信息论基础教程第二版第五章课后习题答案
信息论基础各章参考答案
各章参考答案2.1. (1)4.17比特 ;(2)5.17比特 ; (3)1.17比特 ;(4)3.17比特2.2. 1.42比特2.3. (1)225.6比特 ;(2)13.2比特2.4. (1)24.07比特; (2)31.02比特2.5. (1)根据熵的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。
如果我们使每次实验所获得的信息量最大。
那么所需要的总实验次数就最少。
用无砝码天平的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3。
从12个硬币中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。
因为3log3=log27>log24。
所以在理论上用3次称重能够鉴别硬币并判断其轻或重。
每次实验应使结果具有最大的熵。
其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ②左倾 ③右倾。
ⅰ)若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出盘中没有假币;若有,还能判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可判断出假币。
ⅱ)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未称的3枚放到右盘中,观察称重砝码,若平衡,说明取下的3枚中含假币,只能判出轻重,若倾斜方向不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说明从右盘取过的3枚中有假币,便可判出轻重。
(2)第三次称重 类似ⅰ)的情况,但当两个硬币知其中一个为假,不知为哪个时,第三步用一个真币与其中一个称重比较即可。
对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在五个硬币的组里,则鉴别所需信息量为log10>log9=2log3,所以剩下的2次称重不能获得所需的信息.2.6. (1)215log =15比特; (2) 1比特;(3)15个问题2. 7. 证明: (略) 2.8. 证明: (略)2.9.31)(11=b a p ,121)(21=b a p ,121)(31=b a p ,61)()(1312==b a b a p p ,241)()()()(33233222====b a b a b a b a p p p p。
信息论基础智慧树知到课后章节答案2023年下潍坊学院
信息论基础智慧树知到课后章节答案2023年下潍坊学院潍坊学院第一章测试1.信息论的奠基人是()。
A:香农 B:阿姆斯特朗 C:哈特利 D:奈奎斯特答案:香农2.下列不属于信息论的研究内容的是()。
A:纠错编码 B:信息的产生 C:信道传输能力 D:信源、信道模型答案:信息的产生3.下列不属于消息的是()A:文字 B:图像 C:信号 D:语音答案:信号4.信息就是消息. ()A:错 B:对答案:错5.信息是不可以度量的,是一个主观的认识。
()A:错 B:对答案:错6.任何已经确定的事物都不含有信息。
()A:对 B:错答案:对7.1948年香农的文章《通信的数学理论》奠定了香农信息理论的基础。
()A:错 B:对答案:对8.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的(),使信息传输系统达到最优化。
A:有效性 B:认证性 C:可靠性 D:保密性答案:有效性;认证性;可靠性;保密性9.下列属于香农信息论的主要研究理论的是()。
A:压缩理论 B:调制理论 C:保密理论 D:传输理论答案:压缩理论;保密理论;传输理论10.信源编码的作用包含()。
A:检错纠错 B:对信源的输出进行符号变换 C:数据压缩 D:提升信息传输的安全性答案:对信源的输出进行符号变换;数据压缩第二章测试1.信息传输系统模型中,用来提升信息传输的有效性的部分为()A:信源 B:信道编码器、信道译码器 C:信道 D:信源编码器、信源译码器答案:信源编码器、信源译码器2.对于自信息,以下描述正确的是()A:以2为底时,单位是奈特。
B:以2为底时,单位是比特。
C:以10为底时,单位是奈特。
D:以e为底时,单位是比特答案:以2为底时,单位是比特。
3.信息熵的单位是()A:比特 B:比特每符号 C:无法确定答案:比特每符号4.必然事件和不可能事件的自信息量都是0 。
()A:错 B:对答案:错5.概率大的事件自信息量大。
信息论与编码第五章习题参考答案
5.1某离散无记忆信源的概率空间为采用香农码和费诺码对该信源进行二进制变长编码,写出编码输出码字,并且求出平均码长和编码效率。
解:计算相应的自信息量1)()(11=-=a lbp a I 比特 2)()(22=-=a lbp a I 比特 3)()(313=-=a lbp a I 比特 4)()(44=-=a lbp a I 比特 5)()(55=-=a lbp a I 比特 6)()(66=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特根据香农码编码方法确定码长1)()(+<≤i i i a I l a I平均码长984375.164/6317128/17128/1664/1532/1416/138/124/112/1L 1=+=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=由于每个符号的码长等于自信息量,所以编码效率为1。
费罗马编码过程5.2某离散无记忆信源的概率空间为使用费罗码对该信源的扩展信源进行二进制变长编码,(1) 扩展信源长度,写出编码码字,计算平均码长和编码效率。
(2) 扩展信源长度,写出编码码字,计算平均码长和编码效率。
(3) 扩展信源长度,写出编码码字,计算平均码长和编码效率,并且与(1)的结果进行比较。
解:信息熵811.025.025.075.075.0)(=--=lb lb X H 比特/符号 (1)平均码长11=L 比特/符号编码效率为%1.81X)(H 11==L η(2)平均码长为84375.0)3161316321631169(212=⨯+⨯+⨯+⨯=L 比特/符号 编码效率%9684375.0811.0X)(H 22===L η(3)当N=4时,序列码长309.3725617256362563352569442569242562732562732256814=⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯+⨯⨯+⨯=L平均码长827.04309.34==L %1.98827.0811.0X)(H 43===L η可见,随着信源扩展长度的增加,平均码长逐渐逼近熵,编码效率也逐渐提高。
信息理论与编码课后答案第5章
第5章 有噪信道编码5.1 基本要求通过本章学习,了解信道编码的目的,了解译码规则对错误概率的影响,掌握两种典型的译码规则:最佳译码规则和极大似然译码规则。
掌握信息率与平均差错率的关系,掌握最小汉明距离译码规则,掌握有噪信道编码定理(香农第二定理)的基本思想,了解典型序列的概念,了解定理的证明方法,掌握线性分组码的生成和校验。
5.2 学习要点5.2.1 信道译码函数与平均差错率5.2.1.1 信道译码模型从数学角度讲,信道译码是一个变换或函数,称为译码函数,记为F 。
信道译码模型如图5.1所示。
5.2.1.2 信道译码函数信道译码函数F 是从输出符号集合B 到输入符号集合A 的映射:*()j j F b a A =∈,1,2,...j s =其含义是:将接收符号j b B ∈译为某个输入符号*j a A ∈。
译码函数又称译码规则。
5.2.1.3 平均差错率在信道输出端接收到符号j b 时,按译码规则*()j j F b a A =∈将j b 译为*j a ,若此时信道输入刚好是*j a ,则称为译码正确,否则称为译码错误。
j b 的译码正确概率是后验概率:*(|)()|j j j j P X a Y b P F b b ⎡⎤===⎣⎦ (5.1)j b 的译码错误概率:(|)()|1()|j j j j j P e b P X F b Y b P F b b ⎡⎤⎡⎤=≠==-⎣⎦⎣⎦ (5.2)平均差错率是译码错误概率的统计平均,记为e P :{}1111()(|)()1()|1(),1()|()s se j j j j j j j ssj j j j j j j P P b P e b P b P F b b P F b b P F b P b F b ====⎡⎤==-⎣⎦⎡⎤⎡⎤⎡⎤=-=-⎣⎦⎣⎦⎣⎦∑∑∑∑ (5.3)5.2.2 两种典型的译码规则两种典型的译码规则是最佳译码规则和极大似然译码规则。
信息论基础第五章课后答案
5.1设有信源⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛01.01.015.017.018.019.02.0)(7654321a a a a a a a X P X (1)求信源熵H(X)(2)编二进制香农码(3)计算其平均码长及编码效率解:(1)H(X)=-)(log )(21i ni i a p a p ∑=H(X)=-0.2log 20.2-0.19log 20.19-0.18log 20.18-0.17log 20.17-0.15log 20.15-0.log 20.1-0.01log 20.01H(X)=2.61(bit/sign)(2)ia i P(ai)jP(aj)ki码字a 001a 10.210.0030002a 20.1920.2030013a 30.1830.3930114a 40.1740.5731005a 50.1550.7431016a 60.160.89411107a 70.0170.9971111110(3)平均码长:-k =3*0.2+3*0.19+3*0.18+3*0.17+3*0.15+4*0.1+7*0.01=3.14(bit/sign)编码效率:η=R X H )(=-KX H )(=14.361.2=83.1%5.2对习题5.1的信源二进制费诺码,计算器编码效率。
⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛0.01 0.1 0.15 0.17 0.18 0.19 2.0 )(7654321a a a a a a a X P X 解:Xi)(i X P 编码码字ik 1X 0.2000022X 0.191001033X 0.18101134X 0.17101025X 0.151011036X 0.110111047X 0.01111114%2.9574.2609.2)()(74.2 01.0.041.0415.0317.0218.0319.032.02 )(/bit 609.2)(1.5=====⨯+⨯+⨯+⨯+⨯+⨯+⨯===∑KX H R X H X p k K sign X H ii i η已知由5.3、对信源⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制和三进制赫夫曼码,计算各自的平均码长和编码效率。
信息论第五章答案解析
5.1 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X (1) 求信源熵H(X); (2) 编二进制香农码; (3) 计算平均码长和编码效率。
解: (1)symbolbit x p x p X H i i i /609.2)01.0log 01.01.0log 1.015.0log 15.017.0log 17.018.0log 18.019.0log 19.02.0log 2.0()(log )()(2222222712=⨯+⨯+⨯+⨯+⨯+⨯+⨯-=-=∑= (2)(3)%1.8314.3609.2)()(14.301.071.0415.0317.0318.0319.032.03)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.2 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制费诺码,计算编码效率。
解:%2.9574.2609.2)()(74.201.041.0415.0317.0218.0319.032.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.3 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率。
解:二进制哈夫曼码:%9.9572.2609.2)()(72.201.041.0415.0317.0318.0319.022.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η三进制哈夫曼码:%4.913log 8.1609.2log )()(8.1)01.01.015.017.018.019.0(22.01)(22=⨯====+++++⨯+⨯==∑m LKX H R X H x p k K ii i η5.4 设信源⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡12811281641321161814121)(87654321x x x x x x x x X P X (1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率; (4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解: (1)symbolbit x p x p X H i i i /984.1128log 1281128log 128164log 64132log 32116log 1618log 814log 412log 21)(log )()(22222222812=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=-=∑==127/64 bit/symbol (2)二进制香农码:二进制费诺码:(3)香农编码效率:%100984.1984.1)()(64/127984.17128171281664153214161381241121)(======⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η费诺编码效率:%100984.1984.1)()(984.17128171281664153214161381241121)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η (4)(5)%3.943log 328.1984.1log )()(328.14128141281364133212161281141121)(22=⨯=⋅===⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑m K X H R X H x p k K ii i η5.5 设无记忆二进制信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡1.09.010)(X P X先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示。
信息论基础教材习题答案.docx
第
9.6共有28=256个码字,不能由一个码字的循环产生所有的码字,因为码长为8位,由一个码字循环移位 最多能产生8个码字。
9.7根据伴随式定义:5(x)=j(x) [mod g(x)],由于码多项式都是g(x)的倍式,如果接受矢量y(x)是码多 项式,则它的的伴随式等于0,如果y(Q不是码多项式,则伴随式s(Q不等于0。
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
G =
0
0
0
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
信息论第五章答案
5.1 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X (1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率。
解: (1)symbolbit x p x p X H i i i /609.2)01.0log 01.01.0log 1.015.0log 15.017.0log 17.018.0log 18.019.0log 19.02.0log 2.0()(log )()(2222222712=⨯+⨯+⨯+⨯+⨯+⨯+⨯-=-=∑=%1.8314.3609.2)()(14.301.071.0415.0317.0318.0319.032.03)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.2 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制费诺码,计算编码效率。
%2.9574.2609.2)()(74.201.041.0415.0317.0218.0319.032.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.3 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率。
解:%9.9572.2609.2)()(72.201.041.0415.0317.0318.0319.022.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η%4.913log 8.1609.2log )()(8.1)01.01.015.017.018.019.0(22.01)(22=⨯====+++++⨯+⨯==∑m LK X H R X H x p k K ii i η5.4 设信源⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡12811281641321161814121)(87654321x x x x x x x x X P X (1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率; (4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解: (1)symbolbit x p x p X H i i i /984.1128log 1281128log 128164log 64132log 32116log 1618log 814log 412log 21)(log )()(22222222812=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=-=∑==127/64 bit/symbol (2)二进制费诺码:香农编码效率:%100984.1984.1)()(64/127984.17128171281664153214161381241121)(======⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η费诺编码效率:%100984.1984.1)()(984.17128171281664153214161381241121)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η(5)%3.943log 328.1984.1log )()(328.14128141281364133212161281141121)(22=⨯=⋅===⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑m K X H R X H x p k K ii i η5.5 设无记忆二进制信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡1.09.010)(X P X先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示。
信息论基础与编码(第五章)
5-1 有一信源,它有六种可能的输出,其概率分布如下表所示,表中给出了对应的六种编码12345C C C C C 、、、、和6C 。
(1) 求这些码中哪些是唯一可译码; (2) 求哪些是非延长码(即时码);(3) 对所有唯一可译码求出其平均码长。
解:(1(2)1,3,6是即时码。
5-2证明若存在一个码长为12,,,q l l l ⋅⋅⋅的唯一可译码,则一定存在具有相同码长的即时码。
证明:由定理可知若存在一个码长为Lq L L ,,2,1 的唯一可译码,则必定满足kraft 不等式∑=-qi l ir1≤1。
由定理44⋅可知若码长满足kraft 不等式,则一定存在这样码长的即时码。
所以若存在码长Lq L L ,,2,1 的唯一可译码,则一定存在具有相同码长P (y=0)的即时码。
5-3设信源126126()s s s S p p p P s ⋅⋅⋅⎡⎤⎡⎤=⎢⎥⎢⎥⋅⋅⋅⎣⎦⎣⎦,611i i p ==∑。
将此信源编码成为r 元唯一可译变长码(即码符号集12{,,,}r X x x x =⋅⋅⋅),其对应的码长为(126,,,l l l ⋅⋅⋅)=(1,1,2,3,2,3),求r 值的最小下限。
解:要将此信源编码成为 r 元唯一可译变长码,其码字对应的码长(l 1 ,l 2 ,l 3, l 4,l 5, l 6)=(1,1,2,3,2,3) 必须满足克拉夫特不等式,即132321161≤+++++=------=-∑r r r r r r ri li所以要满足122232≤++r r r ,其中 r 是大于或等于1的正整数。
可见,当r=1时,不能满足Kraft 不等式。
当r=2, 1824222>++,不能满足Kraft 。
当r=3,127262729232<=++,满足Kraft 。
所以,求得r 的最大值下限值等于3。
5-4设某城市有805门公务和60000门居民。
作为系统工程师,你需要为这些用户分配。
信息论与编码第五章答案
信息论与编码第五章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a p X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭(1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率. 解: (1)721222222()()log ()0.2log 0.20.19log 0.190.18log 0.180.17log 0.170.15log 0.150.1log 0.10.01log 0.012.609/i i i H X p a p a bit symbol==-=-⨯-⨯-⨯-⨯-⨯-⨯-⨯=∑71()0.230.1930.1830.1730.1530.140.0173.141()()/ 2.609 3.14183.1%i i i K k p x H X H X K Rη===⨯+⨯+⨯+⨯+⨯+⨯+⨯====÷=∑对习题的信源编二进制费诺码,计算编码效率.对信源编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率.解:x i p(x i)编码码字k i s61s50s41s30s21x10102 x21112 x300003 x410013 x500103 s11x6001104 x7101114x i p(x i)编码码字k i s31s20s11x1221 x20002 x31012 x42022 x50102 x61112x72122设信源(1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率;(4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解:(1)(2)x i p(x i)p a(x i)k i码字x1010x2210x33110x441110x5511110x66111110x771111110x871111111xi p(x i)编码码字k i x1001 x210102 x3101103x41011104 x510111105x6101111106x71011111107x8111111117 (3)香农编码效率:费诺编码效率:(4)x i p(x i)编码码字k i x1001 x2111x320202x41212x5202203x612213x72022204x8122214设无记忆二进制信源先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示.(1) 验证码字的可分离性;(2) 求对应于一个数字的信源序列的平均长度;(3) 求对应于一个码字的信源序列的平均长度;(4) 计算,并计算编码效率;(5) 若用4位信源符号合起来编成二进制哈夫曼码,求它的平均码长,序列数字二元码字10100001110010013101000013101100001411000000015110100000016111000000001711110000000080一个来编写二进制哈夫曼码,求新符号的平均码字长度和编码效率.对题的信源进行游程编码.若“0”游程长度的截至值为16,“1”游程长度的截至值为8,求编码效率.选择帧长N = 64(1) 对00000000000000000000000000000000000000遍L-D码;(2) 对000000000010遍L-D码再译码;(3) 对000000000000000000000000000000000000000000000000000000000000000 0遍L-D码;(4) 对0遍L-D码;(5) 对上述结果进行讨论.。
信息论 基础理论与应用课后答案 全
X
a1 a2
P = 0.070.93
问男同志回答“是”所获昨的信息量为:
I 问男同志回答“否”所获得的信息量为:
比特/符号
I 男同志平均每个回答中含有的信息量为
比特/符号
H(X) = −∑P(x)log P(x) = 0.366 比特/符号
同样,女同志红绿色盲的概率空间为
Y
b1
b2
P = 0.0050.995
A′ ={ai ,i =1,2,...,2q},并且各符号的概率分布满足
Pi′= (1−e)Pi i =1,2,...,q
Pi′= ePi
i = q +1,q + 2,...,2q
试写出信源 S′的信息熵与信源 S 的信息熵的关系。
解:
H(S′) = −∑P(x)log P(x)
∑ ∑ = − (1−e)Pi log(1−e)Pi − ePi logePi ∑ ∑ ∑ ∑ = −(1−e) Pi log(1−e) − (1−e) Pi log Pi −e Pi loge −e Pi log Pi
即函数 f (x) 为减函数,因此有 f (0) ≥ f (e),即
(p1 −e)log(p1 −e) + (p2 + e)log(p2 + e) ≤ p1 log p1 + p2 log p2
因此 H(X) ≤ H(X ′)成立。
【解释】 当信源符号的概率趋向等概率分布时,不确定性增加,即信息熵是增加的。
(1)求质点 A 落入任一格的平均自信息量,即求信息熵,首先得出质点 A 落入任 一格的概率空间为:
= XP
48a11 48a12 48a13 a48148 平均自信息量为
信息论基础各章参考答案.doc
= pQhb) = = pWLh)124各章参考答案2. 1. (1) 4.17 比特;(2) 5.17 比特;(3) 1.17 比特; (4) 3.17 比特 2. 2. 1.42比特2. 3.(1) 225.6 比特;(2) 13.2 比特2. 4. (1) 24.07 比特;(2) 31.02 比特2. 5. (1)根据炳的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。
如果我们使每次实验所获得的信息量最大。
那么所需要的总实验次数就最少。
用无秩码天平 的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3o 从12个硬币 中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。
冽31og3=log27>log24o 所以在理论上用3次称重能够鉴别硬币并判断其轻或重。
每次实验应使结果具有最大的炳。
其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ② 左倾③右倾。
i )若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚 中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出肃中没有假币;若有,还能 判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可 判断出假币。
订)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未 称的3枚放到右盘中,观察称重缺码,若平衡,说明取下的3枚中含假币,只能判出轻重, 若倾斜方的不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说 明从右盘取过的3枚中有假币,便可判出轻重。
(2)第三次称重类似i )的情况,但当两个硬币知其中一个为假,不知为哪个时, 第三步用一个真币与其中一个称重比较即可。
对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在一五个硬币的组里,则鉴 别所需信息量为Iogl0>log9=21og3,所以剩下的2次称重不能获得所需的信息.2. 6. (1) log2“=15 比特;(2)1比特;(3) 15个问题2. 7. 证明: (略)2. 8.证明: (略)/ 、 111 、 12.9. P (dibi) = - p(ci\bi )= 12P (cM — — P (sb) < , 12 ,6,2. 10.证明: (略) 2. 11.证明: (略)2.12.证明: (略)2 [3.(1) H(X) = H(Y) = 1, H(Z) = 0.544, H(XZ) = 1.406, H(YZ) = 1.406,H(XKZ) = 1.812(2)H(X/Y) = H(Y/X) = 0.810f H(X/Z) = 0.862, H(Z/X) = H(Z/Y) =0.405 , H(Y/Z) = 0.862, H(X/YZ) = H(Y/XZ) = 0.405, H(Z/XY) =(3)1(X;K) = 0.188 Z(X;Z) = 0.138 Z(K;Z) = 0.138 7(X;Y/Z) =0.457 , I(Y;Z/X) = I(X;Z/Y) = 0.406(单位均为比特/符号)p 游(000) = 1)= Pg(l°l)=服z(l 1°)= 714. X 1 Z ■,(2)P加(°°°)=P宓(111)= !(3)P加(°°°)= 〃加(°。
信息论与编码技术第五章课后习题答案
码,并求出其编码效率。
解:
信源符号 概率 编码
码字 码长
X1
3/8 0
0
1
X2
1/6 1
0
10 2
X3
1/8
1
11 2
X4
1/8 2
0
20 2
X5
1/8
1
21 2
X6
1/12
2
22 2
H(X)=-((3/8)*log(3/8)+(1/6)*log(1/6)+(1/8)*log(1/8)+(1/8)*log(1/8)+(1/8)*log(1/8)+(1/12)*log(1/12))
=2.3852 (三进制单位/信源符号)
H3(X)= H(X)/ 1.5850=2.3852/1.5850= 1.5049(三进制单位/信源符号)
L =(3/8)*1+ (1/6)*2+ (1/8)*2+ (1/8)*2+ (1/8)*2+ (1/12)*2=1.625(码符号/信源符号)
η= H3(X)/ L =1.5049/1.625= 92.61 %
5.8 已知符号集合 {x1, x2 , x3,"} 为无限离散消息集合,它们出现的概率分别为 p(x1) = 1/ 2 , p(x2 ) = 1/ 4 , p(x3 ) = 1/ 8 , p(xi ) = 1/ 2i ,……。
(1) 用香农编码方法写出各个符号消息的码字。 (2) 计算码字的平均信息传输速率。
L =4*(1/4)*1=1(码符号/信源符号)
Rt= H(X)/(t* L )=1/(1*10*10-2)=10(比特/秒)
信息理论基础课后题答案
· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量H(X 1) = log 2n = log 24 = 2 bit/symbol 八进制脉冲的平均信息量H(X 2) = log 2n = log 28 = 3 bit/symbol 二进制脉冲的平均信息量H(X 0) = log 2n = log 22 = 1 bit/symbol 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:p(y 1/ x 1) = 0.75求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(2111121111=⎪⎭⎫⎝⎛⨯-=⎥⎦⎤⎢⎣⎡-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:bit x p x I i i 581.225!52log )(log )(2==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:bit C x p x I C x p i i i 208.134log )(log )(4)(13521322135213=-=-==· 2 ·2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log 2=-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:symbolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(22222222=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2222=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。
朱雪龙《应用信息论基础》习题答案全
2.3 1) H(X) = 0.918 bit , H(Y) = 0.918 bit
2) H(X|Y) =
2 2 2 bit , H(Y|X) = bit , H(X|Z) = bit 3 3 3
3) I(X;Y) = 0.251 bit , H(XYZ) = 1.585 bit
(2) Y的值取自 (a1 , a 2 , , a k 1 ), H (Y ) log(k 1), 故原式得证 X
2.14
1 1 1 P(X=n) = ( ) n 1 = ( )n 2 2 2
Q
bi t.
5d
6d
.co
m
2.15
Q bi t.
5d
2.16 证明:
P2 N ( a k )
6d .
2 2 12 2 (μ 1 μ 2) log 1 (nat) 2 2 2 2 1 2 1
I(X;Y) = 1 满足 I(X;Y|Z)<I(X;Y) 1 3 1 6 1 6 1 12 1 24 1 24 1 12 1 24 1 24
H(X Y) ≤ H(X) + H(Y) 等号在 X、Y 独立时取得 P( a 1 b 2 ) = P( a 2 b 2 ) = P( a 3 b 2 ) = P( a 1 b 3 ) = P( a 2 b 3 ) = P( a 3 b 3 ) =
∴P( a 1 b1 ) =
P( a 2 b1 ) = P( a 3 b1 ) =
满足 H(X Y) 取最大值
2.11 证明:
p( xyz ) p ( x) p ( y | x) p( z / y ) I ( X ; Z | Y ) 0, I ( X ;Y ) I ( X ;Y | Z ) I ( X ;Y ; Z ) I ( X ; Z ) I ( X ; Z | Y ) I ( X ; Z ) 0 故 I ( X ; Y ) I ( X ; Y | Z ) 成立
(完整版)信息论第五章答案
5.1 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X (1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率。
解: (1)symbolbit x p x p X H i i i /609.2)01.0log 01.01.0log 1.015.0log 15.017.0log 17.018.0log 18.019.0log 19.02.0log 2.0()(log )()(2222222712=⨯+⨯+⨯+⨯+⨯+⨯+⨯-=-=∑=%1.8314.3609.2)()(14.301.071.0415.0317.0318.0319.032.03)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.2 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制费诺码,计算编码效率。
%2.9574.2609.2)()(74.201.041.0415.0317.0218.0319.032.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.3 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率。
解:%9.9572.2609.2)()(72.201.041.0415.0317.0318.0319.022.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η%4.913log 8.1609.2log )()(8.1)01.01.015.017.018.019.0(22.01)(22=⨯====+++++⨯+⨯==∑m LK X H R X H x p k K ii i η5.4 设信源⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡12811281641321161814121)(87654321x x x x x x x x X P X (1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率; (4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解: (1)symbolbit x p x p X H i i i /984.1128log 1281128log 128164log 64132log 32116log 1618log 814log 412log 21)(log )()(22222222812=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=-=∑==127/64 bit/symbol (2)二进制费诺码:香农编码效率:%100984.1984.1)()(64/127984.17128171281664153214161381241121)(======⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η费诺编码效率:%100984.1984.1)()(984.17128171281664153214161381241121)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η(5)%3.943log 328.1984.1log )()(328.14128141281364133212161281141121)(22=⨯=⋅===⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑m K X H R X H x p k K ii i η5.5 设无记忆二进制信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡1.09.010)(X P X先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示。
信息论与编码第五章答案学习资料
信息论与编码第五章答案5.1 设信源1234567()0.20.190.180.170.150.10.01Xa a a a a a a p X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭ (1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率. 解: (1)721222222()()log ()0.2log 0.20.19log 0.190.18log 0.180.17log 0.170.15log 0.150.1log 0.10.01log 0.012.609/i i i H X p a p a bit symbol==-=-⨯-⨯-⨯-⨯-⨯-⨯-⨯=∑(2)(3)71()0.230.1930.1830.1730.1530.140.0173.141()()/ 2.609 3.14183.1%i i i K k p x H X H X K Rη===⨯+⨯+⨯+⨯+⨯+⨯+⨯====÷=∑5.2 对习题5.1的信源编二进制费诺码,计算编码效率.解:a i p(a i)编码码字k ia10.20002 a20.19100103 a30.1810113 a40.1710102 a50.15101103 a60.11011104 a70.011111145.3 对信源编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率.解:二进制哈夫曼码:x i p(x i)编码码字k i s61s50.610s40.391s30.350s20.261x10.20102 x20.191112 x30.1800003 x40.1710013 x50.1500103 s10.111x60.1001104 x70.01101114三进制哈夫曼码:x i p(x i)编码码字k i s31s20.540s10.261x10.2221 x20.190002 x30.181012 x40.172022 x50.150102 x60.11112 x70.0121225.4 设信源(1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率;(4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解:(1)(2)二进制香农码:x i p(x i)p a(x i)k i码字x10.5010x20.250.5210x30.1250.753110x40.06250.87541110x50.031250.9375511110x60.0156250.968756111110x70.00781250.98437571111110x80.00781250.992187571111111二进制费诺码:xi p(x i)编码码字k i x10.5001 x20.2510102 x30.125101103 x40.06251011104x50.0312510111105 x60.015625101111106 x70.00781251011111107 x80.0078125111111117 (3)香农编码效率:费诺编码效率:(4)x i p(x i)编码码字k i x10.5001 x20.25111 x30.12520202 x40.06251212 x50.03125202203 x60.01562512213 x70.00781252022204 x80.0078125122214 (5)5.5 设无记忆二进制信源先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示.(1) 验证码字的可分离性;(2) 求对应于一个数字的信源序列的平均长度;(3) 求对应于一个码字的信源序列的平均长度;(4) 计算,并计算编码效率;(5) 若用4位信源符号合起来编成二进制哈夫曼码,求它的平均码长,并计算编码效率.序列数字二元码字101000011100100131010000131011000014110000000151101000000161110000000017111100000000805.6 有二元平稳马氏链,已知p(0/0) = 0.8,p(1/1) = 0.7,求它的符号熵.用三个符号合成一个来编写二进制哈夫曼码,求新符号的平均码字长度和编码效率.5.7 对题5.6的信源进行游程编码.若“0”游程长度的截至值为16,“1”游程长度的截至值为8,求编码效率. 5.8 选择帧长N= 64(1) 对001000000000000000000000000000000100000000000000 0000000000000000遍L-D码;(2) 对100001000010110000000001001000010100100000000111 0000010000000010遍L-D码再译码;(3) 对000000000000000000000000000000000000000000000000 0000000000000000遍L-D码;(4) 对101000110101110001100011101001100001111011001010 00110101011010010遍L-D码;(5) 对上述结果进行讨论.。