适合抽样调查,不符合题意;D、鞋厂检测生产的鞋底能承受的弯折次数适合抽样调查,不符合题意;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5. 如图,根据三视图,这个立体图形的名称是()A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥【答案】A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选:A .【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.6. 菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A. 24 B. 20C. 10D. 5【答案】B 【解析】【分析】根据菱形的性质及勾股定理可直接进行求解. 【详解】解:如图所示:∵四边形ABCD 是菱形,BD=8,AC=6, ∴AC ⊥BD ,OA=OC=3,OD=OB=4,Rt △AOD 中,,∴菱形ABCD 的周长为:4×5=20, 故选B .【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.7. 《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,可列方程组为( ) A B. C. D.【答案】D在【解析】【分析】本题的等量关系是:绳长=木长+4.5;木长=绳长+1,据此可列方程组求解.详解】解:设木长x尺,绳长y尺,【依题意得,故选:D.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 若关于x的不等式组恰有3个整数解,则实数a的取值范围是()A. B. C. D.【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀不等式组的整数解个数即可得出答案.【详解】解:解不等式,得:,解不等式,得:,∵不等式组只有3个整数解,即5,6,7,∴,故选:C.【点睛】本题主要考查了一元一次不等式组的整数解,解题的关键是熟练掌握解一元一次不等式,并根据不等式组整数解的个数得出关于的不等式组.9. 如图,四边形中,,垂足分别为E,F,且,.动点P,Q均以的速度同时从点A出发,其中点P沿折线运动到点B停止,点Q沿运动到点B停止,设运动时间为,的面积为,则y与t对应关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】分四段考虑,①点P在AD上运动,②点P在DC上运动,且点Q还未到端点B,③点P在DC 上运动,且点Q到达端点B,④点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.【详解】解:在Rt△ADE中AD=(cm),在Rt△CFB中,BC=(cm),AB=AE+EF+FB=15(cm),①点P在AD上运动,AP=t,AQ= t,即0,如图,过点P作PG⊥AB于点G,,则PG=(0),此时y=AQ PG=(0),图象是一段经过原点且开口向上的抛物线;②点P在DC上运动,且点Q还未到端点B,即13,此时y=AQ DE=(13),图象是一段线段;③点P在DC上运动,且点Q到达端点B,即15,此时y=AB DE=(15),图象是一段平行于x轴的水平线段;④点P在BC上运动,PB=31-t,即18,如图,过点P作PH⊥AB于点H,,则PH=,此时y=AB PH=(18),图象是一段线段;综上,只有D选项符合题意,故选:D.【点睛】本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,10. 平面直角坐标系中,直线与双曲线相交于A,B两点,其中点A在第一象限.设为双曲线上一点,直线,分别交y轴于C,D两点,则的值为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】根据直线与双曲线相交于A,B两点,其中点A在第一象限求得,,再根据为双曲线上一点求得;根据点A与点M的坐标求得直线AM解析式为,进而求得,根据点B与点M的坐标求得直线BM解析式为,进而求得,最后计算即可.【详解】解:∵直线与双曲线相交于A,B两点,∴联立可得:解得:或∵点A在第一象限,∴,.∵为双曲线上一点,∴.解得:.∴.设直线AM的解析式为,将点与点代入解析式可得:解得:∴直线AM的解析式为.∵直线AM与y轴交于C点,∴.∴.∴.∵,∴.设直线BM的解析式为,将点与点代入解析式可得:解得:∴直线BM的解析式为.∵直线BM与y轴交于D点,∴.∴.∴.∵,∴.∴=4.故选:B.【点睛】本题考查了一次函数和反比例函数的综合应用,涉及到分式方程,一元二次方程和二元一次方程组的求解,正确求出点的坐标和直线解析式是解题关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11. 分解因式:______________【答案】.【解析】【分析】根据平方差公式分解即可.【详解】解:.故答案为.【点睛】本题考查了多项式因式分解,熟练掌握分解因式的方法是关键.的12. 正五边形每个内角的度数是_______.【答案】【解析】【分析】先求出正n边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为,∴正五边形的内角和是,则每个内角的度数是.故答案为:【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.13. 圆锥的母线长为,底面圆的半径长为,则该圆锥的侧面积为___________.【答案】【解析】【分析】利用圆锥的底面半径为1,母线长为2,直接利用圆锥的侧面积公式求出即可.【详解】解:依题意知母线长=2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故答案为:2π.【点睛】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.14. 下表中记录了一次试验中时间和温度的数据.若温度的变化是均匀的,则14分钟时的温度是___________℃.【答案】52【解析】【分析】根据表格中的数据,依据时间与温度的变化规律,即可用时间t的式子表示此时的温度T,利用一次函数的性质即可解决.【详解】解:设时间为t分钟,此时的温度为T,由表格中的数据可得,每5分钟,升高15℃,故规律是每过1分钟,温度升高3℃,函数关系式是T=3t+10;则第14分钟时,即t=14时,T=314+10=52℃,故答案为:52.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.15. 如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).【答案】.【解析】【分析】先作PC⊥AB于点C,然后利用勾股定理进行求解即可.【详解】解:如图,作PC⊥AB于点C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案为:.【点睛】此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线.16. 若m,n是一元二次方程的两个实数根,则的值为___________.【答案】3【解析】【分析】先根据一元二次方程的解的定义得到m2+3m-1=0,则3m-1=-m2,根据根与系数的关系得出m+n=-3,再将其代入整理后的代数式计算即可.【详解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的两个根,∴m+n=-3,∴,故答案为:3.【点睛】本题考查了根与系数关系:若x1,x2是一元二次方程()的两根时,的,.也考查了一元二次方程的解.17. 平面直角坐标系中,已知点,且实数m,n满足,则点P到原点O的距离的最小值为___________.【答案】【解析】【分析】由已知得到点P的坐标为(,),求得PO=,利用二次函数的性质求解即可.【详解】解:∵,∴,则,∴点P的坐标为(,),∴PO=,∵,∴当时,有最小值,且最小值为,∴PO的最小值为.故答案为:.【点睛】本题考查了点的坐标,二次函数的图象和性质,熟练掌握二次函数的性质是解决本题的关键.18. 如图,在中,,,以点A为圆心,长为半径画弧,交延长线于点D,过点C作,交于点,连接BE,则的值为___________.【答案】.【解析】【分析】连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,设AC=BC=a,求出AF=CF=,由勾股定理求出CE,再由勾股定理求出BE的长即可得到结论.【详解】解:连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,如图,设AC=BC=a,∵∴,∴,∵∴∵∴∴∴设CE=x,则FE=在Rt△AFE中,∴解得,,(不符合题意,舍去)∴∵∴∴∴在Rt△BGE中,∴∴故答案为:.【点睛】此题主要考查了等腰直角三角形的判定与性质,勾股定理与圆的基本概念等知识,正确作出辅助线构造直角三角形是解答此题的关键.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)化简求值:,其中;(2)解方程.【答案】(1)原式=4;(2).【解析】【分析】(1)先用完全平方差公式与多项式乘法公式将原式化简为,再将已知条件代入即可;(2)根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1、检验依次进行求解即可.【详解】解:(1)==当时,原式==;(2),去分母得:,解得:,经检验,是原方程的解.则原方程的解为:.【点睛】本题主要考查了代数式的化简求值与解分式方程,关键在于熟练的掌握解题的方法与技巧,注意分式方程要检验.20. 如图,利用标杆测量楼高,点A,D,B在同一直线上,,,垂足分别为E,C.若测得,,,楼高是多少?【答案】楼高是9米.【解析】【分析】先求出AC的长度,由∥,得到,即可求出BC的长度.【详解】解:∵,,∴m,∵,,∴∥,∴△ADE∽△ABC,∴,∵,∴,∴;∴楼高是9米.【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定和性质是解题关键.21. 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1)___________,___________;(2)从方差的角度看,___________种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.【答案】(1)a=88,b=90;(2)乙;(3)见解析【解析】【分析】(1)根据中位数、众数的意义求解即可;(2)根据数据大小波动情况,直观可得答案;(3)从方差、中位数、众数的比较得出答案.【详解】解:(1)甲品种西瓜测评得分从小到大排列处在中间位置的一个数是88,所以中位数是88,即a=88,将乙品种西瓜的测评得分出现次数最多的是90分,因此众数是90,即b=90,故答案为:a=88,b=90;(2)由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S乙2<S甲2,故答案为:乙;(3)小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.22. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4(1)随机摸取一个小球的标号是奇数,该事件的概率为___________;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.【答案】(1);(2).【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球和是5的情况,再利用概率公式求解即可求得答案;【详解】解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,“摸出的小球标号是奇数”的概率为:;故答案为:.(2)画树状图得:∴共有16种等可能的结果,两次取出小球标号的和等于5的情况有4种;∴两次取出小球标号的和等于5的概率为:.【点睛】此题考查了树状图法与列表法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,,连接.(1)求的度数;(2)若,求的长.【答案】(1)55°;(2).【解析】【分析】(1)连接OC,如图,利用切线的性质得到OC⊥CD,则判断OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度数,即可求解;(2)利用(1)的结论先求得∠AEO∠EAO70°,再平行线的性质求得∠COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴的长为.【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.24. A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:(元);去B超市的购物金额为:(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.【答案】(1)A商场y关于x的函数解析式:;B商场y关于x的函数解析式:;(2)当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【解析】【分析】(1)利用促销方式,分别写出A、B两商场促销活动的情况,注意需要写出分段函数;(2)小刚一次购物的商品原价超过200元,则可以确定B的函数解析式,再分段求出A函数的解析式,比较两函数值即可,注意分段讨论.【详解】解:(1)A商场y关于x的函数解析式:,即:;B商场y关于x的函数解析式:,即:;(2)∵小刚一次购物的商品原价超过200元∴当时,,令,,所以,当时,即,去B超市更省钱;当时,,令,,所以,当时,即,此时去A、B超市一样省钱;当时,即,去B超市更省钱;当时,即,去A超市更省钱;综上所述,当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意B 商场根据商品原价的取值范围分情况讨论.25. 如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.【答案】(1).(2)DG//CF.理由见解析.(3).【解析】【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等.再用三角形内角和为算出.(2)作辅助线BF、AC,先导角证明是等腰直角三角形、是等腰直角三角形.再证明、,最后用内错角相等,两直线平行,证得DG//CF.(3) 为等腰三角形,要分三种情况讨论:①FH=BH②BF=FH③BF=BH,根据题目具体条件,舍掉了②、③种,第①种用正弦函数定义求出比值即可.【详解】(1)解:连接BF,设AF和BE相交于点N.点A关于直线BE的对称点为点FBE是AF的垂直平分线,AB=BF四边形ABCD是正方形AB=BC,.(2) 位置关系:平行.理由:连接BF,AC,DG设DC和FG的交点为点M,AF和BE相交于点N由(1)可知,是等腰直角三角形四边形ABCD是正方形是等腰直角三角形垂直平分AF在和中,在和中,CF//DG(3)为等腰三角形有三种情况:①FH=BH②BF=FH③BF=BH,要分三种情况讨论:①当FH=BH时,作于点M由(1)可知:AB=BF,四边形ABCD是正方形设AB=BF=BC=a将绕点B顺时针旋转得到FH=BH是等腰三角形,在和中,BM=AE=②当BF=FH时,设FH与BC交点为O绕点B顺时针旋转得到由(1)可知:此时,与重合,与题目不符,故舍去③当BF=BH时,由(1)可知:AB=BF设AB=BF=a四边形ABCD是正方形AB=BC=aBF=BHBF=BH=BC=a而题目中,BC、BH分别为直角三角形BCH的直角边和斜边,不能相等,与题目不符,故舍去.故答案为:【点睛】本题考查了三角形内角和定理(三角形内角和为 )、平行线证明(内错角相等,两直线平行)、相似三角形证明(两组对应角分别相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似)、等腰直角三角形三边比例关系()、正弦函数定义式(对边:斜边) .26. 定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点是函数的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C.当的面积为3时,求b的值;(3)若函数的图象记为,将其沿直线翻折后的图象记为.当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.【答案】(1)函数y=x+2没有“等值点”;函数的“等值点”为(0,0),(2,2);(2)或;(3)或..【解析】【分析】(1)根据定义分别求解即可求得答案;(2)根据定义分别求A(,),B(,),利用三角形面积公式列出方程求解即可;(3)由记函数y=x2-2(x≥m)的图象为W1,将W1沿x=m翻折后得到的函数图象记为W2,可得W1与W2的图象关于x=m对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y=x+2,令y=x,则x+2=x,无解,∴函数y=x+2没有“等值点”;∵函数,令y=x,则,即,解得:,∴函数的“等值点”为(0,0),(2,2);(2)∵函数,令y=x,则,解得:(负值已舍),∴函数的“等值点”为A(,);∵函数,令y=x,则,解得:,∴函数的“等值点”为B(,);的面积为,即,解得:或;(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于对称,∴函数W的解析式为,令y=x,则,即,解得:,∴函数的“等值点”为(-1,-1),(2,2);令y=x,则,即,当时,函数W的图象不存在恰有2个“等值点”的情况;当时,观察图象,恰有2个“等值点”;当时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴,整理得:,解得:.综上,m的取值范围为或.【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.。
2023年江苏南通中考真题数学试卷(详解版)
123答案AA 选项:三棱柱的俯视图是三角形,故此选项符合题意;B 选项:圆柱体的俯视图是圆,故此选项不合题意;C 选项:四棱锥的俯视图是四边形(画有对角线),故此选项不合题意;D 选项:圆锥体的俯视图是圆(带圆心),故此选项不合题意.故选 A.4A.线段上B.线段上C.线段上D.线段上★★如图,数轴上,,,,五个点分别表示数,,,,,则表示数的点应在().C,而数轴上,,,,五个点分别表示数,,,,,表示数的点应在线段上.故选 C .5A.B.C.D.★★★如图,中,,顶点,分别在直线,上,若,,则的度数为().A 如图,2023年江苏南通中考真题第4题3分2023年江苏南通中考真题第5题3分,,,,,.故选 A .6A.B.C.D.★★★若,则的值为().D,,.故选 D .7★★★如图,从航拍无人机看一栋楼顶部的仰角为,看这栋楼底部的俯角为,无人机与楼的水平距离为,则这栋楼的高度为().2023年江苏南通中考真题第6题3分2023年江苏南通中考真题第7题3分A. B. C. D.B过点作,垂足为,在中,,,在中,,,,故选 B.8★★★2023年江苏南通中考真题第8题3分A.B.C.D.如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为().C,,,,,四边形是矩形,,,,,,,设,则,,由勾股定理得:,,,.故选 C.9A.B.C.D.★★★★如图 1,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图 2所示,则的值为().B,,,,①当时,点在边上,如图所示,此时,,,,,,,,,,2023年江苏南通中考真题第9题3分当时,,,②当时,点在边上,如图所示,此时,,,,,,,,,当时,,,.故选 B .10A.B.C.D.★★★若实数,,满足,,则代数式的值可以是().D由题意可得,2023年江苏南通中考真题第10题3分解得:,则,,A ,B ,C 不符合题意,D 符合题意.故选 D .11★计算:.原式.故答案为:.12★★★分解因式:..13★★★2023年江苏南通中考真题第11题3分2023年江苏南通中考真题第12题3分2023年江苏南通中考真题第13题4分如图,中,,分别是,的中点,连接,则.,分别是,的中点,,又,,.故答案为:.14★★某型号汽车行驶时功率一定,行驶速度(单位:)与所受阻力(单位:)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为,则所受阻力为.设功率为,由题可知,即,将,代入可得:,即反比例函数为:.当时,.胡答案为:.2023年江苏南通中考真题第14题4分15★★★如图,是⊙的直径,点,在⊙上,若,则度.如图,连接,,,,,.故答案为:.16★★★勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数,,,其中,均小于,,,是大于的奇数,则 (用含的式子表示).,,是勾股数,其中,均小于,,,2023年江苏南通中考真题第15题4分2023年江苏南通中考真题第16题4分,是大于的奇数,.故答案为:.17★★已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是.一次函数,随的增大而增大,对于范围内任意自变量的值,其对应的函数值都小于,,解得.故答案为:.18★★★★如图,四边形的两条对角线,互相垂直,,,则的最小值是.2023年江苏南通中考真题第17题4分2023年江苏南通中考真题第18题4分设,的交点为,,,,的中点分别是,,,,连接,,,,,,,如图:,互相垂直,和为直角三角形,且,分别为斜边,,,,当为最小时,为最小,根据“两点之间线段最短”得:,当点在线段上时,为最小,最小值为线段的长,点,分别为,的中点,为的中位线,,,同理:,,,,,,,,四边形为平行四边形,,,,,四边形为矩形,在中,,,由勾股定理得:,的最小值为,的最小值为.故答案为:.19(1)(2)★★(1)(2)(1)(2)解方程组:①②.计算:.①②,②①得:,把代入①得:,解得:,故原方程组的解是:..20★★某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级八年级2023年江苏南通中考真题第19题12分2023年江苏南通中考真题第20题10分(1)(2)(1)(2)(1)(2)注:设竞赛成绩为(分),规定:90为优秀;为良好;60为合格;为不合格.若该校八年级共有名学生参赛,估计优秀等次的约有人.你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.八年级成绩较好,理由见解析若该校八年级共有名学生参赛,估计优秀等次的约有(人).故答案为:.八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).21★★★如图,点,分别在,上,,,相交于点,.求证:.2023年江苏南通中考真题第21题10分(1)(2)(1)(2)(1)(2)小虎同学的证明过程如下:证明:,.,.……第一步又,,.……第二步.……第三步小虎同学的证明过程中,第步出现错误.请写出正确的证明过程.二见解析小虎同学的证明过程中,第二步出现错误,故答案为:二.方法一:,,在和中,,,,在和中,,,.方法二:,,.22(1)(2)★★(1)(2)(1)(2)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.有同型号的,,三把钥匙,从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.故答案为:.画树状图如下:共有种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有种,即、,取出的钥匙恰好能打开取出的锁的概率为.23★★★如图,等腰三角形的顶角,⊙和底边相切于点,并与两腰,分别相交于,两点,连接,.2023年江苏南通中考真题第22题10分2023年江苏南通中考真题第23题10分(1)(2)(1)(2)(1)(2)求证:四边形ODCE是菱形.若⊙的半径为,求图中阴影部分的面积.见解析连接,⊙和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形.连接交于点,四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.24(1)(2)★★★(1)(2)答案(1)(2)解析为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:)每天施工费用(单位:元)甲乙信息二甲工程队施工所需天数与乙工程队施工所需天数相等.求的值.该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用?元根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:的值为.设甲工程队施工天,则乙工程队单独施工天,2023年江苏南通中考真题第24题12分根据题意得:,解得:,设该段时间内体育中心需要支付元施工费用,则,即,,随的增大而增大,当时,取得最小值,最小值.答:该段时间内体育中心至少需要支付元施工费用.25(1)(2)(3)★★★(1)(2)(3)(1)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转,交射线于点.如图,点在边上,,则图中与线段相等的线段是.过点作,垂足为,连接,求的度数.在(2)的条件下,当点在边延长线上且时,求的值.或四边形是正方形,2023年江苏南通中考真题第25题13分(2),,,(全等),.故答案为:.当点在边上时,如图,过点作交于,延长交于点,,四边形是矩形,,,,,,,是等腰直角三角形,,,,,,,为等腰直角三角形,,;当点在边上时,如图,(3)过点作交于,延长交延长线于点,四边形是矩形,同理,,,为等腰直角三角形,,,综上所述:的度数为或.当点在边延长线上时,点在边上,设,则,,,,.26(1)(2)★★★定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由.点与其“级变换点”B分别在直线,上,在,上分别取点,.若,求证:.2023年江苏南通中考真题第26题13分(3)(1)(2)(3)(1)(2)(3)关于的二次函数的图象上恰有两个点,这两个点的“级变换点”都在直线上,求的取值范围.见解析且存在,理由:由题意得,的“级变换点”为:,将代入反比例函数表达式得:,解得:.由题意得,点的坐标为:,由点的坐标知,点在直线上,同理可得,点在直线,则,,则,,则,即.设在二次函数上的点为点、,设点,则其“级变换点”坐标为:,将代入得:,则,即点在直线上,同理可得,点在直线上,即点、所在的直线为;由抛物线的表达式知,其和轴的交点为:、,其对称轴为,当时,抛物线和直线的大致图象如下:直线和抛物线均过点,则点个点为点,如上图,联立直线和抛物线的表达式得:设点的横坐标为,则,则,解得:,此外,直线和抛物线在故,即且;当时,当时,直线不可能和抛物线在故该情况不存在,综上,且.。
南通九年级中考数学试卷【含答案】
南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。
()2. 负数的平方是正数。
()3. 所有的偶数都是2的倍数。
()4. 两个负数相乘得到正数。
()5. 所有的正方形都是矩形。
()三、填空题1. 2的平方是______。
2. 若 a = 3,b = -2,则 a + b = ______。
3. 下列图形中,______是轴对称图形。
4. 若 3x + 5 = 14,则 x = ______。
5. 下列数中,______是素数。
四、简答题1. 解释什么是负数。
2. 解释什么是平行四边形。
3. 解释什么是无理数。
4. 解释什么是代数式。
5. 解释什么是因数分解。
五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
3. 若 2x 3 = 7,求 x 的值。
4. 一个数的平方是16,求这个数。
5. 列出所有的2的倍数,从1到10。
六、分析题1. 解释为什么负数的平方是正数。
2. 解释为什么所有的偶数都是2的倍数。
七、实践操作题1. 画出一个边长为5cm的正方形。
2. 画出一个半径为3cm的圆。
八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。
2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。
2022南通中考数学试题及答案
2022南通中考数学试题及答案2022年南通中考数学试题一、选择题(每小题3分,共45分)1. 已知抛物线y = ax^2 + bx + c的顶点坐标为(1, 2),且经过点(2, 3),则a、b、c的值分别为()。
A. 1,1,1B. 1/2,3/2,1C. 2,1,-3D. 1,-3,22. 下列等式恒成立的是()。
A. 2^5 = 3^4B. 4^3 = 2^6C. 5^2 = 3^3D. 2^7 = 3^43. 五年前,甲的年龄是乙的2倍,五年后,甲的年龄是乙的$\frac{2}{3}$倍,那么现在甲的年龄是乙的()倍。
A. 3/4B. 4/3C. 2D. 34. 月宽度的南通标准时间(傲娇地)为29.53天.现有观察结果是:A月初是星期五,A月的天数是奇数.那么这个A月有()天。
A. 29B. 30C. 31D. 325. 矩形柱体的底面长为6cm,宽为4cm,体积是72cm^3,则高为()cm。
A. 2B. 3C. 4D. 6...42. 已知圆的半径为4cm,圆心角为$120^\circ$,则弧长是()cm.A. $8\pi$B. $4\pi$C. $2\pi$D. $\pi$43. 已知记录故事片时的手风琴是32cm长,录放电话机模型是藕节长的4.5倍,现有手风琴图片模型是藕节长的12倍,则这个图片模型长()cm.A. 216B. 172C. 144D. 139.544. 成员10元.团队中每个成员不同程度地患有胃病,需购买16盒胃药.若每盒胃药的价格相同,且处方由同一个团队发,今天药店出售胃药7. 5折,而芦山发生地震中的地点是芦山的甲地,在合同到期后半年又一次购买胃药.那么半年后每盒胃药的价格是原价的().A. $18\over32$B. $256\over432$C. $5\over8$D.$13\over18$45. 见数偶数框内线描的面积是10,木料表面积是75,该木料的宽比长小2,那么木料的长和宽是()和().A. 6和8B. 12和14C. 5和7D. 13和15二、非选择题(共55分)46. 2022南通中考数学试题的总分是150分,即使你全做对了,你只能得到55分,很遗憾你考试失败了。
江苏省南通市中考数学试卷及答案(Word解析版)
江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(•南通)下列各数中,小于﹣3的数是()A.2B.1C.﹣2 D.﹣4考点:有理数大小比较分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解答:解:A、2>﹣3,故本选项错误;B、1>﹣3,故本选项错误;C、∵|﹣2|=2,|﹣3|=3,∴﹣2>﹣3,故本选项错误;D、∵|﹣4|=4,|﹣3|=3,∴﹣4<﹣3,故本选项正确;故选D.点评:本题考查了有理数的大小比较法则的应用,注意:理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.2.(3分)(•南通)某市参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.8.5×104B.8.5×105C.0.85×104D.0.85×105考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于85000有5位,所以可以确定n=5﹣1=4.解答:解:85 000=8.5×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(•南通)下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、本选项不能合并,错误;B、利用同底数幂的除法法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、x6÷x3=x3,本选项错误;C、x•x3=x4,本选项正确;D、(xy3)2=x2y6,本选项错误.故选C.点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.4.(3分)(•南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4B.3C.2D.1考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可.解答:解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;第五个图形是轴对称图形,也是中心对称图形;综上所述,第三个和第五个图形既是中心对称图形又是轴对称图形,共2个.故选B.点评:本题考查了轴对称图形与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4考点:三角形三边关系分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.(3分)(•南通)函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2考点:函数自变量的取值范围分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解解:根据题意得:x﹣1>0,答:解得:x>1.故选A.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(3分)(•南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A.以点B为圆心,OD为半径的圆B.以点B为圆心,DC为半径的圆C.以点E为圆心,OD为半径的圆D.以点E为圆心,DC为半径的圆考点:作图—基本作图分析:根据作一个角等于已知角的作法进行解答即可.解答:解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交射于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选D.点评:本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.8.(3分)(•南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm考点:圆锥的计算分析:首先根据圆锥的底面周长求得圆锥的底面半径,然后根据勾股定理求得圆锥的母线长就是扇形的半径.解答:解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5 ∴扇形的半径为5cm,故选B.点评:本题考查了圆锥的计算,解题的关键是了解圆锥的母线、高及底面半径围成一个直角三角形.9.(3分)(•南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个考点:一次函数的应用专题:压轴题.分析:首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2﹣0.5=1.5h;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小李到达目的地所用时间,根据速度=路程÷时间可得小李的速度小于小陆的速度;小李出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断.解答:解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说法正确;(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;(4)根据图象可得:表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说法正确.故选A.点评:此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.10.(3分)(•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4B.3.5 C.3D.2.8考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:压轴题.分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.解答:解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴=,∴==3.故选C.点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(•南通)若反比例函数y=的图象经过点A(1,2),则k=2.考点:反比例函数图象上点的坐标特征专压轴题.题:分析:根据反比例函数图象上点的坐标特点可得k=1×2=2.解答:解:∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,故答案为:2.点评:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(3分)(•南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于70度.考点:垂线;对顶角、邻补角分析:根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.解答:解:∵∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣20°=70°,故答案为:70.点评:本题考查了垂直定义,对顶角的应用,关键是求出∠AOE和∠AOC的大小.13.(3分)(•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:球的主视图、左视图、俯视图都是圆,故答案为:球体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.(3分)(•南通)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AC=2CD=4,则sinB==.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.15.(3分)(•南通)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是2.8.考点:方差;众数分析:根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.解答:解:∵一组数据5,8,10,x,9的众数是8,∴x是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.点评:此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)(•南通)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.考点:一次函数与一元一次不等式分析:由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b 与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x 轴下方的部分对应的x的取值即为所求.解答:解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为﹣2<x<﹣1.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.(3分)(•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC 于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5 cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.18.(3分)(2013•南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.考点:二次函数的性质专题:压轴题.分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等,则抛物线的对称轴为直线x=,又二次函数y=x2+4x+6的对称轴为直线x=﹣2,得出=﹣2,化简得m+n=﹣2,即可求出当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6的值.解答:解:∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x==,又∵二次函数y=x2+4x+6的对称轴为直线x=﹣2,∴=﹣2,∴3m+3n+2=﹣4,m+n=﹣2,∴当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6=(﹣3)2+4×(﹣3)+6=3.故答案为3.点评:本题考查了二次函数的性质及多项式求值,难度中等.将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等是解题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(•南通)(1)计算:;(2)先化简,再求代数式的值:,其中m=1.考点:分式的化简求值;零指数幂;二次根式的混合运算分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先通分,然后进行四则运算,最后将m=1代入.解答:解:(1)=÷÷1﹣3=﹣3;(2)=•=,当m=1时,原式=﹣.点评:(1)主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、二次根式等考点的运算;(2)解答此题的关键是把分式化到最简,然后代值计算.20.(9分)(•南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C (﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.考点:关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标分析:(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.解答:解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C的坐标为(1,0).故答案分别是:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.点评:本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.21.(8分)(•南通)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.考点:条形统计图;扇形统计图分析:(1)根据A等级苹果的重量÷A等级苹果的重量占这批苹果总重量的30%,求得这批苹果总重量;(2)求得C等级苹果的重量,补全统计图;(3)求得C等级苹果的百分比,然后计算其所占的圆心角度数.解答:解:(1)1200÷30%=4000(kg).故这批苹果总重量为4000kg;(2)4000﹣1200﹣1600﹣200=1000(kg),将条形图补充为:(3)×360°=90°.故C等级苹果所对应扇形的圆心角为90度.故答案为:4000,90.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)(•南通)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次第二次1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)①(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?考点:列表法与树状图法分析:(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.解答:解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为不放回;(3,2).点评:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.23.(8分)(•南通)若关于x的不等式组恰有三个整数解,求实数a的取值范围.考点:一元一次不等式组的整数解分析:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.解答:解:解+>0,得x>﹣;解3x+5a+4>4(x+1)+3a,得x<2a,∴不等式组的解集为﹣<x<2a.∵关于x的不等式组恰有三个整数解,∴2<2a≤3,解得1<a≤.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.(8分)(•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.考点:矩形的判定;全等三角形的判定与性质专题:证明题.分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.解答:证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=BC,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.25.(8分)(•南通)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O 的切线AP与OC的延长线相交于点P,若PA=cm,求AC的长.考点:切线的性质分析:根据直径求出∠ACB=90°,求出∠B=30°,∠BAC=60°,得出△AOC是等边三角形,得出∠AOC=60°,OA=AC,在Rt△OAP中,求出OA,即可求出答案.解答:解:∵AB是⊙O直径,∴∠ACB=90°,∵∠BAC=2∠B,∴∠B=30°,∠BAC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠AOC=60°,AC=OA,∵PA是⊙O切线,∴∠OAP=90°,在Rt△OAP中,PA=6cm,∠AOP=60°,∴OA===6,∴AC=OA=6.点评:本题考查了圆周角定理,切线的性质,解直角三角形,等边三角形的性质和判定的应用,主要考查学生的推理能力.26.(8分)(•南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(13分)(•南通)如图,在Rt△ABC中,∠ACB=90°,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.(1)求证:点E到AC的距离为一个常数;(2)若AD=,当a=2时,求T的值;(3)若点D运动到AC的中点处,请用含a的代数式表示T.考点:相似形综合题分析:(1)解直角三角形,求得点E到AC的距离等于a,这是一个定值;(2)如答图2所示,作辅助线,将四边形MDEN分成一个等边三角形和一个平行四边形,求出其周长;(3)可能存在三种情形,需要分类讨论:①若0<a≤,△DEF在△ABC内部,如答图3所示;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示;③若<a<3,点E、F均在△ABC外部,如答图5所示.解答:解:(1)由题意得:tanA===,∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.如答图1所示,过点E作EH⊥AC于点H,则EH=DE•sin∠CDE=a•=a.∴点E到AC的距离为一个常数.(2)若AD=,当a=2时,如答图2所示.设AB与DF、EF分别交于点M、N.∵△DEF为等边三角形,∴∠MDE=60°,由(1)知∠CDE=60°,∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,又∵∠A=60°,∴△ADM为等边三角形,∴DM=AD=.过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,∴△DMG为等边三角形,∴DG=MG=DM=.∴GE=DE﹣DG=2﹣=.∵∠MGD=∠E=60°,∴MG∥NE,又∵DE∥AB,∴四边形MGEN为平行四边形.∴NE=MG=,MN=GE=.∴T=DE+DM+MN+NE=2+++=.(3)若点D运动到AC的中点处,分情况讨论如下:①若0<a≤,△DEF在△ABC内部,如答图3所示:∴T=3a;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示:设AB与DF、EF分别交于点M、N,过点M作MG∥AC交DE于点G.与(2)同理,可知△ADM、△DMG均为等边三角形,四边形MGEN为平行四边形.∴DM=DG=NE=AD=,MN=GE=DE﹣DG=a﹣,∴T=DE+DM+MN+NE=a++(a﹣)+=2a+;③若<a<3,点E、F均在△ABC外部,如答图5所示:设AB与DF、EF分别交于点M、N,BC与DE、EF分别交于点P、Q.在Rt△PCD中,CD=,∠CDP=60°,∠DPC=30°,∴PC=CD•tan60°=×=.∵∠EPQ=∠DPC=30°,∠E=60°,∴∠PQE=90°.由(1)知,点E到AC的距离为a,∴PQ=a﹣.∴QE=PQ•tan30°=(a﹣)×=a﹣,PE=2QE=a﹣.由②可知,四边形MDEN的周长为2a+.∴T=四边形MDEN的周长﹣PE﹣QE+PQ=(2a+)﹣(a﹣)﹣(a﹣)+(a﹣)=a+﹣.综上所述,若点D运动到AC的中点处,T的关系式为:T=.点评:本题考查了运动型综合题,新颖之处在于所求是重叠部分的周长而非面积.难点在于第(3)问,根据题意,可能的情形有三种,需要分类讨论,避免漏解.28.(13分)(•南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B (x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.21 / 21。
江苏省南通市2022年中考数学试卷
江苏省南通市2022年中考数学试卷10小题,共30分) (共10题;共30分) 1.(3分)已知a4=b3,则a−b b的值是()A.34B.43C.3D.13【答案】D【解析】【解答】解:∵a4=b3,∴a b=43,∴a−b b=a b−1=43−1=13.故答案为:D.【分析】根据已知条件可得ab=43,待求式可变形为ab-1,据此计算.2.(3分)若单项式2x m y²与−3x3y n是同类项,则m n的值为()A.9B.8C.6D.5【答案】A【解析】【解答】解:因为单项式2x m y²与−3x3y n是同类项,所以m=3,n=2,所以m n=32=9故答案为:A.【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此可得m、n的值,然后根据有理数的乘方法则进行计算.3.(3分)-2022的绝对值是()A.12022B.−12022C.2022D.-2022【答案】C【解析】【解答】-2022的绝对值是2022.故答案为:C【分析】一个负数的绝对值等于它的相反数,据此解答即可.4.(3分)在如图的方格中,△ABC的顶点A、B、C都是方格线的交点,则三角形ABC的外角∠ACD的度数等于()A.130°B.140°C.135°D.145°【答案】C【解析】【解答】解,设每个小方格的边长为1,由勾股定理可得AB=√22+12=√5,BC=√22+12=√5,AC=√32+12=√10,∵(√5)2+(√5)2=(√10)2,∴AB2+BC2=AC2,且AB=BC,∴△ABC为等腰直角三角形,∴∠ABC=90°,∠BAC=45°,∴∠ACD=∠ABC+∠BAC=135°.故答案为:C.【分析】设每个小方格的边长为1,利用勾股定理可得AB、BC、AC,结合勾股定理逆定理知△ABC为直角三角形且AB=BC,△ABC=90°,△BCA=45°,由外角的性质可得△ACD=△ABC+△BAC,据此计算.5.(3分)如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1B.-1C.4D.-4【答案】A【解析】【解答】解:∵2x=2×1⋅x,∴k=12=1,故答案为:A.【分析】根据完全平方式的特点可得2=2√k,求解可得k的值.6.(3分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为()A.{5x+6y=165x+y=6y+x B.{5x+6y=164x+y=5y+xC.{6x+5y=166x+y=5y+x D.{6x+5y=165x+y=4y+x 【答案】B【解析】【解答】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有5x+6y=16互换其中一只则五只雀变为四只雀一只燕,即4x+y六只燕变为五只燕一只雀,即5y+x且一样重即4x+y=5y+x由此可得方程组{5x+6y=164x+y=5y+x.故答案为:B.【分析】由题意列出二元一次方程组,解方程7.(3分)如图,下列四个选项中不能判断AD//BC的是()A.∠1=∠3B.∠B+∠BAD=180°C.∠D=∠5D.∠2=∠4【答案】D【解析】【解答】解:A、∵∠1=∠3,∴AD//BC,故此选项不符合题意;B、∵∠B+∠BAD=180°,∴AD//BC,故此选项不符合题意;C、∵∠D=∠5,∴AD//BC,故此选项不符合题意;D、∵∠2=∠4,∴AB//CD,故此选项符合题意;故答案为:D.【分析】内错角相等,两直线平行,据此判断ACD;同旁内角互补,两直线平行,据此判断B. 8.(3分)某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中这家商店()A.赚了32元B.赚了8元C.赔了8元D.不赔不赚【答案】B【解析】【解答】解:设盈利60%的进价为x元,则:x+60%x=64160%x=64x=40再设亏损20%的进价为y元,则;y-20%y=6480%y=64y=80所以总进价是:40+80=120(元)总售价是:64+64=128(元)售价>进价,128-120=8(元)答:赚了8元.故答案为:B.【分析】分别求出两个计算器的进价,再与售价作比较即可.9.(3分)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【答案】D【解析】【解答】解:∵六边形ABCDEF是正六边形,∴△FAB= (6−2)×180°6=120°,AB=6,∴扇形ABF的面积= 120π×62360=12π,故答案为:D.【分析】根据正六边形的性质得△FAB= (6−2)×180°6,半径=正六边形的边长,然后根据扇形面积S=nπR 2360可求解.10.(3分)同步卫星在赤道上空大约36000000米处.将36000000用科学记数法表示应为()A.36×106B.0.36×108C.3.6×106D.3.6×107【答案】D【解析】【解答】解:36000000=3.6×107。
2020年江苏省南通市中考数学试题及参考答案(word解析版)
南通市2020年初中毕业、升学考试试卷数学(满分:150分,考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×1063.下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3 D.×=24.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°6.一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3 B.3.5 C.4 D.4.57.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm29.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E ﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm210.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.分解因式:xy﹣2y2=.12.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.13.若m<2<m+1,且m为整数,则m=.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC .若AC =3,求⊙O 的半径.21.(12分)如图,直线l 1:y =x+3与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B 表示“良好”,C 表示“合格”,D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表. 两个小组的调查结果如图的图表所示:第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌等级 人数 百分比 A 17 18.9% B 38 42.2% C 28 31.1% D 7 7.8% 合计 90100%握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin ∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【知识考点】绝对值;有理数的减法.【思路分析】首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.【解题过程】解:原式=1﹣3=﹣2.故选:C.【总结归纳】本题考查了绝对值的意义和有理数的减法,熟悉有理数的减法法则是关键.2.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于68000有5位,所以可以确定n=5﹣1=4.【解题过程】解:68000=6.8×104.故选:A.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3 D.×=2【知识考点】二次根式的混合运算.【思路分析】分别根据同类二次根式的概念、二次根式的乘除运算法则计算可得.【解题过程】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.【总结归纳】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】坐标与图形变化﹣旋转.【思路分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.【解题过程】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.5.如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°【知识考点】平行线的性质.【思路分析】过点E作EF∥AB,则EF∥CD,由EF∥AB,利用“两直线平行,内错角相等”可得出∠AEF的度数,结合∠CEF=∠AEF﹣∠AEC可得出∠CEF的度数,由EF∥CD,利用“两直线平行,内错角相等”可求出∠C的度数.【解题过程】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.【总结归纳】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.6.一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3 B.3.5 C.4 D.4.5【知识考点】中位数;众数.【思路分析】先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解题过程】解:∵这组数据2,4,6,x,3,9,5的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,5,6,9,处于中间位置的数是4,∴这组数据的中位数是4.故选:C.【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD【知识考点】平行四边形的性质;菱形的判定.【思路分析】根据对角线垂直的平行四边形是菱形,即可得出答案.【解题过程】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.【总结归纳】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2【知识考点】圆锥的计算;由三视图判断几何体.【思路分析】先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.【解题过程】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD 的面积是()A.96cm2B.84cm2C.72cm2D.56cm2【知识考点】动点问题的函数图象.【思路分析】过点E作EH⊥BC,由三角形面积公式求出EH=AB=6,由图2可知当x=14时,点P与点D重合,则AD=12,可得出答案.【解题过程】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,∴AE===8,由图2可知当x=14时,点P与点D重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72.故选:C.【总结归纳】本题考查了动点问题的函数图象,三角形的面积等知识,熟练掌握数形结合思想方法是解题的关键.10.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【知识考点】垂线段最短;全等三角形的判定与性质;平移的性质.【思路分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【解题过程】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.【总结归纳】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.分解因式:xy﹣2y2=.【知识考点】因式分解﹣提公因式法.【思路分析】用提公因式法进行因式分解即可.【解题过程】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).【总结归纳】本题考查提公因式法因式分解,找出公因式是正确分解的前提.12.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.【知识考点】勾股定理;垂径定理.【思路分析】如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=5,然后利用勾股定理计算OC的长即可.【解题过程】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.【总结归纳】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.13.若m<2<m+1,且m为整数,则m=.【知识考点】估算无理数的大小.【思路分析】估计2的大小范围,进而确定m的值.【解题过程】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.【总结归纳】本题考查无理数的估算,理解2介在哪两个整数之间是正确求解的关键.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.【知识考点】相似三角形的判定与性质.【思路分析】先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可.【解题过程】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.【总结归纳】本题主要考查相似三角形的性质与判定,勾股定理,本题关键是证明三角形相似.15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由长和宽之间的关系可得出宽为(x﹣12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.16.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】作垂线构造直角三角形,利用直角三角形的边角关系进行计算即可.【解题过程】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.17.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.【知识考点】根与系数的关系.【思路分析】根据一元二次方程的解的概念和根与系数的关系得出x12﹣4x1=2020,x1+x2=4,代入原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)计算可得.【解题过程】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.【总结归纳】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.【知识考点】反比例函数与一次函数的交点问题.【思路分析】由于一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y =向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k >0)相交于两点,在平移之前是关于原点对称的,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.【解题过程】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.【总结归纳】本题考查一次函数、反比例函数图象上点的坐标特征,理解平移之前,相应的两点关于原点对称是解决问题的关键.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).【知识考点】完全平方公式;平方差公式;分式的混合运算.【思路分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.【解题过程】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.【总结归纳】本题主要考查分式和整式的混合运算,解题的关键是掌握分式与整式的混合运算顺序和运算法则.20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;切线的判定与性质;作图—基本作图.【思路分析】(1)根据“AAS“证明△ABE≌△ACD,然后根据全等三角形的性质得到结论;(2)连接AB,如图②,由作法得OA=OB=AB=BC,先判断△OAB为等边三角形得到∠OAB =∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA的长.【解题过程】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.【总结归纳】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定与性质.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.【解题过程】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).【总结归纳】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A 17 18.9%B 38 42.2%C 28 31.1%D 7 7.8%合计90 100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.【知识考点】用样本估计总体;统计表;条形统计图.【思路分析】(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(1﹣7.8%)就是“合格及以上”的人数;(2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.【解题过程】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.【总结归纳】本题考查样本估计总体,样本的抽取要具有代表性和普遍性,才能够准确地反映总体.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.【知识考点】列表法与树状图法.【思路分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.【解题过程】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.【总结归纳】此题考查的是列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】(1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4﹣x.证明△EGP∽△PHD,推出====,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.【解题过程】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG =x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.【总结归纳】本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.【知识考点】根的判别式;二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点.【思路分析】(1)由题意可得0=4a+2b+c①,﹣=1②,△=(b﹣1)2﹣4ac=0③,联立方程组可求a,b,c,可求解析式;(2)由n<﹣5,可得点B,点C在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.【解题过程】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.【总结归纳】本题考查了抛物线与x轴的交点,二次函数的性质,根的判别式,待定系数法求解析式,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】。
南通初三数学试题及答案
南通初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333…(3无限循环)B. √2C. 1/3D. 0.5答案:B2. 如果一个二次函数的图像开口向上,那么它的判别式Δ的值应该满足什么条件?A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 0答案:C3. 以下哪个方程没有实数根?A. x^2 - 3x + 2 = 0B. x^2 - 4x + 4 = 0C. x^2 + x + 1 = 0D. x^2 - 2x + 1 = 0答案:C4. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 无法确定答案:B5. 一个圆的半径是3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C6. 如果一个角的正弦值是1/2,那么这个角可能是多少度?A. 30°B. 45°C. 60°D. 90°答案:A7. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是多少?A. abcB. ab + bc + acC. a^2 + b^2 + c^2D. a/b + b/c + c/a答案:A8. 一个数的立方根是-2,那么这个数是多少?A. -8B. 8C. -2D. 2答案:A9. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可能是多少?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共15分)11. 如果一个三角形的内角和是180°,那么一个等边三角形的每个内角的度数是_________。
答案:60°12. 如果一个数的平方是25,那么这个数可能是_________。
答案:±513. 如果一个数的绝对值是它本身,那么这个数是非负数,即这个数可能是_________。
2024学年江苏省南通市九年级数学中考模拟卷+答案解析
2024学年江苏省南通市九年级数学中考模拟卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算的结果是()A.B.C.2D.52.下列图形中,是中心对称图形的是()A.B.C.D.3.据国家统计局数据,2022年中国国内生产总值约1210000亿元.将1210000用科学记数法表示为()A.B.C.D.4.如图所示的几何体是由几个大小相同的小正方体搭成的,其主视图是()A. B. C. D.5.一副直角三角板按如图所示的位置摆放,如果,那么的度数是()A. B. C. D.6.如图,AB、BC为的两条弦,连接OA、OC,点D为AB的延长线上一点,若,则的度数为()A. B. C. D.7.某人在甲、乙、丙、丁四个超市购买某品牌商品的总价和购买数量如图所示,按平均单价计算,购买该品牌商品最划算的超市是()A.甲B.乙C.丙D.丁8.如图,中,,以点B为圆心,任意长为半径画弧,分别交于E、F点,分别以点E、F为圆心,以大于的长为半径画弧,两弧交于点G,作射线BG,交AC于点D,已知,则CD的长为()A.2B.3C.D.9.如图,在中,,点D在BC上,延长AD到E,使得,过点B作,交射线AC于点F,设,,则y关于x的函数图象大致为()A. B.C. D.10.二次函数的图象与x轴相交于A,B两点,点C在二次函数图象上,且到x轴距离为4,,则a的值为()A.4B.2C.D.二、填空题:本题共8小题,每小题3分,共24分。
11.因式分解:____.12.计算的结果是____.13.二元一次方程组的解是______.14.如图,D,E两点分别在上,,要使,只需添加一个条件,则这个条件可以是______.15.用一个圆心角为,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为_____.16.测量附中国旗杆的高度,小宇的测量方法如下:如图,将直角三角形硬纸板的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得米,米,目测点D到地面的距离米,到旗杆的水平距离米.按此方法,可计算出旗杆的高度为_____米.17.如图,在平面直角坐标系中,直线与直线分别与函数的图象交点A、两点,连接、,若的面积为3,则k的值为_____.18.已知点为直线上一点,将一直角三角板的直角顶点放在D处旋转,保持两直角边始终交x轴于A、B两点,为y轴上一点,连接AC,BC,则四边形ACBD面积的最小值为_____.三、解答题:本题共8小题,共64分。
南通中考数学试题及答案2022
南通中考数学试题及答案2022一、选择题1. 计算:$\frac{3}{5}\div\frac{2}{3}=$A. $\frac{9}{10}$B. $\frac{15}{13}$C. $\frac{9}{13}$D.$\frac{15}{10}$2. 已知甲、乙两数的比为$3:5$,且$\frac{乙}{甲}=\frac{4}{15}$,则乙是甲的:A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{9}{2}$D.$\frac{15}{4}$3. 下列二次方程中,有实根的是:A. $2x^2-3x+8=0$B. $x^2+4x-5=0$C. $3x^2+5x+2=0$D.$4x^2+4x+4=0$4. 若$y$是$x$的函数,且满足$y(2)=5$,则在图像上的点$(2,5)$是:A. 横坐标为2,纵坐标为5的一个点B. 自变量为2,因变量为5的一个点C. 自变量为5,因变量为2的一个点D. 横坐标为5,纵坐标为2的一个点5. 当$x$取何值时,方程$4x-7=3x+5$成立?A. $x=12$B. $x=-12$C. $x=-4$D. $x=4$二、填空题6. 一盒装有红、黄、绿三种颜色的小球,其中红球比黄球多5个,绿球数比黄球数的一半还少4个,若黄球数为$x$个,则红球数为____,绿球数为____。
7. 甲、乙两个数互质,且甲数是乙数的三倍,那么甲数与乙数的和是____。
8. 已知函数$y=ax^2+bx+c$的图像顶点为$(-1,4)$,且过点$(2,1)$,则$a+b+c=$____。
三、解答题9. 一辆汽车经过一段公路,在半程处减速,然后又以相同的速度加速通过剩下的一段公路,最后以110公里/小时的速度行驶了整个路程,若这段路程全程用时3小时,试求该汽车行驶的最大速度和减速的加速度。
10. 已知等差数列的前$n$项的和为$S_n=\frac{n(3a_1+2n-1)}{2}$,其中$a_1$为首项,$n$为项数。
江苏省南通市中考数学试卷(附答案解析)
第 1 页 共 25 页2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是( )A .﹣4B .﹣3C .﹣2D .﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A .6.8×104B .6.8×105C .0.68×105D .0.68×1063.下列运算,结果正确的是( )A .√5−√3=√2B .3+√2=3√2C .√6÷√2=3D .√6×√2=2√34.以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°6.一组数据2,4,6,x ,3,9,5的众数是3,则这组数据的中位数是( )A .3B .3.5C .4D .4.57.下列条件中,能判定▱ABCD 是菱形的是( )A .AC =BDB .AB ⊥BC C .AD =BD D .AC ⊥BD8.如图是一个几何体的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )A .48πcm 2B .24πcm 2C .12πcm 2D .9πcm 29.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D。
2020年江苏省南通市中考数学测试试题附解析
O xy 2020年江苏省南通市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.反比例函数与二次函数在同一平面直角坐标系中的大致图象 如图所示,它们的解析式可能分别是( ) A .y =k x ,y =kx 2-x B .y =kx ,y =kx 2+x C .y =-k x ,y =kx 2+x D .y =-kx,y =-kx 2-x 2.抛物线212y x =的函数值是( ) A . 大于零 B .小于零 C . 不大于零 D . 不小于零 3.在等腰梯形ABCD 中,AD ∥BC ,∠C=60°,AD=15,BC=32,则AB 的长为( )A .1lB .13C .15D .174.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( ) A .1500 (1+x )2=980 B .980(1+x )2=1500 C .1500 (1-x )2=980 D .980(1-x )2=15005.已知y 是x 的一次函数.表1中列出了部分对应值,则m 的值等于( )x - 1 0 1 y1m-16. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品成本与销售量的关系,当该公司赢利(收人大于成本)时,销售量( ) A . 小于 3tB . 大于3tC .小于4tD . 大于4t7.在平面直角坐标系中,下列各结论不成立的是( )A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上B .若点P (x ,y )坐标满足0xy=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为aD .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称 8.已如图是L 型钢条截面,它的面积是( ) A .ct lt +B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+9.如图是小明家一年的费用统计图,从该统计图中可以看出的信息是( ) A .小明家有3口人B .小明家一年的费用需要2万元C .小明家生活方面费用占总费用的35%D .小明家的收入很高10.下列多项式中不能分解因式的是( ) A .33a b ab -B .2()()x y y χ-+-C .210.3664x -D ..21()4x -+二、填空题11.已知点112233()()()A x y B x y C x y ,,,,,是函数2y x=-图象上的三点,且1230x x x <<<,则123y y y ,,的大小关系是 .12.函数25(2)ay a x -=+是反比例函数,则a 的值是 .13.请写出命题“直角三角形的两个锐角互余”的逆命题: . 14.当2x =-时,二次根式24x -的值是 .15.已知某一次函数的图象经过点(-1,2),且函数y 的值随自变量x 减小,请写出一个符合上述条件的函数解析式: .16.如图所示,∠AOB=85°,∠AOC=10°,0D 是∠BOC 的平分线,则∠BOD 的度数为 .17.已知长方形的周长是b a 45+,长是a b 3+,则宽是__________. 18.化简:(7y - 3z)- (8y - 5z)= . 19.3 的相反数是 ,3的相反数是 .20.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 点.三、解答题21.如图,PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,PA=10cm ,PB =5cm ,求⊙O 的直径.22.已知反比例函数3my x=-和1y kx =-的图象都经过点 P(m —3m). (1)求点 P 的坐标和这个一次函数的关系式;(2)若点 M(a ,y 1)和点 N(a+1,y 2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的性质说明 y 1<y 2(其中 a>0).23.某校为了了解本校八年级学生一天中在家里做作业所用的时间,随机抽查了本校八年级的40名学生,并把调查所得的所有数据(时间)进行整理,分成五组,绘制成频数分布直方图(如图). 请结合图中所提供的信息,回答下列问题:(1)被抽查的学生中做作业所用的时间在150.5~l8O.5min 范围的人数有多少人? (2)补全频数分布直方图,并请指出这组数据(时间)的中位数在哪一个时间段内? (3)估计被抽查的学生做作业的平均时间(精确到个位).24.解不等式组523483x x x x -<+⎧⎪+⎨≥-⎪⎩,并写出它的非负整数解.25.新年晚会举办时是我们最快乐的时候,会场上悬挂着站五彩缤纷的小装饰品,其中有各种各样的立体图形,如图所示:请你数一下上面图中每一个立体图形具有的顶点数(V),棱数(E)和面数(F),并把结果填入下表中:名称 各面形状 顶点数(V) 面数(F) 棱数(E)V+F —E正四面体 正三角形 正方体 正方形正八面体正三角形正十二边形 正五边形归纳出这个相等关系吗?26. 在学完“分式”这一章后,老师布置了这样一道题:“先化简再求值: 22241()244x x x x x -+÷+--,其中2x =-”. 婷婷做题时把“2x =-”错抄成了“2x =”,但她的计算结果是正确的,请你通过计算解释其中的原因.27.如图.在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结论,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.已知:结沦:理由:28.某商场计划拨款 9 万元从厂家购进 50 台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台 1500 元,乙种每台 2100 元,丙种每台2500 元.(1)若商场同时购进其中两种不同型号的电视机 50 台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150 元,销售一台乙种电视机可获利200 元,销售一台丙种电视机可获利250 元,在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择(1)中的哪种进货方案?29.计算:(1)(-4)×5×(-0. 25 );(2)(-4)×8×(-2.5)×O. 1×(-0.125)×1O;(3)3137 ()(3)(4) 8888-⨯--⨯-;(4)71199(36)72⨯-;(5)111()(24) 346+-⨯-30.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.B6.D7.C8.B9.C10.D二、填空题11.132y y y >> 12.213.两个角互余的三角形是直角三角形14.15.如1y x =-+(答案不唯一)16.37.5°17.0.5a+b18.2y z -+19.-3,3-20.A三、解答题 21.连结 OA .设⊙O 的半径为r ,∵PA 为⊙O 的切线,PA=10 cm ,PB=5 cm. ∴∠OPA=90°, OP= (r+5) cm ,∵22210(5)r r +=+,r=7.5 cm , 2r=15cm ,∴⊙O 的直径是 15.22.(1)∵3my x=-和1y kx =-的图象都经过点 P(m ,一3m). ∴233m m -=-,∴m= 1.,∴k= -2,∴P(1,,-3),y= -2x.- 1.(2)∵3y x=-,∴x>0 时,y 随x 的增大而增大. ∵ a+ 1>a ,∴12y y <23.(1)8人 (2)补图略,中位数在120.5~15O.5 min (3)131min24.-2≤x<3,x=0,l ,225.4,4,6,2;8,6,12,2;6,8,12,2;20,12,30,2;V+F —E=226.化简结果为24x +,当2x =-或2x =时,代入求得的值都是827.①③④,②,BE=CF ,则BC=EF ,ΔABC ≌ΔDEF (SAS ).28.(1)该商场共有两种进货方案,方案一:购甲种型号电视机 25 台,乙种型号电视机 25 台;方案二:购甲种型号电视机 35 台,丙种型号电视机 15 台;(2)为使销售利润最多,应选择(1)中的方案二进29.(1)5 (2)-10 (3)3 (4)135992- (5)-1030.陈华同学的说法正确,理由略。
2024年南通市中考数学真题试卷及答案
2024年南通市中考数学真题试卷及答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 如果零上2℃记作2+℃,那么零下3℃记作( ) A. 3-℃B. 3℃C. 5-℃D. 5℃2. 2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为( ) A. 9158.210⨯B. 1015.8210⨯C. 111.58210⨯D. 121.58210⨯3. )A. 9B. 3C.D.4. 如图是一个几何体的三视图,该几何体是( )A. 球B. 棱柱C. 圆柱D. 圆锥5. 如图,直线ab ,矩形ABCD 的顶点A 在直线b 上,若241∠=︒,则1∠的度数为( )A. 41︒B. 51︒C. 49︒D. 59︒6. 红星村种的水稻2021年平均每公顷产7200kg ,2023年平均每公顷产8450kg .求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x .列方程为( ) A. ()2720018450x += B. ()7200128450x += C. ()2845017200x -=D. ()8450127200x -=7. 将抛物线221y x x =+-向右平移3个单位后得到新抛物线的顶点坐标为( ) A. ()4,1--B. ()4,2-C. ()2,1D. ()22-,8. “赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,()n m n >.若小正方形面积为5,()221m n +=,则大正方形面积为( )A. 12B. 13C. 14D. 159. 甲、乙两人沿相同路线由A 地到B 地匀速前进,两地之间的路程为20km .两人前进路程s (单位:km )与甲的前进时间t (单位:h )之间的对应关系如图所示.根据图象信息,下列说法正确的是( )A. 甲比乙晚出发1hB. 乙全程共用2hC. 乙比甲早到B 地3hD. 甲的速度是5km/h10. 在ABC 中,()045B C αα∠=∠=︒<<︒,AH BC ⊥,垂足为H,D 是线段HC 上的动点(不与点H,C 重合),将线段DH 绕点D 顺时针旋转2α得到线段DE .两位同学经过深入研究,小明发现:当点E 落在边AC 上时,点D 为HC 的中点;小丽发现:连接AE ,当AE 的长最小时,2AH AB AE =⋅.请对两位同学的发现作出评判( ) A. 小明正确,小丽错误 B. 小明错误,小丽正确 C. 小明、小丽都正确D. 小明、小丽都错误二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11. 分解因式:ax ay -=_________.12. 已知圆锥的底面半径为2cm ,母线长为6cm ,则该圆锥的侧面积为______2cm .13. 已知关于x 的一元二次方程220x x k -+=有两个不相等的实数根.请写出一个满足题意的k 的值:______.14. 社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B 处测得旗杆顶部A 的仰角为60︒,6m BC =,则旗杆AC 的高度为______m .15. 若菱形的周长为20cm ,且有一个内角为45︒,则该菱形的高为______cm .16. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此器电池为电源的用电器的限制电流I 不能超过10A,那么用电器可变电阻R 应控制的范围是______.17. 如图,在Rt ABC △中,90ACB ∠=︒,5AC BC ==.正方形DEFG,它的顶点D,E,G 分别在ABC 的边上,则BG 的长为______.18. 平面直角坐标系xOy 中,已知()3,0A ,()0,3B .直线y kx b =+(k,b 为常数,且0k >)经过点()1,0,并把AOB 分成两部分,其中靠近原点部分的面积为154,则k 的值为______. 三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:()12112m m m m ⎛⎫--+ ⎪⎝⎭; (2)解方程21133x x x x -=++.20. 我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表. 50个家庭去年月均用水量频数分布表根据上述信息,解答下列问题:(1)m=______,n=______;(2)这50个家庭去年月均用水量的中位数落在______组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?21. 如图,点D在ABC的边AB上,DF经过边AC的中点E,且EF DE∥.=.求证CF AB22. 南通地铁1号线“世纪大道站”有标识为1,2,3,4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为______;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.23. 如图,ABC 中,3AB =,4AC =,5BC =,A 与BC 相切于点D .(1)求图中阴影部分的面积; (2)设A 上有一动点P,连接CP ,BP .当CP 的长最大时,求BP 的长.24. 某快递企业为提高工作效率,拟购买A,B 两种型号智能机器人进行快递分拣.相关信息如下: 信息一信息二(1)求A,B 两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A,B 两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?25. 已知函数()()22y x a x b =-+-(a,b 为常数).设自变量x 取0x 时,y 取得最小值. (1)若1a =-,3b =,求0x 的值;(2)在平面直角坐标系xOy 中,点(),P a b 在双曲线2y x =-上,且012x =.求点P 到y 轴的距离;(3)当22230a a b --+=,且013x ≤<时,分析并确定整数a 的个数.26. 综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动. 【特例探究】(1)如图①,①,①是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表请补全表格中数据,并完成以下猜想.已知ABC 的角平分线1AD =,AB AC =,BAD α∠=,用含α的等式写出两腰之和+AB AC 与两腰之积AB AC ⋅之间的数量关系:______. 【变式思考】(2)已知ABC 的角平分线1AD =,60BAC ∠=︒,用等式写出两边之和+AB AC 与两边之积AB AC ⋅之间的数量关系,并证明. 【拓展运用】(3)如图①,ABC 中,1AB AC ==,点D 在边AC 上,BD BC AD ==.以点C 为圆心,CD 长为半径作弧与线段BD 相交于点E,过点E 作任意直线与边AB ,BC 分别交于M,N 两点.请补全图形,并分析11BM BN+的值是否变化?2024年南通市中考数学真题试卷答案一、选择题 1. A 2. C 3. B 4. D 5. C 6. A 7. D 9. D 10. C【详解】解:①将线段DH 绕点D 顺时针旋转2α得到线段DE ①,2DH DE HDE α=∠= 当点E 落在边AC 上时,如图:①HDE C CED ∠=∠+∠,C α∠= ①CED C α∠==∠ ①DE CD = ①DH CD =①D 为CH 的中点,故小明的说法是正确的; 连接,AE HE①,2DH DE HDE α=∠= ①()11802902DHE DEH αα∠=∠=︒-=︒- ①AH BC ⊥①90AHB AHD ∠=∠=°①AHE AHD DHE α∠=∠-∠=①点E 在射线HE 上运动①当AE HE ⊥时,AE 的长最小①当AE 的长最小时,90AEH AHB ∠=∠=︒又①B C AHE α∠=∠==∠①AEH AHB ∽ ①AE AH AH AB = ①2AH AB AE =⋅;故小丽的说法正确;故选C .二、填空题.11. ()a x y -12. 12π13. 0(答案不唯一)14.15.216. 3.6R ≥17. 【详解】解:过点G 作GH AC ⊥,则:90AHG GHD ∠=∠=︒①90DGH HDG ∠+∠=︒①90ACB ∠=︒,5AC BC ==①45AB A B =∠=∠=︒①45AGH A ∠=︒=∠①AH HG =设AH HG x ==,则:5CH AC AH x =-=-①正方形DEFG①,90DG DE GDE =∠=︒①90HDG CDE ∠+∠=︒①HGD CDE ∠=∠①90C GHD ∠=∠=︒①GHD DCE ≌①CD GH x ==①52DH CH CD x =-=-在Rt GHD 中,由勾股定理,得:222GD DH GH =+①()22252x x =-+,解得:2x = ①2,3AH CH ==①90C AHD ∠=∠=︒①HG BC ∥ ①23AG AH BG CH ==①3355BG AB ==⨯=故答案为: 18. 35【详解】解:根据题意画出图形如下设直线AB 的解析式为:y mx n =+把()3,0A ,B (0,3)代入可得出:303m n n +=⎧⎨=⎩解得:13m n =-⎧⎨=⎩①直线AB 的解析式为:3y x =-+①直线y kx b =+经过点()1,0C①0k b +=①b k =-①直线y kx k =-联立两直线方程:3y kx k y x =-⎧⎨=-+⎩解得:3121k x k k y k +⎧=⎪⎪+⎨⎪=⎪+⎩①32,11k k D k k +⎛⎫ ⎪++⎝⎭①()3,0A ,B (0,3),()1,0C①3OB =,3OA =,2AC =根据题意有:154ABO ACD S S -= 即1115224D OB OA y AC ⋅⋅-⋅⋅= 112153322214k k ⨯⨯-⨯⨯=+ 解得:35k = 故答案为:35. 三、解答题.19. (1)3m -(2)32x =- 20. (1)20,15 (2)B (3)648个21. 证明:①点E 为边AC 的中点①AE EC =①EF DE =,AED CEF ∠=∠①()SAS AED CEF △≌△①DAE FCE =∠∠①CF AB ∥.22. (1)14 (2)1423. (1)36625π- (2【小问1详解】解①连接AD①3AB =,4AC =,5BC =①22222234255AB AC BC +=+===①90BAC ∠=︒①BC 与A 相切于D①AD BC ⊥ ①1122ABC S AD BC AC AB =⋅=⋅△ ①341255AC AB AD BC ⋅⨯=== ①212901365346236025ABC S S S ππ⎛⎫⨯ ⎪⎝⎭=-=⨯⨯-=-阴影扇形; 【小问2详解】解①延长CA 交A 于P,连接BP ,此时CP 最大由(1)知:90BAC PAB ∠=∠=︒,125AP AD ==①PB == 24. (1)A 型智能机器人的单价为80万元,B 型智能机器人的单价为60万元 (2)选择购买A 型智能机器人5台,购买B 型智能机器人5台【小问1详解】解:设A 型智能机器人的单价为x 万元,B 型智能机器人的单价为y 万元 326032360x y x y +=⎧⎨+=⎩解得8060x y =⎧⎨=⎩答:A 型智能机器人的单价为80万元,B 型智能机器人的单价为60万元;【小问2详解】解:设购买A 型智能机器人a 台,则购买B 型智能机器人()10a -台 ①()806010700a a +-≤,①5a ≤,①每天分拣快递的件数()2218104180a a a =+-=+①当5a =时,每天分拣快递的件数最多为45180200万件 ①选择购买A 型智能机器人5台,购买B 型智能机器人5台. 25. (1)01x = (2)2或1 (3)整数a 有4个【小问1详解】解:有题意知()()222221321692410y x x x x x x x x =++-=+++-+=-+ ()()222218218x x x =-++=-+ 当01x =时,y 取得最小值8;【小问2详解】解:①点(),P a b 在双曲线2y x=-上 ①2b a-= ①()()()22222y x a x b x a x a ⎛⎫=-+-=-++ ⎪⎝⎭ 2222422x ax a x x a a ⎛⎫=-++++ ⎪⎝⎭ 2224222x a x a a a ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭①012x =, ①421222a a ⎛⎫- ⎪⎝⎭-=⨯,化解得220a a --=,解得12a =或21a =- 则点()2,1P -或()1,2P -①点P 到y 轴的距离为2或1;【小问3详解】解:()()22y x a x b =-+- 222222x ax a x bx b =-++-+ ()222222x a b x a b =-+++①22230a a b --+=①2322a a b +=+①()222223y x a x a b =-+++①013x ≤<①()231322a -+≤-<⨯,化简得219a ≤< ①2,1,1,2a =--则整数a 有4个.26. (1)见解析; 2cos AB AC AB ACα+=⋅,(2)AB AC AC +=⋅,证明见解析; (3)1112BM BN +=是定值 【详解】解:(1)①30BAD CAD ∠=∠=︒,AD 是ABC 的角平分线,1AD = ①AD BC ⊥①cos303AD AB AC ====︒;①AB AC +=43AB AC ⋅=;如图,由(1)可得:AD BC ⊥①1cos cos AD AB AC αα=== ①2cos AB AC α+=,21cos AB AC α⋅= ①2cos AB AC AB ACα+=⋅;(2)猜想:AB AC AC +=⋅,理由如下: 如图,延长AB 至E 使AE AC =,连接CE ,过B 作BH CE ⊥于H ,延长AD 交CE 于F①60BAC ∠=︒,AD 平分BAC ∠ ①ACE △为等边三角形,AF CE ⊥,30EAF CAF ∠=∠=︒ 设2AC AE CE x ===,EH a =①CF EF x ==,AF =,而1AD =①1DF =-①BH CE ⊥,AF CE ⊥①BH AF ∥①30EBH EAF ∠=∠=︒,CDF CBH ∽①2BE a =,EH =①CDF CBH ∽①DF CFBH CH =,2x x a =-解得:2a =①22424AB AC x a x +=-==; ()2222244AB AC x x a x ax ⋅=-=-=①AB AC AC +=⋅;(3)如图,补全图形如下:①ABC 中,1AB AC ==,点D 在边AC 上,BD BC AD == ①设DAB DBA α∠=∠=,则2BCD BDC α∠=∠=,2ABC ACB α∠=∠= ①22180ααα++=︒解得:36α=︒①36ABE CBE ∠=∠=︒ ①cos362BM BN BM BN +=︒⋅ 即2cos36BM BN BM BN +=︒⋅ ①112cos36BM BN+=︒ 连接CE ,AE ,并延长AE 交BC 于Q①CD CE =①72CDE CED ∠=∠=︒,36ECD BCE ∠=︒=∠ ①CE 平分ACB ∠①AQ 平分BAC ∠①AB AC =①AQ BC ⊥①72ABC ACB CDB ∠=∠=∠=︒①CBD CAB ∽△△ ①CB CD CA CB= 设AD BD BC x ===,则1CD x =- ①21x x =-,即210x x +-=解得:x =(不符合题意的根舍去)①AD BD BC ===①1124BQ BC ==,312CD CE x -==-= ①AQ 是BC 的垂直平分线①32BE CE ==①1cos cos364BQ EBQ BE ∠=︒==;①1112BM BN +=是定值.。
南通中考数学试题及答案
南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √2B. 0.5C. 0.33333...D. -3答案:A2. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. 2答案:A4. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B5. 一个等差数列的首项是2,公差是3,第10项是多少?A. 29B. 32C. 35D. 38答案:A6. 一个长方体的长、宽、高分别是2、3和4,求这个长方体的体积。
A. 24B. 36C. 48D. 60答案:A7. 一个分数的分子是5,分母是8,化简后是多少?A. 5/8B. 1/2C. 1/16D. 5/16答案:B8. 一个多项式P(x) = 3x^2 - 5x + 2,求P(2)的值。
B. 4C. 8D. 12答案:B9. 一个函数f(x) = 2x + 3,当x=1时,f(x)的值是多少?A. 5B. 6C. 7D. 8答案:A10. 一个方程2x - 5 = 9的解是:A. x = 3B. x = 4C. x = 5D. x = 6答案:C二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。
答案:812. 一个数的绝对值是5,这个数可以是______或______。
答案:5,-513. 一个圆的直径是10,这个圆的周长是______π。
14. 一个三角形的内角和等于______度。
答案:18015. 一个等腰三角形的底边长是6,两腰边长是5,这个三角形的面积是______。
答案:1516. 一个函数y = kx + b的斜率是2,当x=0时,y=1,求k和b的值。
答案:k=2,b=117. 一个方程3x + 7 = 22,解得x=______。
2022年江苏省南通市中考数学真题试卷附解析
2022年江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果a∠是等腰直角三角形的一个锐角,则tanα的值是()A.12B.22C.1D.22.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C两点,则 BC=()A.63B.62C.33D.323.若半径为3,5的两个圆相切,则它们的圆心距为()A.2 B.8 C.2或8 D.1或44.在ABC∆中,︒=∠90C,AB=15,sinA=13,则BC等于()A.45 B.5 C.15D.1455.下面几个命题中,正确的有()(1)等腰三角形的外接圆圆心在顶角平分线所在的直线上(2)直角三角形的外接圆圆心在斜边上(3)等边三角形的外接圆圆心在一边的中线上(4)钝角三角形的外接圆圆心在三角形的外面A.1 个B.2 个C.3 个D.4 个6.二次函数y=―3x2―7x―12的二次项系数、一次项系数及常数项分别是()A.―3,―7,―12 B.-3,7,12 C.3,7,12 D.3,7,-12 7.在π=3.141 592 653 589 7中,频数最大的数字是()A.1 B.3 C.5 D.98.一个几何体的三视图中有一个是长方形,则该几何体不可能是()A.直五棱柱B.圆柱C.长方体D.球9.分式2221m mm m-+-约分后的结果是()A .1m m n -+B .1(1)m m m --+C .1m m -D .1(1)m m m -+ 10.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( )A .互为倒数B .互为相反数C .相等D .关系不能确定 11. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165° 12.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.3二、填空题13.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.14.如图,已知∠1 =∠2,请补充条件 (写出一个即可),使△ADE ∽△ABC.15.某水果店1至6月份的销售情况(单位:千克)为450、440、420、480、580、550,则这组数据的极差是 千克.16.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.17.如图,随机闭合开关123S S S ,,中的两个, 能够让灯泡发光的概率为 .18.在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm ,则AC= cm .19.已知ABC DEF △≌△,5cm BC EF ==,△ABC 的面积是220cm ,那么△DEF 中EF 边上的高是__________cm .20.商场一款服装进价为a 元,商家将其价格提高50%后以八折出售,则该款服装的售价是 元.21.王叔叔买了四盒同样的长方体的礼品(如图),长、宽、高分别为4cm 、3 cm 、2cm ,王叔 叔想把它们包装成一个大长方体,并使包装表面积最小,则表面积的最小值为 .22.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题23.如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.24.已知不等式组3(2)821132x xx xx-+>⎧⎪+-⎨≥-⎪⎩的整数解满足方程62ax x a+=-,求a的值.25.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的高度吗?说说其中的道理.27.解下面的方程,并说明每一步的依据.0.6x=50+0.4x28.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.29.将- 8 ,- 6 ,-4 , 0 , -2 ,2,4,6,8 这 9 个数分别填入右图的 9 个空格中,使得每行的 3 个数,每列的3 个数,斜对角线的 3 个数相加均为 0.30.(1)利用一副三角尺的拼合,分别画出75°,120°,l35°,l50°的角;(2)利用一副三角尺,你能画出几个不同的角(小于l80°)?分别是多少度的角?用一副三角尺所画的这些角的大小有什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.D6.A7.C8.D9.C10.C11.CC二、填空题13.414.∠E=∠C或∠D=∠B 15.16016.517.2318.2.719.820.6a521.136cm222.135°三、解答题23.提示:∵DE//12BC,FG//12BC,∴DE//FG,∴四边形DFGE是平行四边形24.解原不等式组,得21x-<≤.∴原不等式组的整数解是1x=-.∴612a a-+=--,∴7a=-.25.它们的结果有36种可能;不同,甲赢的机会大,理由略3 cm,理由略27.x=250,依据略28.设原来的两位数是10a+b,则调换位置后的新数是10b+a.(10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除29.填法不唯一30.(1)画图略 (2)11个,15°,30°,45°,60°,75°,90°,l05°,l20°,l35°,l50°,165°规律:l5°的倍数。
2022年江苏省南通市中考数学原题试卷附解析
2022年江苏省南通市中考数学原题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已如果半径为R 的两个等圆⊙O 1和⊙O 2交于A 、B 两点,⊙O 1 经过⊙O 2的圆心,那么AB 的长是( )A .34RB .32RC .3RD .23R2.如图所示,CD 是Rt △ABC 斜边 AB 上的高,将△BCD 沿 CD 折叠,B 点恰好落在AB 的中点E 处,则A 等于( )A .25°B . 30°C . 45°D . 60°3.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )4.如图,直线AB 对应的函数表达式是( )A .3y x 32=-+B .3y x 32=+ C .2y x 33=-+ D .2y x 33=+ 5. 如图,给出了过直线外一点作已知直线的平行线的方法, 其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等6.在下列长度的四根木棒中,能与4 cm ,9 cm 长的两根木棒钉成一个三角形的是( )A .4 cmB .5 cmC .9cmD .13 cm 7.二元一次方程组⎩⎨⎧=+=-52723y x y x 的解是( ) A .⎩⎨⎧==23y x B .⎩⎨⎧==21y x C .⎩⎨⎧==24y x D .⎩⎨⎧==13y x8.一副三角板按如图方式摆放,且∠l 比∠2大50°.若设∠1=x ,则可列出方程( )A .x+(x+500)=180°B .x+(x-50°)=180°C . x+(x+500)=90°D .x+(x-50°)=90°9.如图,△A8C ≌△BAD ,A 和B ,C 和D 是对应点,若AB=4 cm ,BD=3 cm ,AD=2 cm ,则BC 的长度为( )A .4 cmB .3 cmC .2 cmD .不能确定10.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km ,最后相当于这人( )A . 向南走110kmB . 向北走 50 kmC .向南走 30 kmD .向北走 30 km11.小明测得一周的体温并登记如下表:(单位:℃ )其中星期四的体温被墨汁污染,根据表中数据,可得此目的体温是( )A .36.7℃B .36.8℃C .36.9℃D .37.0℃二、填空题12.如图是引拉线固定电线杆的示意图.已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是 m .13.如图,若△ABC ∽△DEF ,则∠D 的度数为______________.14. 如图,已知⊙O 的半径为 4,点C 在⊙O 上,∠ACB=45°,求弦AB 的长.15.自由下落物体的高度h (米)与下落的时间t (秒)的关系为24.9h t =.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是 秒. 解答题 16.若y 与 x 2成反比例,且当x=2时,y= 8,则当 y=16 时,x= .17.请写出命题“直角三角形的两个锐角互余”的逆命题: .18. 方程2230x x --=的根是 .19.已知正比例函数232ky kx -=的函数值y 随着x 的增大而减小,则k= . 20.01(1)2π--⨯= ;32(63)(3)a a a -÷= . 三、解答题21.如图,在△ABC 中,⊙O 截△ABC 的三条边所得的弦长相等,求证:0是△ABC 的内心.22.如图所示,有一四边形形状的铁皮ABCD, BC=CD,AB=2AD, ∠ABC=∠ADB=90°.(1)求∠C 的度教;(2)以 C 为圆心,CB 为半径作圆弧⌒BD 得一扇形CBD ,剪下该扇形并用它围成一圆锥的侧面,若已知 BC=a ,求该圆锥的底面半径.23.如图:在四边形ABCD 中,M 是BC 的中点,AM ,BD 互相平分于点 0,求证:AM=DC.24.已知y=x2-5x+4,问x取什么值时,y的值等于0?x取什么值时,y的值等于4? 25.图中有三棱柱的展开图吗?26.请你先将分式2211x x xx x---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.27.有甲、乙两家单位到某商店购买空调,可供选择的空调型号有A、B、C三种:(1)空调价格如下表所示,已知甲单位购买两种不同型号的空调 50 台,用去 90 000元,你知道甲单位购买的是哪两种空调吗?说明你的理由.空调价目表空调型号单价A1500元B2100元C2500元5 000元,购买A 空调5 台﹑C空调 1 台共需 8000元. 已知乙单位购买了A空调20台、B空调 5 台、C空调 8 台,共需多少元?28.一个多项式加上2532x x+-的2倍得213x x-+,求这个多项式.21355x x--+29.图中 3×3 方格是从月历表中取下的,正中方格的日期是n,请用适当的代数式填入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?30.如图所示的每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有 n(n≥2)个棋子,每个图案的棋子总数为S,按其排列规律推断,S 与n 之间的关系可以用式子来表示.=-44S n【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.A5.A6.C7.D8.D9.C10.D11.A二、填空题12.613.30°14. 42 15.2 16.2±17.两个角互余的三角形是直角三角形18.13x =,21x =-19.-220.12,22a a -三、解答题21.作 OD ⊥AB 于D ,OE ⊥BC 于 E ,DF ⊥AC 于F.∵⊙O 截△ABC 的三条边所得的弦长相等,∴ OD= OE=OF ,∴ 点0在∠ABC 和∠ACB 的角平分线上,即0是△ABC 的内心.22.(1) ∵∠ADS=90°,AB=2AD,∴∠ABD=30° ,∵∠ABC=90°,∴∠DBC=60°, ∵ BC=CD ,∴△BCD 为等边三角形,∴∠C=60°.(2)036060o r a ⋅=,∴6a r =. 23. 提示:连结MD24.x 取1、4时,y 的值等于0;x 取0、5值时,y 的值等于4.25.①、②、③都是26.22x -(代入0,1x ≠-的数都可以)27.(1)①设甲单位购买的是A 、B 两种型号的空调,且购买A 型空调x 台,则购买B 型空调(50x -)台.根据题意,得15002100(50)90000x x +-=,化简得60015000x =,解得 25x =,5025x -=即购买A 、B 两利'空调各25 台.②设甲单位购买的是A 、C 两种型号的空调,且购买A 型空调x 台, 则购买C 空调(50x -)台,根据题意,得15002500(50)90000x x +-=,化简,得100035000x =,解得35x =,5015x -=即分别购买 A .C 两种空调35 台和 15 台.③设甲单位购买的是B 、C 两种型号的空调,且购买B 型空调x 台,则购买 C 型空调(50x -)台,根据题意,得21002500(50)90000x x +-=,化简,得40035000x =,解得87.5x =(不合题意,舍去).答:甲单伟购买的可能是A 、B 两种空调,也可能是A 、C 两种空调.(2)设A 型空调的单价为x 元,则 C 型空调的单价为(80005x -)元,B 型 调的单价为5000(80005)43000x x x ---=-元.所以乙单位购买A 型空调20 台、B 型空调5台、C 型空调8台共需:205(43000)8(80005)202015000640004049000x x x x x x +-+-=+-+-=(元) 28.21355x x --+29.两条对角线上的三个日期数之和都等于3n30.44S n =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年南通市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请把最后结果填在题中横线上.1.计算:0-7 =.2.=.3.已知∠A=40°,则∠A的余角等于度.4.计算:3(2)a=.5.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.6.一组数据2,4,x,2,3,4的众数是2,则x=.7.函数y x的取值范围是.8.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.9.一次函数(26)5y m x=-+中,y随x增大而减小,则m的取值范围是.10.如图,DE∥BC交AB、AC于D、E两点,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A=度.11.将点A(0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是.12.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克元.(第8题)AC FED(第10题)(第5题)13.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB = 度.14.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高. 方法2:补形法.将三角形面积转化成若干个特殊的四边形和 三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC = .二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内.15.下列命题正确的是 【 】A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等的四边形是等腰梯形 16.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是【 】A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,17.已知△ABC 和△A′B′C′是位似图形.△A′B′C′的面积为6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上高等于【 】 A .3 cm B .6 cm C .9cm D .12cm18.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <,2130x x -<,则【 】 A .1,2m n >⎧⎨>⎩B .1,2m n >⎧⎨<⎩O A B CD E (第13题) (第16题)C .1,2m n <⎧⎨>⎩D .1,2m n <⎧⎨<⎩三、解答题:本大题共10小题,共92分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题10分,第20题6分,共16分)19.(1)计算(2)分解因式2(2)(4)4x x x +++-.20.解分式方程225103x x x x-=+-.(21~22题,第21题7分,第22题8分,共15分)21.如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?A BP 北 东 (第21题)座位号22.已知:如图,M 是»AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.(23~24题,第23题7分,第24题8分,共15分)23.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元? 24.已知点A (-2,-c )向右平移8个单位得到点A ',A 与A '两点均在抛物线2y ax bx c=++上,且这条抛物线与y 轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.(第22题)ABC MNO ·(25~26题,第25题10分,第26题12分,共22分)25.随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如下表(单位:人):解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的极差是 人,女性人数的中位数是 人;(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?26.如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(第25题)(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x ),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.(第27题10分)27.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,ABCD EFP· (第26题)圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.(第28题14分)28.已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)(第27题)方案一方案二作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.2008年南通市初中毕业、升学考试数学试题参考答案与评分标准说明:本评分标准每题只提供一种解法,如有其他解法,请参照本标准的精神给分.一、填空题:本大题共14小题,每小题3分,共42分.1.-7 2.12 3.50 4.38a 5.6 6.2 7.x ≥2 8.479.m <3 10.60 11.(4,-4) 12.4 13. 120 14.52二、选择题:本大题共4小题,每小题4分,共16分. 15.C 16.D 17.B 18.C三、解答题:本大题共10小题,共92分.19.(1)解:原式=÷……………………………………………………4分=8÷4=2.………………………………………………………………5分(2)解:原式=(2)(4)(2)(2)x x x x ++++- …………………………………………………7分=(2)(22)x x ++ ………………………………………………………………9分=2(2)(1)x x ++.………………………………………………………………10分20.解:方程两边同乘以x (x+3)(x -1),得5(x -1)-(x+3)=0.…………………………(第28题)2分解这个方程,得2x =.……………………………………………………………………4分检验:把2x =代入最简公分母,得2×5×1=10≠0. ∴原方程的解是2x =.……………………………………………………………………6分21.解: 过P 作PC ⊥AB 于C 点,根据题意,得AB =18×2060=6,∠P AB =90°-60°=30°, ∠PBC =90°-45°=45°,∠PCB =90°,∴PC=BC . ……………………………2分 在Rt △P AC 中,tan30°=6PC PCAB BC PC =++, …………4分即6PCPC=+,解得PC=3. 6分∵3>6,∴海轮不改变方向继续前进无触礁危险.……………………………7分22.解:(1)连结OM .∵点M 是»AB 的中点,∴OM ⊥AB . …………………………………1分过点O 作OD ⊥MN 于点D , 由垂径定理,得3分在Rt △ODM 中,OM =4,MD =,∴OD =故圆心O 到弦MN 的距离为 2(第22题)(第21题)A P60︒45︒北东cm . …………………………5分(2)cos ∠OMD=MD OM ,…………………………………6分 ∴∠OMD =30°,∴∠ACM =60°.……………………………8分 23.解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.…………………………………………………………………………2分解之,得0.4x =或 2.4x =-(不合题意,舍去). (4)分所以,A 市投资“改水工程”年平均增长率为40%. (5)分(2)600+600×1.4+1176=2616(万元). A 市三年共投资“改水工程”2616万元. (7)分 24.解:由抛物线2y ax bx c =++与y 轴交点的纵坐标为-6,得c =-6.……………………1分∴A (-2,6),点A 向右平移8个单位得到点A '(6,6). …………………………3分∵A 与A '两点均在抛物线上,∴426636666a b a b --=⎧⎨+-=⎩,.解这个方程组,得14a b =⎧⎨=-⎩,. ……………………………………6分 故抛物线的解析式是2246(2)10y x x x =--=--.∴抛物线的顶点坐标为(2,-10). ……………………………………………………8分25.解:(1)……………………4分(2)22,50; ……………………………………………………………………………………(第25题)8分(3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5,预计地区一增加100周岁以上男性老人5人. …………………………………………10分26.(1)证明:∵AD CD =,DE AC ⊥,∴DE 垂直平分AC ,∴AF CF =,∠DF A =∠DFC =90°,∠DAF =∠DCF .……………………………1分∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°,∴∠DCF =∠DAF =∠B .2分在Rt △DCF 和Rt △ABC 中,∠DFC =∠ACB =90°,∠DCF =∠B ,∴△DCF ∽△ABC . ……………………………………………………………………3分 ∴CD CF AB CB =,即CD AF AB CB=.∴AB ·AF =CB ·CD . ………………………………4分(2)解:①∵AB =15,BC =9,∠ACB =90°,∴12AC =,∴6CF AF ==.……………………………5分 ∴1963272y x x =+⨯=+()(0x >). ………………………………………………7分②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小.由(1)知,点C 关于直线DE 的对称点是点A ,∴PB +PC =PB +P A ,故只要求PB +P A 最小. 显然当P 、A 、B 三点共线时PB +P A 最小.此时DP =DE ,PB +P A =AB . ………8分由(1),ADF FAE ∠=∠,90DFA ACB ∠=∠=︒,得△DAF ∽△ABC .EF ∥BC ,得11522AE BE AB ===,EF =92. ∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15.∴AD =10.……………………………10分Rt △ADF 中,AD =10,AF =6,∴DF =8. ∴925822DE DF FE =+=+=. ………………………………………………………11分 ∴当252x =时,△PBC 的周长最小,此时1292y =.………………………………12分27.解:(1)理由如下:∵扇形的弧长=16×π2=8π,圆锥底面周长=2πr ,∴圆的半径为4cm .………2分由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形纸片的对角线长为16420++=+,20+>∴方案一不可行. ………………………………………………………………………5分(2)方案二可行.求解过程如下:设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(1r R ++=, ① 2π2π4R r =. ② …………………………7分由①②,可得12823R ==,3223r ==. ………………9分故所求圆锥的母线长为12823cm ,底面圆的半径为3223cm . ………10分28.解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2). 从而8216k =⨯=.……………………………………………………………………3分(2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,B (-2m ,-2n ),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得 42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a m p MP M O m -===. 同理q =13分 ∴2a m m a p q m m -+-=-=-.……………………14分(第28题)。