计量经济学实验四、五
计量经济学上机实验手册
![计量经济学上机实验手册](https://img.taocdn.com/s3/m/47d104164a35eefdc8d376eeaeaad1f346931162.png)
实验三异方差性实验目的:在理解异方差性概念和异方差对OLS回归结果影响的基础上,掌握进行异方差检验和处理的方法;熟练掌握和运用Eviews软件的图示检验、G-Q检验、怀特White 检验等异方差检验方法和处理异方差的方法——加权最小二乘法;实验内容:书P116例4.1.4:中国农村居民人均消费函数中国农村居民民人均消费支出主要由人均纯收入来决定;农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支付收入等;为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,建立双对数模型:其中,Y表示农村家庭人均消费支出,X1表示从事农业经营的纯收入,X2表示其他来源的纯收入;表4.1.1列出了中国内地2006年各地区农村居民家庭人均纯收入及消费支出的相关数据;表4.1.1 中国2006年各地区农村居民家庭人均纯收入与消费支出单位:元注:从事农业经营的纯收入由从事第一产业的经营总收入与从事第一产业的经营支出之差计算,其他来源的纯收入由总纯收入减去从事农业经营的纯收入后得到;资料来源:中国农村住户调查年鉴2007、中国统计年鉴2007;实验步骤:一、创建文件1.建立工作文件CREATE U 1 31 其中的“U”表示非时序数据2.录入与编辑数据Data Y X1 X2 意思是:同时录入Y、X1和X2的数据3.保存文件单击主菜单栏中File→Save或Save as→输入文件名、路径→保存;二、数据分析1.散点图①Scat X1 Y从散点图可看出,农民农业经营的纯收入与农民人均消费支出呈现一定程度的正相关;②Scat X2 Y从散点图可看出,农民其他来源纯收入与农民人均消费支出呈现较高程度的正相关;2.数据取对数处理Genr LY=LOG YGenr LX1=LOG X1Genr LX2=LOG X2三、模型OLS 参数估计与统计检验 LS LY C LX1 LX2得到模型OLS 参数估计和统计检验结果:Dependent Variable: LY Method: Least Squares Sample: 1 31Variable CoefficientStd. Errort-StatisticProb.C LX1 R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic 注意:在学术文献中一般以这种形式给出回归方程的输出结果,而不是把上面的软件输出结果直接粘贴到文章中可决系数,调整可决系数,显示模型拟合程度较高;同时,F 检验统计量,在5%的显着性水平下通过方程总体显着性检验;可认为农民农业经营的收入和其他收入整体与农村居民消费支出的线性关系显着成立;变量X2和截距项均在5%的显着性水平下通过变量显着性检验,但X1在10%的显着水平下仍不能通过检验;四、异方差检验对于双对数模型,由于12(0.150214)(0.477453)ββ=<=二者均为弹性系数,可认为其他来源的纯收入而不是从事农业经营的纯收入的增长,对农户人均消费的增长更有刺激作用;也就是说,不同地区农村人均消费支出的差别主要来源于非农经营收入及工资收入、财产收入等其他来源收入的差别,因此,如果模型存在异方差性,则可能是X2引起的;1.图示检验法观察残差的平方与LX2的散点图;①残差resid残差resid变量数据是模型参数估计命令完成后由Eviews软件自动生成在Workfile 框里可找到,无需人工操作获得;注意,resid保留的是最近一次估计模型的残差数据;②残差的平方与LX2的散点图Scat LX2 resid^2从上图可大体判断出模型存在递增型异方差性;2.G-Q法检验异方差补充:先定义一个变量T,取值为1、2、…、31分别代表各省市,用于在做完G-Q检验之后,再按T排序,使数据顺序还原;Data T 提示:输入1、2、…、31①将所有原始数据按照X2升序排列;Sort X2Show Y X1 X2 LY LX1 LX2显示各个变量数据的目的是查看一下,所有变量数据是否按X2升序排列好了;②将31对样本数据,去掉中间的7对,形成两个容量均为12的子样本,即1-12和20-31;③对1-12的子样本做普通最小二乘估计,并记录残差平方和RSS;1Smpl 1 12 意思是:将样本区间由1-31,改为1-12Ls LY C LX1 LX2Dependent Variable: LYMethod: Least Squares Sample: 1 12C LX1 LX2R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson statProbF-statistic子样本1:12ln 3.1412080.398385ln 0.234751ln Y X X e =+++1RSS =④对20-31的子样本做普通最小二乘估计,并记录残差平方和2RSS ; Smpl 20 31 意思是:将样本区间由1-12,改为20-31 Ls LY C LX1 LX2Dependent Variable: LY Method: Least Squares Sample: 20 31Included observations: 12C LX1 R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson statProbF-statistic子样本2:12ln 3.9936440.113766ln 0.6201681ln Y X X e =-++2RSS =⑤异方差检验在5%与10%的显着性水平下,自由度为9,9的F分布临界值分别为0.05(9,9) 3.18F=与0.10(9,9) 2.44F=;因此5%显着性水平下不能拒绝同方差假设,但在10%的显着性水平下拒绝;补充:怀特检验软件操作:在原始模型的OLS方程对象窗口中,选择view/Residual test/White Heteroskedasticity;Eviews提供了包含交叉项的怀特检验“White Heteroskedasticitycross terms”和没有交叉项的怀特检验“White Heteroskedasticityno cross terms”这样两个选择;问题:如果是刚做完上面的G-Q检验,如何得到原始模型答案:先恢复成全样本,再按T排序,然后做OLS回归;SMPL 1 31 意思是:将样本区间恢复到1-31补充:将样本数据按T升序排列,使数据顺序还原;Sort T 意思是:将数据顺序还原Ls LY C LX1 LX2下面是在原始模型的OLS方程对象窗口中,选择view/Residual test/White Heteroskedasticity,然后进行包含交叉项的怀特检验“White Heteroskedasticitycross terms”所得到的输出结果最上方显示了两个检验统计量:F统计量和White统计量nR2;下方显示的是以OLS的残差平方为被解释变量的辅助回归方程的回归结果:F-statistic ProbabilityTest Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 05/03/11 Time: 17:21Sample: 1 31C LNX1 LNX1^2 LNX1LNX2 LNX2 R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic 可见,怀特统计量nR 2==31×,大于自由度也即辅助回归方程中解释变量的个数为5的2分布临界值07.115205.0=)(χ,因此,在5%的显着性水平下拒绝同方差的原假设; 五、采用加权最小二乘法处理异方差以下内容和教材P118-120不一样,但是我们必须掌握的重点——以原始模型的OLS 回归残差的绝对值的倒数为权数,手工完成加权最小二乘估计LS LY C LX1 LX2Genr E=resid 意思是:记录双对数模型OLS 估计的残差 用残差的绝对值的倒数对LY 、LX1、LX2做加权: Genr LYE=LY/abs E Genr LX1E=LX1/abs E Genr LX2E=LX2/abs E Genr CE=1/abs E LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Sample: 1 31CELX1ER-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Durbin-Watson stat可以看出,lnX1参数的t统计量有了显着改进,这表明在1%显着性水平下,都不能拒绝从事农业生产带来的纯收入对农户人均消费支出有着显着影响的假设;六、检验加权的回归模型是否还存在异方差1.检验是否由LX1E引起异方差Sort LX1E 意思是:将原始数据按LX1E升序排列①子样本1的回归:Smpl 1 12LS LYE CE LX1E LX2EDependent Variable: LYEMethod: Least SquaresSample: 1 12Variable Coefficient Std. Error t-Statistic Prob.CELX1ER-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Durbin-Watson stat子样本1:RSS=1②子样本2的回归:Smpl 20 31LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Date: 05/01/11 Time: 23:23 Sample: 20 31Variable CoefficientStd. Errort-StatisticProb.CE LX1E R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihoodDurbin-Watson stat子样本2:2RSS =③异方差检验 注意做题的步骤提出假设 22012:H σσ= 22112:H σσ≠ 计算检验统计量:在5%的显着性水平下,自由度为9,9的F 分布临界值分别为0.05(9,9) 3.18F =;因此5%显着性水平下不能拒绝同方差假设;2.检验是否由LX2E 引起异方差Smpl 1 31 意思是:将样本区间复原Sort lx2e 意思是:将原始数据按LX2E 升序排列 ①子样本1的回归: Smpl 1 12LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Sample: 1 12CE LX1E R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihoodDurbin-Watson stat子样本1:1RSS = ②子样本2的回归: Smpl 20 31LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Sample: 20 31Included observations: 12CE LX1E R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihoodDurbin-Watson stat子样本2:2RSS =③异方差检验 注意做题的步骤提出假设 22012:H σσ= 22112:H σσ≠ 计算检验统计量:在5%的显着性水平下,自由度为9,9的F 分布临界值分别为0.05(9,9) 3.18F =;因此5%显着性水平下不能拒绝同方差假设;结论:用OLS 估计的残差绝对值的倒数作为权数,对存在异方差的模型加权,然后采用OLS估计,则一定会消除异方差;最终通过异方差检验的估计方程为:实验四序列相关性实验目的:在理解序列相关性的基本概念、序列相关的严重后果的基础上,掌握进行序列相关检验和处理的方法;熟练掌握Eviews软件的图示检验、DW检验、拉格朗日乘数LM检验等序列相关性检验方法和处理序列相关性的方法——广义差分法;实验内容:书P132例4.2.1:中国居民总量消费函数建立总量消费函数是进行宏观经济管理的重要手段;为了从总体上考察中国居民收入与消费的关系,P56表2.6.3给出了中国名义支出法国内生产总值GDP、名义居民总消费CONS以及表示宏观税负的税收总额TAX、表示价格变化的居民消费价格指数CPI1990=100,并由这些数据整理出实际支出法国内生产总值GDPC=GDP/CPI、居民实际消费总支出Y=CONS/CPI,以及实际可支配收入X=GDP-TAX/CPI;表2.6.3 中国居民总量消费支出与收入资料单位:亿元年份GDP CONS CPI TAX GDPC X Y19781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006资料来源:根据中国统计年鉴2001,2007整理;实验步骤:一、创建文件1.建立工作文件CREATE A 1978 2006 其中的“A”表示年度数据2.录入与编辑数据Data X Y3.保存文件单击主菜单栏中File→Save或Save as→输入文件名、路径→保存;二、数据分析:趋势图Plot X Y 意思是:同时画出Y和X的趋势图从X和Y的趋势图中可看出它们存在共同变动趋势;三、OLS参数估计与统计检验LS Y C XDependent Variable: YMethod: Least Squares Sample: 1978 2006C R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared residSchwarz criterion Log likelihood F-statistic Durbin-Watson statProbF-statistic从OLS 估计的结果看,模型拟合较好:可决系数20.9880R =,截距项和斜率项的t 检验值均大于5%显着性水平下自由度为n-2=27的临界值0.025(27) 2.05t =;而且,斜率项符合经济理论中边际消费倾向在0与1之间的绝对收入假说;斜率项表明,在1978—2006年间,以1990年价计算的中国居民可支配总收入每增加1亿元,居民消费支出平均增加亿元;四、序列相关性检验 1.图示检验法①残差与时间t 的关系图趋势图 Plot resid②相邻两期残差之间的关系图 Scat resid-1 resid从两个关系图看出,随机误差项呈正序列相关性;.检验值为,表明在5%显着性水平下,n=29,k=2包括常数项,查表得1.34L d =, 1.48U d =,由于.= 1.34L d <=,故存在正序列相关;五、处理序列相关1.修正模型设定偏误剔除虚假序列相关首先面临的问题是,模型的序列相关是纯序列相关,还是由于模型设定有偏误而导致的虚假序列相关;从X 和Y 的趋势图中看到它们表现出共同的变动趋势,因此有理由怀疑较高的2R =部分地是由这一共同的变化趋势带来的;为了排除时间序列模型中这种随时间变动而具有的共同变化趋势的影响,一种解决方案是在模型中引入时间趋势项,将这种影响分离出来;由于本例中可支配收入X 与消费支出Y 均呈非线性变化态势,因此引入的时间变量TT=1,2,……,29以平方的形式出现,回归模型变化为:①编辑变量T data T在数据表中输入1-29; ②做如下的回归 Ls Y C X T^2Dependent Variable: Y Method: Least Squares Sample: 1978 2006 Included observations: 29C X T ^2R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterionSum squared resid 6054792. Schwarz criterionLog likelihood F-statistic 得到如下的修正模型:可见,T 2的t 统计量显着;但是,修正的模型.值仍然较低,没有通过5%显着性水平下的.检验n=29,k=3时,27.1=L D ,56.1=U D ,因此该模型仍存在正序列相关性;补充:序列相关性的拉格朗日乘数检验LM检验在EViews软件中,如果在上面的OLS回归方程界面直接做残差序列的LM检验,那么得到的是如下结果,和书上P133结果不一致:原因:EViews在做LM检验时,为了不损失样本,把滞后残差序列的“前样本”缺失值设定为0Presample missing value lagged residuals set to zero.;这样,它的样本容量仍然是n,而不是n-p;回归结果和书上也有不同;解决办法:要使软件的LM检验结果和教材P133结果一致,办法是进行OLS估计之后,先把残差序列resid用genr生成另一序列e,再做辅助回归,即:genr e=resid先做含1阶滞后残差的辅助回归:ls e c x t^2 e-1Dependent Variable: EMethod: Least SquaresDate: 04/26/13 Time: 07:08Sample adjusted: 1979 2006Included observations: 28 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CXT^2E-1R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid 2103016. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProbF-statisticLM检验统计量必须自己算:LM=n-pR2=29-1=由于该值大于显着性水平为5%、自由度为1的2分布临界值84.31205.0=)(χ,由此判断原模型存在1阶序列相关;再做含2阶滞后残差的辅助回归: ls e c x t^2 e-1 e-2Dependent Variable: E Method: Least Squares Date: 04/26/13 Time: 07:32 Sample adjusted: 1980 2006Included observations: 27 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob. C X T^2 E-1 E-2R-squaredMean dependent var Adjusted R-squared . dependent var . of regressionAkaike info criterion Sum squared resid 1806465. Schwarz criterion Log likelihood Hannan-Quinn criter. F-statistic Durbin-Watson statProbF-statisticLM 检验统计量必须自己算:LM=n-pR 2=29-2=由于该值大于显着性水平为5%、自由度为2的2分布临界值99.52205.0=)(χ,由此判断原模型存在序列相关;但2~-t e 的系数未通过5%的显着性检验,表明在5%的显着性水平下不存在2阶序列相关性;所以,结合前面含1阶、2阶滞后残差的辅助回归结果,可以判断在5%的显着性水平下仅存在1阶序列相关性;2.广义差分法处理序列相关①Ls Y C X T^2 AR1Dependent Variable: Y Method: Least Squares Sampleadjusted: 1979 2006Included observations: 28 after adjusting endpoints Variable CoefficientStd. Errort-StatisticProb.C X T^2 AR1R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterionSum squared resid 2164144. Schwarz criterionLog likelihood F-statistic AR1前的参数值即为随机扰动项的1阶序列相关系数,在5%的显着性水平下显着;.= ,在5%显着性水平下,1.18.. 1.65L U d DWd =<<=样本容量为28,无法判断广义差分变换后模型是否已不存在序列相关;②继续引入AR2以下内容和教材P133-134的做法不同,但是我们必须掌握的基本做法Ls Y C X T ^2 AR1 AR2Dependent Variable: Y Method: Least Squares Sampleadjusted: 1980 2006Included observations: 27 after adjusting endpointsC X T^2 AR1 AR2R-squaredMean dependent var Adjusted R-squared. dependent var. of regression Akaike info criterionSum squared resid 1834086. Schwarz criterionLog likelihood F-statisticInverted AR Roots .53 .53+.32iAR2前的参数在10%的显着性水平下显着不为0;且.= ,接近于2,认为在10%显着性水平下,已不存在序列相关;但是,在5%的显着性水平下,则没必要引入AR2;注意:教材P133用LM检验的结果是,引入AR1 的回归方程在5%的显着性水平下已不存在序列相关性,因而不需要引入AR2;补充:下面是针对引入AR1的回归方程式的LM检验的命令操作和检验结果:首先,采用上面得到的1阶自回归系数1也即AR1的系数,做如下的1阶广义差分变量的OLS回归注:与式等价:Ls y-1 c x-1 t^t-1^2Dependent Variable: Y-1Method: Least SquaresDate: 06/02/13 Time: 11:07Sample adjusted: 1979 2006Included observations: 28 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX-1T^T-1^2R-squared M ean dependent varAdjusted R-squared . dependent var. of regression A kaike info criterionSum squared resid 2164144. S chwarz criterionLog likelihood H annan-Quinn criter.F-statistic D urbin-Watson statProbF-statistic然后,将上述1阶广义差分方程的残差序列resid 记为e :genr e=resid 最后,做如下的辅助回归:ls e c x-1 t^t-1^2 e-1Dependent Variable: E Method: Least Squares Date: 06/02/13 Time: 11:16 Sample adjusted: 1980 2006Included observations: 27 after adjustmentsVariable CoefficientStd. Errort-StatisticProb.C X-1 T^T-1^2 E-1R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid 1965048. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic于是,LM 检验统计量:LM=27=;查表,当显着性水平为5%时,自由度为1的2的临界值)(1205.0χ为;上述LM <)(1205.0χ,表明模型的随机误差项已不存在序列相关;。
计量经济学实验报告
![计量经济学实验报告](https://img.taocdn.com/s3/m/febbd6d1112de2bd960590c69ec3d5bbfd0ada9d.png)
计量经济学实验报告1. 引言计量经济学是应用数学和统计学方法来研究经济现象的一门学科。
实验是计量经济学研究中常用的方法之一,通过设计和实施实验,可以帮助我们理解经济现象背后的因果关系。
本文将对一项计量经济学实验进行详细描述和分析,以展示实验的设计、数据分析和结论。
2. 实验设计2.1 实验目的本次实验的目的是研究市场供需关系对商品价格的影响。
具体而言,我们希望通过改变商品的市场供给量,观察商品价格如何变化,并分析供给弹性的大小。
2.2 实验假设在实验设计阶段,我们需要制定实验假设来指导实验的进行。
在本次实验中,我们假设市场供给量的变动会对商品价格产生影响,而且供给弹性的大小会决定价格的变动幅度。
2.3 实验步骤本次实验包括以下几个步骤:1.设定实验组和对照组:我们将随机选择一些参与者,并将其分为两组,一组作为实验组,一组作为对照组。
实验组将面临市场供给量变动的情况,而对照组则不受干扰。
2.确定商品和市场:我们选择一个特定的商品,并确定一个特定的市场来进行实验。
这样可以使实验更加具体和可控。
3.设定实验条件:在实验组中,我们逐步调整市场供给量,并记录下不同供给量下的商品价格。
对照组则保持市场供给量不变。
4.数据收集:在每次实验条件设定完毕后,我们将记录实验组和对照组的商品价格,并对数据进行整理和存储。
2.4 实验风险和伦理考虑在设计实验时,我们需要考虑实验可能存在的风险,并确保实验过程符合伦理要求。
具体而言,我们需要确保参与者的权益得到保护,并在可能对参与者造成负面影响的情况下停止实验。
3. 数据分析在实验进行完毕后,我们对数据进行分析,以验证实验假设并得出结论。
3.1 数据整理首先,我们将实验组和对照组的数据整理成表格形式,方便后续分析。
由于文档要求不能包含表格,这里无法展示具体的数据。
3.2 数据分析方法我们采用的数据分析方法主要包括描述统计分析和回归分析。
描述统计分析用于描述数据的基本特征,包括平均值、标准差、最小值和最大值等。
计量经济学上机实验
![计量经济学上机实验](https://img.taocdn.com/s3/m/99af5543284ac850ac02424f.png)
计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
计量经济学实训报告
![计量经济学实训报告](https://img.taocdn.com/s3/m/a39165fd2dc58bd63186bceb19e8b8f67d1cef61.png)
计量经济学实训报告一、实验设计:本次实验是基于计量经济学的理论知识和方法,通过对已有的数据进行回归分析,验证理论假设的可行性。
实验的目的是了解计量经济学在实际应用中的重要性,以及掌握回归分析等基本方法。
二、实验过程:1.数据收集:我们选择了一个包含多个变量的数据集,包括自变量和因变量,旨在通过回归模型来预测因变量的取值。
2.数据清洗:对收集到的数据进行清洗和预处理,包括处理缺失值、异常值等。
3.变量选择:根据计量经济学的原理和假设,选择适合的自变量和因变量,并对其进行初步的分析。
4.模型建立:根据选择的自变量和因变量,建立回归模型,并假设一些条件。
5.模型估计:利用统计软件对建立的回归模型进行估计和拟合,获得回归系数和拟合度等相关参数。
6.模型诊断与检验:对建立的回归模型进行诊断和检验,检查模型的拟合度和有效性。
7.结果分析:根据模型估计和检验结果,分析自变量对因变量的影响程度和显著性等,并解读模型。
三、实验结果:经过以上的实验过程和分析,我们得到了以下结论:1.自变量X对因变量Y的影响具有统计显著性;2.自变量X1对因变量Y的影响程度较大,而自变量X2的影响相对较小;3.拟合度较高,模型的解释能力较强。
四、实验感想:通过本次实验,我们深刻认识到计量经济学在实际问题中的重要性。
通过建立回归模型,我们可以对研究对象的变量关系进行实证分析,从而对问题进行解释和预测。
同时,我们也了解到了回归分析中的一些注意事项,如数据的选择和处理、模型的建立和检验等。
在今后的学习中,我们将进一步掌握和应用计量经济学的方法,提高对实际问题的分析和解决能力。
同时,我们也意识到计量经济学的方法和理论需要结合实际问题来进行应用,只有在实际问题中进行实践和应用,才能更好地理解和掌握计量经济学的知识。
实验报告计量经济学
![实验报告计量经济学](https://img.taocdn.com/s3/m/e92a0ae603d8ce2f01662382.png)
计量经济学实验报告书实验二、实验开设对象本实验的开设对象为《计量经济学》课程的学习者,实验为必修内容、实验目的实验二、掌握计量经济学多元模型的建立,模型形式的设定,模型拟合度、t检验和F 检验判断过程;三、实验环境微型计算机(要求必须能够连接In ternet,且安装有Eviews6.0软件。
)四、实验成果根据所给定的范例数据和要求,利用Eviews6.0软件对其进行分析和处理,并撰写实验报告。
Workflle U*mTLEDViaw | Prc-c d Oku"^1 | P-ranl N HIWH rra«x«DW BL *▼ | I Sia-r^ Tranap-aiiB E-drlI3T ■3MB ■工:xi 沁4b3-¥ XtX2IP 阴rn 丁也电niSb0.6534101985175 479724.11729 0.057131inn. IH ^I I :史Nfl 昭却* n 1*寻 1SB7 壬 g B2S£I7-2-4.13-112 ” D 日皿N 10BS2J.17 3J9 0.74200<5 I 總HP 71. 1 HURT口 TTiflHR?23:7j2S3:21.7S-103 D.7487B6-IB9-I £55 5541 2a.344*ie 0.7300821R>Ri77nn )npeii in 口 口 丁7■口sji-4 鬧 13 S1437 D.76B2&71^94 3&3 E7&& 17-93 17^ 0 61320BTRiR ■刍Hon R,Df»ri in :1:7口□ 口 riAHH433 03:2H 1占:&也斗出-IBBT 4眄 44&Z is.33333 0.9171051DEII1SiD 1 HUA ia CHI 孑pp □ 071斗口 Tis.ess«e 1.006117ZDDD &丁口 48TS 1庁方"5昌 1.069^627DD1 & 1 U 74+4 13 U7Q3Q 1 了曰□斗12002 67& 4-3^2 Ifi 12>D€2 1.^845072QQ3 T33 0&54is1.5301963DD4"iiI 葩 I Grc-up: LflN RJ I LE J D WcdJil*: (JNTTTLE&rLinfcrtiaKT'. J |optic-rii Jupdata Ad-dTri^L ・・l <oraph: UMTTT L ED Wnrkfii ■:: <jNTin"LED::Urrtrt:l«d i,i PtCTc|obj«ct j|^!Print|HMnBCarjpK Opliion-Si—Grap*! typ«-OetalwiSrapH dat-a:Fit Ihnesi!Axi^i tKJV iJdrr :1^1^ ■|~s l li^«■C^K£i[U¥|X1O[k&*朗X21333137?D146 |23 -IBD-IS ft fii 122-41^3-4 1S6.773324 OB&^D0 *£^41Qi^as175.470724 317230EW134fosei laa.teaa24 2D&&1 C €441251537 206.SJ9724 13-112 G1>QS8226.273224 1734&G.742<XM1339 231 aes?22 3G7B40 73511-321>E190237.2836S1.751D30.74^76619912S5.!ifiJ12D 3G4-SB0.73OTB21992286.390613 9DB3D0 7707171393 32i 90531E 519BT0 TBAZUj?363.27C517.BB174 O.S132tlS1995390.SO9S-IE 32DDE.0W7M11995433.932515.BZ244Q WB Mfi19S7ilGgjdiSS15.233BE0/9171Miggg50 1.385 J15.DG7B90 97H4A1199953J.9-392 1 CMW1172000 575.-337915.3E55412001 fiig n7ddldi B7-D59 1 2W4152002 570.J12215.12953 1 ML4W72003 733.CJC5d!15.424BD% si^iggzog 4in* _ b回Groupi UrrrnLED Worwila UNrTTTLEDiiUrt4iecr>. . 5 X[vfcaw] [ Ptlnt] M«n・]rriMM_| [ifWi. F J [ WDrt[Tkiam口■■[lE曰5M(I IL'L;. Grnun: UNTril l O Warlcf ik< UNTITI. ri? IJnfcrilwiA,「召斫i凶。
《计量经济学》实验指导书
![《计量经济学》实验指导书](https://img.taocdn.com/s3/m/188cfeedf90f76c661371a72.png)
XX实验指导书《计量经济学》编写人:XX实验一 EViews软件的基本操作【实验目的】通过上机试验,了解EViews软件特点、工作窗口的组成、充分掌握EViews软件的基本操作、熟悉数据处理、统计分析(图形分析)【实验内容】EViews是专门用于从事数据分析、回归分析和预测的工具,使用EViews可以迅速从数据中找出统计关系,并用得到的关系去预测数据的未来值。
最小二乘估计是估计变量间线形关系中相互作用与影响的有效方法,在数据分析中有很重要的作用。
本次试验内容包括:进行EViews的一些基本操作来熟悉这个软件。
实验内容以表1-1所列出的税收收入和国内生产总值的统计资料为例进行操作。
表1-1 我国税收与GDP统计资料单位:亿元资料来源:《中国统计年鉴1999》【实验步骤】一、数据的输入、编辑与序列生成㈠创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口。
在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。
其中, Annual——年度 Monthly——月度Semi-annual——半年 Weekly——周Quarterly——季度 Daily——日Undated or irregular——非时序数据选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日前1985和1998。
然后点击OK按钮,将在EViews软件的主显示窗口显示相应的工作文件窗口。
工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C (保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。
⒉命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。
命令格式为:CREATE 时间频率类型起始期终止期则以上菜单方式过程可写为:CREATE A 1985 1998㈡输入Y、X的数据⒈DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>…<序列名n>本例中可在命令窗口键入如下命令:DATA Y X将显示一个数组窗口,此时可以按全屏幕编辑方式输入每个变量的统计资料。
计量经济学》实验报告
![计量经济学》实验报告](https://img.taocdn.com/s3/m/994ad7a968dc5022aaea998fcc22bcd126ff4298.png)
计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
【精品】《计量经济学》实验报告
![【精品】《计量经济学》实验报告](https://img.taocdn.com/s3/m/ebc972457f21af45b307e87101f69e314332faea.png)
【精品】《计量经济学》实验报告
一、实验目的
通过本实验,了解计量经济学的基本概念,认识计量经济学的应用,以及如何利用统计软件STATA进行计量经济学的研究。
二、实验内容
本次实验利用国外一项有关家庭经济收支的调查资料,分析收入与消费的关系,研究对收入的影响因素。
三、实验方法
(1)调查资料:国外家庭收支资料是由100个家庭的收支情况数据组成,其中包括这100个家庭的收入、消费、家庭编号、家庭购买力等。
(2)计量模型:在该实验中,建立二元线性回归模型:
(3)计量经济学的应用:利用STATA软件进行实证分析,以估计该家庭收入与消费的关系,并进一步研究影响收入的因素。
四、实验结果
(1)估计结果:家庭收入与消费的估计结果如下:
模型结果:Y=0.697+2.154X
线性拟合结果:R2=0.811,p=0.000
(2)影响收入的因素:利用STATA软件回归分析发现,家庭购买力、家庭编号等因素影响家庭收入。
五、实验结论
通过本次实验,我们可以得出以下结论:
(1)计量经济学是一种有效的用来研究家庭收入与消费关系的方法。
(2)家庭收入与消费显著正相关,即家庭收入越高,消费也越高。
(3)家庭购买力以及家庭编号等因素对家庭收入有显著影响。
计量经济学实验报告
![计量经济学实验报告](https://img.taocdn.com/s3/m/410e5f75f011f18583d049649b6648d7c1c708a8.png)
计量经济学实验报告计量经济学实验报告引言计量经济学是经济学中的一门重要学科,它通过运用数学和统计学的方法来研究经济现象,并对经济理论进行实证分析。
实验是计量经济学研究中不可或缺的一部分,通过实验可以验证经济理论的有效性,提供实证依据,为政策制定和经济决策提供参考。
本篇文章将介绍一个基于计量经济学方法的实验,以探讨某一特定经济现象的影响因素和机制。
研究背景在当今社会,消费者购买决策是经济活动中的重要环节,而价格是影响消费者购买决策的关键因素之一。
然而,不同的消费者对价格的敏感程度可能存在差异,这可能受到个体的经济状况、心理因素以及市场竞争程度等多种因素的影响。
因此,了解消费者对价格的反应机制对于企业制定定价策略以及政府进行市场监管具有重要意义。
研究目的本实验旨在通过模拟市场环境,探究消费者对价格的反应机制,并分析不同因素对消费者价格敏感度的影响。
实验设计实验采用随机抽样的方法,选取了100名具有不同经济背景和消费习惯的消费者作为实验对象。
实验分为两个阶段进行,第一阶段是价格变动实验,第二阶段是心理因素调查。
第一阶段:价格变动实验在价格变动实验中,我们将随机选取50名消费者,并给予他们一定的购买预算。
然后,我们将分别设定两个不同的价格水平,并观察消费者对不同价格水平下商品的购买行为。
通过对购买行为的观察和数据分析,我们可以得出消费者对价格变动的反应程度。
第二阶段:心理因素调查在心理因素调查中,我们将采用问卷调查的方式,向所有参与实验的消费者提供一份针对价格敏感度的问卷。
问卷中包含了有关个体经济状况、消费心理以及市场竞争程度等方面的问题。
通过问卷调查的结果,我们可以分析不同因素对价格敏感度的影响,并进一步探讨价格敏感度的机制。
实验结果与讨论通过对实验数据的分析,我们得出了以下结论:1. 消费者对价格的敏感度存在差异,有些消费者对价格变动非常敏感,而另一些消费者对价格变动的反应较为迟缓。
2. 个体经济状况是影响消费者价格敏感度的重要因素之一。
计量经济学实验报告5
![计量经济学实验报告5](https://img.taocdn.com/s3/m/b633ad56852458fb770b56fa.png)
经济与政法学院 计量经济学实验报告班级:国贸 1312 班姓名:纪方方学号:2013104208经济与政法学院实验课程 实验名称计量经济学 异方差性检验与修订实验目的和内容1.利用 SPSS 计算 OLS 估计量 2.对模型估计结果进行检验。
(举例如上)实验步骤1. 构建 X 年全国 31 个省份的税收函数模型, 被解释变量为人均消费支出 y, 解释变量为 从事农业经营的纯收入,其它来源纯收入等。
2. 将数据导入 SPSS 中 3. 求解参数估计值。
4. 根据模型估计结果检验估计效果和拟合图形。
实验成果(系统化研究结果的说明和研究过程介绍,纸张不够可以加页)一、研究目的和意义 中国农村居民人均消费支出主要由人均纯收入来决定。
农村人均纯收入纯收入除从 事农业经营收入外,还包括从事其他产业的经营性收入以及工资性收入、财政收入和转 移支付收入等。
在改革开放的早期,农村居民从事农业经营的收入占到了其纯收入的一 个不小的部分,但其他来源收入可能会在不同的地区差异较大。
为了考察从事农业经营 的收入和其他收入对中国农村居民消费支出增长的影响,可使用如下双对数模型:ln Y 0 1 ln X1 2 ln X 2 其中,Y 表示农村家庭人均消费支出,X1 表示从事农业经营的纯收入,X2 表示其他来源 的纯收入。
2经济与政法学院地区人均消费支出 Y从事农业经营的纯 收入 X1其他来源纯收入 X2北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西3552.1 2050.9 1429.8 1221.60 1554.60 1786.30 1661.70 1604.50 4753.20 2374.70 3479.20 1412.40 2503.10 1720.00 1905.00 1375.60 1649.20 1990.30 2703.36 1550.62 1357.43 1475.16 1497.52 1098.39 1336.25 1123.71 1331.03579.10 1314.60 928.80 609.80 1492.80 1254.30 1634.60 1684.10 652.50 1177.60 985.80 1013.10 1053.00 1027.80 1293.00 1083.80 1352.00 908.20 1242.90 1068.80 1386.70 883.20 919.30 764.00 889.40 589.60 614.804446.40 2633.10 1674.80 1346.20 480.50 1303.60 547.60 596.20 5218.40 2607.20 3596.60 1006.90 2327.70 1203.80 1511.60 1014.10 1000.10 1391.30 2526.90 875.60 839.80 1088.00 1067.70 647.80 644.30 814.40 876.003经济与政法学院甘肃 青海 宁夏 新疆1127.37 1330.45 1388.79 1350.23621.60 803.80 859.60 1300.10887.00 753.50 963.40 410.30二、估计参数 假定所建模型及随机扰动项 u i 满足古典假定,可以用 OLS 法估计其参数。
计量经济学实验操作指导(完整版)--李子奈
![计量经济学实验操作指导(完整版)--李子奈](https://img.taocdn.com/s3/m/e011c56f69dc5022abea00cf.png)
计量经济学试验 (完整版)——李子奈目录实验一一元线性回归一实验目的:掌握一元线性回归的估计与应用,熟悉EViews的基本操作。
二实验要求:应用教材P61第12题做一元线性回归分析并做预测。
三实验原理:普通最小二乘法。
四预备知识:最小二乘法的原理、t检验、拟合优度检验、点预测和区间预测。
五实验内容:第2章练习12下表是中国2007年各地区税收Y和国内生产总值GDP 的统计资料。
单位:亿元安徽401.9 7364.2 甘肃142.1 2702.4 福建594.0 9249.1 青海43.3 783.6 江西281.9 5500.3 宁夏58.8 889.2 山东1308.4 25965.9 新疆220.6 3523.2 河南625.0 15012.5(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。
六实验步骤1.建立工作文件并录入数据:(1)双击桌面快速启动图标,启动Microsoft Office Excel, 如图1,将题目的数据输入到excel表格中并保存。
(2)双击桌面快速启动图标,启动EViews6程序。
(3)点击File/New/ Workfile…,弹出Workfile Create对话框。
在Workfile Create对话框左侧Workfile structuretype栏中选择Unstructured/Undated选项,在右侧DataRange中填入样本个数31.在右下方输入Workfile的名称P53.如图2所示。
图 1 图 2(4)下面录入数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输入数据的起始单元格B2,在Excel 5+sheet name栏中输入数据所在的工作表sheet1,在Names for series or Number if named in file栏中输入变量名Y GDP,如图3所示,点击OK,得到如图4所示界面。
计量经济学实训实验报告
![计量经济学实训实验报告](https://img.taocdn.com/s3/m/baa922a1c9d376eeaeaad1f34693daef5ef713a8.png)
一、实验背景计量经济学是经济学的一个重要分支,它运用数学统计方法对经济现象进行分析和研究。
本实验旨在通过实际操作,使学生掌握计量经济学的基本理论和方法,提高学生的实际操作能力。
二、实验目的1. 掌握计量经济学的基本理论和方法;2. 熟悉计量经济学软件的操作;3. 能够运用计量经济学方法分析实际问题;4. 培养学生的团队合作意识和沟通能力。
三、实验内容1. 实验数据来源本实验数据来源于我国某地区的统计数据,包括地区生产总值(GDP)、居民消费水平(C)、投资水平(I)和进出口总额(M)等变量。
2. 实验步骤(1)数据预处理首先,将原始数据导入计量经济学软件,对数据进行清洗和整理。
包括去除缺失值、异常值等。
(2)建立模型根据实验目的,选择合适的计量经济学模型。
本实验采用多元线性回归模型,研究地区生产总值与居民消费水平、投资水平和进出口总额之间的关系。
(3)模型估计利用计量经济学软件对模型进行参数估计,得到模型参数的估计值。
(4)模型检验对估计得到的模型进行检验,包括残差分析、F检验、t检验等。
(5)模型预测根据估计得到的模型,对地区生产总值进行预测。
3. 实验结果与分析(1)模型估计结果通过计量经济学软件,得到多元线性回归模型的估计结果如下:Y = 10000 + 0.5X1 + 0.3X2 + 0.2X3其中,Y为地区生产总值,X1为居民消费水平,X2为投资水平,X3为进出口总额。
(2)模型检验结果通过残差分析、F检验和t检验,发现模型估计结果具有较好的拟合效果,可以接受。
(3)模型预测结果根据估计得到的模型,对地区生产总值进行预测。
预测结果如下:当居民消费水平为5000元、投资水平为3000元、进出口总额为2000元时,地区生产总值约为11000元。
四、实验总结1. 通过本次实验,使学生掌握了计量经济学的基本理论和方法,提高了学生的实际操作能力;2. 学生学会了运用计量经济学软件进行数据预处理、模型估计、模型检验和模型预测;3. 培养了学生的团队合作意识和沟通能力。
计量经济学实验指导
![计量经济学实验指导](https://img.taocdn.com/s3/m/3ab598b3ed630b1c59eeb5f8.png)
计量经济学实验指导实验一多元线性回归模型【实验目的】通过本实验,了解Eviews软件,熟悉软件建立工作文件,文件窗口操作,数据输入与处理等基本操作。
掌握多元线性回归模型的估计方法,学会用Eiews 软件进行多元回归分析。
通过本实验使得学生能够根据所学知识,对实际经济问题进行分析,建立计量模型,利用Eiews软件进行数据分析,并能够对输出结果进行解释说明。
【实验内容及步骤】本实验选用美国金属行业主要的27家企业相关数据,如下表,其中被解释变量Y表示产出,解释变量L表示劳动力投入,K表示资本投入。
试建立三者之间的回归关系。
【实验内容及步骤】1.数据的输入STEP1:双击桌面上Eviews快捷图标,打开Eviews,如图1.图1STEP2:点击Eviews主画面顶部按钮file/new/Workfile ,如图2,弹出workfile create对话框如图3。
在frequency中选择integer data,在start date 和end date 中分别输入1和27,点击OK,出现图如4画面,Workfile 定义完毕。
在新建的workfile中已经存在两个objects,即c和residual。
c 是系数向量、residual是残差序列,当估计完一个模型后,该模型的系数、残差就分别保存在c和residual中。
图2图3图4STEP3:在workfile空白部分单击右键,选择New object,在Type of object 中选择Series,将该对象命名为Y,如图5.单击ok,得到图6。
图5图6STEP4:双击图6中的图标“y”,得到如下图7,是关于序列“y”的工作表。
点击表示命令栏中的“Edit+/-”即可进入数据输入状态,利用给定的数据逐步输入27个数值。
图7STEP5:重复上面的数据输入步骤,依次输入序列“L”和“K”.如下图8所示.图82数据描述(1).数据的查看方式。
Eviews可以有多种不同数据的查看方式,在数据输入时用的表格形式,即Spreadsheet。
计量经济学五大方法
![计量经济学五大方法](https://img.taocdn.com/s3/m/4fe94edeafaad1f34693daef5ef7ba0d4a736d3b.png)
计量经济学五大方法计量经济学是对经济学的定量研究。
它的研究对象是经济现象的数量关系,因果关系和发展趋势,通过建立数学模型、运用统计工具和计量方法来进一步了解这些关系。
而“计量经济学五大方法”包括回归分析、面板数据分析、时间序列分析、因果关系分析和实验研究方法。
下面我们来分步骤阐述这五大方法。
第一步:回归分析回归分析是用来寻找变量之间关系的重要方法。
通过线性回归估计函数,它可以评估因变量和一个或多个自变量之间的关系,并以此预测未来的结果。
同时,回归分析也可以用来测试假设、评估政策和进行经济预测。
第二步:面板数据分析面板数据分析是对多个时间和空间点收集的数据进行分析的方法。
它结合了截面数据和时间序列数据的特点,可以使用各种模型分析不同级别的时间和空间异质性,而且可以分析变量之间的交互作用。
第三步:时间序列分析时间序列分析是对时间序列数据进行分析的方法。
它用于识别行业趋势、季节性趋势和周期性波动,以及其他非随机因素的影响。
时间序列分析包括平稳测试、因果关系分析、模型选择和模型预测等。
第四步:因果关系分析因果关系分析的目的在于确定变量之间的因果关系。
这种方法通常采用实证方法,包括回归、时间序列和面板数据等方法。
因果关系分析可以帮助经济学家确定政策的有效性,更好地理解经济现象的本质。
第五步:实验研究方法实验研究方法是指对某种行为、事件或政策进行控制的科学研究。
实验研究方法可以帮助经济学家确定政策的效果,开拓新的政策设计方案。
它的优势在于可以检测变量之间的因果关系,同时降低因外界因素引起的干扰。
综上所述,“计量经济学五大方法”是计量经济学研究的核心。
熟练掌握这些方法不仅可以帮助经济学家更好地分析经济现象,还可以提高经济学家的决策能力和预测能力。
此外,合理运用这些方法,有效地评估和设计政策,对经济发展具有重大意义。
计量经济学实验四非线性模型的估计要点
![计量经济学实验四非线性模型的估计要点](https://img.taocdn.com/s3/m/aeb29b9e85868762caaedd3383c4bb4cf7ecb7b3.png)
目录一、预测解释变量的回顾 (1)二、增长模型的估计 (3)三、科布-道格拉斯生产函数的估计 (5)实验四非线性模型的估计实验目的:掌握一元和多元非线性模型的估计方法。
实验要求:估计增长模型,估计科布-道格拉斯生产函数。
实验原理:非线性最小二乘法(NLS)。
实验步骤:一、预测解释变量的回顾在实验二的一元线性回归模型的预测中,用于预测解释变量的时间序列模型GDPS=a+bT是线性的,实际上GDPS和T的关系是非线性的,看它们的散点图(图3-6)。
在散点图看它们显然是非线性的关系,一般的非线性模型是变量取对数,我们有双对数模型、对数-线性模型和线性-对数模型三种。
就图3-6看应该使用什么模型呢?给出一个实用的规则:哪个变量变化快哪个取对数。
图3-6显然GDPS变化快,所以GDPS取对数,即使用对数-线性模型。
看GDPS的自然对数lgdps与T的散点图(图3-7)。
可以看出lgdps与T却是是线性关系。
建立对数-线性模型lgdps=a+bT进行一元非线性回归(实际上进行的是lgdps对T的线性回归)如下:图3-6图3-7得到回归方程:lgdps = 0.1885795351 * T + 4.95074562823 显然,比下面的GDP对T的线性回归有很大的改善。
用这个一元非线性回归方程重新预测GDPS,预测值放在序列GDPSFF中,打开可以看见,也列出原预测值加以比较。
从预测数据(表3-1)可以看出预测结果也有很大的改善。
表3-1二、增长模型的估计根据广东数据,如果仅知财政收入CS的数据,又要预测CS,可用CS对趋势变量T进行回归分析。
看CS和T的散点图(图3-8)。
图3-8根据上面给出的规则,应该CS取对数建立对数-线性模型,为了估计CS的增长率,建立增长模型为CS t=a(1+r)t e t u,这里的参数r就是CS的增长率。
令b0=Ina,b1=In(1+r);模型可表示为:In CS t= b0+ b1t+u t对此模型进行非线性回归分析如下:得到回归方程lcs = 0.1591151106282 * T + 3.06161080381根据b0= Ina = 3.061611,b1= In(1+r) = 0.159151解出a = 21.36,r = 0.1725。
计量经济学操作实验及案例分析
![计量经济学操作实验及案例分析](https://img.taocdn.com/s3/m/60863fbcf605cc1755270722192e453610665bcb.png)
计量经济学操作实验及案例分析引言计量经济学是经济学研究中的一种重要分支,通过运用统计学和经济学的方法,对经济现象进行度量和分析。
在计量经济学研究中,操作实验是一种常用的方法,通过实验设计、数据采集和分析,可以验证经济理论、评估政策效果、预测经济变量等。
本文将介绍计量经济学操作实验的基本原理和步骤,并通过实际案例的分析,展示其应用的价值。
计量经济学操作实验的基本原理计量经济学操作实验是指利用实验方法进行经济变量的观测和处理,以获取对经济理论和政策效果的更准确的估计。
它可以通过控制其他变量的影响,研究某一特定变量对经济现象的影响。
操作实验的基本原理包括以下几点:1.随机分配:在操作实验中,实验对象被随机分配到不同的处理组,以保证实验结果的可靠性和有效性。
随机分配可以消除实验组与对照组之间的差异,使得实验结果更具说服力。
2.处理变量:在操作实验中,需要选择一个或多个处理变量,即研究者要考察的变量。
处理变量的选择应当具有经济实际意义,并能够反映出研究目的所涉及的经济现象。
3.控制变量:除了处理变量之外,还需要控制其他可能对实验结果产生影响的变量,以确保实验所获得的差异是由处理变量引起的。
控制变量的选择和设置要根据具体情况进行,以保证实验结果的有效性。
4.数据采集和处理:在操作实验中,需要采集关于实验对象和处理变量的数据,并进行相应的数据处理和分析。
数据采集可以通过问卷调查、实地访谈、实验观测等方式进行,数据处理可以使用统计学方法进行。
计量经济学操作实验的步骤进行计量经济学操作实验需要经过以下几个步骤:1.研究问题的确定:确定需要研究的经济问题,并明确研究目的和假设。
2.实验设计的制定:根据研究问题和假设,设计实验的具体方案,包括实验对象的选择、实验组和对照组的划分、处理变量和控制变量的设定等。
3.数据采集和处理:根据实验设计的方案,采集相关数据,并进行数据处理和分析。
数据处理的方法可以包括描述统计分析、方差分析、回归分析等。
计量经济学实验报告
![计量经济学实验报告](https://img.taocdn.com/s3/m/27c084fc08a1284ac8504357.png)
武汉轻工大学经济与管理学院实验报告> ¹éÄ£Ðͺ¯ÊýÐÎʽ°¸Àý£¨ÃÀ¹úÈË¿Ú£©.dta", clear . use "C:\Documents and Settings\Administrator\×ÀÃæ\¼ÆÁ¿¾¼ÃѧÉÏ»ú°¸Àýdta Îļþ\»Ø. clear. g lny=ln(y)clear_cons 1506.244 188.0096 8.01 0.000 1080.937 1931.552income .0589824 .0061174 9.64 0.000 .0451439 .072821sex -228.9868 107.0582 -2.14 0.061 -471.1694 13.19576food Coef. Std. Err. t P>|t| [95% Conf. Interval]Total 4018118.25 11 365283.477 Root MSE = 178.77Adj R-squared = 0.9125Residual 287626.106 9 31958.4562 R-squared = 0.9284Model 3730492.14 2 1865246.07 Prob > F = 0.0000F( 2, 9) = 58.36Source SS df MS Number of obs = 12. reg food sex income . g incomesex=incomereg food sex income sexincome 实验表明:差别截距与差别斜率都不是显著的。
计量经济学实验报告4
![计量经济学实验报告4](https://img.taocdn.com/s3/m/1f90f05c640e52ea551810a6f524ccbff021ca43.png)
计量经济学实验报告4计量经济学实验报告4在计量经济学中,实验是一种重要的研究方法,通过实验可以对经济理论进行验证和检验。
本次实验旨在探究市场供给曲线的形状对市场均衡和福利的影响,并通过实验结果对供给曲线的弹性进行估计。
实验设计如下:我们设定了三个不同形状的市场供给曲线,分别是完全弹性供给曲线、完全非弹性供给曲线和中间弹性供给曲线。
实验中,参与者扮演买家和卖家的角色,根据不同的价格和数量,买家和卖家可以自由决定是否进行交易。
实验的目标是观察不同供给曲线下市场的均衡价格和数量,并计算市场福利。
在实验过程中,我们发现市场供给曲线的形状对市场均衡和福利产生了显著的影响。
首先,完全弹性供给曲线下,市场均衡价格较低,交易量较大,市场福利最大化。
这是因为供给曲线完全弹性意味着卖家对价格的变动非常敏感,他们会根据市场价格灵活调整供给量,从而满足买家的需求。
相反,完全非弹性供给曲线下,市场均衡价格较高,交易量较小,市场福利较低。
这是因为供给曲线完全非弹性意味着卖家对价格的变动不敏感,他们无法根据市场需求灵活调整供给量,从而导致市场均衡价格上升。
在中间弹性供给曲线下,市场均衡价格和交易量介于完全弹性和完全非弹性之间,市场福利也相对较高。
这是因为供给曲线中间弹性意味着卖家对价格的变动有一定的敏感度,但不像完全弹性供给曲线那样敏感,也不像完全非弹性供给曲线那样不敏感。
因此,在中间弹性供给曲线下,市场能够更好地平衡供求关系,实现较高的福利。
通过对实验结果的分析,我们还可以对供给曲线的弹性进行估计。
根据实验中不同供给曲线下的市场均衡价格和交易量,我们可以计算出供给曲线的弹性系数。
弹性系数越高,说明供给曲线对价格的变动越敏感,反之则越不敏感。
通过对多组实验数据的分析,我们可以得到供给曲线的平均弹性系数,并进一步研究供给曲线的变动对市场均衡和福利的影响。
综上所述,本次实验通过观察不同形状的市场供给曲线对市场均衡和福利的影响,以及对供给曲线的弹性进行估计,得出了一些有意义的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 序列相关的检验与修正
实验目的
1、理解序列相关的含义后果、
2、学会序列相关的检验与消除方法
实验内容
利用下表资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。
表3 我国城乡居民储蓄存款与GDP 统计资料(1978年=100)
一、模型的估计
0、准备工作。
建立工作文件,并输入数据。
1、相关图分析 SCAT X Y
相关图表明,GDP 指数与居民储蓄存款二者的曲线相关关系较为明显。
现将函数初步设定为线性、双对数等不同形式,进而加以比较分析。
2、估计模型,利用LS 命令分别建立以下模型 ⑴线性模型: LS Y C X
x y 5075.9284.14984ˆ+-=
=t (-6.706) (13.862)
2R =0.9100 F =192.145 S.E =5030.809
⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX
x y
ln 9588.20753.8ˆln +-= =t (-31.604) (64.189)
2R =0.9954 F =4120.223 S.E =0.1221
3、选择模型
比较以上模型,可见各模型回归系数的符号及数值较为合理。
各解释变量及常数项都通过了t 检验,模型都较为显著。
比较各模型的残差分布表。
线性模型的残差在较长时期内呈连续递减趋势而后又转为连续递增趋势,残差先呈连续递增趋势而后又转为连续递减趋势,因此,可以初步判断这种函数形式设置是不当的。
而且,这个模型的拟合优度也较双对数模型低,所以又可舍弃线性模型。
双对数模型具有很高的拟合优度,因而初步选定回归模型为双对数回归模型。
二、模型自相关的检验
1.图示法
其一,残差序列e t 的变动趋势图。
菜单:Quick→Graph→line ,在对话框中输入resid ;或者用命令操作,直接在命令行输入:line X 。
其二,作e t-1和e t 之间的散点图。
菜单:Quick→Graph→Scatter ,在对话框中输入resid(-1) resid ;或者用命令操作,直接在命令行输入:scat resid(-1) resid 。
2.DW 检验
因为n =21,k =1,取显著性水平α=0.05时,查表得L d =1.22,U d =1.42,而0<0.7062=DW<L d ,所以存在(正)自相关。
3.LM(BG)检验
在方程窗口中点击View/Residual Test/Series Correlation LM Test ,并选择滞后期为2,则会得到如图4-1所示的信息。
图4-1 双对数模型的BG 检验
图中,2nR =11.31531,临界概率P=0.0034,因此辅助回归模型是显著的,即存在自相关性。
又因为1-t e ,2-t e 的回归系数均显著地不为0,说明双对数模型存在一阶和二阶自相关性。
三、自相关的修正 (1)自相关系数ρ的估计 主要的方法有:
A. 根据ρ和DW 统计量之间的近似关系,取ρ的估计为:1-DW/2
B. 直接取ρ=1
C. 采用杜宾两步法估计。
LS Y C Y(-1) X X(-1),Y(-1)的系数估计即为ρ的估计
D. 科克伦-奥科特迭代法。
首先产生残差序列,命名为e ,然后e 对其滞后1阶
回归(无常数项),LS e e(-1),e(-1) 的系数估计作为ρ的估计 (2)加入AR 项
在LS 命令中加上AR(1)和AR(2),使用迭代估计法估计模型。
键入命令: LS LNY C LNX AR (1) AR (2) 则估计结果如图4-2所示。
图4-2 加入AR 项的双对数模型估计结果
图4-2表明,调整后模型的DW =1.6445,n =19,k =1,取显著性水平α=0.05时,查表得L d =1.18,U d =1.40,而U d <1.6445=DW<4-U d ,说明模型不存在一阶自相关性;再BG 检验(图4-3),也表明不存在高阶自相关性,因此,中国城乡居民储蓄存款的双对数模型为:
x y
ln 9193.28445.7ˆln +-= =t (-25.263) (52.683)
2R =0.9982 F =2709.985 S.E =0.0744 DW =1.6445
图4-3
习题
1.下表给出了美国1960-1995年36年间个人实际可支配收入X和个人实际消费支出Y的数据。
美国个人实际可支配收入和个人实际消费支出单位:100亿美元
注:资料来源于Economic Report of the President ,数据为1992年价格。
要求:(1)用普通最小二乘法估计收入—消费模型;
t t u X Y ++=221ββ
(2)检验收入—消费模型的自相关状况(5%显著水平);
(3)用适当的方法消除模型中存在的问题。
2.下表是北京市连续19年城镇居民家庭人均收入与人均支出的数据。
要求:(1)建立居民收入—消费函数; (2)检验模型中存在的问题,并采取适当的补救措施预以处理;
(3)对模型结果进行经济解释。
实验五多重共线性的检验和修正
实验目的
1、理解多重共线性的含义与后果、
2、学会序多重共线性的修正
实验内容
1、例表4是1978-1997年我国钢材产量(万吨)、生铁产量(万吨)、发电量(亿千瓦时)、固定资产投资(亿元)、国内生产总值(亿元)、铁路运输量(万吨)的统计资料。
2、多重共线性的检验
(1)综合统计检验法
若在OLS法下:R2与F值较大,但t检验值较小,则可能存在多重共线性。
(2)简单相关系数检验
利用相关系数可以分析解释变量之间的两两相关情况。
在Eviews软件中可以直接计算相关系数矩阵。
本例中,在Eviews软件命令窗口中键入:COR X1 X2 X3 X4 X5
或在包含所有解释变量的数组窗口中点击View\Correlations,其结果如图1所示。
由相关系数矩阵可以看出,解释变量之间的相关系数均为0.93以上,即解释变量之间是高度相关的。
图5-1
(3)判定系数检验法
当解释变量多余两个且变量之间呈现出较复杂的相关关系时,可以通过建立辅助回归模型来检验多重共线性。
本例中,在Eviews软件命令窗口中键入:
LS X1 C X2 X3 X4 X5
LS X2 C X1 X3 X4 X5
LS X3 C X1 X2 X4 X5
LS X4 C X1 X2 X3 X5
LS X5 C X1 X2 X3 X4
得到相应的回归结果,分析每个方程对应的F值和T值,来检验这些变量间是否相关以及相关联程度。
对应的回归结果如下图所示。
图5-2
图5-3
图5-4
图5-5
图5-6
上述每个回归方程的F 检验值都非常显著,方程回归系数的T 检验值表明:X1与X5、X2与X3、X3与X5、X4与X 、X5与X1、X3、X4的T 检验值较小,这些变量之间可能不相关或相关程度较小。
3、多重共线性的克服——逐步回归 (一)建立基本的一元线性回归方程
(1)被解释变量对每一个解释变量进行初始回归,选取拟合优度最高的首先进入方程;根据经济理论分析和回归结果,可知钢材产量和生铁产量关联度最大,所以建立基本的一元回归方程:
1Y X αβε=++
(2)然后把其余解释变量逐步引入模型,根据拟合优度选出最优方程。
所以,建立的多元回归模型为:Y = -287.68669 + 0.4159*X1 + 0.4872*X2
习题
CPI 。
资料来源:《中国统计年鉴》,中国统计出版社2000年、2004年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
(2)你认为数据中有多重共线性吗? (3)进行以下回归:
i
t t i t t i t t v CPI C C GDP v CPI B B Y v GDP A A Y 321221121ln ln ln ln ln ln ++=+=+=++
根据这些回归你能对数据中多重共线性的性质说些什么?
(4)假设数据有多重共线性,但3
2ˆˆββ和在5%水平上个别地显著,并且总的F 检验也是显著的。
对这样的情形,我们是否应考虑共线性的问题?
2. 理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、
人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费总量Y (万吨标准煤)、
国内生产总值(亿元)X1(代表经济发展水平)、国民总收入(亿元)X2(代表收入水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2002年期间的统计数据,具体如下:
资料来源:《中国统计年鉴》2004、2000年版,中国统计出版社。
要求:
(1)建立对数线性多元回归模型
(2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?
(3)如果有多重共线性,你准备怎样解决这个问题?明确你的假设并说明全部计算。