20182019高中数学第一章空间几何体章末复习课学案新人教A版必修2

合集下载

高中数学 第一章 空间几何体学案 新人教A版必修2 学案

高中数学 第一章 空间几何体学案 新人教A版必修2 学案

§1.1.1 棱柱、棱锥、棱台的结构特征学习目标:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征.学习过程:一、课前准备(预习教材P2~ P4,找出疑惑之处)引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和小,那么由这些物体抽象出来的空间图形叫做空间大几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧! 二、新课导学※探索新知探究1:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?新知1:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.具体如下图所示:探究2:旋转体的相关概念问题:仔细观察下列物体的相同点是什么?新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.如下图的旋转体:问题:你能归纳下列图形共同的几何特征吗? 新知3:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism). 棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两AA1D1 C1B1DCB底面之间的距离叫棱柱的高)试试 1:你能指出探究 3 中的几何体它们各自的底、侧面、侧棱和顶点吗?你能试着按照某种标准将探究 3 中的棱柱分类吗? 新知 4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱…②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).试试 2: 探究 3 中有几个直棱柱?几个斜棱柱?棱柱怎么表示呢?新知 5:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱1111D C B A ABCD -探究 4:棱锥的结构特征问题:探究 1 中的埃及金字塔是人类建筑的奇迹之一,它具有什么样的几何特征呢? 新知 6:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥 S -ABCD .探究 5:棱台的结构特征问题:假设用一把大刀能把金字塔的上部分平行地切掉,则切掉的部分是什么形状?剩余的部分呢?新知 7:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点 .两底面间的距离叫棱台的高 .棱台可以用上、下底面的字母表示,分类类似于棱锥.试试 3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来.反思:根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系?※ 典型例题例 由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形; ②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?三、总结提升 ※ 学习小结1. 多面体、旋转体的有关概念;SCABD2. 棱柱、棱锥、棱台的结构特征及简单的几何性质.※知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥4. 正棱台:由正棱锥截得的棱台叫做正棱台※当堂检测(时量:5 分钟满分:10 分)1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成()A.棱锥B.棱柱C.平面D.长方体2. 棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则()A.A ⊆B ⊆ C ⊆ D ⊆ F ⊆ EB.A ⊆C ⊆B ⊆ F ⊆ D ⊆ EC.C ⊆ A ⊆ B ⊆ D ⊆ F ⊆ ED.它们之间不都存在包含关系4. 长方体三条棱长分别是AA' =1 AB =2,AD = 4,则从A点出发,沿长方体的表面到C′的最短矩离是_____________.5. 若棱台的上、下底面积分别是25 和81,高为4,则截得这棱台的原棱锥的高为___________.课后作业1.一个棱柱是正四棱柱的条件是(). A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面2.下列说法中正确的是().A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径3.下列说法错误的是().A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形4.用一个平面去截正方体,所得的截面不可能是().A. 六边形B. 菱形C. 梯形D. 直角三角形5.下列说法正确的是().A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形6.设圆锥母线长为l,高为2l,过圆锥的两条母线作一个截面,则截面面积的最大值为. 7.若长方体的三个面的面积分别为62cm,32cm,22cm,则此长方体的对角线长为.8.在边长a为正方形ABCD 中,E、F分别为AB、BC 的中点,现在沿DE、DF 及EF把△ADE、CDF 和△BEF 折起,使A、B、C 三点重合,重合后的点记为P .问折起后的图形是个什么几何体?它每个面的面积是多少?§1.1.2 圆柱、圆锥、圆台、球及简单组合体的结构特征学习目标:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 能描述一些简单组合体的结构.学习过程:一、课前准备(预习教材P5~ P7,找出疑惑之处)复习:①______________________________多面体,________________叫旋转体.②棱柱的几何性质:_______是对应边平行的全等多边形,侧面都是________,侧棱____且____,平行于底面的截面是与_____全等的多边形;棱锥的几何性质:侧面都是______,平行于底面的截面与底面_____,其相似比等于____________.引入:上节我们讨论了多面体的结构特征,今天我们来探究旋转体的结构特征.二、新课导学※探索新知探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?圆柱用表示新知1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体.探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台. 圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O .探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.当堂检测(时量:5 分钟满分:10 分)1.Rt∆ABC三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是()A.是底面半径 3 的圆锥B.是底面半径为 4 的圆锥C.是底面半径5 的圆锥D.是母线长为5 的圆锥2. 下列命题中正确的是(). A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为______4.用一个平面截半径为25cm 的球,截面面积是49π2c m cm2 ,则球心到截面的距离为多少?1.右图的几何体是由下面哪个平面图形旋转得到的().A. B.C. D. 2.下列几何体的轴截面一定是圆面的是().A. 圆柱B. 圆锥C. 球D. 圆台3.把直角三角形绕斜边旋转一周,所得的几何体是().4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是().A.0 B.6C.快D.乐5.圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,则此正方体的棱长为()A.rhr h+B.2rhr h+C. D. 6.三棱柱的底面为正三角形,侧面是全等的矩形,内有一个内切球,已知球的半径为R ,则这个三棱柱的底面边长为.7.(07年某某.理15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号..). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.※能力提高8.正四棱锥(棱锥底面是正方形,侧面都是全等等腰三角形)有一个内接正方体,它的顶点分别在正四棱锥的底面内和侧棱上. 若棱锥的底面边长为a ,高为h ,求内接正方体的棱长.9.一个四棱台的上、下底面均为正方形,且面积分别为1S 、2S ,侧面是全等的等腰梯形,棱台的高为h ,求此棱台的侧棱长和斜高(侧面等腰梯形的高).10.如右图,图①是正方体木块,把它截去一块,可能得到的几何体有②、③、④、⑤的木块.(1)我们知道,正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、⑤的木块的顶点数、棱数、面数填入下表:图号 顶点数 棱数 面数 ①8126② ③ ④ ⑤(2)观察你填出的表格,归纳出上述各种木块的顶点数V 、棱数E 、面数F 之间的关系.(3)看图⑥中正方体的切法,请验证你所得的数量关系是否正确?§1.2.1 中心投影与平行投影 §1.2.2 空间几何体的三视图 教学目标:1. 了解中心投影与平行投影的区别;2. 能画出简单空间图形的三视图;3. 能识别三视图所表示的空间几何体; 一、课前准备(预习教材 P 11~ P 14,找出疑惑之处) 复习 1:圆柱、圆锥、圆台、球分别是_______绕着 ________、_______绕着___________、_______绕着__________、_______绕着_______旋转得到的复习 2:简单组合体构成的方式:___________和__________________二、新课导学 ※ 探索新知探究 1:中心投影和平行投影的有关概念 问题:中午在太阳的直射下,地上会有我们的影子,晚上我们走在路灯旁身后也会留下长长的影子,你知道这是什么现象吗?为什么影子有长有短?新知1:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影. 其中光线叫投影线,留下物体影子的屏幕叫投影面. 光由一点向外散射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,,否则叫斜投影思考:中午太阳的直射是什么投影?路灯、蜡烛的照射是什么投影?试试:在下图中,分别作出圆在中心投影和平行投影中正投影的影子结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同探究2:柱、锥、台、球的三视图问题:我们学过的几何体(柱、锥、台、球),为了研究的需要,常常要在纸上把它们表示出来,该怎么画呢?能否用平行投影的方法呢? 新知2:为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图.一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示. 下图是一个长方体的三视图.思考:仔细观察上图长方体和下图圆柱的三视图,你能得出同一几何体的三视图在形状、大小方面的关系吗?能归纳三视图的画法吗?小结:1.正视图反映物体的长度和高度,俯视图反映的是长度和宽度,侧视图反映的是宽度和高度;2.正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3.三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位。

2018_2019学年度高中数学第一章空间几何体章末总结课件新人教A版必修2

2018_2019学年度高中数学第一章空间几何体章末总结课件新人教A版必修2
5.若一个几何体的三视图都是一样的图形,则这个几何体一定是球.( × ) 6.正方形利用斜二测画法画出的直观图是菱形.( × )
7.圆台的侧面积公式是π (r+R)l,其中r和R分别是圆台的上、下底面半径,l
是其母线长.( √ )
主题串讲
一、空间几何体的结构特征
方法提炼·总结升华
【典例1】 根据下列对几何体结构特征的描述,说出几何体的名称. (1) 由六个面围成 , 其中一个面是正五边形 , 其余各面是有公共顶点的三 角形;
解析:正四棱锥P-ABCD外接球的球心在它的高PO1上,记为O,OP=OA=R,
PO1=4,OO1=4-R, 或OO1=R-4(此时O在PO1的延长线上).
在Rt△AO1O中,R2=8+(R-4)2得R=3,
所以球的表面积S=36π. 答案:36π
规律方法 (1)与球有关的组合体,一种是内切,一种是外接,解题时要认
1 (6+8)× 17 =7 17 . 2
从而此正四棱台的侧面积是 28 17 .
【典例6】 一个几何体的三视图如图所示(单位:m),则该几何体的表面积为 m3.
错解:由三视图可以得到原几何体是一个圆柱与圆锥的组合体,其表面积是
2 2 S=2π×1×4+π×1 +π×2×2 2 +π×2
=8π+π+4 2 π+4π =(13π+4 2 π)(m3).
1 13 26 于是仓库的容积 V=V 柱+V 锥=a2·4h+ a2·h= a2h= (36h-h3), 3 3 3
0<h<6,从而 V′=
26 2 2 (36-3h )=26(12-h ). 3

高中数学人教A版必修二第一章《 空间几何体》word学案

高中数学人教A版必修二第一章《 空间几何体》word学案

【三维设计】高中数学第一章空间几何体学案新人教A版必修21.1空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征[提出问题]观察下列图片:问题1:图片(1)(2)(3)中的物体的形状有何特点?提示:由若干个平面多边形围成.问题2:图片(4)(5)(6)(7)的物体的形状与(1)(2)(3)中有何不同?提示:(4)(5)(6)的表面是由平面与曲面围成,(7)的表面是由曲面围成的.问题3:图片(4)(5)(6)(7)中的几何体是否可以看作平面图形绕某定直线旋转而成?提示:可以.[导入新知]1.空间几何体概念定义空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴2.多面体多面体定义图形及表示相关概念棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCD-A′B′C′D′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S-ABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点[化解疑难]1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分.2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1](1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[解析] (1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).[答案] (3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的各个侧面都是平行四边形C.棱柱的两底面是全等的多边形D.棱柱的面中,至少有两个面互相平行解析:选A A错,正六棱柱的两个相对的侧面互相平行,但不是棱柱的底面,B、C、D是正确的.棱锥、棱台的结构特征[例2](1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.[解析] (1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案] (2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[活学活用]2.试判断下列说法正确与否:①由六个面围成的封闭图形只能是五棱锥;②两个底面平行且相似,其余各面都是梯形的多面体是棱台.解:①不正确,由六个面围成的封闭图形有可能是四棱柱;②不正确,两个底面平行且相似,其余各面都是梯形的多面体.侧棱不一定相交于一点,所以不一定是棱台.多面体的平面展开图[例3][解] 由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是( )A.1 B.2C.快 D.乐解析:选B 由题意,将正方体的展开图还原成正方体,1与乐相对,2与2相对,0与快相对,所以下面是2.1.柱、锥、台结构特征判断中的误区[典例] 如图所示,几何体的正确说法的序号为________.(1)这是一个六面体;(2)这是一个四棱台;(3)这是一个四棱柱;(4)此几何体可由三棱柱截去一个三棱柱得到;(5)此几何体可由四棱柱截去一个三棱柱得到.[解析] (1)正确,因为有六个面,属于六面体的范围;(2)错误,因为侧棱的延长线不能交于一点,所以不正确;(3)正确,如果把几何体放倒就会发现是一个四棱柱;(4)(5)都正确,如图所示.[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:选A 如图∵平面AA1D1D∥平面BB1C1C,∴有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.[随堂即时演练]1.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个解析:选D 由棱柱定义知,①③为棱柱.2.下列图形经过折叠可以围成一个棱柱的是( )解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案:①③④⑥⑤5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱?多少个面?(2)有没有一个多棱锥,其棱数是2 012?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)设n棱锥的棱数是2 012,则2n=,所以n=1 006,1 006棱锥的棱数是2 012,它有1 007个面.[课时达标检测]一、选择题1.下列图形中,不是三棱柱的展开图的是( )答案:C2.有两个面平行的多面体不可能是( )A.棱柱B.棱锥C.棱台D.以上都错解析:选B 棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是( )A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:选D 对于A,如正方体可以有六个面平行,故A错;对于B,如长方体并不是所有的棱都相等,故B错;对于C,如三棱柱的底面是三角形,故C错;对于D,由棱柱的概念,知两底面平行,侧棱也互相平行.故选D.4.(·广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10解析:选D 从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 57.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定 (2)不一定 三、解答题9.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解:(1)是上海世博会中国馆,其主体结构是四棱台. (2)是法国卢浮宫,其主体结构是四棱锥.(3)是国家游泳中心“水立方”,其主体结构是四棱柱. (4)是美国五角大楼,其主体结构是五棱柱.10.(2019·山东高考改编)给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.1.1.2 圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征旋转体[提出问题]如图,给出下列实物图.问题1:上述三个实物图抽象出的几何体与多面体有何不同?提示:它们不是由平面多边形围成的.问题2:上述实物图抽象出的几何体中的曲面能否以某平面图形旋转而成?提示:可以.问题3:如何形成上述几何体的曲面?提示:可将半圆、直角梯形、直角三角形绕一边所在直线为轴旋转而成.[导入新知]旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆柱OO′圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆锥SO圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为圆台OO′球以半圆的直径所在直线为旋转轴,半圆面旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为球O[化解疑难]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的中线所在的直线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[提出问题]中国首个空间实验室“天宫一号”于2019年9月29日16分成功发射升空,并与当年11月与“神舟八号”实现无人空间对接,下图为天宫一号目标飞行器的结构示意图.其主体结构如图所示:问题1:该几何体由几个几何体组合而成?提示:4个.问题2:图中标注的①②③④部分分别为什么几何体?提示:①为圆台,②为圆柱,③为圆台,④为圆柱.[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1] 给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径,其中正确说法的序号是________.[解析] (1)不正确,因为当直角三角形绕斜边所在直线旋转得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;(2)正确,以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)正确,如图所示,经过圆锥任意两条母线的截面是等腰三角形;(4)正确,如图所示,圆锥侧面的母线长有可能大于圆锥底面圆半径的2倍(即直径).[答案] (2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]1.给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.解析:(1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.答案:(1)(2)简单组合体[例2](1)图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①;(2)图②所示几何体结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②;(3)图③所示几何体是由哪些简单几何体构成的?并说明该几何体的面数、棱数、顶点数.[解析] (1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]2.下列组合体是由哪些几何体组成的?解:(1)由两个几何体组合而成,分别为球、圆柱.(2)由三个几何体组合而成,分别为圆柱、圆台、圆柱.(3)由三个几何体组合而成,分别为圆锥、圆柱、圆台.1.旋转体的生成过程[典例] 如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程]分别以边AD、AB、BC、CD所在直线为旋转轴旋转已知四边形ABCD为直角梯形以边AD所在直线为旋转轴旋转―→以边AB所在直线为旋转轴旋转―→以边CD所在直线为旋转轴旋转―→以边BC所在直线为旋转轴旋转[规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图(1)所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图(2)所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图(3)所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图(4)所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图(3)所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.[随堂即时演练]1.(2019·临海高一检测)圆锥的母线有( )A.1条B.2条C.3条D.无数条答案:D2.右图是由哪个平面图形旋转得到的( )解析:选A 图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.3.等腰三角形绕底边上的高所在直线旋转180°,所得几何体是________.答案:圆锥4.如图所示的组合体的结构特征为________.解析:该组合体上面是一个四棱锥,下面是一个四棱柱,因此该组合体的结构特征是四棱锥和四棱柱的一个组合体.答案:一个四棱锥和一个四棱柱的组合体5.如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.[课时达标检测]一、选择题①圆锥的轴截面是所有过顶点的截面中面积最大的一个;②圆柱的所有平行于底面的截面都是圆;③圆台的两个底面可以不平行.A.①② B.②C.②③ D.①③解析:选B ①中当圆锥过顶点的轴截面顶角大于90°时,其面积不是最大的;③圆台的两个底面一定平行.故①③错误.2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括( ) A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥解析:选D 从较短的底边的端点向另一底边作垂线,两条垂线把等腰梯形分成了两个直角三角形,一个矩形,所以一个等腰梯形绕它的较长的底边所在直线旋转一周形成的是由一个圆柱,两个圆锥所组成的几何体,如图:3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是( ) A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:选D 如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.4.下列叙述中正确的个数是( )①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3解析:选B ①中应以直角三角形的直角边所在直线为轴,②中应以直角梯形中的直角腰所在直线为轴,④中应用平行于底面的平面去截,③正确.5.如图所示的几何体,关于其结构特征,下列说法不.正确的是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:选D 该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.二、填空题6.下列7种几何体:(1)柱体有________;(2)锥体有________;(3)球有__________;(4)棱柱有________;(5)圆柱有________;(6)棱锥有________;(7)圆锥有________.解析:由柱、锥、台及球的结构特点易于分析,柱体有a、d、e、f;锥体有b、g;球有c;棱柱有d、e、f;圆柱有a;棱锥为g;圆锥为b.答案:(1)a、d、e、f (2)b、g (3)c(4)d、e、f (5)a (6)g (7)b。

高中数学 第一章 空间几何体复习教案 新人教A版必修2

高中数学 第一章 空间几何体复习教案 新人教A版必修2

第一章空间几何体
复习小结
【教学目标】
1.知识与技能:
(1). 类比记忆棱柱、棱锥、棱台、圆柱、圆锥、圆台及球的定义,并理解空间几何体及组合体的结构特征;
(2). 能正确画出空间图形的三视图并能识别三视图所表示的立体模型;
(3). 在了解斜二测画法的基础上会用斜二测画法画出一些简单图形的直观图;
(4). 掌握柱体、椎体、台体、球体的表面积与体积的求法,并能通过一些计算方法求出组合体的表面积与体积。

2.过程与方法:通过学生自主学习和动手实践,进一步增强他们的空间观念,用三视图和直观图表示现实世界中的物体。

掌握柱体、椎体、台体、球体的表面积与体积的求法;提高学生分析问题和解决问题的能力。

3.情感态度价值观:
体现运动变化的思想认识事物的辩证唯物主义观点,通过和谐、对称、规范的图形,给学生以美的享受,引发学生的学习兴趣。

【重点难点】
1.教学重点:几何体的表面积与体积.
2.教学难点:三视图和直观图
【教学策略与方法】
1.教学方法:启发讲授式与问题探究式.
2.教具准备:多媒体
【教学过程】
A.4
B.4
C.2
D.8
A.4812
B.4824
C.3612
D.3624
++++规律方法 由三视图还原几何体时
(1) (2)
A.(1+22)a2 B.(2+2)a2
C.(3-22)a2 D.(4+2)a2 A.6 B.9 C.12 D.18
由三视图可知该几何体
9,故选B.
,从母线AB的中点点,求这条绳子长度的最小值.
图2
A . 2
B .2
C .4
D .32。

2018_2019高中数学第一章立体几何初步章末复习课学案北师大版必修2

2018_2019高中数学第一章立体几何初步章末复习课学案北师大版必修2

第一章立体几何初步章末复习课网络构建核心归纳1.多面体的结构特征(1)棱柱的侧棱都互相平行且相等,上下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. 2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在的直线旋转一周得到.(2)圆锥可以由绕直角三角形一条直角边所在的直线旋转一周得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线或等腰梯形绕上、下底面中心连线旋转一周得到,也可由平行于底面的平面截圆锥得到. (4)球可以由半圆或圆绕直径所在直线旋转一周得到. 3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是: (1)画几何体的底面在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴、y ′轴,两轴相交于点O ′,且使∠x ′O ′y ′=45°,已知图形中平行于x 轴、y轴的线段,在直观图中平行于x ′轴、y ′轴.已知图形中平行于x 轴的线段,在直观图中长度不变,平行于y 轴的线段,长度变为原来的一半. (2)画几何体的高在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ′轴,也垂直于x ′O ′y ′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ′轴且长度不变. 4.空间几何体的三视图空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是全等的,三视图包括主视图、左视图、俯视图. 5.平面的基本性质公理1 过不在一条直线上的三点,有且只有一个平面.公理2 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 6.(1)公理4 平行于同一条直线的两直线平行. (2)空间直线与直线的位置关系有且只有三种:⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线平行直线异面直线:不同在任何一个平面内,没有公共点.7.直线与平面的位置关系(1)直线a与平面α的位置关系有平行、相交、在平面内,其中平行与相交统称直线在平面外.(2)直线和平面平行的判定①定义:直线和平面没有公共点,则称直线平行平面;②判定定理:aα,bα,a∥b⇒a∥α;③其他判定方法:α∥β,aα⇒a∥β.(3)直线和平面平行的性质定理:a∥α,aβ,α∩β=l⇒a∥l.(4)直线和平面垂直①定义如果一条直线l和一个平面α内的任意一条直线都垂直,那么就说这条直线和平面α互相垂直.②判定与性质a.判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.b.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.8.两平面的位置关系(1)两个平面的位置关系有平行、相交.(2)两个平面平行的判定①定义:两个平面没有公共点,称这两个平面平行;②判定定理:aα,bα,a∩b=M,a∥β,b∥β⇒α∥β;(3)两个平面平行的性质定理α∥β,aα⇒a∥β;α∥β,r∩α=a,r∩β=b⇒a∥b.(4)与垂直相关的平行的判定①a⊥α,b⊥α⇒a∥b;②a⊥α,a⊥β⇒α∥β.(5)两个平面垂直①二面角的平面角以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.②定义如果两个相交平面所成的二面角是直二面角,就说这两个平面互相垂直.③判定和性质a.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.b.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.9.多面体的侧面积(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=ch .(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=12nah ′=12ch ′.(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则S 正棱台侧=12n (a +a ′)h ′=12(c +c ′)h ′.10.旋转体的表面积(1)如果圆柱的底面半径为r ,母线长为l ,那么圆柱的底面面积为πr 2,侧面积为2πrl .因此,圆柱的表面积S =2πr 2+2πrl =2πr (r +l ).(2)如果圆锥的底面半径为r ,母线长为l ,那么它的侧面积为πrl ,表面积S =πr 2+πrl =πr (r +l ).(3)如果圆台的两底面半径分别为r ′、r ,母线长为l ,则侧面积为π(r ′+r )l ,表面积为S =π(r ′2+r 2+r ′l +rl ).(4)球的表面积公式:S =4πR 2(其中R 为球的半径)即球面面积等于它的大圆面积的四倍. 11.几何体的体积公式(1)柱体的体积V 柱体=Sh (其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h . (2)锥体的体积V 锥体=13Sh (其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h .(3)台体的体积V 台体=13h (S +SS ′+S ′)(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh (r 2+rr ′+r ′2).(4)球的体积V 球=43πR 3(其中R 为球的半径).要点一 三视图与直观图由三视图确定几何体分三步:第一步:通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.第二步:通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.第三步:由“长对正、高平齐、宽相等”的原则确定几何体的尺寸.【例1】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.6C.4 2D.4解析由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC为等腰直角三角形,AB=BC=4,取BC的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD中,BD=DC=25,BC=DM=4,所以在Rt△AMD中,AD=AM2+DM2=42+22+42=6,又在Rt△ABC中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.答案 B【训练1】某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解析由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 棱柱ABC -A 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V棱锥P -A 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABC -PA 1C 1的体积为30-6=24.故选C.答案 C【训练2】 某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π解析 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V =4×2×2+12π×22×4=16+8π.故选A. 答案 A要点二 空间中的平行关系 1.判断线面平行的两种常用方法:面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面. 2.判断面面平行的常用方法: (1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (3)利用线面垂直的性质(l ⊥α,l ⊥β⇒α∥β).【例2】 如图所示,四边形ABCD 是平行四边形,PB ⊥平面ABCD ,MA ∥PB ,PB =2MA .在线段PB 上是否存在一点F ,使平面AFC ∥平面PMD ?若存在,请确定点F 的位置;若不存在,请说明理由.解 当点F 是PB 的中点时,平面AFC ∥平面PMD ,证明如下:如图连接AC 和BD 交于点O ,连接FO ,则PF =12PB .∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,∴OF ∥PD . 又 平面PMD ,PD 平面PMD , ∴OF ∥平面PMD .又MA 綊12PB ,∴PF 綊MA ,∴四边形AFPM 是平行四边形, ∴AF ∥PM .又 平面PMD ,PM 平面PMD . ∴AF ∥平面PMD .又AF ∩OF =F ,AF 平面AFC ,OF 平面AFC . ∴平面AFC ∥平面PMD .【训练3】 如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点,求证:(1)GE ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H . 证明 (1)如图,取B 1D 1中点O , 连接GO ,OB ,易证OG 綊12B 1C 1,BE 綊12B 1C 1,∴OG 綊BE ,四边形BEGO 为平行四边形. ∴OB ∥GE .∵OB 平面BDD 1B 1,平面BDD 1B 1,∴GE ∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD , ∵B 1D 1 平面BDF , 平面BDF , ∴B 1D 1∥平面BDF . 连接HB ,D 1F ,易证HBFD 1是平行四边形,得HD 1∥BF . ∵HD 1 平面BDF ,BF 平面BDF , ∴HD 1∥平面BDF . ∵B 1D 1∩HD 1=D 1, ∴平面BDF ∥平面B 1D 1H . 要点三 空间中的垂直关系 空间垂直关系的判定方法: (1)判定线线垂直的方法:①计算所成的角为90°(包括平面角和异面直线所成的角); ②线面垂直的性质(若a ⊥α,b α,则a ⊥b ). (2)判定线面垂直的方法:①线面垂直定义(一般不易验证任意性);②线面垂直的判定定理(a ⊥b ,a ⊥c ,b α,c α,b ∩c =M ⇒a ⊥α); ③平行线垂直平面的传递性质(a ∥b ,b ⊥α⇒a ⊥α);④面面垂直的性质(α⊥β,α∩β=l ,a β,a ⊥l ⇒a ⊥α); ⑤面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑥面面垂直的性质(α∩β=l ,α⊥γ,β⊥γ⇒l ⊥γ). (3)面面垂直的判定方法:①根据定义(作两平面构成二面角的平面角,计算其为90°); ②面面垂直的判定定理(a ⊥β,a α⇒α⊥β).【例3】 如图,A ,B ,C ,D 为空间四点.在△ABC 中,AB =2,AC =BC =2,等边三角形ADB 以AB 为轴运动. (1)当平面ADB ⊥平面ABC 时,求CD 的长;(2)当△ADB 转动时,是否总有AB ⊥CD ?证明你的结论.解 (1)如图,取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB .当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC =AB ,所以DE ⊥平面ABC ,因为CE平面ABC ,可知DE ⊥CE ,由已知可得DE=3,EC =1,在Rt△DEC 中,CD =DE 2+EC 2=2. (2)当△ADB 以AB 为轴转动时,总有AB ⊥CD .证明如下:①当D 在平面ABC 内时,因为AC =BC ,AD =BD , 所以C ,D 都在线段AB 的垂直平分线上,即AB ⊥CD . ②当D 不在平面ABC 内时,取AB 中点E ,由(1)知AB ⊥DE .又因AC =BC ,所以AB ⊥CE .又DE ,CE 为相交直线,所以AB ⊥平面CDE ,由CD 平面CDE ,得AB ⊥CD .综上所述,总有AB ⊥CD .【训练4】 如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 ∵O ,M 分别为AB ,VA 的中点, ∴OM ∥VB .∵ 平面MOC ,OM 平面MOC , ∴VB ∥平面MOC .(2)证明 ∵AC =BC ,O 为AB 的中点,∴OC ⊥AB .又∵平面VAB ⊥平面ABC ,且平面VAB ∩平面ABC =AB ,OC 平面ABC ,∴OC ⊥平面VAB . ∵OC 平面MOC ,∴平面MOC ⊥平面VAB . (3)解 在等腰直角△ACB 中,AC =BC =2, ∴AB =2,OC =1, ∴S △VAB =34AB 2= 3. ∵OC ⊥平面VAB ,∴V C -VAB =13OC ·S △VAB =13×1×3=33,∴V V -ABC =V C -VAB =33. 要点四 几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常遇到的问题,如制作物体中的如何下料问题、材料最省问题、相同材料容积最大问题,都涉及表面积和体积的计算.特别是特殊的柱、锥、台,在计算中要注意其中矩形、梯形及直角三角形等重要的平面图形的使用,对于圆柱、圆锥、圆台,要重视旋转轴所在轴截面、底面圆的作用.割补法、构造法是常用的技巧.【例4】 如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求三棱柱ABC -A ′B ′C ′的体积. 解 连接A ′B ,A ′C ,如图所示,这样就把三棱柱分割成了两个棱锥.设所求体积为V ,显然三棱锥A ′-ABC 的体积是13V .而四棱锥A ′-BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,即V =12Sa .【训练5】 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113解析 圆锥的体积V =13πr 2h =13π⎝ ⎛⎭⎪⎫L 2π2h =L 2h 12π,由题意得12π≈752,π近似取为258,故选B. 答案 B【训练6】 已知某一多面体内接于球构成一个简单组合体,如果该组合体的主视图、左视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析 由三视图知,组合体是棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积S =4π⎝ ⎛⎭⎪⎫2322=12π.答案 12π要点五 线线角、线面角和二面角问题(1)两条异面直线所成的角的范围是(0°,90°].找两条异面直线所成的角,关键是选取合适的点,引两条异面直线的平行线,这两条相交直线所成的锐角或直角即为两条异面直线所成的角.特别地,两条异面直线垂直,可由线面垂直得到.(2)直线和平面所成的角的范围是 [0°,90°].找线面角的关键是找到直线与其在平面内的射影的夹角.当线面角为0°时,直线与平面平行或直线在平面内;当线面角为90°时,直线与平面垂直.(3)如果求两个相交平面所成的二面角,除垂直外,均有两个答案,即θ或180°-θ.具体几何体中,由题意和图形确定.作二面角的平面角时,首先要确定二面角的棱,然后结合题设构造二面角的平面角.一般常用:①定义法;②垂面法.(4)求角度问题时,无论哪种情况,最终都归结到两条相交直线所成的角的问题.求角度的解题步骤:①找出这个角;②证该角符合题意;③构造出含这个角的三角形,解这个三角形,求出角.【例5】 如图所示,矩形ABCD 中,AB =6,BC =23,沿对角线BD 将△ABD 折起,使点A 移至点P ,P 在平面BCD 内的投影为O ,且O 在DC 上. (1)求证:PD ⊥PC ;(2)求二面角P -DB -C 的余弦值.(1)证明 P 在平面BCD 内的投影为O , 则PO ⊥平面BCD ,∵BC 平面BCD ,∴PO ⊥BC .∵BC ⊥CD ,CD ∩PO =O ,∴BC ⊥平面PCD . ∵DP 平面PCD ,∴BC ⊥DP .又∵DP ⊥PB ,PB ∩BC =B ,∴DP ⊥平面PBC . 而PC 平面PBC ,∴PD ⊥PC .(2)解 △PBD 在平面BCD 内的投影为△OBD , 且S △PBD =12×6×23=63,S △OBD =S △CBD -S △BOC =63-12×23×OC .在Rt△DPC 中,PC 2=DC 2-DP 2=24.设OC =x ,则OD =6-x , ∴PC 2-OC 2=DP 2-DO 2,即24-x 2=12-(6-x )2,解得x =4. ∴S △BOD =63-43=2 3.过点P 作PQ ⊥DB ,连接OQ ,则DB ⊥平面OPQ , ∴∠OQP 即为二面角P -DB -C 的平面角, ∴cos∠OQP =S △BOD S △PBD =2363=13. ∴二面角P -DB -C 的余弦值为13.【训练7】 在长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) .30° .45° C.60°.90°解析 由于AD ∥A 1D 1,则∠BAD 是异面直线AB ,A 1D 1所成的角,很明显∠BAD =90°. 答案 D基础过关1.设a ,b ,c 是空间的三条直线,给出以下三个命题:①若a ⊥b ,b ⊥c ,则a ⊥c ;②若a 和b 共面,b 和c 共面,则a 和c 也共面; ③若a ∥b ,b ∥c ,则a ∥c .其中正确命题的个数是( ) A.0 B.1 C.2D.3解析 借助正方体中的线线关系易知①②全错;由公理4知③正确. 答案 B2.某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2π D.23+2π 解析 由三视图知,该几何体是一个三棱锥与半个圆柱的组合体.V =V 三棱锥+ 12V 圆柱=13×12×2×1×1+12×π×12×2=13+π.选A. 答案 A3.如图,已知正六棱柱的最大对角面的面积为4 m 2,互相平行的两个侧面的距离为2 m ,则这个六棱柱的体积为( ) A.3 m 3B.6 m 3C.12 m 3D.以上都不对解析 设底面边长为a ,高为h ,则a =233,又2×233×h =4,∴h =3,∴V =12×233×32×233×6×3=6(m 3),故选B.答案 B4.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是________.解析 将其还原成正方体ABCD -PQRS ,连接SC ,AS ,则PB ∥SC ,∴∠ACS (或其补角)是PB 与AC 所成的角,∵△ACS 为正三角形,∴∠ACS =60°,∴PB 与AC 所成的角是60°. 答案 60°5.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析 设正方体棱长为a ,则6a 2=18⇒a 2=3,a = 3. 外接球直径为2R =3a =3,R =32,V =43πR 3=43π×278=92π.答案 9π26.如图所示,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么? 解 直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1. ∴ 平面A 1BC 1.如图,取A 1C 1的中点O 1, 连接NO 1、BO 1.∵NO 1綊12D 1C 1,MB 綊12D 1C 1,∴NO 1綊MB ,∴四边形NO 1BM 为平行四边形,∴MN ∥BO 1. 又∵BO 1平面A 1BC 1, ∴MN ∥平面A 1BC 1.7.如图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点. (1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角. (1)证明 如图,取A 1B 1的中点D ,连接DE ,BD . 因为E 是A 1C 1的中点,所以DE 綊12B 1C 1.又因为BC 綊B 1C 1,BF =12BC ,所以DE 綊BF ,所以四边形BDEF 为平行四边形, 所以BD ∥EF .又因为BD 平面AA 1B 1B , 平面AA 1B 1B , 所以EF ∥平面AA 1B 1B .(2)解 如图,取AC 的中点H ,连接HF ,EH .因为EH ∥AA 1,AA 1⊥平面ABC , 所以EH ⊥平面ABC .所以∠EFH 就是EF 与平面ABC 所成的角. 在Rt△EHF 中,FH =3,EH =AA 1=3, tan∠EFH =EH FH=3, 所以∠EFH =60°.故EF 与平面ABC 所成的角为60°.能力提升8.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144πD.256π解析 ∵S △OAB 是定值,且V O -ABC =V C -OAB ,∴当OC ⊥平面OAB 时,V C -OAB 最大,即V O -ABC 最大. 设球O 的半径为R ,则(V O -ABC )max =13×12R 2×R =16R 3=36,∴R =6,∴球O 的表面积S =4πR 2=4π×62=144π. 答案 C9.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 C.23D.22解析 利用三棱锥的体积变换求解.由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.答案 A10.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.解析 如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,∴V 1V 2=S 1h 1S 2h 2=S 1h 12S 1×2h 1=14. 答案 1411.如图所示,在矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P ,∴DE ⊥平面PAE ,∵AE 平面PAE , ∴DE ⊥AE . 易证△ABE ∽△ECD . 设BE =x ,则AB CE =BE CD ,即3a -x =x3.∴x 2-ax +9=0,E 点有两个,即方程有两不同的实根,由Δ>0,解得a >6. 答案 (6,+∞)12.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点. (1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明 如图,取BC 中点G ,连接AG ,EG . 因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD ,所以四边形EGAD 是平行四边形.所以ED ∥AG . 又 平面ABC ,AG 平面ABC , 所以DE ∥平面ABC .(2)解 因为AD ∥EG ,所以AD ∥平面BCE , 所以V E -BCD =V D -BEC =V A -BCE =V E -ABC , 由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.13.(选做题)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 ∵PA ⊥AB ,PA ⊥BC ,AB 平面ABC ,BC 平面ABC ,且AB ∩BC =B ,∴PA ⊥平面ABC ,又∵BD 平面ABC ,∴PA ⊥BD . (2)证明 ∵AB =BC ,D 是AC 的中点, ∴BD ⊥AC .由(1)知PA ⊥平面ABC ,∵PA 平面PAC ,∴平面PAC ⊥平面ABC . ∵平面PAC ∩平面ABC =AC ,BD 平面ABC ,BD ⊥AC ,∴BD ⊥平面PAC . ∵BD 平面BDE , ∴平面BDE ⊥平面PAC , (3)解 ∵PA ∥平面BDE , 又平面BDE ∩平面PAC =DE ,PA 平面PAC ,∴PA ∥DE .由(1)知PA ⊥平面ABC ,∴DE ⊥平面ABC . ∵D 是AC 的中点,∴E 为PC 的中点, ∴DE =12PA =1.∵D 是AC 的中点,∴S △BCD =12S △ABC =12×12×2×2=1,1 3×S△BCD×DE=13×1×1=13.∴V E-BCD=。

高中数学 第一章 空间几何体 1.1 空间几何体的结构 第2课时学案 新人教A版必修2-新人教A版高

高中数学 第一章 空间几何体 1.1 空间几何体的结构 第2课时学案 新人教A版必修2-新人教A版高

1.1 空间几何体的结构第2课时圆柱、圆锥、圆台、球及简单组合体的结构特征目标定位 1.理解圆柱、圆锥、圆台、球的结构特征.能根据条件判断几何体的类型.2.了解圆柱、圆锥、圆台的底面、母线、侧面、轴的意义.3.了解与正方体、球有关的简单组合体及其结构特征.自主预习1.旋转体(1)圆柱①定义:以矩形一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.②相关概念(图1)③表示法:圆柱用表示它的轴的字母表示,图中圆柱表示为圆柱O′O.(2)圆锥①定义:以直角三角形的一直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.②相关概念(图2)③表示法:圆锥用表示它的轴的字母表示,图中圆锥表示为圆锥SO.(3)圆台①定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.②相关概念(图3)③表示法:圆台用表示轴的字母表示,图中圆台表示为圆台OO′.(4)球①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.②相关概念(图4)③表示法:球常用表示球心的字母表示,图中的球表示为球O.2.简单组合体(1)概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.即时自测1.判断题(1)在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线.(×)(2)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.(×)(3)圆锥截去一个小圆锥后剩余部分是圆台.(√)(4)半圆绕其直径所在直线旋转一周形成球.(×)提示(1)所取的两点与圆柱的轴OO′的连线所构成的四边形不一定是矩形,若不是矩形,则与圆柱母线定义不符.(2)若绕斜边所在直线旋转得到的是两个圆锥构成的一个组合体.(3)根据圆台的定义知,正确.(4)旋转后形成的是球面.2.以矩形的一边所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是( )A.球B.圆台C.圆锥D.圆柱解析旋转过程中,与旋转轴垂直的线段形成垂直于旋转轴的圆面,与旋转轴平行的线段形成与旋转轴等距的曲面,所以其余三边旋转一周所围成的旋转体是圆柱.答案 D3.下列几何体是台体的是( )解析台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.答案 D4.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析结合旋转体及圆锥的特征知,所得几何体为圆锥.答案圆锥类型一旋转体的结构特征【例1】判断下列各命题是否正确:(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球.解(1)错.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(3)正确.(4)错.应为球面.规律方法 1.圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.2.只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误.【训练1】下列叙述中正确的个数是( )①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0B.1C.2D.3解析①应以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转一周才可以得到圆台;③它们的底面为圆面;④用平行于圆锥底面的平面截圆锥才可得到一个圆锥和一个圆台.故四句话全不正确.答案 A类型二简单组合体的结构特征【例2】如图所示,已知AB是直角梯形ABCD与底边垂直的一腰.分别以AB,CD,DA为轴旋转,试说明所得几何体的结构特征.解(1)以AB边为轴旋转所得旋转体是圆台,如图(1)所示.(2)以CD边为轴旋转所得旋转体为一组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图(2)所示.(3)以AD边为轴旋转得到一个组合体,它是一个圆柱上部挖去一个圆锥.如图(3)所示.规律方法 1.平面图形以一边所在直线为轴旋转时,要过有关顶点向轴作垂线,然后想象所得旋转体的结构和组成.2.必要时作模型培养动手能力.【训练2】如图(1)、(2)所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?解旋转后的图形如图所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.类型三有关几何体的计算问题(互动探究)【例3】如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.[思路探究]探究点一 圆锥、圆台的轴截面是什么?提示 圆锥的轴截面为等腰三角形,圆台的轴截面是等腰梯形. 探究点二 解决此问题的关键是什么?提示 解决此问题关键是,作出轴截面,然后利用相似三角形中的相似比,构设相关几何变量的方程组而得解.解 设圆台的母线长为l cm ,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r ,4r . 过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm.∴SA ′SA =O ′A ′OA .∴33+l =r 4r =14. 解得l =9(cm),即圆台的母线长为9 cm.规律方法 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【训练3】 一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2.求: (1)圆台的高;(2)截得此圆台的圆锥的母线长.解 如图,将圆台恢复成圆锥后作其轴截面,设圆台的高为h cm ,截得该圆台的圆锥的母线为x cm ,由条件可得圆台上底半径r ′=2 cm ,下底半径r =5 cm.(1)由勾股定理得h =122-(5-2)2=315(cm). (2)由三角形相似得:x -12x =25,解得x =20(cm). 答:(1)圆台的高为315 cm ,(2)截得此圆台的圆锥的母线长为20 cm. [课堂小结]1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.1.下图是由哪个平面图形旋转得到的( )解析 组合体上半部分是圆锥,下半部分是一个圆台,因此应该是由上半部分为三角形,下半部分为梯形的平面图形旋转而成的,观察四个选项得D 正确. 答案 D2.下面几何体的截面一定是圆面的是( ) A.圆台B.球C.圆柱D.棱柱解析 截面可以从各个不同的部位截取,截得的截面都是圆面的几何体只有球. 答案 B3.一个圆锥的母线长为20 cm ,母线与轴的夹角为30°,则圆锥的高为________cm. 解析 h =20cos 30°=10 3 (cm). 答案 10 34.在半径等于13 cm 的球内有一个截面,它的面积是25π cm 2,求球心到截面的距离. 解 设截面圆半径为r cm ,∵πr 2=25π,∴r =5(cm).设球心到截面的距离为d cm ,球的半径为R cm ,则d =R 2-r 2=132-52=12(cm).故球心到截面的距离为12 cm.基 础 过 关1.正方形绕其一条对角线所在直线旋转一周,所得几何体是( ) A.圆柱B.圆锥C.圆台D.两个圆锥解析 连接正方形的两条对角线知对角线互相垂直,故绕对角线旋转一周形成两个圆锥. 答案 D2.过球面上任意两点A 、B 作大圆,可能的个数是( ) A.有且只有一个 B.一个或无穷多个 C.无数个D.以上均不正确解析 当过A ,B 的直线经过球心时,经过A ,B 的截面所得的圆都是球的大圆,这时过A ,B 作球的大圆有无数个;当直线AB 不经过球心O 时,经过A ,B ,O 的截面就是一个大圆,这时只能作出一个大圆. 答案 B3.在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱解析 一个六棱柱挖去一个等高的圆柱. 答案 B4.若母线长是4的圆锥的轴截面的面积是8,则该圆锥的高是________. 解析 设圆锥的底面半径为r ,则圆锥的高h =42-r 2. 所以由题意可知12·2r ·h =r 42-r 2=8,∴r 2=8,∴h =2 2.答案 2 25.圆台两底面的半径分别是 2 cm 和 5 cm ,母线长是310 cm ,则它的轴截面的面积是________cm 2.解析 如图所示,作出轴截面,过点A 作AM ⊥BC 于点M ,则BM =5-2=3(cm),AM =AB 2-BM 2=9 cm ,∴S 梯形ABCD =12×(4+10)×9=63(cm 2).答案 636.如图所示,几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.解 先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:7.用一个平行于圆锥底面的平面截一个圆锥得到一个圆台,这个圆台上、下底面半径的比为1∶3,截去的圆锥的母线长为3 cm ,求圆台的母线长.解 设圆台的母线长为y cm ,截得的圆台上、下底面半径分别为x cm ,3x cm ,如图所示,根据相似三角形的性质得33+y =x3x,解得y =6.故圆台的母线长为6 cm.能力提升8.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( )解析由组合体的结构特征知,球只与正方体的上、下底面相切,而与两侧棱相离,故正确答案为B.答案 B9.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是( )A.4B.3C.2D.0.5解析如图所示,∵两个平行截面的面积分别为5π、8π,∴两个截面圆的半径分别为r1=5,r2=2 2.∵球心到两个截面的距离d1=R2-r21,d2=R2-r22,∴d1-d2=R2-5-R2-8=1,∴R2=9,∴R=3.答案 B10.长为8 cm,宽为6 cm的矩形绕其一边所在直线旋转而成的圆柱的底面面积为______cm2,母线长为______cm.解析若圆柱是矩形绕其宽所在直线旋转而成的,则其底面半径为8 cm,底面面积为64πcm2,其母线长为6 cm;若圆柱是矩形绕其长所在直线旋转而成的,则其底面半径为6 cm,底面面积为36π cm2,其母线长为8 cm.答案64π或36π;6或811.已知圆锥的底面半径为r,高为h,正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.解过内接正方体的一组对棱作圆锥的轴截面,如图所示.设圆锥内接正方体的棱长为x,则在轴截面中,正方体的对角面A1ACC1的一组邻边的长分别为x和2x . 因为△VA 1C 1∽VMN ,所以A 1C 1MN =VO 1VO ,即2x 2r =h -x h, 所以2hx =2rh -2rx ,即x =2rh 2r +2h. 故这个正方体的棱长为2rh 2r +2h. 探 究 创 新12.如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x );(2)绳子最短时,顶点到绳子的最短距离;(3)f (x )的最大值.解 将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,∴L =2πr =2π.∴∠ASM =L 2πl ×360°=2π2π×4×360°=90°. (1)由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4). f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,∵S △SAM =12SA ·SM =12AM ·SR ,∴SR =SA ·SM AM =4x x 2+16(0≤x ≤4), 即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4). (3)∵f (x )=x 2+16(0≤x ≤4)是增函数, ∴f (x )的最大值为f (4)=32.。

新课标人教A版高中数学必修2教学案(完整版)

新课标人教A版高中数学必修2教学案(完整版)

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

新课标人教A版高中数学必修2空间几何体复习

新课标人教A版高中数学必修2空间几何体复习

O1
C1
M1
B1
D C
OH M
B
典型例题
6.如图,圆台母线AB长为20cm,上、下底面半径分
别为5cm和10cm,从母线AB的中点M拉一条绳子绕
圆台侧面一圈转到B点,求这条绳子的最小值。
•A
50CM
B1 A1
•M
O
•B
P •A •M
Q
•B
典型例题
2. 圆锥的半径为r,母线长为4r,M是 底面圆上任意一点,从M拉一根绳 子,环绕圆锥的侧面再回到M,求 最短绳长.
2、性质 Ⅰ、正棱锥的性质 (1)各侧棱相等,各侧面都是全等的等腰三角形。 (2)棱锥的高、斜高和斜高在底面上的射影组成一个直 角三角形;棱锥的高、侧棱和侧棱在底面上的射影也 组成一个直角三角形。
基础知识回顾
正棱锥性质2
棱锥的高、斜高和斜高在底面的射影组 成一个直角三角形。棱锥的高、侧棱和 侧棱在底面的射影组成一个直角三角形
锥体的体积: 台体的体积: 球的体积:
V 1 Sh 3
V 1 (S SS S)h 3
V 4 R3
3
典型例题
练习
1.设棱锥的底面面积为8cm2,那么这个棱锥的中截面
(过棱锥的中点且平行于底面的截面)的面积是( C )
(A)4cm2 (B) 2 2 cm2 (C)2cm2 (D) 2 cm2
新课标人教版A必修2复习课 第一章 空间几何体
基础知识回顾
柱、锥、台、球的结构特征 空间几何体的结构
识 图


简单几何体的结构特征
空 间
柱、锥、台、球的三视图
几 三视图

简单几何体的三视图
平行投影

高中数学教案完整版新课标人教A版必修2

高中数学教案完整版新课标人教A版必修2

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能〔1〕通过实物操作,增强学生的直观感知。

〔2〕能根据几何结构特征对空间物体进行分类。

〔3〕会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

〔4〕会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法〔1〕让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

〔2〕让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观〔1〕使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

〔2〕培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具〔1〕学法:观察、思考、交流、讨论、概括。

〔2〕实物模型、投影仪四、教学思路〔一〕创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,〔展示具有柱、锥、台、球结构特征的空间物体〕,你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

〔二〕、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

〔1〕有两个面互相平行;〔2〕其余各面都是平行四边形;〔3〕每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

高中数学 第一章 空间几何体章末专题整合课件 新人教A版必修2

高中数学 第一章 空间几何体章末专题整合课件 新人教A版必修2
面积是( )
A.3( 2+ 5+3)
B.2 2+9
3 2+ 5 C. 2
3 D.
2+ 2
5+9
完整版ppt
7
解析:从三视图可以得到该几何体为四棱锥,设此四棱锥为 P-
ABCD,从正视图和侧视图可以看出该四棱锥的底面为正方形且边长
为 3,从侧视图可得该四棱锥的高为 1,作 PO⊥平面 ABCD,利用勾
股定理计算出各个侧面的斜高,分别为 2, 2, 5, 5,则 S△PAB=
S△PAD=12×3× 2=3 2 2,S△PBC=S△PCD=12×3× 5=3 2 5,又 SABCD=9,
所以该四棱锥的表面积为:S 表=3
2+ 2
5+9,故选 D.
答案:D
完整版ppt
8
【专题突破】 1.2014·四川高考一个几何体的三视图如图所示,则该几何体的 直观图可以是( )
(2)给出下列命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆
柱的母线;
②有一个面是多边形,其余各面都是三角形的几何体是棱锥;
③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是
圆锥;
④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )
A.0
B.1
C.2
D.3
(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角
坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,
图形的对称中心为原点,注意两个图形中关键线段长度的关系.
答案:(1)C (2)166a2
完整版ppt
6
热点三 空间几何体的表面积、体积 例 3 某四棱锥的三视图如图所示(单位:cm),则该四棱锥的表

新课标人教A版高中数学必修2教案完整版

新课标人教A版高中数学必修2教案完整版

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

高中数学 第一章 空间几何体章末复习课学案 新人教A版必修2

高中数学 第一章 空间几何体章末复习课学案 新人教A版必修2

第一章空间几何体章末复习课1.空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形.棱台是棱锥被平行于底面的平面所截而成的.这三种几何体都是多面体.(2)圆柱、圆锥、圆台、球分别是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体.在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面.(3)由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体.2.空间几何体的三视图与直观图(1)三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;它包括正视图、侧视图、俯视图三种.画图时要遵循“长对正、高平齐、宽相等”的原则. 注意三种视图的摆放顺序,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.熟记常见几何体的三视图.画组合体的三视图时可先拆,后画,再检验.(2)斜二测画法:主要用于水平放置的平面图形或立体图形的画法.它的主要步骤:(1)画轴;(2)画平行于x、y、z轴的线段分别为平行于x′、y′、z′轴的线段;(3)截线段:平行于x、z轴的线段的长度不变,平行于y轴的线段的长度变为原来的一半.三视图和直观图都是空间几何体的不同表示形式,两者之间可以互相转化,这也是高考考查的重点;根据三视图的画法规则理解三视图中数据表示的含义,从而可以确定几何体的形状和基本量.3.几何体的侧面积和体积的有关计算柱体、锥体、台体和球体的侧面积和体积公式方法一几何体的三视图和直观图空间几何体的三视图、直观图以及两者之间的转化是本章的难点,也是重点.解题需要依据它们的概念及画法规则,同时还要注意空间想象能力的运用.【例1】将正方体如图(1)所示截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为( )解析还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.答案 B【训练1】 若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析 所给选项中,A 、C 选项的正视图、俯视图不符合,D 选项的侧视图不符合,只有B 选项符合. 答案 B方法二 几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常能够遇到的问题,如制作物体的下料问题、材料最省问题等.这里应注意各数量之间的关系及各元素之间的位置关系.在计算中,要充分利用平面几何知识,特别注意应用柱体、锥体、台体的侧面展开图.组合体的表面积和体积,可以通过割补法转化为柱体、锥体、台体等的表面积和体积.【例2】 如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求三棱柱ABC -A ′B ′C ′的体积.解 连接A ′B ,A ′C ,如图所示,这样就把三棱柱分割成了两个棱锥.设所求体积为V ,显然三棱锥A ′-ABC 的体积是13V .而四棱锥A ′-BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,即V =12Sa .【训练2】 某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π解析 将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+12π×22×4=16+8π.答案 A方法三 转化与化归思想运用转化与化归的思想寻求解题途径,常用如下几种策略:(1)已知与未知的转化.由已知想可知,由未知想需知,通过联想,寻找解题途径.(2)正面与反面的转化.在处理某一问题时,按照习惯思维方式从正面思考遇到困难,甚至不可能时,用逆向思维的方式去解决,往往能达到以突破性的效果.(3)一般与特殊的转化.特殊问题的解决往往是比较容易的,可以利用特殊问题内含的本质联系,通过演绎,得出一般结论,从而使问题得以解决.(4)复杂与简单的转化.把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解决,这是解数学问题的一条重要原则.【例3】 如图所示,圆台母线AB 长为20 cm ,上、下底面半径分别为5 cm 和10 cm ,从母线AB 的中点M 拉一条绳子绕圆台侧面转到B 点,求这条绳子长度的最小值.解 如图所示,作出圆台的侧面展开图及其所在的圆锥. 连接MB ′,P 、Q 分别为圆台的上、下底面的圆心.在圆台的轴截面中,∵Rt △OPA ∽Rt △OQB , ∴OA OA +AB =PA QB ,∴OA OA +20=510.∴OA =20(cm). 设∠BOB ′=α,由扇形弧BB ′︵的长与底面圆Q 的周长相等, 得2×10×π=2×OB ×π×α360°, 即20π=2×(20+20)π×α360°,∴α=90°.∴在Rt △B ′OM 中,B ′M =OM 2+OB ′2=302+402=50(cm),即所求绳长的最小值为50 cm.【训练3】 圆柱的轴截面是边长为5 cm 的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A.10 cm B.52π2+4 cm C.5 2 cmD.5π2+1 cm解析 如图所示,沿母线BC 展开,曲面上从A 到C 的最短距离为平面上从A 到C 的线段的长.∵AB =BC =5,∴A ′B =AB ︵=12×2π×52=52π.∴A ′C =A ′B 2+BC 2=254π2+25=5π24+1=52π2+4(cm). 答案 B1.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析 由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C. 答案 C2.(2016·全国Ⅲ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5C .90D .81解析 由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5. 答案 B3.(2015·全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).答案 B4.(2015·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm3B.12 cm3C.323 cm3D.403cm 3解析 先由三视图还原几何体,再利用相应的体积公式计算.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3).所以该几何体的体积V =V 1+V 2=323(cm 3).答案 C5.(2015·陕西高考)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为:S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.答案 D6.(2014·浙江高考)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm 2B.129 cm 2C.132 cm 2D.138 cm 2解析 该几何体如图所示,长方体的长、宽、高分别为 6 cm ,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm ,4 cm ,5 cm ,所以表面积S =[2×(4×6+4×3)+3×6+3×3]+⎝ ⎛⎭⎪⎫5×3+4×3+2×12×4×3=99+39=138(cm 2).答案 D7.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析 由三视图知该四棱柱为直四棱柱,底面积S =(1+2)×12=32,高h =1,所以四棱柱体积V =S ·h =32×1=32.答案 328.(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析 由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm ,下面长方体是底面边长为4 cm ,高为2 cm ,其直观图如右图:其表面积S =6×22+2×42+4×2×4-2×22=80(cm 2).体积V =2×2×2+4×4×2=40(cm 3).答案 80 409.(2013·浙江高考)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.解析 由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3).答案24。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体
章末复习课
网络构建
核心归纳
1.空间几何体的结构特征及其侧面积和体积
名称定义图形侧面积体积
多面

棱柱
有两个面互相
平行,其余各面
都是四边形,并
且每相邻两个
四边形的公共
边都互相平行
S正棱柱侧=Ch,
C为底面的周
长,h为高
V=Sh,S为底面积,
h为高
棱锥
有一个面是多
边形,其余各面
都是有一个公
共顶点的三角

S正棱锥侧=
1
2
Ch′,
C为底面的周
长,h′为斜高
V=
1
3
Sh,S为底面积,
h为高
棱台用一个平行于
棱锥底面的平
面去截棱锥,底
面与截面之间
的部分
S正棱台侧=
1
2
(C+
C′)h′,C′,C
分别为上、下底
面的周长,h′为
斜高
V=
1
3
(S+S′+
SS′)·h,S′,S分
别为上、下底面面积,
h为高
旋转体圆柱
以矩形的一边
所在直线为旋
转轴,其余三边
旋转形成的面
所围成的旋转

S侧=2πrh,
r为底面半径,h
为高
V=Sh=πr2h,S为底
面面积,r为底面半径,
h为高
圆锥
以直角三角形
的一条直角边
所在直线为旋
转轴,其余两边
旋转形成的面
所围成的旋转

S侧=πrl,
r为底面半径,l
为母线长
V=
1
3
Sh=
1
3
πr2h,S为
底面面积,r为底面半
径,h为高
旋转体圆台
用平行于圆锥
底面的平面去
截圆锥,底面和
截面之间的部

S侧=π(r′+
r)l,r′,r分
别为上、下底面
半径,l为母线

V=
1
3
(S′+S′·S
+S)h=
1
3
π(r′2+
r′·r+r2),S′,S
分别为上、下底面面
积,r′,r分别为上、
下底面半径,h为高

以半圆的直径
所在直线为旋
转轴,半圆面旋
转一周形成的
S球=4πR2,
R为球的半径
V=
4
3
πR3,R为球的半

旋转体
2.空间几何体的三视图与直观图
(1)三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;它包括正视图、侧视图、俯视图三种.画图时要遵循“长对正、高平齐、宽相等”的原则,注意三种视图的摆放顺序.在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.熟记常见几何体的三视图.画组合体的三视图时可先拆,后画,再检验.
(2)斜二测画法:主要用于水平放置的平面图形或立体图形的画法.它的主要步骤: ①画轴;②画平行于x 、y 、z 轴的线段分别为平行于x ′、y ′、z ′轴的线段;③截线段:平行于x 、z 轴的线段的长度不变,平行于y 轴的线段的长度变为原来的一半. 三视图和直观图都是空间几何体的不同表示形式,两者之间可以互相转化. (3)转化思想在本章应用较多,主要体现在以下几个方面 ①曲面化平面,如几何体的侧面展开,把曲线(折线)化为线段. ②等积变换,如三棱锥转移顶点等.
③复杂化简单,把不规则几何体通过分割、补体化为规则的几何体等.
要点一 三视图与直观图
解决识图问题,要根据三视图的画法及三视图的特点;解决计算问题,先将三视图还原成直观图,然后再根据有关公式计算.
【例1】 已知一个组合体的三视图如图所示,请根据具体数据来求此几何体的体积(单位:cm).
解 该几何体是由一个圆锥和两个圆柱组合而成的组合体. 由条件中尺寸可知
V 圆锥=13Sh =13π×22×2=83
π(cm 3).
V 圆柱中=Sh =π×22×10=40π(cm 3), V 圆柱下=Sh =π×62×2=72π(cm 3).
∴此组合体的体积V =V 圆锥+V 圆柱中+V 圆柱下 =83π+40π+72π=3443
π(cm 3
). 【训练1】 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
A .20π
B .24π
C .28π
D .32π
解析 由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是23,∴在轴截面中圆锥的母线长是12+4=4,∴圆锥的侧面积是π×2×4=8π.下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22
+2π×2×4=20π,∴空间组合体的表面积是28π,故选C. 答案 C
要点二 空间几何体表面上的最短距离问题
一般地,多面体或旋转体绕侧面或表面最短距离的问题,除球外,基本都是通过展开图来解决,关键是找准剪开的线,准确用展开图中的某条线段来表示这个最短距离,另外这里的所谓最短距离,实质是沿多面体或旋转体侧(表)面的最短路径.
【例2】 边长为5 cm 的正方形EFGH 是圆柱的轴截面,则从E 点沿圆柱的侧面到相对顶点
G 的最短距离是( )
A .10 cm
B .5 2 cm
C .5π2
+1 cm D .
52
π2
+4 cm 解析 圆柱的侧面展开图如图所示,展开后E ′F =12·2π·⎝ ⎛⎭⎪⎫52=5
2
π(cm),∴E ′G =
52
+⎝ ⎛⎭
⎪⎫52π2

52
π2
+4(cm),即为所求最短距离.
答案 D
【训练2】 如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,求由A 到C 1在长方体表面上的最短距离.
解 展开如图①所示,AC 1=52
+12
=26;
展开如图②所示,AC 1=32
+32
=32; 展开如图③所示,AC 1=42
+22
=2 5.
综上,由A 到C 1在长方体表面上的最短距离为3 2. 要点三 空间几何体的表面积和体积
1.几何体的表面积及体积的计算是现实生活中经常能够遇到的问题,在计算中应注意各数量之间的关系及各元素之间的位置关系,特别是特殊的柱、锥、台,要注意其中矩形、梯形及直角三角形等重要的平面图形的作用. 2.常见的计算方法
(1)公式法:根据题意直接套用表面积或体积公式求解.
(2)割补法:割补法的思想是通过分割或补形,将原几何体分割成或补成较易计算体积的几何体,从而求出原几何体的体积.
(3)等体积变换法:等积变换法的思想是从不同的角度看待原几何体,通过改变顶点和底面,利用体积不变的原理来求原几何体的体积.
【例3】 如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱
O 1O 2的体积为V 1,球O 的体积为V 2,则V 1
V 2
的值是________.
解析 设球半径为R ,则圆柱底面圆半径为R ,母线长为2R ,又V 1=πR 2·2R =2πR 3
,V 2=
43
πR 3
,所以V 1V 2=2πR 343
πR
3=3
2
.
答案 32
【训练3】 已知等边圆柱(轴截面是正方形的圆柱)的表面积为S ,求其内接正四棱柱的体积.
解 如图所示,
设圆柱OO 1为等边圆柱,正四棱柱ABCD -A 1B 1C 1D 1是圆柱OO 1的内接正四棱柱.设等边圆柱的底面半径为r ,则高h =2r .
∵S =S 侧+2S 底=2πrh +2πr 2
=6πr 2
,∴r =
S

.
又正四棱柱ABCD -A 1B 1C 1D 1的底边AB =2r sin 45°=2r , ∴正四棱柱ABCD -A 1B 1C 1D 1的体积
V =S 底·h =(2r )2·2r =4r 3=4⎝
⎛⎭
⎪⎫
S 6π3
=S 6πS
9π2. 故该圆柱的内接正四棱柱的体积为
S 6πS

2
.。

相关文档
最新文档