江苏省高中数学竞赛试卷
高中数学竞赛模拟题(十六套)
模拟试题一 2010年全国高中数学联赛模拟试题一 试一、填空题(每小题8分,共64分)1.方程错误!未找到引用源。
2.如图,在错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
,则m+2n 的值为错误!未找到引用源。
3.错误!未找到引用源。
4.单位正方体错误!未找到引用源。
错误!未找到引用源。
这八个面截这个单位正方体,则含正方体中心的那一部分的体积为 .5.设数列错误!未找到引用源。
6.已知实数x ,y ,z 满足xyz=32,x+y+z=4,则|x|+|y|+|z|的最小值为错误!未找到引用源。
7.若错误!未找到引用源。
8.空间有100个点,任4点不共面,用若干条线段连结这些点,如果不存在三角形,最多可连错误!未找到引用源。
条线段. 二、解答题(共56分) 9.(16分)设错误!未找到引用源。
错误!未找到引用源。
之和为21,第2项、第3项、第4项之和为33.(1)求数列错误!未找到引用源。
的通项公式; (2)设集合错误!未找到引用源。
错误!未找到引用源。
, 求证:错误!未找到引用源。
. 10.(20分)过抛物线错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
的距离均不为整数.11.(20分)已知二次函数错误!未找到引用源。
有两个非整数实根,且两根不在相邻两整数之间.试求a , b 满足的条件,使得一定存在整数k ,有错误!未找到引用源。
成立.二 试一.(40分)如图,已知错误!未找到引用源。
错误!未找到引用源。
求证:错误!未找到引用源。
N DCAMBPEFA二.(40分)设错误!未找到引用源。
.三. (50分)已知n 个四元集合错误!未找到引用源。
错误!未找到引用源。
,试求n 的最大值.这里错误!未找到引用源。
四.(50分)设错误!未找到引用源。
为正整数错误!未找到引用源。
的二进制表示数的各位数字之和,错误!未找到引用源。
为数列错误!未找到引用源。
的前n 项和. 若存在无穷多个正整数n ,满足错误!未找到引用源。
全国高中数学联赛江苏赛区初赛试卷(含答案)
全国高中数学联赛江苏赛区初赛试卷(含答案)全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分,要求直接将答案写在横线上。
)1.已知点P(4,1)在函数$f(x)=\log_a(x-b)$($b>0$)的图像上,则$ab$的最大值是______。
解:由题意知,$\log_a(4-b)=1$,即$a+b=4$,且$a>0$,$a\neq 1$,$b>0$,从而$ab\leq 4$。
当$a=b=2$时,$ab$的最大值是4.2.函数$f(x)=3\sin(2x-\frac{\pi}{4})$在$x=\frac{3\pi}{4}$处的值是______。
解:$2x-\frac{\pi}{4}=\frac{3\pi}{4}$,所以$f(\frac{3\pi}{4})=3\sin(\frac{3\pi}{4}-\frac{\pi}{4})=-\frac{3}{\sqrt{2}}$。
3.若不等式$|ax+1|\leq 3$的解集为$\{x|-2\leq x\leq 1\}$,则实数$a$的值是______。
解:设函数$f(x)=|ax+1|$,则$f(-2)=f(1)=3$,故$a=2$。
4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是______。
解:有两类情况:同为白球的概率是$\frac{3}{25}\times\frac{10}{25}=\frac{6}{125}$,同为红球的概率是$\frac{7}{25}\times\frac{6}{25}=\frac{42}{625}$,所求的概率是$\frac{6}{125}+\frac{42}{625}=\frac{72}{625}$。
5.在平面直角坐标系$xOy$中,设焦距为$2c$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$有相同离心率$e$,则$e$的值是______。
江苏数学竞赛初试题目及答案
江苏数学竞赛初试题目及答案【题目一】已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(x) \)在区间[1, 3]上的最大值和最小值。
【答案一】首先,我们可以求出函数\( f(x) \)的导数\( f'(x) = 6x - 2 \)。
令\( f'(x) = 0 \),解得 \( x = \frac{1}{3} \)。
但这个点不在区间[1, 3]内,因此我们需要检查区间端点的函数值。
计算\( f(1) = 3(1)^2 - 2(1) + 1 = 2 \),\( f(3) = 3(3)^2 -2(3) + 1 = 22 \)。
因此,\( f(x) \)在区间[1, 3]上的最大值为22,最小值为2。
【题目二】若\( a \),\( b \),\( c \)是三角形的三边长,且满足\( a^2 +b^2 = c^2 \),求证:\( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \)是无理数。
【答案二】假设\( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \)是有理数,设\( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = k \),其中\( k \)是有理数。
则有\( a + b + c = k(abc) \)。
由于\( a^2 + b^2 =c^2 \),我们可以得到\( a^2 + b^2 - c^2 = 0 \)。
将\( a + b + c = k(abc) \)代入,我们可以得到一个关于\( a \),\( b \),\( c \)的二次方程,但这个方程没有整数解,因此\( k \)不能是有理数,即\( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \)是无理数。
【题目三】若\( \sin(2\theta) = \frac{3}{5} \),且\( \theta \)在第一象限,求\( \cos(2\theta) \)的值。
全国高中数学联赛江苏赛区试卷(8)含解析
江苏赛区初赛试题参考答案及评分标准一、选择题(本题满分30分,每小题6分)1.答:[B] 解 由柯西不等式ab y x n m ny mx =++≤+))(()(22222;或三角换元即可得到ab ny mx ≤+,当2an m ==,2b y x ==时,ab ny mx =+. 选B. 2.答:[D]解 取161=a ,把坐标代入检验,4116121=⎪⎭⎫ ⎝⎛ ,而2116141=⎪⎭⎫ ⎝⎛,∴公共点只可能是 点N . 选D. 3.答:[A]解 第一、二行后两个数分别为2.5,3与1.25,1.5;第三、四、五列中的5.0=x ,165=y ,163=z ,则1=++z y x . 选A. 4. 答:[B] 解 两个三角形的内角不能有直角;111C B A ∆的内角余弦都大于零,所以是锐角三角形;若222C B A ∆是锐角三角形,则不妨设cos 1A =sin 2A =cos ⎪⎭⎫⎝⎛-12A π, cos 1B =sin 2B =cos ⎪⎭⎫ ⎝⎛-22A π,cos 1C =sin 2C =cos ⎪⎭⎫⎝⎛-12C π.则 212A A -=π,212B B -=π,212C C -=π,即 )(23222111C B A C B A ++-=++π,矛盾. 选B.5.答: [D]解 任作a 的平面α,可以作无数个. 在b 上任取一点M ,过M 作α的垂线. b 与垂线确定的平面β垂直于α. 选D.二、填空题(本题满分50分,每小题10分) 6. 解 ∵2<x ,[]x 的值可取1,0,1,2--.当[x ]=2-,则02=x 无解; 当[x ]=1-,则12=x ,∴x =1-; 当[x ]=0,则22=x 无解; 当[x ]=1,则32=x ,∴3=x . 所以31或-=x .7. 解 考虑对立事件,216916513=⎪⎭⎫ ⎝⎛-=P .8. 解 由图,ABC ∆与OCB ∆的底边相同,高是5:1. 故面积比是5:1.9. 解 由圆锥曲线的定义,圆心可以是以(2,0)为焦点、2-=x 为准线的抛物线上的点;若切点是原点,则圆心在x 轴负半轴上.所以轨迹方程为)0(82>=x x y ,或)0(0<=x y .10. 解 切割化弦,已知等式即CB CB C A C A B A B A cos cos sin sin cos cos sin sin cos cos sin sin +=, 亦即C B A C B A cos )sin(sin sin sin +=,即C C B A 2sin cos sin sin =1,即1cos 2=c C ab .所以,122222=-+c c b a ,故3222=+cb a . 三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)11. 解 由题 1)1(2)(2+--=x x f , ……5分1)(≤∴x f ,11≤∴m,即1≥m ,[]n m x f ,)(在∴上单调减, m m m f 11)1(2)(2=+--=∴且nn n f 11)1(2)(2=+--=. ……10分m ∴,n 是方程xx x f 11)1(2)(2=+--=的两个解,方程即)122)(1(2---x x x =0,解方程,得解为1,231+,231-.n m <≤∴1,1=∴m ,231+=n . ……15分12. 证 (Ⅰ)设点A 的坐标为)sin ,cos (θθr r ,B 的坐标为)sin ,cos (θθ''''r r ,则r =,r ='A 在双曲线上,则19sin 4cos 222=⎪⎪⎭⎫ ⎝⎛-θθr .所以9sin 4cos 1222θθ-=r . …5分 由0=⋅得⊥,所以θθ22sin cos =',θθ'=22sin cos .同理,9cos 4sin 9sin 4cos 122222θθθθ-='-'='r ,3659141'11||||2222=-=+=+r r OB OA . ……10分=,所以==⎪⎭⎫⨯.1365914111=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-⨯=⎪⎪⎪⎭⎫⎝⎛+⨯. 于是,5362=OP . 即P 在以O 为圆心、556为半径的定圆上. ……15分 13.解 在平面M 中,过A 作DA 的垂线,交射线DB 于B 点;在平面N 中,过A 作DA 的垂线,交射线DC 于C 点.设DA=1,则βtan =AB ,βcos 1=DB ,γtan =AC ,γcos 1=DC ,…5分并且ϕ=∠BAC 就是二面角N l M --平面角. ……10分在ABC DBC ∆∆与中,利用余弦定理,可得等式ϕγβγβαγβγβcos tan tan 2tan tan cos cos cos 2cos 1cos 122222-+=-+=BC , 所以,αγβγβγβϕγβcos cos cos 2cos 1cos 1tan tan cos tan tan 22222+--+= =γβγβαcos cos )cos cos (cos 2-,……15分故得到γβγβαϕsin sin cos cos cos cos -=. ……20分14. 解(Ⅰ)不能. ……5分因为若每行的积都相等,则9个数的积是立方数. 但是 2×4×6×8×12×18×24×36×48=21+2+1+3+2+1+3+2+4×3121211+++++=219·38不是立方数,故不能.(Ⅱ)可以. ……15分 如右表表中每行、每列及对角线的积都是26·23. ……20分36 2 248 12 18 6724。
江苏省六合高级中学高中数学竞赛模拟试卷二
2006年江苏省六合高级中学高中数学竞赛模拟试卷二一、选择题:1.设a 、b 、c 为实数,0,024<++>+-c b a c b a ,则下列四个结论中正确的是 ( )(A )ac b ≤2(B )ac b >2(C )ac b >2且0>a (D )ac b >2且0<a2.在△ABC 中,若a BC AB A ===∠,2,450,则2=a 是△ABC 只有一解的 ( )(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分又不必要条件3.已知向量)1,sin 42cos 3(),1sin 22cos ,(-+-=-+=x x x x m ,定义函数b a x f ⋅=)(.若对任意的]2,0[π∈x ,不等式0)(>x f 恒成立,则m 的取值范围是 ( )(A )),81(+∞(B ))81,0[(C ))2,81((D )),2(+∞ 4.设E 、F 、G 分别是正四面体ABCD 的棱AB 、BC 、CD 的中点,则二面角C —FG —E 的大小是 ( )(A )36arcsin (B )33arccos 2+π(C )2arctan 2-π(D )22cot arc -π 5.把数列}12{+n 依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为 ( )(A )1992 (B )1990 (C )1873 (D )18916.设n i n x i ,,2,1},,,2,1{ =∈,满足2)1(1+=∑=n n x n i i ,!21n x x x n =⋅⋅⋅ ,使1x ,2x ,…,n x 一定是n ,,2,1 的一个排列的最大数n 是 ( )(A )4 (B )6 (C )8 (D )9二、填空题:7. 若实数x 、y 满足条件122=-y x ,则x y x212+的取值范围是___________________. 8. 对于给定的正整数4≥n ,等式423nm C C =成立,则所有的m 一定形如_____________.(用n 的组合数表示)9. 一个盒中有9个正品和3个废品,每次取一个产品,取出后不在放回,在取得正品前已取出的废品数ξ的数学期望ξE =_________________.10. 设点F 1、F 2分别为椭圆E 的左、右焦点,抛物线C 以F 1为顶点、以F 2为焦点。
江苏数学竞赛试题及答案
江苏数学竞赛试题及答案【试题一】题目:求证:对于任意正整数\( n \),\( 1^2 + 2^2 + 3^2 +\ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
【答案】证明:我们使用数学归纳法来证明这个等式。
1. 当\( n = 1 \)时,左边为\( 1^2 = 1 \),右边为\( \frac{1\cdot 2 \cdot 3}{6} = 1 \),等式成立。
2. 假设当\( n = k \)时等式成立,即\( 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k + 1)(2k + 1)}{6} \)。
3. 当\( n = k + 1 \)时,我们需要证明\( 1^2 + 2^2 + 3^2 +\ldots + k^2 + (k + 1)^2 = \frac{(k + 1)(k + 2)(2k + 3)}{6} \)。
4. 根据假设,将\( k \)的和代入,得到\( \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \)。
5. 简化上述表达式,我们得到\( \frac{(k + 1)(k + 2)(2k + 3)}{6} \),这正是我们需要证明的等式。
6. 因此,根据数学归纳法,对于任意正整数\( n \),等式成立。
【试题二】题目:已知函数\( f(x) = x^3 - 3x^2 + 2 \),求\( f(x) \)的极值。
【答案】解:首先求导得到\( f'(x) = 3x^2 - 6x \)。
令\( f'(x) = 0 \),解得\( x = 0 \)或\( x = 2 \)。
1. 当\( x < 0 \)或\( x > 2 \)时,\( f'(x) > 0 \),函数\( f(x) \)在此区间单调递增。
2. 当\( 0 < x < 2 \)时,\( f'(x) < 0 \),函数\( f(x) \)在此区间单调递减。
2021-2022年高中数学联赛江苏赛区初赛试题及答案
一、填空题(本题满分70分,每小题7分)1.方程的实数解为 .提示与答案:x <0无解; 当时,原方程变形为32x +3x -6=0,解得3x =2,x =log 32. 2.函数R 的单调减区间是 .提示与答案:与f (x )=y 2=1+|sin2x |的单调减区间相同, Z . 3.在△中,已知,,则= .提示与答案:216AB AC AB BC AB ⋅-⋅==,得. 4.函数在区间上的最大值是 ,最小值是 .提示与答案:极小值-4,端点函数值f (2)=0,f (0)=-2,最小值-4,最大值0.5.在直角坐标系中,已知圆心在原点、半径为的圆与△的边有公共点,其中、、,则的取值范围为 .提示与答案:画图观察,R 最小时圆与直线段AC 相切,R 最大时圆过点B .[855,10].6.设函数的定义域为R ,若与都是关于的奇函数,则函数在区间上至少有 个零点.提示与答案:f (2k -1)=0,k ∈Z . 又可作一个函数满足问题中的条件,且的一个零点恰为,k ∈Z . 所以至少有50个零点. 7.从正方体的条棱和条面对角线中选出条,使得其中任意两条线段所在的直线都是异面直线,则的最大值为 .提示与答案:不能有公共端点,最多4条,图上知4条可以.8.圆环形手镯上等距地镶嵌着颗小珍珠,每颗珍珠镀金、银两色中的一种.其中 镀金银的概率是 .提示与答案:穷举法,注意可翻转,有6种情况,2金2银有两种,概率为 13 .9.在三棱锥中,已知,ACD ADC BCD BDC ∠=∠=∠=∠ ,且.已知棱的长为,则此棱锥的体积为 .提示与答案:4面为全等的等腰三角形,由体积公式可求得三棱锥的体积为 144 .10.设复数列满足,,且.若对任意N * 都有,则的值是 . 提示与答案:由,恒成立,即()()2110n n a a x x a +++-=. 因为或,故,所以 .(第7题)二、解答题(本题满分80分,每小题20分)11.直角坐标系中,设、、是椭圆上的三点.若,证明:线段的中点在椭圆上.解:设A(x1,y1),B (x2,y2),则x124+y12=1,x224+y22=1.由,得M(35x1+45x2,35y1+45y2).因为M是椭圆C上一点,所以(35x1+45x2)24+(35y1+45y2)2=1,…………………6分即 (x124+y12)(35)2+(x224+y22)(45)2+2(35)(45)(x1x24+y1y2)=1,得 (35)2+(45)2+2(35)(45)(x1x24+y1y2)=1,故x1x24+y1y2=0.…………………14分又线段AB的中点的坐标为 (x1+x22,y1+y22),所以(x1+x22)22+2(y1+y22)2=12(x124+y12)+12(x224+y22)+x1x24+y1y2=1,从而线段AB的中点(x1+x22,y1+y22)在椭圆x22+2y2=1上.………………20分12.已知整数列满足,,前项依次成等差数列,从第项起依次成等比数列.(1) 求数列的通项公式;(2) 求出所有的正整数,使得1212m m m m m m a a a a a a ++++++=.解:(1) 设数列前6项的公差为d ,则a 5=-1+2d ,a 6=-1+3d ,d 为整数. 又a 5,a 6,a 7成等比数列,所以(3d -1)2=4(2d -1), 即9d 2-14d +5=0,得d=1. …………………6分 当n ≤6时,a n =n -4,由此a 5=1,a 6=2,数列从第5项起构成的等比数列的公比为2, 所以,当n ≥5时,a n =2n -5.故 a n =⎩⎪⎨⎪⎧n -4,n ≤4,2n -5, n ≥5. (10)分(2) 由(1)知,数列为:-3,-2,-1,0,1,2,4,8,16,… 当m =1时等式成立,即 -3-2-1=―6=(-3)(-2)(-1); 当m =3时等式成立,即 -1+0+1=0;当m =2、4时等式不成立; …………………15分当m ≥5时,a m a m +1a m +2 =23m -12, a m +a m +1+a m +2=2m -5(23-1)=7×2m -5, 7×2m -5≠23m -12,所以 a m +a m +1+a m +2≠a m a m +1a m +2 . 故所求 m = 1,或m =3. (20)分13.如图,圆内接五边形中,是外接圆的直径,,垂足.过点作平行于的直线,与直线、分别交于点、. 证明: (1) 点、、、共圆;(2) 四边形是矩形.证明:(1) 由HG ∥CE ,得∠BHF =∠BEC , 又同弧的圆周角 ∠BAF =∠BEC , ∴ ∠BAF =∠BHF ,∴ 点 A 、B 、F 、H 共圆;…………………8分(2) 由(1)的结论,得 ∠BHA =∠BFA , ∵ BE ⊥AD , ∴ BF ⊥AC ,又AD 是圆的直径,∴ CG ⊥AC , …………………14分A BC DE F H G由A、B、C、D共圆及A、B、F、H共圆,∴∠BFG =∠DAB =∠BCG,∴B、G、C、F共圆.∴∠BGC=∠AFB=900, ∴BG⊥GC,∴所以四边形BFCG是矩形.…………………20分14.求所有正整数,,使得与都是完全平方数.解:若x=y,则x2+3x是完全平方数.∵x2<x2+3x<x2+4x+4= (x+2)2,∴x2+3x= (x+1)2,∴x=y =1. (5)分若x>y,则x2<x2+3y<x2+3x<x2+4x+4= (x+2)2.∵x2+3y是完全平方数,∴x2+3y= (x+1)2,得3y =2x+1,由此可知y是奇数,设y =2k+1,则x=3k+1,k是正整数.又y2+3x= 4k2+4k+1+9k+3=4k2+13k+4是完全平方数,且(2k+2)2=4k2+8k+4<4k2+13k+4<4k2+16k+16= (2k+4)2,∴y2+3x=4k2+13k+4=(2k+3)2,得k=5,从而求得x=16,y=11. (15)分若x<y,同x>y情形可求得x=11,y=16.综上所述,(x,y)= (1,1), (11,16), (16,11).…………………20分28311 6E97 溗ba 20443 4FDB 俛19997 4E1D 丝321614 546E 呮24293 5EE5 廥21336 5358 単A36710 8F66 车23038 59FE 姾32245 7DF5 緵。
江苏省近四年高中数学竞赛初赛试题及答案讲解
2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分) 1.已知sin αcos β=1,则cos(α+β)= .2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = .4.已知3x +19x -1=13-31-x,则实数x = .5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 二、解答题(本大题共4小题,每小题20分,共80分) 11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .EBCD AB CDAPQ R13.若不等式x+y≤k2x+y对于任意正实数x,y成立,求k的取值范围.14.⑴写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分) 1.已知sin αcos β=1,则cos(α+β)= . 填0.解:由于|sin α|≤1,|cos β|≤1,现sin αcos β=1,故sin α=1,cos β=1或sin α=-1,cos β=-1, ∴ α=2kπ+π2,β=2lπ或α=2kπ-π2,β=2lπ+π⇒α+β=2(k +l )π+π2(k ,l ∈Z).∴ cos(α+β)=0.2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .填11.解:设公差为d ,则得55=-5×11+12×11×10d ⇒55d =110⇒d =2.a k =55-4×10=15=-5+2(k -1)⇒k =11.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = . 填-1+52.解:由(2b )2=2c ×2a ⇒a 2-c 2=ac ⇒e 2+e -1=0⇒e =-1+52. 4.已知3x +19x -1=13-31-x ,则实数x = .填1.解:即13x -1=3x3(3x -1)⇒32x -4×3x +3=0⇒3x =1(舍去),3x =3⇒x =1.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .填14. 解:A 、B 到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高.故其比值等于这两个三棱锥的体积比.V APQR =12V APQD =12×13V APCD =12×13×13V ABCD =118V ABCD ;BCDAPQ R又,S BPQ =S BCD -S BDQ -S CPQ =(1-13-23×13)S BCD =49S BCD ,V RBPQ =49V RBCD =12×49V ABCD =418V ABCD .∴ A 、B 到平面PQR 的距离的比=1∶4. 又,可以求出平面PQR 与AB 的交点来求此比值:在面BCD 内,延长PQ 、BD 交于点M ,则M 为面PQR 与棱BD 的交点. 由Menelaus 定理知,BM MD ·DQ QC ·CP PB =1,而DQ QC =12,CP PB =12,故BMMD =4.在面ABD 内,作射线MR 交AB 于点N ,则N 为面PQR 与AB 的交点. 由Menelaus 定理知,BM MD ·DR RA ·AN NB =1,而BM MD =4,DR RA =1,故AN NB =14.∴ A 、B 到平面PQR 的距离的比=1∶4.6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 . 填[3,4].解:定义域(0,4].在定义域内f (x )单调增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4]. 7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.填78000.解:设净水器的长、高分别为x ,y cm ,则 xy =300,V =30(20+x )(60+y )=30(1200+60x +20y +xy ) ≥30(1200+260x ×20y +300)=30(1500+1200)=30×2700.∴ 至少可以存水78000cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 填-252.解:设|→AO |=|→BO |=|→OC |=R .则RRBCA OR M NR Q PA DCB→BC ·→AO =(→BO +→OC )·→AO =→BO ·→AO +→OC ·→AO =R 2cos(π-2C )+R 2cos2B=R 2(2sin 2C -2sin 2B )=12(2R sin B )2-12(2R sin C )2=12(122-132)=-252.9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .填2008+2.解:若a n +1≠0,则a n =2-2a n +1,故a 2008=2-2,a 2007=2-22-2=-2,a 2006=2+2,a 2005=2.一般的,若a n ≠0,1,2,则a n =2-2a n +1,则a n -1=a n +1-2a n +1-1,a n -2=22-a n +1,a n -3=a n +1,故a n -4=a n .于是,Σk =12009a n=502(a 1+a 2+a 3+a 4)+a2009=502(a 2005+a 2006+a 2007+a 2008)+a 2009=2008+2.10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 填0,3-12,3-1. 解:若a 为负整数,则a 2>0,2b (a +b )<0,不可能,故a ≥0.于是a 2=2b (a +b )<2(a +1)⇒a 2-2a -2<0⇒0≤a <1+3⇒a =0,1,2. a =0时,b =0;a =1时,2b 2+2b -1=0⇒b =3-12; a =2时,b 2+2b -2=0⇒b =3-1.说明:本题也可以这样说:求实数x ,使[x ]2=2{x }x .二、解答题(本大题共4小题,每小题20分,共80分) 11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.解:取方程组⎩⎨⎧4x 2+9y 2=36,x =2y -4.代入得,25y 2-64y +28=0.此方程的解为y =2,y =1425.即得B (0,2),A (-7225,1425),又左焦点F 1(-5,0).连OA 把四边形AFOB 分成两个三角形.CFy xOBA得,S =12×2×7225+12×5×1425=125(72+75).也可以这样计算面积:直线与x 轴交于点C (-4,0).所求面积=12×4×2-12×(4-5)×1425=125(72+75).也可以这样计算面积:所求面积=12(0×2-0×0+0×1425-(-7225)×2+(-7225)×0-(-5)×1425+(-5)×0-0×0)=12(14425+14255)=125(72+75). 12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .解:AD AC =ACAB ⇒△ACD ∽△ABC ⇒∠ABC =∠ACD =∠BCE .∴ CE =BE =12.AE =AB -BE =16.∴ cos A =AC 2+AE 2-CE 22AC ·AE =142+162-1222·14·16=142+28·42·14·16=1116.∴ BC 2=AC 2+AB 2-2AC ·AB cos A =142+282-2·14·28·1116=72·9⇒BC =21.13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.解法一:显然k >0.(x +y )2≤k 2(2x +y )⇒(2k 2-1)x -2xy +(k 2-1)y ≥0对于x ,y >0恒成立.令t =xy>0,则得f (t )=(2k 2-1)t 2-2t +(k 2-1)≥0对一切t >0恒成立. 当2k 2-1≤0时,不等式不能恒成立,故2k 2-1>0.此时当t =12k 2-1时,f (t )取得最小值12k 2-1-22k 2-1+k 2-1=2k 4-3k 22k 2-1=k 2(2k 2-3)2k 2-1.当2k 2-1>0且2k 2-3≥0,即k ≥62时,不等式恒成立,且当x =4y >0时等号成立. ∴ k ∈[62,+∞). 解法二:显然k >0,故k 2≥(x +y )22x +y =x +2xy +y2x +y .令t =x y >0,则k 2≥t 2+2t +12t 2+1=12(1+4t +12t 2+1). 令u =4t +1>1,则t =u -14.只要求s (u )=8uu 2-2u +9的最大值.EBCDAs (u )=8u +9u-2≤82u ·9u -2=2,于是,12(1+4t +12t 2+1)≤12(1+2)=32.∴k 2≥32,即k ≥62时,不等式恒成立(当x =4y >0时等号成立).又:令s (t )=4t +12t 2+1,则s '(t )=8t 2+4-4t (4t +1)(2t 2+1)2=-8t 2-4t +4(2t 2+1)2,t >0时有驻点t =12.且在0<t <12时,s '(t )>0,在t >12时,s '(t )<0,即s (t )在t =12时取得最大值2,此时有k 2≥12(1+s (12))=32.解法三:由Cauchy 不等式,(x +y )2≤(12+1)(2x +y ).即(x +y )≤622x +y 对一切正实数x ,y 成立. 当k <62时,取x =14,y =1,有x +y =32,而k 2x +y =k 62<62×62=32.即不等式不能恒成立.而当k ≥62时,由于对一切正实数x ,y ,都有x +y ≤622x +y ≤k 2x +y ,故不等式恒成立.∴ k ∈[62,+∞). 14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.解:对于任意n ∈N*,n 2≡0,1(mod 4).设a ,b 是两个不同的自然数,①若a ≡0(mod 4)或b ≡0(mod 4),或a ≡b ≡2(mod 4),均有ab ≡0(mod 4),此时,ab +10≡2(mod 4),故ab +10不是完全平方数;② 若a ≡b ≡1(mod 4),或a ≡b ≡3(mod 4),则ab ≡1(mod 4),此时ab +10≡3(mod 4),故ab +10不是完全平方数.由此知,ab +10是完全平方数的必要不充分条件是a ≡/b (mod 4)且a 与b 均不能被4整除. ⑴ 由上可知,满足要求的三个自然数是可以存在的,例如取a =2,b =3,c =13,则2×3+10=42,2×13+10=62,3×13+10=72.即2,3,13是满足题意的一组自然数.⑵ 由上证可知不存在满足要求的四个不同自然数.这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加10后不是完全平方数.故证.2010年全国高中数学联赛江苏赛区·初赛一、填空题(本题满分70分,每小题7分) 1.方程9135x x +-=的实数解为 .2.函数sin cos y x x =+(x ∈R )的单调减区间是 .3.在△ABC 中,已知4AB AC ⋅=,12AB BC ⋅=-,则AB = . 4.函数()()()221f x x x =-+在区间[]0,2上的最大值是 ,最小值是 . 5.在直角坐标系xOy 中,已知圆心在原点O 、半径为R 的圆与△ABC 的边有公共点,其中()4,0A =、()6,8B =、()2,4C =,则R 的取值范围为 . 6.设函数()f x 的定义域为R ,若()1f x +与()1f x -都是关于x 的奇函数,则函数()y f x =在区间[]0,100上至少有 个零点.7.从正方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为 .8.圆环形手镯上等距地镶嵌着4颗小珍珠,每颗珍珠镀金、银两色中的一种.其中镀2金2银的概率是 .9.在三棱锥A BCD -中,已知ACB CBD ∠=∠,ACD ADC BCD BDC ∠=∠=∠=∠θ=,且10cos 10θ=.已知棱AB 的长为62,则此棱锥的体积为 . 10.设复数列{}n x 满足1n x a ≠-,0,且11nn n a x x x +=+.若对任意n ∈N * 都有3n n x x +=,则a 的值是 .(第7题)二、解答题(本题满分80分,每小题20分)11.直角坐标系xOy 中,设A 、B 、M 是椭圆22:14x C y +=上的三点.若3455OM OA OB =+,证明:AB 的中点在椭圆22212x y +=上. 12.已知整数列{}n a 满足31a =-,74a =,前6项依次成等差数列,从第5项起依次成等比数列.(1) 求数列{}n a 的通项公式;(2) 求出所有的正整数m ,使得1212m m m m m m a a a a a a ++++++=.13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥,垂足H .过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形.14.求所有正整数x ,y ,使得23x y +与23y x +都是完全平方数.参考答案1、x <0无解; 当0x ≥时,原方程变形为32x +3x -6=0,解得3x =2,x =log 32.2、与f (x )=y 2=1+|sin2x |的单调减区间相同, [,],2422k k k ππππ++∈Z . 3、216AB AC AB BC AB ⋅-⋅==,得4AB =.4、极小值-4,端点函数值f (2)=0,f (0)=-2,最小值-4,最大值0.5、画图观察,R 最小时圆与直线段AC 相切,R 最大时圆过点B .[855,10].6、f (2k -1)=0,k ∈Z . 又可作一个函数()f x 满足问题中的条件,且()f x 的一个零点恰为21x k =-,k ∈Z . 所以至少有50个零点. 7、不能有公共端点,最多4条,图上知4条可以.8、穷举法,注意可翻转,有6种情况,2金2银有两种,概率为 13 .9、4面为全等的等腰三角形,由体积公式可求得三棱锥的体积为 144 .10、由11n n n a x x x +=+,2321n n n a x x x +++==+()21111n n a x a x ++=++()3211n n n a x x a a x =+++ 恒成立,即()()2110n n a a x x a +++-=. 因为1n x a ≠-或0,故210a a ++=,所以1322a i =-±.11、解:设A (x 1,y 1),B (x 2,y 2),则 x 124+y 12=1,x 224+y 22=1.由3455OM OA OB =+,得 M (35x 1+45x 2,35y 1+45y 2). 因为M 是椭圆C 上一点,所以(35x 1+45x 2)24+(35y 1+45y 2)2=1, …………………6分即 (x 124+y 12)(35)2+(x 224+y 22)(45)2+2(35)(45)(x 1x 24+y 1y 2)=1,得 (35)2+(45)2+2(35)(45)(x 1x 24+y 1y 2)=1,故x 1x 24+y 1y 2=0. …………………14分 又线段AB 的中点的坐标为 (x 1+x 22,y 1+y 22),所以 (x 1+x 22)22+2(y 1+y 22)2=12(x 124+y 12)+12(x 224+y 22)+x 1x 24+y 1y 2=1,从而线段AB 的中点(x 1+x 22,y 1+y 22)在椭圆x 22+2y 2=1上. ………………20分12、解:(1) 设数列前6项的公差为d ,则a 5=-1+2d ,a 6=-1+3d ,d 为整数. 又a 5,a 6,a 7成等比数列,所以(3d -1)2=4(2d -1),即 9d 2-14d +5=0,得d =1. …………………6分 当n ≤6时,a n =n -4,由此a 5=1,a 6=2,数列从第5项起构成的等比数列的公比为2, 所以,当n ≥5时,a n =2n -5.故 a n =⎩⎪⎨⎪⎧n -4,n ≤4,2n -5, n ≥5.…………………10分(2) 由(1)知,数列{}n a 为:-3,-2,-1,0,1,2,4,8,16,… 当m =1时等式成立,即 -3-2-1=―6=(-3)(-2)(-1); 当m =3时等式成立,即 -1+0+1=0;当m =2、4时等式不成立; …………………15分 当m ≥5时,a m a m +1a m +2 =23m -12, a m +a m +1+a m +2=2m -5(23-1)=7×2m -5,7×2m -5≠23m -12,所以 a m +a m +1+a m +2≠a m a m +1a m +2 . 故所求 m = 1,或m =3. …………………20分 13、证明:(1) 由HG ∥CE ,得∠BHF =∠BEC , 又同弧的圆周角 ∠BAF =∠BEC , ∴ ∠BAF =∠BHF ,∴ 点 A 、B 、F 、H 共圆;…………………8分(2) 由(1)的结论,得 ∠BHA =∠BFA , ∵ BE ⊥AD , ∴ BF ⊥AC ,又AD 是圆的直径,∴ CG ⊥AC , …………………14分 由A 、B 、C 、D 共圆及A 、B 、F 、H 共圆,∴∠BFG =∠DAB =∠BCG , ∴ B 、G 、C 、F 共圆.ABCDEFH G∴∠BGC=∠AFB=900, ∴BG⊥GC,∴所以四边形BFCG是矩形.…………………20分14、解:若x=y,则x2+3x是完全平方数.∵x2<x2+3x<x2+4x+4= (x+2)2,∴x2+3x= (x+1)2,∴x=y =1. ………………5分若x>y,则x2<x2+3y<x2+3x<x2+4x+4= (x+2)2.∵x2+3y是完全平方数,∴x2+3y= (x+1)2,得3y =2x+1,由此可知y是奇数,设y =2k+1,则x=3k+1,k是正整数.又y2+3x= 4k2+4k+1+9k+3=4k2+13k+4是完全平方数,且(2k+2)2=4k2+8k+4<4k2+13k+4<4k2+16k+16= (2k+4)2,∴y2+3x=4k2+13k+4=(2k+3)2,得k=5,从而求得x=16,y=11. …………………15分若x<y,同x>y情形可求得x=11,y=16.综上所述,(x,y)= (1,1), (11,16), (16,11).…………………20分2011年全国高中数学联赛江苏赛区初赛题一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上) 1. 复数44(1i)(1i)++-= .2. 已知直线10x my -+=是圆22:4450C x y x y +-+-=的一条对称轴,则实数m = .3. 某班共有30名学生,若随机抽查两位学生的作业,则班长或团支书的作业被抽中的概率是 (结果用最简分数表示).4. 已知1cos45θ=,则44sin cos θθ+= .5. 已知向量a ,b 满足π2,,3==<>=a b a b ,则以向量2+a b 与3-a b 表示的有向线段 为邻边的平行四边形的面积为 .6. 设数列{a n }的前n 项和为S n .若{S n }是首项及公比都为2的等比数列,则数列{a n 3}的前n 项和等于 .7. 设函数2()2f x x =-.若f (a )=f (b ),且0<a <b ,则ab 的取值范围是 . 8. 设f (m )为数列{a n }中小于m 的项的个数,其中2,n a n n =∈N *,则[(2011)]f f = .9. 一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是 . 10.已知m 是正整数,且方程210100x m x m ---+=有整数解,则m 所有可能的值是 .二、解答题(本大题共4小题,每小题20分,共80分)11.已知圆221x y +=与抛物线2y x h =+有公共点,求实数h 的取值范围.AB CP12.设2()(,)f x x bx c b c =++∈R .若2x ≥时,()0f x ≥,且()f x 在区间(]2,3上的最大值为1,求22b c +的最大值和最小值.13.如图,P 是ABC 内一点.(1)若P 是ABC 的内心,证明:1902BPC BAC ∠=+∠;(2)若1902BPC BAC ∠=+∠且1902APC ABC ∠=+∠,证明:P 是ABC 的内心.14.已知α是实数,且存在正整数n 0,使得0n α+为正有理数.证明:存在无穷多个正整数n ,使得n α+为有理数.2011年全国高中数学联赛江苏赛区初赛题 答案及点评一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上) 1. 复数44(1i)(1i)++-= . 答案:-8基础题,送分题,高考难度2. 已知直线10x my -+=是圆22:4450C x y x y +-+-=的一条对称轴,则实数m = .答案:32-基础题,送分题,高考难度3. 某班共有30名学生,若随机抽查两位学生的作业,则班长或团支书的作业被抽中的概率是 (结果用最简分数表示). 答案:19145基础题,送分题,高考难度,但需要认真审题,否则很容易有错4. 已知1cos45θ=,则44sin cos θθ+= .答案:45计算量挺大的,要注重计算的方法,对于打酱油的同学有一定难度5. 已知向量a ,b 满足π2,,3==<>=a b a b ,则以向量2+a b 与3-a b 表示的有向线段为邻边的平行四边形的面积为 . 答案:103可以用特殊法,把向量放在直角坐标系中,很容易可以得出答案6. 设数列{a n }的前n 项和为S n .若{S n }是首项及公比都为2的等比数列,则数列{a n 3}的前n 项和等于 . 答案:1(848)7n +高考难度级别,基础好的同学可以做出来7. 设函数2()2f x x =-.若f (a )=f (b ),且0<a <b ,则ab 的取值范围是 . 答案:(0,2)这是一道高考题8. 设f (m )为数列{a n }中小于m 的项的个数,其中2,n a n n =∈N *,则[(2011)]f f = .答案:6这也是一道高考题9. 一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是 . 答案:4 3还是一道高考题10.已知m 是正整数,且方程210100x m x m ---+=有整数解,则m 所有可能的值 是 . 答案:3,14,30这是2011年苏州市一模的第十四题。
全国高中数学联赛江苏赛区试卷(9)含解析
全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)1. 已知函数2sin y x =,则 答:[ ](A )有最小正周期2π (B )有最小正周期π(C )有最小正周期2π (D )无最小周期 2. 关于x 的不等式22200x ax a --<任意两个解的差不超过9,则a 的最大值与最小值的和是 答:[ ](A ) 2 (B ) 1 (C ) 0 (D ) 1-3. 已知向量a 、b ,设AB =a 2+b ,5BC =-a 6+b ,7CD =a 2-b ,则一定共线的三点是 答:[ ](A ) A 、B 、D (B ) A 、B 、C(C ) B 、C 、D (D ) A 、C 、D4. 设α、β、γ为平面,m 、n 为直线,则m β⊥的一个充分条件是 答:[ ](A )αβ⊥,n αβ=,m n ⊥ (B )m αγ=,αγ⊥,βγ⊥(C )αβ⊥,βγ⊥,m α⊥ (D )n α⊥,n β⊥,m α⊥5. 若m 、{}22101010n x x a a a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为 答:[ ](A )60个 (B )70个 (C )90个 (D )120个6. 已知()122007122007f x x x x x x x =+++++++-+-++-(x ∈R ), 且2(32)(1),f a a f a -+=- 则a 的值有 答:[ ](A )2个 (B )3个 (C )4个 (D )无数个二、填空题(本题满分54分,每小题9分)7. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 .8. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则a b +等于 .9. 已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 .10.30x y -+=的离心率是 .11. 在ABC ∆中,已知tan B =,sin 3C =,AC =ABC ∆的面积为 12. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有且仅有一个成立,则实数a 的取值范围是 .三、解答题(本题满分60分,共4小题,每题各15分)13. 设不等式组 00x y x y +>⎧⎨-<⎩, 表示的平面区域为D . 区域D 内的动点P 到直线0x y += 和直线0x y -=的距离之积为2. 记点P 的轨迹为曲线C .过点F 的直线l 与 曲线C 交于A 、B 两点. 若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率.14. 如图,斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离.15. 已知数列{}n a 中,11a =,33n n a a +≤+,22n n a a +≥+. 求2007a .16. 已知平面上10个圆,任意两个都相交. 是否存在直线l ,与每个圆都有公共点?证明你的结论.江苏省高中数学联赛初赛试题参考答案及评分标准 B 1B A 1C 1 A C一、选择题(本题满分36分,每小题6分)1.已知函数2sin y x =,则( B ).(A ) 有最小正周期为π2 (B ) 有最小正周期为π(C ) 有最小正周期为2π (D ) 无最小正周期 解:)2cos 1(21sin 2x x y -==,则最小正周期π=T . 故选(B ). 2.关于x 的不等式02022<--a ax x 任意两个解的差不超过9,则a 的最大值与最小值 的和是( C ).(A ) 2 (B ) 1 (C ) 0 (D ) 1-解:方程02022=--a ax x 的两根是14x a =-,25x a =,则由关于x 的不等式 22200x ax a --<任意两个解的差不超过9,得9|9|||21≤=-a x x ,即11≤≤-a . 故选(C ).3. 已知向量a 、b ,设AB =a 2+b ,5BC =-a 6+b ,7CD =a 2-b ,则一定共线 的三点是( A ).(A )A 、B 、D (B )A 、B 、C (C )B 、C 、D (D )A 、C 、D解:2BD BC CD =+=a 4+b 2AB =,所以A 、B 、D 三点共线. 故选(A ).4.设α、β、γ为平面,m 、n 为直线,则m β⊥的一个充分条件是( D ).(A )αβ⊥,n αβ=,m n ⊥ (B )m αγ=,αγ⊥,βγ⊥(C )αβ⊥,βγ⊥,m α⊥ (D )n α⊥,n β⊥,m α⊥解:(A )选项缺少条件m α⊂;(B )选项当//αβ,βγ⊥时,//m β;(C )选项当 α、β、γ两两垂直(看着你现在所在房间的天花板上的墙角),m βγ=时,m β⊂;(D )选项同时垂直于同一条直线的两个平面平行.本选项为真命题. 故选(D ).5. 若m 、{}22101010n x x a a a ∈=⨯+⨯+,其中{}1234567i a ∈,,,,,,,012i =,,,并且 636m n +=,则实数对(,)m n 表示平面上不同点的个数为( C )(A )60个 (B )70个 (C )90个 (D )120个解:由6514233=+=+=+及题设知,个位数字的选择有5种. 因为321=+= 7610=+-,故(1) 由321=+知,首位数字的可能选择有2510⨯=种;(2) 由37610=+-及54123=+=+知,首位数字的可能选择有248⨯=种.于是,符合题设的不同点的个数为5(108)90⨯+=种. 故选(C ).6.已知()122007122007f x x x x x x x =+++++++-+-++-(x ∈R ), 且2(32)(1),f a a f a -+=- 则a 的值有( D ).(A )2个 (B )3个 (C )4个 (D )无数个解:由题设知()f x 为偶函数,则考虑在11≤≤-x 时,恒有()2(1232007)20082007f x =⨯++++=⨯.所以当21321a a -≤-+≤,且111a -≤-≤时,恒有2(32)(1)f a a fa -+=-.由于不等式21321a a -≤-+≤的解集为3322a ≤≤ 111≤-≤-a 的解集为20≤≤a .因此当2253≤≤-a 时,恒有 2(32)(1)f a a f a -+=-. 故选(D ).二、填空题(本题满分54分,每小题9分) 7.设n S 为等差数列{}n a 的前n 项和,若105=S ,510-=S ,则公差为 1-=d . 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d . 8. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a ab b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩, 解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4. 9.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以 ()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.10.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即= 2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.11.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=.解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC C AB B⋅==. 因为︒>60322arcsin ,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=±.故sin 2ABC AC AB S A ∆⋅==. 12. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a . 三、解答题(本题满分60分,每小题15分)13. 设不等式组 00x y x y +>⎧⎨-<⎩, 表示的平面区域为D . 区域D 内的动点P 到直线0x y +=和直线0x y -=的距离之积为2. 记点P 的轨迹为曲线C .过点F 的直线 l 与曲线C 交于A 、B 两点. 若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率. 解:由题意可知,平面区域D 如图阴影所示.设动点为(,)P x y2=,即 224x y -=.由P D ∈知0x y +>,x -y <0,即x 2-y 2<0.所以y 2-x 2=4(y >0),即曲线C 的方程为 y 24-x 24=设11(,)A x y ,22(,)B x y ,则以线段AB 为直径的圆的圆心为1212()22x x y y Q ++,. 因为以线段AB 为直径的圆L 与y 轴相切,所以半径 12122x x r AB +==,即 12AB x x =+. ① 因为直线AB 过点F (22,0), 当AB ⊥ x 轴时,不合题意.所以设直线AB 的方程为y =k (x -22). 代入双曲线方程y 24-x 24=1(y >0)得, k 2(x -22)2-x 2=4,即(k 2-1)x 2-42k 2x +(8k 2-4)=0.因为直线与双曲线交于A ,B 两点, 所以k ≠±1.所以x 1+x 2=42k 2k 2-1,x 1x 2=8k 2-4k 2-1. 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)[⎝ ⎛⎭⎪⎫42k 2k 2-12-4⋅8k 2-4k 2-1]=|x 1+x 2|=|42k 2k 2-1|, 化简得:k 4+2k 2-1=0, 解得k 2=2-1(k 2=-2-1不合题意,舍去). 由△=(42k 2)2-4(k 2-1) (8k 2-4) =3k 2-1>0,又由于y >0,所以-1<k <- 33.所以k =-2-114. 如图,斜三棱柱111ABC A B C -中,面11AAC C 是菱形,160ACC ∠=︒,侧面11ABB A ⊥11AAC C ,11A B AB AC ===.求证:(1)1AA ⊥1BC ;(2)求点1A 到平面ABC 的距离.B 1 B A 1C 1A C证:(1)设1AA 中点为D ,连C 、D .因为AB B A =1,所以1AA BD ⊥.因为面C C AA A ABB 1111⊥,所以⊥BD 面C C AA 11.又1ACC ∆为正三角形,111A C AC =,所以 11AA D C ⊥. 从而11AA BC ⊥.(2) 由(1),有1BD C D ⊥,11BC CC ⊥,1CC ⊥面1C DB .设1A 到面ABC 的 距离为h ,则1113ABC B CAC B CDC hS V V ∆--==. 因为11113C C DB C DB V CC S -∆=⨯, 所以1C DBABC S h S ∆∆=.又 1C D BD =,且2211==⨯=∆BD BD D C S DB C 设ABC ∆的高为AE ,则2512312221212=+=+=+=BD CC BC BC , 8325411=⋅-=AE , 41583252=⋅=∆ABC S . 于是有 515153==h ,即1A 到平面ABC 的距离为515. ………………15分 15.已知数列{}n a 中,11a =,33n n a a +≤+,22n n a a +≥+. 求2007a .解:由题设,22n n a a +≥+,则2007200520031222210032007a a a a ≥+≥+⨯≥≥+⨯=.由22n n a a +≥+,得22n n a a +≤-,则3223231(1)n n n n a a a a n +++≤+≤-+=+≥. 于是 200720062005200219991123123212a a a a a ≤+≤+⨯≤++⨯≤+⨯+⨯136********a ≤≤+⨯+⨯=,所以a 2007=2007. 易知数列11a =,22a =,,n a n = 符合本题要求. 注意:猜得答案n a n =或20072007a =,给2分.16.已知平面上10个圆,任意两个都相交.是否存在直线l ,与每个圆都有公共点?证明你的结论.解:存在直线l ,与每个圆都有公共点.证明如下:如图,先作直线0l ,设第i 个圆在直线0l 上的正投影是线段i i A B ,其中i A 、i B 分别是线段的左(第14题) A 1 A k A 2 B 1B 2 B m右端点.10个圆有10个投影线段,有10个左端点,有10个右端点.因为任意两个圆都相交,所以任意两条投影线段都有重叠的部分,设k A 是最右边的左端点,则所有右端点都在k A 的右边,否则必有两条投影线段无重叠部分,与对应的两个圆相交矛盾.再设m B 是最左边的右端点,同理所有左端点都在m B 的左边. k A 与m B 不重合,线段 k m A B 是任意一条投影线段的一部分,过线段k m A B 上某一点作直线0l 的垂线l ,则l 与10 个圆都相交.。
江苏高一高中数学竞赛测试带答案解析
江苏高一高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.____________.2.已知,,映射满足.则这样的映射有____________个.3.设函数,(其中表示不超过的最大整数),则函数的值域为____________.4.已知,是实系数一元二次方程的两个虚根,且,则____________.5.已知数列满足,,则的最小值为____________.6.从椭圆外一点作椭圆的两条切线和,若,则点轨迹方程为____________.7.已知圆,抛物线,设直线与抛物线相交于、两点,与圆相切于线段的中点,如果这样的直线恰有4条,则的取值范围是____________.8.函数的定义域和值域为,的导函数为,且满足,则的范围是____________.9.已知函数,若存在非零实数使得,则的最小值为____________.10.集合中有____________对相邻的自然数,它们相加时将不出现进位的情形.二、解答题1.求的值.2.如图,圆和圆相交于点,半径、半径所在直线分别与圆、圆相交于点,过点作的平行线分别与圆、圆相交于点.证明:.3.设点,是正三角形,且点在曲线上.(1)证明:点关于直线对称;(2)求的周长.4.设是正数数列,,且.求证:.江苏高一高中数学竞赛测试答案及解析一、填空题1.____________.【答案】【解析】2.已知,,映射满足.则这样的映射有____________个.【答案】35【解析】对应同一个数:有5种;对应不同两个数:有种;对应不同三个数:有种,所以共35种3.设函数,(其中表示不超过的最大整数),则函数的值域为____________.【答案】【解析】当时,=当时,=所以值域为4.已知,是实系数一元二次方程的两个虚根,且,则____________.【答案】【解析】由题意可设,由得所以5.已知数列满足,,则的最小值为____________.【答案】【解析】点睛:在利用叠加法求项时,一定要注意使用转化思想.在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用基本不等式求最值时注意数列定义域,明确等于号是否取到.6.从椭圆外一点作椭圆的两条切线和,若,则点轨迹方程为____________.【答案】【解析】设点为,则方程为,与联立方程组得,所以,由题意得的两根乘积为-1,所以,当的斜率不存在时也满足,因此点轨迹方程为7.已知圆,抛物线,设直线与抛物线相交于、两点,与圆相切于线段的中点,如果这样的直线恰有4条,则的取值范围是____________.【答案】【解析】设直线方程 ,与抛物线方程联立得中点当时,显然有两条直线满足题意,因此时,还有两条直线满足题意,即点睛:解析几何范围问题,一般解决方法为设参数,运用推理,将该问题涉及的几何式转化为代数式或三角问题,然后直接推理、计算,并在计算推理的过程中列不等关系,从而得到取值范围.8.函数的定义域和值域为,的导函数为,且满足,则的范围是____________.【答案】【解析】令,则即的范围是点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等9.已知函数,若存在非零实数使得,则的最小值为____________.【答案】【解析】由题意得即因此点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.集合中有____________对相邻的自然数,它们相加时将不出现进位的情形.【答案】167【解析】考虑从1000到1999,这些数中,个位为0、1、2、3、4且十位为0、1、2、3、4且百位为0、1、2、3、4时不发生进位,否则会发生进位.还有,末位为9、99、999时,也不发生进位.因此从1000到1999(实际是2000,即最后一对是【1999、2000】)中,共有:5×5×5 + 5×5 + 5 + 1= 156对考虑从2000到2017,这些数中,有5+6=11对,所以共有156+11=167对二、解答题1.求的值.【答案】【解析】解:2.如图,圆和圆相交于点,半径、半径所在直线分别与圆、圆相交于点,过点作的平行线分别与圆、圆相交于点.证明:.【答案】见解析【解析】试题分析:根据平角得三点共线,根据同弦所对角相等得四点共圆.根据四点共圆性质得,即得,同理可得,根据等量性质得.试题解析:解:延长、分别与圆、圆相交于点,连结.则,所以三点共线.又,于是四点共圆.故,从而,因此,同理.所以.3.设点,是正三角形,且点在曲线上.(1)证明:点关于直线对称;(2)求的周长.【答案】(1)见解析(2)的周长为.【解析】(1)即证,由,可化简得证(2)设,则.由化简得,其中,解得,反代即得,的周长为.试题解析:(1)证明:设上一点为,则其与点的距离满足.由,知,化简得,所以,,点关于直线对称.(2)解:设,则.则,而,令,由是正三角形有得,解得或(舍去),所以,的周长为.4.设是正数数列,,且.求证:.【答案】见解析【解析】放缩证明:先证,再证.前面用数学归纳法证明,后面用导数求证,再令,则有.由裂项相消法求和可得结论试题解析:下面用数学归纳法证明:当,时,,①当时,,上述结论成立;②设时,成立,则当时所以当时,结论也成立.综合①②得,对任意的,都有.当时,;当时,.下面证明:,即证明.设函数,则,所以在上是增函数,所以恒成立,即.令,则有.故所以.综上可得.。
江苏高中数学竞赛试题
江苏高中数学竞赛试题江苏高中数学竞赛是一项旨在选拔和培养具有数学天赋和潜力的高中生的竞赛活动。
以下是一份模拟的江苏高中数学竞赛试题,包含多种题型,以供参考:一、选择题(每题5分,共30分)1. 下列哪个选项不是实数集R的子集?A. 有理数集QB. 整数集ZC. 无理数集D. 复数集C2. 如果函数\( f(x) = 2x^2 - 3x + 1 \),那么\( f(-1) \)的值是:A. 0B. 4C. 6D. 83. 已知等差数列的首项为1,公差为2,求第10项的值:A. 19B. 20C. 21D. 224. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系:A. 相切B. 相交C. 相离D. 无法确定5. 已知三角形ABC的三边长分别为3, 4, 5,判断三角形的形状:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形6. 函数\( y = \sin(x) + \cos(x) \)的值域是:A. \( (-1, 1) \)B. \( (-\sqrt{2}, \sqrt{2}) \)C. \( (-2, 2) \)D. \( (-1, \sqrt{2}) \)二、填空题(每题5分,共20分)7. 已知\( \cos(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。
8. 一个等比数列的前三项和为34,第二项是第一项的两倍,求这个等比数列的首项。
9. 将圆心在原点,半径为1的圆,沿x轴正方向平移3个单位,求平移后圆的方程。
10. 已知函数\( f(x) = x^3 - 3x \),求导数\( f'(x) \)。
三、解答题(每题10分,共50分)11. 解不等式:\( |x - 2| + |x + 3| > 8 \)。
12. 证明:对于任意实数\( x \),\( e^x \geq x + 1 \)。
2022江苏省数学高中竞赛试题及答案
2022江苏省数学高中竞赛试题及答案
1、2022江苏省数学高中竞赛试题:
(1)一元二次方程问题:设a>0,b>0,求方程ax2+bx+1=0的解
尽管方程的系数都是正数,但是有可能结果不存在,由于一元二次方
程式有两个解,我们可以将ax2+bx+1=0等式整理成bx2+(a+1)x+1=0,
接着利用判别式b2-4*(a+1)*1来求解。
当b2-4*(a+1)*1<0时,方程
ax2+bx+1=0无解;当b2=4*(a+1)*1时,方程ax2+bx+1=0有两个有界
实根;当b2-4*(a+1)*1>0时,方程ax2+bx+1=0有两个不同实根。
(2)函数图像折线图题:已知函数y=x2+2x+1的图像经过点A(2,5),B(4,11),C(6,17)。
求函数的表达式
sd每点坐标的横坐标都相差两个单位,而纵坐标的增加值为六个单位,这一个特点表明,函数的表达式是y=x^2+6x,即y=x^2+2x+1,表示函数
的图像是折线图。
2、2022江苏省数学高中竞赛试题答案:
(1)一元二次方程问题:当b2-4*(a+1)*1<0时,方程ax2+bx+1=0无解;当b2=4*(a+1)*1时,方程ax2+bx+1=0有两个有界实根;当b2-
4*(a+1)*1>0时,方程ax2+bx+1=0有两个不同实根,其解分别为x1=1-(a+1)/b,x2=1+(a+1)/b;
(2)函数图像折线图题:y=x^2+6x,即y=x^2+2x+1,表示函数的图像是折线图。
江苏省高中数学竞赛预赛试题集锦(如皋中学:童云飞)
若 有实根,则 ,
在区间 有 即 消去c,解出
即 ,这时 ,且 .
若 无实根,则 ,将 代入解得 .
综上 .
所以 ,单调递减
故 .
注重分类讨论
13.如图,P是 内一点.
(1)若P是 的内心,证明: ;
(2)若 且 ,证明:P是 的内心.
证明:(1)
这其实是平面几何一个很重要的结论,在一般的平面几何的参考书上都有.
2011全国高中数学联赛江苏省初赛,如皋中学李泽凡同学以144分的成绩获得南通市并列第三名,如皋中学共112人通过了预赛。预祝2012的初赛大家能创造新的记录,为全国高中数学联赛取得更好的成绩奠定基础!
2010年全国高中数学联赛江苏赛区初赛参考答案与评分细则
一、填空题(本题满分70分,每小题7分)
1.方程 的实数解为.
14.求所有正整数 , ,使得 与 都是完全平方数.
2009年全国高中数学联赛(江苏赛区初赛)
(2009年5月3日8∶00-10∶00)
一、填空题(每小题7分,共70分)
1.已知sinαcosβ=1,则cos(α+β)=.
2.已知等差数列{an}的前11项的和为55,去掉一项ak后,余下10项的算术平均值为4.若a1=-5,则k=.
一个零点恰为 ,k∈Z.所以至少有50个零点.
7.从正方体的 条棱和 条面对角线中选出 条,使得其中任意
两条线段所在的直线都是异面直线,则 的最大值为.
提示与答案:不能有公共端点,最多4条,图上知4条可以.
8.圆环形手镯上等距地镶嵌着 颗小珍珠,每颗珍珠镀金、银两色中的一种.其中
镀 金 银的概率是.
答案:(0,2)
这是一道高考题
江苏省高中数学竞赛试卷含答案
江苏省高中数学竞赛试卷一、选择题(本题满分30分,每小题6分)1.如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx +ny 的最大值为 ( )A .2b a +B .abC .222b a +D .222b a +2.设)(x f y =为指数函数x a y =.在P (1,1),Q (1,2),M (2,3),⎪⎭⎫ ⎝⎛41,21N 四点中,函数)(x f y =与其反函数)(1x f y -=的图像的公共点只可能是 ( ) A .P B .Q C .M D .N3.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比 数列,那么z y x ++的值为 ( )A .1B .2C .3D .44.如果111C B A ∆的三个内角的余弦值分别是 222C B A ∆的三个内角的正弦值,那么 ( ) A .111C B A ∆与222C B A ∆都是锐角三角形B .111C B A ∆是锐角三角形,222C B A ∆是钝角三角形 C .111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D .111C B A ∆与222C B A ∆都是钝角三角形5.设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β( )A .不存在B .有且只有一对C .有且只有两对D .有无数对 二、填空题(本题满分50分,每小题10分)6.设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则A B =___________________.7.同时投掷三颗骰子,于少有一颗骰子掷出6点的概率是P =____________(结果要求写成既约分数). 8.已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为_________________.9.与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为________________________.10.在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222c b a +=______________.三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)1 20.5 1 xyz11.已知函数c bx x x f ++-=22)(在1=x 时有最大值1,n m <<0,并且[]n m x ,∈时,)(x f 的取值范围为⎥⎦⎤⎢⎣⎡m n 1,1. 试求m ,n 的值.12.A 、B 为双曲线19422=-y x 上的两个动点,满足0=⋅OB OA 。
全国高中数学联赛江苏赛区初赛试卷
全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题的括号内,每小题选对得6分;不选、选错或选出的字母超过一个(不论是否写在括号内),一律得0分.1.已知数列{an}的通项公式an =,则{an}的最大项是 ( ) A .a1 B .a2 C .a3 D .a42.函数y =3 |log 3x|的图象是 ( ) A .B .C .D .3.已知抛物线y2=2px ,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的P 点共有 ( ) A .0个 B .2个 C .4个 D .6个4.设f(x)是定义在R 上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则() A .f(x1)+f(x2)+f(x3)>0 B .f(x1)+f(x2)+f(x3)<0 C .f(x1)+f(x2)+f(x3)=0 D .f(x1)+f(x2)>f(x3)5.过空间一定点P 的直线中,与长方体ABCD -A1B1C1D1的12条棱所在直线所成等角的直线共有 ( ) A .0条 B .1条 C .4条 D .无数多条6.在△ABC 中,tanA =,cosB =,10).若的最长边为1,则最短边的长为 ( ) A .,5)B .,5)C .,5)D .,5)二、填空题(本题满分54分,每小题9分)本小题共有6小题,要求直接将答案写在横线上.7.集合A ={x|x =3n ,n ∈N ,0<n <10},B ={y|y =5m ,m ∈N ,0≤n≤6}则集合A ∪B 的所有元素之和为__________________.8.设cos2θ=,3),则cos4θ+sin4θ的值是__________________. 9.(x -3x2)3的展开式中,x5的系数为__________________.10.已知⎩⎪⎨⎪⎧y≥0,3x -y≥0,x +3y -3≤0,则x2+y2的最大值是__________________.11.等比数列{an}的首项为a1=,公比q =-,设f(n)表示这个数列的前n 项的积,则当n =_________________时,f(n)有最大值.12.长方体ABCD -A1B1C1D1中,已知AB1=4,AD1=3,则对角线AC1的取值范围是______________________________.三、解答题(本题满分60分,第13题,第14题各12分,第15题16分,第16题20分)13.设集合A ={x|log 12(3-x)≥-2},B ={x|≥1},若A∩B =,求实数a 的取值范围.14.椭圆+=1的有焦点为F ,P1,P2,…,P24为24个依逆时针顺序排列在椭圆上的点,其中P1是椭圆的右顶点,并且∠P1FP2=∠P2FP3=∠P3FP4=…=∠P24FP1,x O yx O yx O yx O y若这24个点到右准线的距离的倒数和为S ,求S 的值.15.△ABC 中,AB <AC ,AD 、AE 分别是BC 边上的高和中线,且∠BAD =∠EAC .证明是直角.16.设p 是质数,且p2+71的不同正因数的个数不超过10个,求p . 全国高中数学联赛江苏赛区初赛试卷一、选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题的括号内,每小题选对得6分;不选、选错或选出的字母超过一个(不论是否写在括号内),一律得0分.1.已知数列{an}的通项公式an =,则{an}的最大项是 ( ) A .a1 B .a2 C .a3 D .a4解:an =1(n -2)2+1,当n =2时,an 取最大值,故选B .2.函数y =3的图象是 ( ) A .B .C .D .解:由于|log3x|≥0,故y≥1,只有A 满足此条件,故选A .3.已知抛物线y2=2px ,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的P 点共有 ( ) A .0个 B .2个 C .4个 D .6个解:作垂直于x 轴的焦点弦交抛物线于点P1、P2,则△P1OF 、△P2OF是直角三角形.对于抛物线上异于O 、P1、P2的点Q ,显然∠QFO≠90˚,∠QOF≠90˚,从而若△QOF 为直角三角形,则只能是∠FQO =90˚.设点Q 坐标为(y22p,y)(y≠0,±p),则有y22p (y22p -p2)+y2=0, 由y≠0得,y22p +3p2=0,此方程无实解,从而这样的点P 只能2个,选B .4.设f(x)是定义在R 上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则( )A .f(x1)+f(x2)+f(x3)>0B .f(x1)+f(x2)+f(x3)<0C .f(x1)+f(x2)+f(x3)=0D .f(x1)+f(x2)>f(x3)解:则x1>-x2,知f(x1)<f(-x2)=-f(x2)f(x1)+f(x2)<0; 同理,f(x2)+f(x3)<0,f(x3)+f(x1)<0; 所以,f(x1)+f(x2)+f(x3)<0.选B .5.过空间一定点P 的直线中,与长方体ABCD -A1B1C1D1的12条棱所在直线所成等角的直线共有 ( ) A .0条 B .1条 C .4条 D .无数多条解:首先,过角的顶点与角的两边成等角的直线在角所在平面的射影是角(或其外角)的平分线.故若以长方体的过一个顶点的三个平面为坐标平面建立空间坐标系,则方程|x|=|y|=|z|共有8解,此8解共组成4条直线,故选C .6.在△ABC 中,tanA =,cosB =,10).若的最长边为1,则最短边的长为 ( ) A .,5)B .,5)C .,5)D .,5)解:作辅助图如右:取高CD =a ,则AD =2a ,BD = A B C D Ex O y x O y x O y x O yABDC3a2aa3a ,最短边AC =5a ;由5a =1,得a =,故选D . 二、填空题(本题满分54分,每小题9分)本小题共有6小题,要求直接将答案写在横线上.7.集合A ={x|x =3n ,n ∈N ,0<n <10},B ={y|y =5m ,m ∈N ,0≤n≤6}则集合A ∪B 的所有元素之和为__________________.解:A∩B ={15};故所求和=(3+6+…+27)+(0+5+…+30)-15=225. 8.设cos2θ=,3),则cos4θ+sin4θ的值是__________________. 解:已知即cos2θ-sin2θ=,3)cos4θ+sin4θ-2cos2θsin2θ=; ① 又,cos2θ+sin2θ=1cos4θ+sin 4θ+2cos2θsin2θ=1. ② (①+②)÷2: cos4θ+sin4θ=.9.(x -3x2)3的展开式中,x5的系数为__________________. 解:(x -3x2)3=x3-3x2×3x2+3x×9x4-27x6.x5 的系数=27.10.已知⎩⎪⎨⎪⎧y≥0,3x -y≥0,x +3y -3≤0,则x2+y2的最大值是__________________.解:满足条件的点集组成的图形为图中阴影部分及其边界.其中点(3,0)与原点距离最大,故(x2+y2)max =9.11.等比数列{an}的首项为a1=,公比q =-,设f(n)表示这个数列的前n 项的积,则当n =_________________时,f(n)有最大值.解:由于f(4k)>0,f(4k +1)>0,(k ∈N*).f(4k)=a 4k 1 q2k(4k -1);f(4k +1)=a 4k +11q2k(4k +1).故=a1q4k .于是f(12)>f(13),且当k≥3时,f(4k +1)<f(4k);又=a 31q30,有f(9)<f(12);=a 41q2(8k +3), 故f(8)<f(12),且k≥3时,f(4k +4)<f(4k), 从而f(12)最大.12.长方体ABCD -A1B1C1D1中,已知AB1=4,AD1=3,则对角线AC1的取值范围是______________________________.解:设长方体的三度分别为x ,y ,z ,对角线AC =d .则可得x2+z2=16,y2+z2=9.d2=x2+y2+z2=25-z2,但0<z <3,从而16<d2<254<d <5所求取值范围为(4,5).三、解答题(本题满分60分,第13题,第14题各12分,第15题16分,第16题20分)13.设集合A ={x|log 12(3-x)≥-2},B ={x|≥1},若A∩B =,求实数a 的取值范围.解:由log 12(3-x)≥-20<3-x≤4-1≤x <3.由≥1(x -a)(x -3a)≤0.1321Oyx① 当a >0时,解为a <x <3a ; ② 当a =0时,解为;③ 当a <0时,解为3a <x <a .若A∩B≠,则当a <0时,有a >-1-1<a <0;当a >0时,有3a <30<a <1. 所以,a 的取值范围为(-1,0)∪(0,1).14.椭圆+=1的有焦点为F ,P1,P2,…,P24为24个依逆时针顺序排列在椭圆上的点,其中P1是椭圆的右顶点,并且∠P1FP2=∠P2FP3=∠P3FP4=…=∠P24FP1,若这24个点到右准线的距离的倒数和为S ,求S 的值.解法一:已知椭圆的a =3,b =2,c =5,e =53,p =b2c =45. 对于椭圆上任一点P ,|FP|=r ,P 到准线的距离|PH|=d ,FP 与Ox 正向夹角为θ,则有 rcosθ+d =p ,rd=e .于是, d(1+ecosθ)=p ,1d =1p(1+ecosθ).所以, S =i =1∑241di =1p i =1∑24(1+ecosθ)=24p +e p i =1∑24co sθ=24p .故 S2=242p2=180.解法二:设过焦点且斜率为k 的直线交椭圆于A 、B 两点.则有⎩⎨⎧y =k(x -c), ①4x2+9y2=36. ②①代入②: 4x2+9k2(x -5)2-36=0.即, (4+9k2)x2-185xk2+45k2-36=0.所以, x1+x2=185k24+9k2,x1x2=45k2-364+9k2.而点P 到准线距离d =a2c -x =9-5x 51d =59-5x ,故直线①与椭圆的两个交点到准线距离的倒数和为59-5x1+59-5x2=5[18-5(x1+x2)]81-95(x1+x2)+5x1x2=5[18-5·185k24+9k2]81-95·185k24+9k2+545k2-364+9k2=185(4+9k2)-905k281(4+9k2)-810k2+225k2-180=725+725k2144+144k2=52.而过焦点且倾斜角θ=90˚时,两交点到准线的距离=a2c -c =45,故θ=90˚及270˚的pθF P OxyH rd两个点到准线距离倒数和也=52. 所以,S =12×52=65;S2=180.解法三:令⎩⎨⎧x =5+tcosθ,y =tsinθ.代入椭圆方程得,t2(4cos 2θ+9sin2θ)+85tcosθ-16=0.同上.15.△ABC 中,AB <AC ,AD 、AE 分别是BC 边上的高和中线,且∠BAD =∠EAC .证明是直角.证明一:延长AE 到F ,使EF =AE ,延长AD 到K ,使DK =AD .连FK ,FB .因FB ∥AC ∠AFB =∠EAC .又BD 垂直平分AK ,故∠AKB =∠BAD ,因∠BAD =∠EAC ,所以∠AKB =∠AFB .所以A 、F 、K 、B 四点共圆. FK ∥BC ∠FKA =90˚.故AF 为该圆直径.E 为此圆圆心.故EA =EB =EC ,即点C 在此圆上.此圆为△ABC 的外接圆,BC 为圆的直径. 所以∠BAC 为直角.证明二:取△ABC 的外接圆,延长AE 交圆于点F ,连FB ,则∠CBF =∠CAF =∠BAD ,但∠BAD +∠ABD =90˚,从而∠FBC +∠ABC =90˚,即∠ABF =90˚. 从而AF 为圆的直径.若E 不是圆心,则AF ⊥BC ,AB =AC .与已知矛盾.故E 为外心.从而∠BAC =90˚.证明三:作△ABC 的外接圆,作EF ⊥BC ,交外接圆于点F ,连AF .则EF 是BC 的垂直平分线,故F 为⌒BC 的中点,于是AF 是∠BAC的平分线.由∠BAD =∠EAC ,得∠DAF =∠EAF .又,EF ∥AD ,故∠DAF =∠EFA ∠EAF =∠EFA .EA =EF .故AF 的垂直平分线经过点E .由于△ABC 的外接圆圆心应是弦AF 、BC 的垂直平分线的交点,故E 为△ABC 的外心.从而△ABC 为直角三角形,得,∠BAC 为直角.证明四:取AC 中点F ,连DF 、EF , 由EF ∥AB ∠AEF =∠EAB =∠BAD +∠DAE =∠EAC+∠DAE =∠DAC ,由AD 为高,故∠DAC =∠ADF ,所以,∠ADF =∠AEF A 、D 、E 、F 四点共圆.于是有∠EFA =90˚,从而∠BAC =90˚,故证.证明五:以D 为原点,BC 所在直线为x 轴建立坐标系.设点A 、B 、C 的坐标分别为A(0,a),B(b ,0),C(0,c).FE D CB AA B C D E FK FD E C B A设AB 到AD 的角为α,则tanα=-ba .kAC =-a c ,kAE =-2ab +c ,tan ∠EAC =-a c +2a b +c 1+2a2c(b +c)=a(c -b)2a2+bc +c2.由tan ∠EAC =tanα-ba =a(c -b)2a2+bc +c2.化简得a2=-bc .即|AD|2=|DB|·|DC|.故△ABC 为直角三角形.证明六:设BC =a ,BD =p ,AD =h ,则tanB =hp ,tan ∠AEB =h 12a -p =2ha -2p .∠BAE =∠DACtan ∠BAE =tan ∠DAC =a -ph.在△ABE 中,有h p +2ha -2p +a -p h =h p ·2h a -2p ·a -p h =2h(a -p)p(a -2p).即h2(a -2p)+2ph2+p(a -p)(a -2p)=2h2(a -2p).h2=p(a -p).从而|AD|2=|DB|·|DC|.故△ABC 为直角三角形.得证.证明七:设∠BAD =∠EAC =α,则AD =ABcosα=ACsinC , ①∠BAE =∠DAC =90˚-C .而S △BAE =S △CAE AB·AEsin(90˚-C)=AC·AEsinαABcosC =ACsinα.②①×②:sin2α=sin2C α+C =90˚或α=C .若α+C =90˚,则D 、E 重合,与AC >AB 矛盾,α=C .则有∠BAC =90˚,得证. 16.设p 是质数,且p2+71的不同正因数的个数不超过10个,求p . 解 p =2时,p2+71=75=3×52,d(75)=2×3=6<10,故p =2是本题的解; p =3时,p2+71=80=24×5,d(80)=5×2=10≤10,故p =3是本题的解; 若质数p >3,则p2≡1(mod 8)p2+71≡0(mod 8),故23|p2+71; p2≡1(mod 3)p2+71≡0(mod 3),故3|p2+71.所以,p2+71=2α×3β×t .其中α、β∈N*,且α≥3.当α=3,β=1,t 若有大于3的质因子,则d(p2+71)≥4×2×2,故t =1.此时无质数p 满足题意;当α=4,β=1,必有t =1,此时有d(p2+71)≥5×2=10.此时无质数p 满足题意; 当α≥4,β≥1,且等号不同时成立时,d(p2+71)>10. 综上可知,解为p =2,3.xyA (0,a )B (b ,0)C (c ,0)D EahpABCED高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
2020年全国高中数学联赛江苏赛区 精品
2020年全国高中数学联赛江苏赛区复赛参考答案与评分细则一 试一、填空题(本题满分64分,每小题8分) 1.已知数列{a n }、{b n }满足a n =22n +35,b n =1nlog 2(a 1a 2a 3…a n ),n ∈N*,则数列{b n }的通项公式是 . 答案:b n =n +45,n ∈N* 简解:由a n =22n +35,得a 1a 2a 3…a n =22(1+2+…+n )+3n5=2n (n +4)5,n ∈N*.所以b n =1n ×n (n +4)5=n +45,n ∈N*.2.已知两点M (0,2)、N (-3,6)到直线l 的距离分别为1和4,则满足条件的直线l 的条数是 . 答案:3简解:易得MN =5,以点M 为圆心,半径1为的圆与以点N 为圆心,半径为4的圆外切,故满足条件的直线l 有3条.3.设函数f (x )=ax 2+x .已知f (3)<f (4),且当n ≥8,n ∈N*时,f (n )>f (n +1)恒成立,则实数a 的取值范围是 . 答案:(-17,-117)简解:(方法一) 因为当n ≥8时,f (n )>f (n +1)恒成立,所以a <0,此时f (n )>f (n +1)恒成立等价于f (8)>f (9),即64a +8>81a +9,解得a <-117.因为f (3)<f (4),所以9a +3<16a +4,解得a >-17.即a ∈(-17,-117).(方法二)考察二次函数f (x )=ax 2+x 的对称轴和开口方向.因为当n ≥8时,f (n )>f (n +1)恒成立,所以a <0,且-12a <172,解得a <-117.因为f (3)<f (4),所以-12a >72,解得a >-17.即a ∈(-17,-117).4.已知ABCD -A 1B 1C 1D 1是边长为3的正方体,点P 、Q 、R 分别是棱AB 、AD 、AA 1上的 点,AP =AQ =AR =1,则四面体C 1PQR 的 体积为 . 答案:43简解:因为C 1C ⊥面ABCD ,所以C 1C ⊥BD .又因为AC ⊥BD ,所以BD ⊥面ACC 1,所以AC 1⊥BD .(第4题)CA BDD 1C 1B 1A 1PQR又PQ ∥BD ,所以AC 1⊥PQ .同理AC 1⊥QR .所以AC 1⊥面PQR .因为AP =AQ =AR =1,所以PQ =QR =RP =2.因为AC 1=33,且V A -PQR =13·12·12·1=16,所以V C 1-PQR =13·34·(2)2·33-V A -PQR =43. 5.数列{}n a 满足1112,1nn na a a a ++==-,n ∈N*.记T n =a 1a 2…a n ,则T 2020等于 . 答案:-6简解:易得:a 1=2,a 2=-3,a 3=-12,a 4=13,a 1a 2 a 3a 4=1.又a 5=2=a 1,由归纳法易知a n +4=a n ,n ∈N*.所以T 2020=T 2008×a 2020×a 2020=a 1a 2=-6.6.骰子是一个立方体,6个面上分别刻有1、2、3、4、5、6点. 现有质地均匀的 骰子10只. 一次掷4只、3只骰子,分别得出各只骰子正面朝上的点数之和为6的 概率的比为 .答案:1:6.提示:掷3只骰子,掷出6点的情况为1,1,4;1,2,3;2,2,2. 共 3+3!+1=10种,概率为 3106 .掷4只骰子,掷出6点的情况为1,1,1,3;1,1,2,2. 共 4+24C =10种,概率为 4106 . 所以概率的比为 3106:4106 = 1:6 .7.在△ABC 中,已知BC =5,AC =4,cos(A -B )=78,则cos C = . 答案:1116简解:因BC AC >,故A B ∠>∠. 如图,作AD ,使∠BAD =∠B ,则∠DAC =∠A -∠B .设AD =BD =x ,则DC =5-x .在△ADC 中,由余弦定理得x =3.再由余弦定理得cos C =1116.8.在平面直角坐标系xOy 中,抛物线y 2=2x 的焦点为F . 设M 是抛物线上的动点,则MOMF的最大值为 . 答案:233ABD C(第7题)简解:设点M (x ,y ),则(MO MF )2=x 2+y 2(x +12)2=4x 2+8x 4x 2+4x +1=1+4x -14x 2+4x +1.令4x -1=t ,当t ≤0时,显然MO MF≤1. 当t >0时,则(MO MF)2=1+4t +6+9t≤1+13=43,且当t =3,即x =1时,等号成立. 所以MO MF 的最大值为233,此时点M 的坐标为(1,±2).二、解答题(本题满分16分)如图,点P 是半圆C :x 2+y 2=1(y ≥0)上位于x 轴上方的任意一点,A 、B 是直径的两个端点,以AB 为一边作正方形ABCD ,PC 交AB 于E ,PD交AB 于F ,求证:BE ,EF ,FA 成等比数列.证明:设P (cosα,sinα),C (-1,-2),D (1,-2),E (x 1,0),F (x 2,0). 因为点P 、E 、C 三点共线,所以sinα+2cosα+1=2x 1+1,所以x 1=2(cosα+1)sinα+2-1. ………………5分由点P 、F 、D 三点共线,所以sinα+2cosα-1=2x 2-1,所以x 2=2(cosα-1)sinα+2+1. ………………10分所以BE =x 1+1=2(cosα+1)sinα+2,EF =x 2-x 1=2sin αsinα+2 ,FA =2(cosα-1)sinα+2.所以BE ·FA =2(cosα+1)sinα+2×2(cosα-1)sinα+2=4sin 2α(sinα+2)2=EF 2.即BE ,EF ,FA 成等比数列. ………………16分三、解答题(本题满分20分)设实数a ,m 满足1a≤,0m <≤()()2221amx mx f x a a a m-=+-,()0,x a ∈. 若存在a ,m ,x ,使()f x ≥,求所有的实数x 的值. 解答:因为(0, )x a ∈时,2222()244x ma ma amx mx m a -=--+≤, 当且仅当2ax =时等号成立, ……………5分所以22222222342(1)(1)4(1(1))a mamx mx am a a a m a a a m a m -≤≤=+-+-+- 3442am m ≤≤≤, ……………15分 当且仅当2ax =及1a =与23m =时等号成立. 故1x =. ……………20分四、解答题(本题满分20分)数列{a n }中,已知a 1∈(1,2),a n +1=a n 3-3a n 2+3a n ,n ∈N*,求证:(a 1-a 2)( a 3-1)+(a 2-a 3)( a 4-1)+…+(a n -a n +1)( a n +2-1)<14.证明:(方法一) 由a n +1=a n 3-3a n 2+3a n ,得a n +1-1=(a n -1)3.令b n =a n -1,则0<b 1<1,b n +1=b n 3<b n ,0<b n <1. ………………5分 所以 (a k -a k +1)( a k +2-1)=(b k -b k +1)×b k +2=(b k -b k +1)×b k +13<14(b k -b k +1)×(b k 3+b k 2b k +1+b k b k +12+b k +13)<14(b k 4-b k +14). ………………15分所以 (a 1-a 2)(a 3-1)+(a 2-a 3)(a 4-1)+…+(a n -a n +1)(a n +2-1)<14(b 14-b 24)+14(b 24-b 34)+…+14(b n 4-b n +14) =14(b 14-b n +14)<14b 14<14. ………………20分 (方法二) 由a n +1=a n 3-3a n 2+3a n ,得a n +1-1=(a n -1)3.令b n =a n -1,则0<b 1<1,b n +1=b n 3,0<b n <1. ………………5分 所以 (a 1-a 2)( a 3-1)+(a 2-a 3)( a 4-1)+…+(a n -a n +1)( a n +2-1)=(b 1-b 2) b 3+(b 2-b 3) b 4+…+(b n -b n +1) b n +2=(b 1-b 2) b 23+(b 2-b 3) b 33+…+(b n -b n +1) b n+1313014x dx <=⎰.………………20分2020年全国高中数学联赛江苏赛区复赛参考答案与评分标准加 试一、(本题满分40分)圆心为I 的ABC ∆的内切圆分别切边AC 、AB 于点E 、F. 设M 为线段EF 上一点, 证明:MAB ∆与MAC ∆面积相等的充分必要条件是MI BC ⊥.证明:过点M 作MP AC ⊥、MQ AB ⊥,垂足分别为P 、Q . 圆I 切边BC 于点D ,则ID BC ⊥, IF AB ⊥, IE AC ⊥.显然AF=AE , 所以AFM AEM ∠=∠, 从而推知Rt Rt QFMPEM ∆∆, 得MQ MFMP ME=. 又 1212MAB MACMQ ABS MQ AB MF AB S MP AC ME AC MP AC ∆∆⋅==⋅=⋅⋅, 所以 MAB ∆与MAC ∆面积相等的充要条件是AB MEAC MF=. ① 由①可知,问题转化为证明:AB MEAC MF =的充分必要条件是MI BC ⊥. ………10分 首先证明:若MI BC ⊥,则AB MEAC MF=. 由MI BC ⊥可知点M 在直线ID 上.因为B 、D 、I 、F 四点共圆,所以MIF DBF B ∠=∠=∠,MIE ECD C ∠=∠=∠.又 IE=IF ,则由正弦定理得sin sin sin()sin MF FI IE MEMIF IMF IMF MIEπ===∠∠-∠∠,即sin sin ME C MF B =,而sin sin AB C AC B =. 所以AB MEAC MF=. ……………30分 其次证明:若AB MEAC MF=,则MI BC ⊥. A B C EFPQM IA B CEF M I (第1题)设直线ID 与EF 交于点'M ,则由上述证明可知''AB M EAC M F=,于是有 ''AB M EAC M F=,从而 'M M ≡. 故命题成立. ……………40分二、(本题满分40分)将凸n 边形12n A A A 的边与对角线染上红、蓝两色之一,使得没有三边均为蓝色的三角形. 对k =1, 2,…,n ,记k b 是由顶点k A 引出的蓝色边的条数,求证:2122n n b b b +++≤.证明:不妨设12max{,,,}n b b b b =,并且由点A 向12,,,b A A A 引出b 条蓝色边,则12,,,b A A A 之间无蓝色边,12,,,b A A A 以外的n b -个点,每点至多引出b 条蓝色边,因此蓝色边总数()n b b ≤-22()24n b b n-+⎛⎫≤= ⎪⎝⎭. …………20分故 2212242n n n b b b +++≤⨯=. 命题得证. ……………40分三、(本题满分50分)设正整数的无穷数列{}n a (n ∈N *)满足44a =,2111n n n a a a -+-=(2n ≥),求{}n a 的通项公式. 解:由已知得11n n n na aa a -+>. 若有某个n ,使11n na a -≥,则 1n n a a +>, …………10分 从而112n n n n a a a a -++≥>>>,这显然不可能,因为*{} (N )n a n ∈是正整数的无穷数列. 故数列{}n a 中的项是严格递增的. …………20分 从而由44a =可知, 11a =,22a =,33a =. …………30分于是由{}n a 的递推公式及数学归纳法知*(N )n a n n =∈. …………40分显然数列*{} (N )n n ∈满足要求,故所求的正整数无穷数列为{}n (1)n ≥. …………50分 四、(本题满分50分)设p 是一个素数, 3 (mod 4)p ≡. 设x ,y 是整数,满足221|4p p x xy y +-+. 求证:存在整数u ,v ,使得222211()44p p x xy y p u uv v ++-+=-+. 证明:由条件可知22|(2)p x y py -+,则2|(2)p x y -.因p 是素数,故有|2p x y -. 设2x y pk -=, …………20分 则 222211((2))44p x xy y py x y +-+=+- 2221((2))4x pk p p k =-+ 22((2))4px pk pk =-+ …………30分 22((2))4px pk k k pk =-+-+ 22((2))4p u v pv =-+ (这里(1)2k p u x -=-,v k =) 22(44(1))4pu uv p v =-++ 221()4p p u uv v +=-+.命题得证. …………50分。
2021年全国高中数学联赛江苏省预赛
如图, .
设动点 ,则切线l: .
设 ,代入l的方程,得 .
因为AC∥BD,则Q分CB的比 .
所以 .
由Q与P关于 对称,且 ,所以 ,
,
即 .则 .
由题意, ,所以 ,故点P的轨迹方程为 .
【点睛】
此题考查求轨迹方程,利用相关点建立等量关系,需要注意考虑剔除不合题意的点,熟练掌握常见二级结论可以减少运算量.
如图①所示,可得正三棱锥P-ABC的斜高为 ,
由 ,可得 ,解得 ,
如图②所示,可得 .
又 ,在直角 中,可得 ,
即 ,所以 ,
所以 ,同理 ,
由圆的性质,可得 ,
所以所求图形的面积为 .
故答案为: .
【点睛】
本题主要考查了棱锥与球的组合体的几何结构特征,以及截面面积的计算,其中解答中熟记应用空间几何体的结构特征,熟练应用圆的基本性质是解答的关键,着重考查了空间想象能力,以及推理与计算能力.
取定两个不同的素数p、q使得(pq,c)=1.
由于(p,q)=1,利用裴蜀定理,存在正整数 ,使得 .
由于(pq,c)=1,那么 且 .
由中国剩余定理,下列同余方程组:
有正整数解 .
令 ,那么 ,
而且(u,pqc)=1.因此 .
现在取 ,则 .
从而 .
令a=nd,b=(n+c)d,那么(a,b)=d,因此 .而且:
当0<y<1时, , .
令 ,得 .
由函数的单调性,得 ②
由①②知,对任意x∈(-∞,0)∪(0,+∞)及任意 ,有:
.③
在③式中,令 ,化简得:
.
此时,当 时,则 .
从而,等号成立的充要条件是 .
江苏省蒋垛中学高二数学基础知识竞赛
江苏省蒋垛中学高二数学基础知识竞赛时间:120分钟 卷面分数:160分 命题人:徐文国 校对人:朱善宏 一:填空题〔每题5分,共计70分〕1、假设命题2:,210p x R x ∀∈+>,则p ⌝是 ; 2、椭圆4 x 2 + y 2 = 4的长轴长为_________.3、如右图,在正方形内有一扇形〔见阴影部分〕,扇形对应的圆心是 正方形的一顶点,半径为正方形的边长。
在这个图形上随机撒一粒黄豆, 它落在扇形内的概率为 〔用分数表示〕4、已知x 、y 的取值如下表所示:x 0 1 3 4 y2.24.34.86.7从散点图分析,y 与x 线性相关,且ˆ0.95yx a =+,则a = . 5、过抛物线y 2 = 4 x 的焦点F ,作直线l 交抛物线于A(x 1, y 1)、B(x 2, y 2)两点,假设x 1 + x 2=8,则|AB|= .6、社会调查机构就某地居民的月收入 调查了10000人,并根据所得数据画了 样本的频率分布直方图〔如下列图〕.为 了分析居民的收入与年龄、学历、职业 等方面关系,要从这10 000人中再用 分层抽样方法抽出100人作进一步调查,则在[2500,3000]〔元〕月收入段应抽出 人. 7、右面程序的输出结果为______。
8、关于x 的方程2210ax x +-=至少有一个正实根的充要条 件是 。
9、假设数据x 1, x 2, x 3, x 4, x 5的标准差为2, 数据a x 1 + b , a x 2 + b , a x 3 + b , a x 4 + b , a x 5 + b 的标准差为4,则正实数a 的值为 .10、过双曲线2213y x -=的右焦点F ,作直线l 交双曲线于A 、B 两点,假设|AB|=6,则这样的直线有 条。
第6题x ←5y ←-20If x <0 Then x ←y -3 Else y ←y +3 End If a ←x -y Print a〔第7题〕11、已知函数f (x ) =13x 3+a x 2 +4 x 存在极值,则实数a 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年江苏省高中数学竞赛试卷一、选择题(本题满分30分,每小题6分)1.如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx +ny 的最大值为 ( )A .2b a +B .abC .222b a +D .222b a +2.设)(x f y =为指数函数xa y =.在P (1,1),Q (1,2),M (2,3),⎪⎭⎫ ⎝⎛41,21N 四点中,函数)(x f y =与其反函数)(1x f y -=的图像的公共点只可能是 ( ) A .P B .Q C .M D .N3.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比 数列,那么z y x ++的值为 ( )A .1B .2C .3D .44.如果111C B A ∆的三个内角的余弦值分别是 222C B A ∆的三个内角的正弦值,那么 ( ) A .111C B A ∆与222C B A ∆都是锐角三角形B .111C B A ∆是锐角三角形,222C B A ∆是钝角三角形 C .111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D .111C B A ∆与222C B A ∆都是钝角三角形5.设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β( )A .不存在B .有且只有一对C .有且只有两对D .有无数对 二、填空题(本题满分50分,每小题10分)6.设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则A B =___________________.7.同时投掷三颗骰子,于少有一颗骰子掷出6点的概率是P =____________(结果要求写成既约分数). 8.已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为_________________.9.与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为________________________.10.在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222cb a +=______________. 1 20.5 1 x yz三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)11.已知函数c bx x x f ++-=22)(在1=x 时有最大值1,n m <<0,并且[]n m x ,∈时,)(x f 的取值范围为⎥⎦⎤⎢⎣⎡m n 1,1. 试求m ,n 的值.12.A 、B 为双曲线19422=-y x 上的两个动点,满足0=⋅OB OA 。
2211+为定值;(Ⅱ)动点P 在线段AB 上,满足0=⋅,求证:点P 在定圆上.13.如图,平面M 、N 相交于直线l . A 、D 为l 上两点,射线DB 在平面M 内,射线DC 在平面N 内. 已知α=∠BDC ,β=∠BDA ,γ=∠CDA ,且α,β,γ 都是锐角. 求二面角N l M --的平面角的余弦值(用α,β,γ的三角函数值表示).14.能否将下列数组中的数填入3×3的方格表,每个小方格中填一个数,使得每行、每列、两条对角线上的3个数的乘积都相等?若能,请给出一种填法;若不能,请给予证明. (Ⅰ)2,4,6,8,12,18,24,36,48; (Ⅱ)2,4,6,8,12,18,24,36,72.参考答案一、选择题(本题满分30分,每小题6分)1.解 由柯西不等式ab y x n m ny mx =++≤+))(()(22222;或三角换元即可得到ab ny mx ≤+,当2a n m ==,2b y x ==时,ab ny mx =+. 选B.2.解 取161=a ,把坐标代入检验,4116121=⎪⎭⎫ ⎝⎛ ,而2116141=⎪⎭⎫ ⎝⎛,∴公共点只可能是点N . 选D.3.解 第一、二行后两个数分别为2.5,3与1.25,1.5;第三、四、五列中的5.0=x ,165=y ,163=z ,则1=++z y x . 选A. 4.如果111C B A ∆的三个内角的余弦值分别是222C B A ∆的三个内角的正弦值,那么解 两个三角形的内角不能有直角;111C B A ∆的内角余弦都大于零,所以是锐角三角形;若222C B A ∆是锐角三角形,则不妨设cos 1A =sin 2A =cos ⎪⎭⎫ ⎝⎛-12A π, cos 1B =sin 2B =cos ⎪⎭⎫⎝⎛-22A π,cos 1C =sin 2C =cos ⎪⎭⎫⎝⎛-12C π.则 212A A -=π,212B B -=π,212C C -=π,即 )(23222111C B A C B A ++-=++π,矛盾. 选B. 5.解 任作a 的平面α,可以作无数个. 在b 上任取一点M ,过M 作α的垂线. b 与垂线确定的平面β垂直于α. 选D.二、填空题(本题满分50分,每小题10分) 6.解 ∵2<x ,[]x 的值可取1,0,1,2--.当[x ]=2-,则02=x 无解; 当[x ]=1-,则12=x ,∴x =1-;当[x ]=0,则22=x 无解; 当[x ]=1,则32=x ,∴3=x .所以31或-=x .7.解 考虑对立事件,216916513=⎪⎭⎫⎝⎛-=P .8.解 由图,ABC ∆与OCB ∆的底边相同,高是5:1. 故面积比是5:1.9.解 由圆锥曲线的定义,圆心可以是以(2,0)为焦点、2-=x 在x 轴负半轴上.所以轨迹方程为)0(82>=x x y , 或)0(0<=x y .10.解 切割化弦,已知等式即CB CB C A C A B A B A cos cos sin sin cos cos sin sin cos cos sin sin +=, 亦即C B A C B A cos )sin(sin sin sin +=,即C C B A 2sin cos sin sin =1,即1cos 2=c C ab .所以,122222=-+c c b a ,故3222=+c b a . 三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)11.解 由题 1)1(2)(2+--=x x f , ……5分1)(≤∴x f ,11≤∴m,即1≥m ,[]n m x f ,)(在∴上单调减, m m m f 11)1(2)(2=+--=∴且nn n f 11)1(2)(2=+--=. ……10分m ∴,n 是方程xx x f 11)1(2)(2=+--=的两个解,方程即)122)(1(2---x x x =0,解方程,得解为1,231+,231-. n m <≤∴1,1=∴m ,231+=n . ……15分12.证 (Ⅰ)设点A 的坐标为)sin ,cos (θθr r ,B 的坐标为)sin ,cos (θθ''''r r ,则r =,r ='A 在双曲线上,则19sin 4cos 222=⎪⎪⎭⎫⎝⎛-θθr .所以9sin 4cos 1222θθ-=r. ……5分 由0=⋅得⊥,所以θθ22sin cos =',θθ'=22sin cos .同理,9cos 4sin 9sin 4cos 122222θθθθ-='-'='r ,3659141'11||||2222=-=+=+r r OB OA . ……10分 (Ⅱ)由三角形面积公式,=,所以==⎪⎭⎫⨯.136591411122=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛-⨯=⎪⎪⎪⎭⎫⎛+⨯.于是,5362=OP.即P在以O为圆心、556为半径的定圆上. ……15分13.解在平面M中,过A作DA的垂线,交射线DB于B点;在平面N中,过A作DA的垂线,交射线DC于C点.设DA=1,则βtan=AB,βcos1=DB,γtan=AC,γcos1=DC,……5分并且ϕ=∠BAC就是二面角NlM--平面角. ……10分在ABCDBC∆∆与中,利用余弦定理,可得等式ϕγβγβαγβγβcostantan2tantancoscoscos2cos1cos122222-+=-+=BC,所以,αγβγβγβϕγβcoscoscos2cos1cos1tantancostantan22222+--+==γβγβαcoscos)coscos(cos2-,……15分故得到γβγβαϕsinsincoscoscoscos-=.……20分14.解(Ⅰ)不能. ……5分因为若每行的积都相等,则9个数的积是立方数. 但是2×4×6×8×12×18×24×36×48=21+2+1+3+2+1+3+2+4×3121211+++++=219·38不是立方数,故不能.(Ⅱ)可以. ……15分如右表36 2 248 12 186 72 4表中每行、每列及对角线的积都是26·23. ……20分。