圆周运动的连接体
圆周运动的连接体 ppt课件
2020/11/29
9
[2010·山西师大附中] 如图 16-8 所示,在匀速转动的 水平盘上,沿半径方向放着用细线相连的质量相等的两个物
体 A 和 B,它们与盘间的动摩擦因数相同.当圆盘转速加快 到两物体刚要发生滑动时,烧断细线,则( )
A.两物体均沿切线方向滑动 B.两物体均沿半径方向滑动,离圆盘圆心越来越远 C.两物体仍随圆盘一起做匀速圆周运 动,不会发生滑动 D.物体 B 仍随圆盘一起做匀速圆周运 动,物体 A 发生滑动,离圆盘圆心越来 越远
8
[命题意图] 本题重点考查学生分析连接体圆周运动问 题的能力,通过本题应带给学生以下信息:其一,连接体的 圆周运动问题要同时研究构成连接体的多个物体的圆周运 动,各物体圆周运动的角速度相同;其二,连接体问题中涉 及系统的能量关系首先考虑机械能守恒定律,若涉及单个物 体功能问题,如本题中若求某阶段杆对球 A(或球 B)的做功 时,则应用动能定理求解;其三,涉及连接体圆周运动的动 力学分析,则多种多样,如下面的变式题中 A 物体,在圆 盘转速小时由圆盘对其静摩擦力提供向心力,在圆盘转速大 时由最大静摩擦力和 AB 间绳子的拉力的合力提供向心力.
A.球 B 在最高点时速度为零 B.球 B 在最高点时,球 A 的速度也为零 C.球 B 在最高点时,杆对水平轴的作用力 为 1.5mg D.球 B 转到最低点时,其速度为 vB=
16 5 gL
2020/11/29
6
答案例 4 C [解析] 球 B 在最高点时速度为 v0,有 mg=m2vL20 , 得 v0= 2gL,A 项错误;此时球 A 的速度为v20=12 2gL,B 错 误;设杆对球 A 的作用力为 FA,则 FA-mg=mv2L02,得 FA =1.5mg,C 项正确;设球 B 在最低点时的速度为 vB,据机械 能守恒定律有 2mgL-mgL+12mv20+12mv202=-2mgL+mgL
生活中的圆周运动(连接体问题)教学设计 高一下学期物理人教版(2019)必修第二册
“一课一研精准教学”记录表年 级 学 科 物理 分包领导 备课时间 备课地点 物理备课组 主备人 备课主题 圆周运动中的连接体问题 一、精准讲解:圆周运动中的连接体问题,是指两个或两个以上的物体通过一定的约束绕同一转轴做圆周运动的问题。
这种问题的一般解题思路是:分别隔离物体,准确地进行受力分析,正确画出受力示意图,确定轨道平面和半径,注意约束关系。
在连接体的圆周运动问题中,角速度相同是一种常见的约束关系。
常见实例如下: 情景示例 情景图示情景说明情景1两小球固定在轻杆M 、N 两点上,随杆一起绕杆的端点O 做圆周运动。
注意:计算杆OM 段的拉力时,应以M 点的小球为研究对象,而不能以M 、N 两点的小球整体为研究对象。
情景2A 、B 两物块用细绳相连沿半径方向放在转盘上,随转盘一起转动,当转盘转速逐渐增大时,物块B 先达到其最大静摩擦力,转速再增加,则A 、B 间绳子开始有拉力,当A 受到的静摩擦力达到其最大值后两物块开始滑动(设A 、B 两物块与转盘间的动摩擦因数相等)情景3A 、B 两物块叠放在一起随转盘一起转动,当求转盘对物体B 的摩擦力时,取A 、B 整体为研究对象比较简单;当研究A 、B 谁先发生离心运动时,注意比较两接触面间的动摩擦因数大小情景4A 、B 两小球用轻线相连穿在光滑轻杆上随杆绕转轴O 在水平面内做圆周运动时,两球所受向心力大小相等,角速度相同,圆周运动的轨道半径与小球质量成反比。
例一:如图所示,轻杆长3L ,在杆两端分别固定质量为m 的球A 和质量为2m 的球B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球A 运动到最高点时,杆对球A 恰好无作用力。
忽略空气阻力,重力加速度为g ,则球A 在最高点时(D )A .球A 的速度为零B .水平转轴对杆的作用力大小为4mg ,方向竖直向上C .水平转轴对杆的作用力大小为3mg ,方向竖直向上D .水平转轴对杆的作用力大小为6mg ,方向竖直向上 例二:如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动(重力加速度为g )。
圆周运动的连接体
[2010·山西师大附中] 如图 16-8 所示,在匀速转动的 水平盘上,沿半径方向放着用细线相连的质量相等的两个物 体 A 和 B,它们与盘间的动摩擦因数相同.当圆盘转速加快 到两物体刚要发生滑动时,烧断细线,则( )
A.两物体均沿切线方向滑动 B.两物体均沿半径方向滑动,离圆盘圆心越来越远 C.两物体仍随圆盘一起做匀速圆周运 动,不会发生滑动 D.物体 B 仍随圆盘一起做匀速圆周运 动,物体 A 发生滑动,离圆盘圆心越来 越远
圆周运动的连接体
[2010·山西师大附中] 如图 16-8 所示,在匀速转动的 水平盘上,沿半径方向放着用细线相连的质量相等的两个物 体 A 和 B,它们与盘间的动摩擦因数相同.当圆盘转速加快 到两物体刚要发生滑动时,烧断细线,则( )
A.两物体均沿切线方向滑动 B.两物体均沿半径方向滑动,离圆盘圆心越来越远 C.两物体仍随圆盘一起做匀速圆周运 动,不会发生滑动 D.物体 B 仍随圆盘一起做匀速圆周运 动,物体 A 发生滑动,离圆盘圆心越来 越远
2.9rad / s 6.5rad / s
圆周运动的连接体
练习9:半径为R的圆周绕竖直中心轴oo´转 动,小物体A靠在圆筒的内壁上,他与圆筒 的动摩擦因数为μ.现要使A不下落,则圆 筒转动的角速度ω至少要多少?
O ω
圆周运动的连接体
O'
练习、如图所示,支架的质量为
M,转轴O处用长为L的轻绳悬挂
A.AC 先断 B.BC 先断 C.两线同时断 D.不能确定哪根线先断
圆周运动的连接体
练习6:如图,已知物体A、B、C与转轴的距离为 R B 2R A 2R C ,质量为 MA 2M B 3MC ,三物体与转盘的摩擦力因数相同,三物体随转 盘一起做匀速圆周运动,当转盘的转速逐渐增 加时,以下说法正确的是( )
圆周运动的连接体
2021/3/9
18
练习7:物体m用线通过光滑的水平板间的 小孔与砝码M相连,并且正在做匀速圆周运 动,如果减小M的质量,则物体m的轨道半径R, 角速度ω,线速度v应该怎么变化?
2021/3/9
19
练习8:如图,细绳的异端系着质量M=0.6kg 的物体,静止在水平面上,另一端通过光滑 小孔吊着质量m=3kg的物体,M的中点与原空 的距离为0.2m,已知M和平面的最大静摩擦 力为2N,现使的此平面绕中心轴线转动,问 角速度在什么范围m会相对水平面静止?
A.AC 先断 B.BC 先断 C.两线同时断 D.不能确定哪根线先断
2021/3/9
14
[解析] A 对 A 球进行受力分析,A 球受重力、支持力和拉 力 FA 三个力作用,拉力的水平分力提供 A 球做圆周运动的 向心力,得:水平方向 FAcosα=mrAω2,同理,对 B 球:
FBcosβ=mrBω2.由几何关系,可知 cosα=ArAC,cosβ=BrCB ,
2021/3/9
7
变式题 [2010·山西师大附中] 如图 16-8 所示,在匀速转动的 水平盘上,沿半径方向放着用细线相连的质量相等的两个物
体 A 和 B,它们与盘间的动摩擦因数相同.当圆盘转速加快 到两物体刚要发生滑动时,烧断细线,则( )
A.两物体均沿切线方向滑动 B.两物体均沿半径方向滑动,离圆盘圆心越来越远 C.两物体仍随圆盘一起做匀速圆周运 动,不会发生滑动 D.物体 B 仍随圆盘一起做匀速圆周运 动,物体 A 发生滑动,离圆盘圆心越来 越远
A.球 B 在最高点时速度为零 B.球 B 在最高点时,球 A 的速度也为零 C.球 B 在最高点时,杆对水平轴的作用力 为 1.5mg D.球 B 转到最低点时,其速度为 vB=
圆周运动专题二圆周运动中的连接体问题和临界问题(教案)
圆周运动专题二圆周运动中的连接体问题、临界问题知识点一】圆周运动中的连接体问题【例1】在一个水平转台上放有质量相等的A、B 两个物体,用一轻杆相连,AB连线沿半径方向. A 与平台间有摩擦,B与平台间的摩擦可忽略不计,A、 B 到平台转轴的距离分别为L 、2L.某时刻一起随平台以ω的角速度绕OO′轴做匀速圆周运动. A 与平台间的摩擦力大小为F fA,杆的弹力大小为 F.现把转动角速度提高至2ω.A、B 仍各自在原位置随平台一起绕OO′轴匀速圆周运动,则下面说法正确的是( ) A.F fA、F 均增加为原来的4倍B.F fA、F 均增加为原来的2倍C.F fA大于原来的4倍,F 等于原来的2倍D.F fA、F 增加后,均小于原来的4倍【解析】根据牛顿第二定律,对A:F fA-F=mω2r A ①,对B:F =mω 2r B ②.当ω增大到2ω时,由②式知,F 增加到原来的 4 倍;由①式知:F fA=F +mω2r A,F fA增加为原来的 4 倍.故选 A.【答案】 A【例2】如图所示,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当杆匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r2之比为( )A.1:1 B.1: 2C.2:1 D.1:2解析:两个小球绕共同的圆心做圆周运动,它们之间的拉力互为向心力,角速度相同.设两球所需的向心力大小为F n,角速度为ω,则对球m1:F n=m1ω2r1,对球m2:F n=m2ω2r2,由上述两式得r1 r2=1:2. 答案:D 例3】如图所示,轻杆长为3L,在杆的 A 、B 两端分别固定质量均为 m 的球 A 和球 B ,杆上距球 A 为 L 处的点 O 装在光滑的水平转动轴 上,外界给予系统一定的能量后,杆和球在竖直面内转动.在转动的过程中,忽 略空气的阻力.当球 B 运动到最高点时,球 B 对杆恰好无作用力.下列说法正 确的是 ( )A. 球B 在最高点时速度为零B. 球 B 在最高点时,球 A 的速度也为零C. 球 B 在最高点时,杆对水平轴的作用力为 1.5mg 156gLC [解析] 球B 在最高点时速度为 v0,有 mg =m2v L 20, 得 v0= 2gL , A 项错 误;此时球 A 的速度为 v 20 v0 v 202所以 FA>FB ,即 AC 线先断. 【知识点二 】临界问题1. 与绳的弹力有关的临界问题质量为 m 的物体被长为 l 的轻绳拴着 (如图所示 ),D.球 B 转到最低点时,其速度为 vB =122gL ,B 错误;设杆对球 A 的作用力为 FA ,则 FA-mg = m L ,得 FA =1.5mg ,C 项正确;设球 B 在最低点时的速度为 vB ,据1 1 v0 1 1 机械能守恒定律有 2mgL -mgL +2mv20+2m 2 2=- 2mgL +mgL +2mv2B +2 vB m 2 2,解得 vB =256gL ,D 项错误. 【例 4】 如图所示, OO ′为竖直轴, MN 个质量相同的金属球 A 、 B 套在水平杆上, 线,C 端固定在转轴 OO ′上.当线拉直时, 若转轴的角速度逐渐增大,则 (A .AC 先断B . BC 先断 C .两线同时断D .不能确定哪根线先断 [解析] A 对A 球进行受力分析,三个力作用,拉力的水平分力提供 水平方向 FAcosα=mrAω2,同理, 为固定在 OO ′上的水平光滑杆,有两 AC 和 BC 为抗拉能力相同的两根细 A 、B 两球转动半径之比恒为 2∶1, rA 何关系,可知rB A 球受重力、支持力和拉力 FA A 球做圆周运动的向心力,得: 对 B 球:FBcosβ=mrBω 2.由几 rArBFA =rAcos β= BC = ACAC ,cos β=BC ,所以:FB =rBcos α=rBrA =BC AC.由于 AC>BC ,且绕绳的另一端O做匀速圆周运动,当绳子的拉力达到最大值F m时,物体的速度最大,即2v m Fm=m l,解得v m=F m l。
圆周运动连接体问题
圆周运动连接体问题圆周运动连接体问题,听起来是不是有点高深莫测?别担心,咱们一点点儿捋清楚,慢慢理解。
这其实就跟我们日常生活中看到的很多场景有关系,虽然表面上看不出什么复杂的数学公式,但如果你仔细琢磨,就能发现很多原理和规律其实都藏在我们身边。
比如,坐摩天轮时,你就能直观地体会到圆周运动。
你想啊,当你坐在摩天轮的车厢里,车厢沿着一条圆形轨道转圈,不停地上下波动,你就是这个运动的一部分。
圆周运动就是物体沿着圆形轨迹做运动的方式。
比如,地球围绕太阳转,月亮围绕地球转,甚至你拿着手机拍照时,那旋转的镜头,也是个小小的圆周运动。
圆周运动连接体问题,通俗点说就是研究那些参与圆周运动的物体,它们之间怎么相互影响的。
就拿你坐摩天轮这个事儿来说吧。
你和摩天轮的车厢之间是不是有一个“连接”?你坐在车厢里,车厢在转,你和车厢之间就形成了一个“连接体”,而这个连接体会让你感受到一种叫做“向心力”的力量,这个力量的作用就是把你拉向圆心。
你转的时候感觉身体有点往外甩,那就是因为你想要继续沿着圆轨道转,而这个拉力让你保持在轨道上。
这时候你可能会问了,为什么坐摩天轮会感觉到这种力?你不觉得奇怪吗?其实这个力叫做“离心力”,虽然它听起来像是你要飞出摩天轮了,但实际上,离心力并不是一种真正存在的力。
它只是你因为转动而产生的惯性力,换句话说,当你转动时,你的身体并不想随同车厢一起转,它宁愿“飞出去”。
而车厢则像一个老大哥,牢牢地把你拖住,保持你在车厢内。
而向心力就是那个“老大哥”,它使得你始终保持在车厢里,不会被甩出去。
如果你还觉得有点晕,没关系,咱再举个简单的例子。
你玩甩鞭子的时候,不也是一样的吗?你把鞭子在手里甩来甩去,鞭子的末端就会做圆周运动,而你手里拉住鞭子的部分就像是摩天轮上的车厢,保持着对鞭子末端的控制。
而那条鞭子的末端会感受到一个向心力,就是你的手施加在鞭子上的力,使得它不至于飞出去。
这个例子是不是更形象了点?你看,这些看似简单的动作,背后其实有很多物理原理在支撑。
圆周运动中的连接体问题、临界问题—人教版高中物理必修二课件(共15张ppt)
2
7
解析:C 错:两个人做圆周运动,向心力的大小相等,质量 不同,角速度相同,所以他们的运动半径不同.D 对:设甲的半 径为 R1,则乙的半径为 0.9 m-R1,故 m 甲 ω2R1=m 乙 ω2(0.9 m- R1),解得 R1=0.3 m.B 错:再根据 9.2 N=m 甲 ω2R1 可知,角速 度 ω≈0.62 rad/s.A 错:两个人的角速度相同,半径不同,故他 们的线速度不相同.
互为向心力,角速度相同.设两球所需的向心力大小为 Fn,角 速度为 ω,则
对球 m1:Fn=m1ω2r1, 对球 m2:Fn=m2ω2r2, 由上述两式得 r1:r2=1:2. 答案:D
2
6
变式训练 2 甲、乙两名溜冰运动员,m 甲=80 kg,m 乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如图所示.两 人相距 0.9 m,弹簧测力计的示数为 9.2 N,下列判断中正确的是
【答案】 D
2
11
变式训练 3 如图所示,两绳系一质量为 0.1 kg 的小球,两 绳的另一端分别固定于轴的 A、B 两处,上面绳长 2 m,两绳拉 直时与轴的夹角分别为 30°和 45°,问球的角速度在什么范围内 两绳始终都有张力?(g 取 10 m/s2)
2
12
解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如
10
rad/s 时,两绳始终都有张力.
答案:
10 3 3
rad/s<ω<
10
rad/s
2020学年新教材高中物理 科学思维系列——圆周运动中的连接体问题、临界问题 新人教版必修第二册
科学思维系列——圆周运动中的连接体问题、临界问题一、圆周运动中的连接体问题圆周运动中的连接体问题,是指两个或两个以上的物体通过一定的约束绕同一转轴做圆周运动的问题.这类问题的一般求解思路是:分别隔离物体,准确分析受力,正确画出受力图,确定轨道半径,注意约束关系(在连接体的圆周运动问题中,角速度相同是一种常见的约束关系).【典例1】在一个水平转台上放有质量相等的A、B两个物体,用一轻杆相连,AB连线沿半径方向.A与平台间有摩擦,B与平台间的摩擦可忽略不计,A、B到平台转轴的距离分别为L、2L.某时刻一起随平台以ω的角速度绕OO′轴做匀速圆周运动.A与平台间的摩擦力大小为F f A,杆的弹力大小为F.现把转动角速度提高至2ω.A、B仍各自在原位置随平台一起绕OO′轴匀速圆周运动,则下面说法正确的是( )A.F f A、F均增加为原来的4倍B.F f A、F均增加为原来的2倍C.F f A大于原来的4倍,F等于原来的2倍D.F f A、F增加后,均小于原来的4倍【解析】根据牛顿第二定律,对A:F f A-F=mω2r A①,对B:F=mω2r B②.当ω增大到2ω时,由②式知,F增加到原来的4倍;由①式知:F f A=F+mω2r A,F f A增加为原来的4倍.故选A.【答案】 A变式训练1 如图所示,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当杆匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r 2之比为( )A.1:1 B.1: 2C.2:1 D.1:2解析:两个小球绕共同的圆心做圆周运动,它们之间的拉力互为向心力,角速度相同.设两球所需的向心力大小为F n,角速度为ω,则对球m1:F n=m1ω2r1,对球m2:F n=m2ω2r2,由上述两式得r1r2=1:2.答案:D变式训练2 甲、乙两名溜冰运动员,m甲=80 kg,m乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如图所示.两人相距0.9 m,弹簧测力计的示数为9.2 N,下列判断中正确的是( )A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为5 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:C错:两个人做圆周运动,向心力的大小相等,质量不同,角速度相同,所以他们的运动半径不同.D对:设甲的半径为R1,则乙的半径为0.9 m-R1,故m甲ω2R1=m乙ω2(0.9 m-R1),解得R1=0.3 m.B错:再根据9.2 N=m甲ω2R1可知,角速度ω≈0.62 rad/s.A错:两个人的角速度相同,半径不同,故他们的线速度不相同.答案:D二、圆周运动中临界问题的解题策略关于圆周运动的临界问题,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动知识列方程求解.(1)与绳的弹力有关的临界问题:此问题要分析出绳子恰好无弹力(或恰好断裂)这一临界状态下的角速度(或线速度)等.(2)与支持面弹力有关的临界问题:此问题要分析出恰好无支持力这一临界状态下的角速度(或线速度)等.(3)因静摩擦力而产生的临界问题:此问题要分析出静摩擦力达到最大这一临界状态下的角速度(或线速度)等.【典例2】如图所示,在光滑水平面上相距20 cm处有两个钉子A和B,长1.2 m的细绳一端系着质量为0.5 kg的小球,另一端固定在钉子A上.开始时,小球和钉子A、B在同一直线上,小球始终以2 m/s 的速率在水平面内做匀速圆周运动.若细绳能承受的最大拉力是5 N ,则从开始到细绳断开所经历的时间是( )A .1.2π s B.1.4π s C .1.8π s D.2π s【解析】 小球每转过180°,转动半径就减小x =0.20 m ,所需向心力F =mv 2L -nx(n =0,1,2,…),由F ≤5 N ,可得n ≤4,即小球转动半径缩短了4次,细绳第5次碰到钉子瞬间后,细绳断开.从开始到细绳断开,每转半周小球转动半径分别为L 、L -x 、L -2x 、L -3x 、L -4x ,则运动时间t =π5L -10xv.【答案】 D变式训练3 如图所示,两绳系一质量为0.1 kg 的小球,两绳的另一端分别固定于轴的A 、B 两处,上面绳长2 m ,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终都有张力?(g 取10 m/s 2)解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如图甲所示.由牛顿第二定律得:mg tan 30°=mω21r ,又有r =L s in 30°,解得ω1=1033rad/s ; 当下绳绷紧,上绳恰好伸直无张力时,小球受力如图乙所示. 由牛顿第二定律得:mg tan 45°=mω22r ,解得ω2=10 rad/s ,故当 1033rad/s<ω<10 rad/s 时,两绳始终都有张力.答案:1033rad/s<ω<10 rad/s。
圆周运动专题二圆周运动中的连接体问题和临界问题(教案)
圆周运动专题⼆圆周运动中的连接体问题和临界问题(教案)圆周运动专题⼆圆周运动中的连接体问题、临界问题【知识点⼀】圆周运动中的连接体问题【例1】在⼀个⽔平转台上放有质量相等的A、B两个物体,⽤⼀轻杆相连,AB连线沿半径⽅向.A与平台间有摩擦,B与平台间的摩擦可忽略不计,A、B到平台转轴的距离分别为L、2L.某时刻⼀起随平台以ω的⾓速度绕OO′轴做匀速圆周运动.A与平台间的摩擦⼒⼤⼩为F f A,杆的弹⼒⼤⼩为F.现把转动⾓速度提⾼⾄2ω.A、B仍各⾃在原位置随平台⼀起绕OO′轴匀速圆周运动,则下⾯说法正确的是()A.F f A、F均增加为原来的4倍B.F f A、F均增加为原来的2倍C.F f A⼤于原来的4倍,F等于原来的2倍D.F f A、F增加后,均⼩于原来的4倍【解析】根据⽜顿第⼆定律,对A:F f A-F=mω2r A①,对B:F=mω2r B②.当ω增⼤到2ω时,由②式知,F增加到原来的4倍;由①式知:F f A=F +mω2r A,F f A增加为原来的4倍.故选A.【答案】A【例2】如图所⽰,在光滑杆上穿着两个⼩球m1、m2,且m1=2m2,⽤细线把两球连起来,当杆匀速转动时,两⼩球刚好能与杆保持⽆相对滑动,此时两⼩球到转轴的距离r1与r2之⽐为()A.1:1B.1:2C.2:1 D.1:2解析:两个⼩球绕共同的圆⼼做圆周运动,它们之间的拉⼒互为向⼼⼒,⾓速度相同.设两球所需的向⼼⼒⼤⼩为F n,⾓速度为ω,则对球m1:F n=m1ω2r1,对球m2:F n=m2ω2r2,由上述两式得r1r2=1:2.答案:D【例3】如图所⽰,轻杆长为3L,在杆的A、B两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑的⽔平转动轴上,外界给予系统⼀定的能量后,杆和球在竖直⾯内转动.在转动的过程中,忽略空⽓的阻⼒.当球B 运动到最⾼点时,球B 对杆恰好⽆作⽤⼒.下列说法正确的是( )A.球B 在最⾼点时速度为零B.球B 在最⾼点时,球A 的速度也为零C.球B 在最⾼点时,杆对⽔平轴的作⽤⼒为1.5mgD.球B 转到最低点时,其速度为vB =165gLC [解析] 球B 在最⾼点时速度为v0,有mg =m v202L ,得v0=2gL ,A 项错误;此时球A 的速度为v02=122gL ,B 错误;设杆对球A 的作⽤⼒为FA ,则FA-mg =m ? ??v022L ,得FA =1.5mg ,C 项正确;设球B 在最低点时的速度为vB ,据机械能守恒定律有2mgL -mgL +12mv20+12m ? ??v022=-2mgL +mgL +12mv2B +12m ? ??vB 22,解得vB =265gL ,D 项错误.【例4】如图所⽰,OO′为竖直轴,MN 为固定在OO′上的⽔平光滑杆,有两个质量相同的⾦属球A 、B 套在⽔平杆上,AC 和BC 为抗拉能⼒相同的两根细线,C 端固定在转轴OO′上.当线拉直时,A 、B 两球转动半径之⽐恒为2∶1,若转轴的⾓速度逐渐增⼤,则( ) A .AC 先断 B .BC 先断C .两线同时断D .不能确定哪根线先断[解析] A 对A 球进⾏受⼒分析,A 球受重⼒、⽀持⼒和拉⼒FA 三个⼒作⽤,拉⼒的⽔平分⼒提供A 球做圆周运动的向⼼⼒,得:⽔平⽅向FAcosα=mrAω2,同理,对B 球:FBcosβ=mrBω2.由⼏何关系,可知cosα=rA AC ,cosβ=rB BC ,所以:FA FB =rAcosβrBcosα=rArBBC rBrA AC=ACBC .由于AC>BC ,所以FA>FB ,即AC 线先断.【知识点⼆】临界问题1. 与绳的弹⼒有关的临界问题质量为m 的物体被长为l 的轻绳拴着(如图所⽰),且绕绳的另⼀端O做匀速圆周运动,当绳⼦的拉⼒达到最⼤值F m时,物体的速度最⼤,即F m=m v2 ml,解得v m=Fmlm。
2019-2020年高中物理人教必修二微专题讲义6.4 圆周运动中的连接体(解析版)
小专题4圆周运动中的连接体问题【知识清单】两个物体通过绳、杆或接触面发生相互作用,其中一个做圆周运动或两个物体一起做圆周运动的问题,称为圆周运动中的连接体问题。
处理圆周运动中的连接体问题,可从所涉及的已知量与未知量来利用整体法或隔离法选取研究对象,对研究对象依据平衡条件或牛顿第二定律列方程时,可采用正交分解法:沿半径与垂直于半径方向建立直角坐标系,在沿半径方向由向心加速度利用牛顿第二定律列式,在垂直于半径方向上对做匀速圆周运动的物体可利用平衡条件列式,再依据条件列出摩擦力方程、胡克定律方程、几何关系方程等联立求解。
整体与隔离法选取的依据不是两物体是否具有相同的加速度,而是已知量与待求量中是否涉及系统内部的相互作用,在求系统外力时可采用整体法,求系统内部作用时可采用隔离法。
整体法中若系统内部物体的加速度不同时,整体所受的合力等于各自的质量与加速度乘积的矢量合。
【考点题组】【题组一】连接体中的定量计算1.在光滑的横杆上穿着两质量分别为m1、m2的小球,小球用细线连接起来,当转台匀速转动时,两小球与横杆保持相对静止,下列说法中正确的是(D)A.两小球的速率必相等B.两小球的向心力大小必不相等C.两小球的加速度大小必相等D.两小球到转轴的距离与其质量成反比【答案】D【解析】两球共轴转动,角速度相同,因为细线对A、B两球的弹力相等,知A、B两球做圆周运动的向心力相等,有:m1r1ω2=m2r2ω2,所以:r1:r2=m2:m1,故B错误D正确;根据v=ωr知它们线速度与半径成正比,则与质量成反比,故A错误;根据a=ω2r知加速度与半径成正比,也即与质量成反比,故C错误。
2.如图所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )A. 球B的速度为L g 2B. 球A 的速度大小为L g 2C. 水平转轴对杆的作用力为1.5mgD. 水平转轴对杆的作用力为2.5mg【答案】AC【解析】球B 运动到最高点时,球B 对杆恰好无作用力,即重力恰好提供向心力,则有:Lmv mg B 22=,解得 v=gL 2 ①,故A 正确。
高中物理 科学思维系列——圆周运动中的连接体问题、临界问题 新人教版必修第二册-新人教版高一第二册物
科学思维系列——圆周运动中的连接体问题、临界问题一、圆周运动中的连接体问题圆周运动中的连接体问题,是指两个或两个以上的物体通过一定的约束绕同一转轴做圆周运动的问题.这类问题的一般求解思路是:分别隔离物体,准确分析受力,正确画出受力图,确定轨道半径,注意约束关系(在连接体的圆周运动问题中,角速度一样是一种常见的约束关系).【典例1】在一个水平转台上放有质量相等的A、B两个物体,用一轻杆相连,AB连线沿半径方向.A与平台间有摩擦,B与平台间的摩擦可忽略不计,A、B到平台转轴的距离分别为L、2L.某时刻一起随平台以ω的角速度绕OO′轴做匀速圆周运动.A与平台间的摩擦力大小为F f A,杆的弹力大小为F.现把转动角速度提高至2ω.A、B仍各自在原位置随平台一起绕OO′轴匀速圆周运动,如此下面说法正确的答案是( )A.F f A、F均增加为原来的4倍B.F f A、F均增加为原来的2倍C.F f A大于原来的4倍,F等于原来的2倍D.F f A、F增加后,均小于原来的4倍【解析】根据牛顿第二定律,对A:F f A-F=mω2r A①,对B:F=mω2r B②.当ω增大到2ω时,由②式知,F增加到原来的4倍;由①式知:F f A=F+mω2r A,F f A增加为原来的4倍.应当选A.【答案】 A变式训练1 如下列图,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当杆匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r 2之比为( )A.1:1 B.1: 2C.2:1 D.1:2解析:两个小球绕共同的圆心做圆周运动,它们之间的拉力互为向心力,角速度一样.设两球所需的向心力大小为F n,角速度为ω,如此对球m1:F n=m1ω2r1,对球m2:F n=m2ω2r2,由上述两式得r1r2=1:2.答案:D变式训练2 甲、乙两名溜冰运动员,m甲=80 kg,m乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如下列图.两人相距0.9 m,弹簧测力计的示数为9.2 N,如下判断中正确的答案是( )A.两人的线速度一样,约为40 m/sB.两人的角速度一样,为5 rad/sC.两人的运动半径一样,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:C错:两个人做圆周运动,向心力的大小相等,质量不同,角速度一样,所以他们的运动半径不同.D对:设甲的半径为R1,如此乙的半径为0.9 m-R1,故m甲ω2R1=m乙ω2 (0.9 m-R1),解得R1=0.3 m.B错:再根据9.2 N=m甲ω2R1可知,角速度ω≈0.62 rad/s. A错:两个人的角速度一样,半径不同,故他们的线速度不一样.答案:D二、圆周运动中临界问题的解题策略关于圆周运动的临界问题,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动知识列方程求解.(1)与绳的弹力有关的临界问题:此问题要分析出绳子恰好无弹力(或恰好断裂)这一临界状态下的角速度(或线速度)等.(2)与支持面弹力有关的临界问题:此问题要分析出恰好无支持力这一临界状态下的角速度(或线速度)等.(3)因静摩擦力而产生的临界问题:此问题要分析出静摩擦力达到最大这一临界状态下的角速度(或线速度)等.【典例2】 如下列图,在光滑水平面上相距20 cm 处有两个钉子A 和B ,长1.2 m 的细绳一端系着质量为0.5 kg 的小球,另一端固定在钉子A 上.开始时,小球和钉子A 、B 在同一直线上,小球始终以2 m/s 的速率在水平面内做匀速圆周运动.假设细绳能承受的最大拉力是5 N ,如此从开始到细绳断开所经历的时间是( )A .1.2π s B.1.4π s C .1.8π s D.2π s【解析】 小球每转过180°,转动半径就减小x =0.20 m ,所需向心力F =mv 2L -nx(n =0,1,2,…),由F ≤5 N,可得n ≤4,即小球转动半径缩短了4次,细绳第5次碰到钉子瞬间后,细绳断开.从开始到细绳断开,每转半周小球转动半径分别为L 、L -x 、L -2x 、L -3x 、L -4x ,如此运动时间t =π5L -10xv.【答案】 D变式训练3 如下列图,两绳系一质量为0.1 kg 的小球,两绳的另一端分别固定于轴的A 、B 两处,上面绳长2 m ,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终都有张力?(g 取10 m/s 2)解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如图甲所示.由牛顿第二定律得:mg tan 30°=mω21r ,又有r =L sin 30°,解得ω1=1033rad/s;当下绳绷紧,上绳恰好伸直无张力时,小球受力如图乙所示.由牛顿第二定律得:mg tan 45°=mω22r,解得ω2=10 rad/s,故当1033rad/s<ω<10 rad/s时,两绳始终都有张力.答案:1033rad/s<ω<10 rad/s。
圆周运动的连接体(经典实用)
圆周运动的连接体(经典实用)圆周运动是常见的运动方式,在很多机械设备和工具中都得到应用,如汽车发动机、电动工具、风扇等,而连接体是实现圆周运动的重要部件之一。
例如,一个旋转门既需要旋转,也需要支撑,这就需要一个连接体来承载门扇和旋转支点的重量。
连接体的作用是将旋转件连接到固定件上,使得旋转件能够绕着轴线旋转。
连接体需要具备一定的刚度和强度,以承受旋转件重量和受力。
连接体的形式多种多样,包括轴承、齿轮、同步带、链条等,下面将对这些连接体进行简单介绍。
1. 轴承轴承是将旋转件连接到固定件上的最常见的连接体之一。
轴承在原理上是利用滚珠或滚柱使得旋转摩擦减小,从而达到降低磨损和提高运行效率的作用。
轴承分为径向轴承和推力轴承两种,径向轴承承载主要是沿轴向方向作用的力和矩,而推力轴承承载主要是垂直于轴向的力和矩。
轴承的特点是结构简单、可靠性高、使用寿命长、易于安装和维护。
2. 齿轮齿轮是另一种常见的连接体,它是由齿轮轴、齿轮齿和支承轴承组成的。
齿轮按照轴线位置分为平行轴齿轮和交叉轴齿轮两种,按照齿面形状分为直齿轮、斜齿轮、螺旋齿轮等。
齿轮的特点是传动效率高、承受能力大、运转平稳、可靠性高。
同时,齿轮也有一些缺点,如齿面磨损、齿面疲劳、齿面不匀、齿面不良磨合等,因此需要进行定期检查和维护。
3. 同步带同步带是利用带上凸出的齿将旋转力传递到固定件上的一种连接体。
同步带具有传动效率高、运动平稳、噪音小、寿命长等特点,因此被广泛应用于各种类似机械结构中。
同步带根据不同的材质又分为橡胶同步带、聚氨酯同步带、玻璃钢带等。
4. 链条链条是利用链条上的链环将旋转力传递到固定件上的一种连接体。
链条由链环、链轮和链轮轴组成,链轮轴固定在固定件上,运动轴则通过轴承在旋转件上旋转。
链条具有传动效率高、承载能力强、运动平稳、使用寿命长等特点,因此被广泛应用在各种机械设备中。
综上所述,连接体是实现圆周运动的重要部件之一。
合理选择并合理使用连接体,能够保证机械设备长时间、高效稳定运行。
例谈圆周运动的连接体问题
例谈圆周运动的连接体问题
圆周运动的连接体问题是指一个物体在固定轨道上做圆周运动时,与该物体连接的其他物体的运动问题。
这个问题在多种工程领域中都有应用,如机械制造、自动化、机器人等。
常见的圆周运动的连接体问题有以下两种:
1. 连杆问题
在圆周运动过程中,物体与连接它的其他物体之间可能存在连杆,连杆的长度和运动规律都会影响物体的运动状态。
例如,在汽车发动机中,连杆将曲轴和活塞连接在一起,曲轴的旋转实现活塞的往复运动。
2. 带传动问题
带传动是指物体之间通过带子相连,并在固定轨道上进行圆周运动。
该问题通常在机械制造、自动化和机器人领域中得到广泛应用。
例如,在钢铁生产中,一个带子可将钢材从一处传输到另一处。
圆周运动的连接体问题需要考虑物体之间的运动关系、力学性质、质量和惯性等因素,以便能够预测和优化物体的运动行为。
因此,对于圆周运动的连接体问题
的研究也有助于提高工程设计和生产的效率和准确性。
圆周运动的连接体
2021/3/9
11
变式题 [2010·山西师大附中] 如图 16-8 所示,在匀速转动的 水平盘上,沿半径方向放着用细线相连的质量相等的两个物
体 A 和 B,它们与盘间的动摩擦因数相同.当圆盘转速加快 到两物体刚要发生滑动时,烧断细线,则( )
A.两物体均沿切线方向滑动 B.两物体均沿半径方向滑动,离圆盘圆心越来越远 C.两物体仍随圆盘一起做匀速圆周运 动,不会发生滑动 D.物体 B 仍随圆盘一起做匀速圆周运 动,物体 A 发生滑动,离圆盘圆心越来 越远
无级变速模型示意图,两个锥轮中间有一个滚轮,主动轮、滚轮、
从动轮之间靠着彼此之间的摩擦力带动.当位于主动轮与从动轮
之间的滚轮从左向右移动时,从动轮转速降低,当滚轮从右向左
移动时,从动轮转速增加.当滚轮位于主动轮直径 D1、从动轮直 径 D2 的位置上时,主动轮转速 n1 和从动轮转速 n2 之间的关系是 ()
2021/3/9
13
备用习题
1.[2011·盐城模拟] 如图所示,OO′为竖直轴,MN 为 固定在 OO′上的水平光滑杆,有两个质量相同的金属球 A、 B 套在水平杆上,AC 和 BC 为抗拉能力相同的两根细线,C 端固定在转轴 OO′上.当线拉直时,A、B 两球转动半径之 比恒为 2∶1,若转轴的角速度逐渐增大,则( )
两个物体通过线或杆连接起来一起做圆周运动的问 题是一类易错问题,出错主要体现在研究对象选取错误和 受力分析错误,下面我们通过四个典型情景的分析来突破 这一易错点.
2021/3/9
1
2021/3/9
2
2021/3/9
3
例 4 如图 16-7 所示,轻杆长为 3L,在杆的 A、B 两端分别 固定质量均为 m 的球 A 和球 B,杆上距球 A 为 L 处的点 O 装在 光滑的水平转动轴上,外界给予系统一定的能量后,杆和球在竖 直面内转动.在转动的过程中,忽略空气的阻力.当球 B 运动 到最高点时,球 B 对杆恰好无作用力.下列 说法正确的是( )
高中物理 思维圆周运动中的连接体问题临界问题第二册高一第二册物理试题
实蹲市安分阳光实验学校思维——圆周运动中的连接体问题、临界问题一、圆周运动中的连接体问题圆周运动中的连接体问题,是指两个或两个以上的物体通过一的约束绕同一转轴做圆周运动的问题.这类问题的一般求解思路是:分别隔离物体,准确分析受力,正确画出受力图,确轨道半径,注意约束关系(在连接体的圆周运动问题中,角速度相同是一种常见的约束关系).【典例1】在一个水平转台上放有质量相的A、B两个物体,用一轻杆相连,AB连线沿半径方向.A与平台间有摩擦,B与平台间的摩擦可忽略不计,A、B到平台转轴的距离分别为L、2L.某时刻一起随平台以ω的角速度绕OO′轴做匀速圆周运动.A与平台间的摩擦力大小为F f A,杆的弹力大小为F.现把转动角速度提高至2ω.A、B仍各自在原位置随平台一起绕OO′轴匀速圆周运动,则下面说法正确的是( )A.F f A、F均增加为原来的4倍B.F f A、F均增加为原来的2倍C.F f A大于原来的4倍,F于原来的2倍D.F f A、F增加后,均小于原来的4倍【解析】根据牛顿第二律,对A:F f A-F=mω2r A①,对B:F=mω2r B②.当ω增大到2ω时,由②式知,F增加到原来的4倍;由①式知:F f A=F +mω2r A,F f A增加为原来的4倍.故选A.【答案】A变式训练1 如图所示,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当杆匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r2之比为( )A.1:1 B.1:2C.2:1 D.1:2解析:两个小球绕共同的圆心做圆周运动,它们之间的拉力互为向心力,角速度相同.设两球所需的向心力大小为F n,角速度为ω,则对球m1:F n=m1ω2r1,对球m2:F n=m2ω2r2,由上述两式得r1r2=1:2.答案:D变式训练2 甲、乙两名溜冰运动员,m甲=80 kg,m乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如图所示.两人相距0.9 m,弹簧测力计的示数为9.2 N,下列判断中正确的是( )A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为5 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:C错:两个人做圆周运动,向心力的大小相,质量不同,角速度相同,所以他们的运动半径不同.D对:设甲的半径为R1,则乙的半径为0.9 m -R1,故m甲ω2R1=m乙ω2(0.9 m-R1),解得R1=0.3 m.B错:再根据9.2 N=m甲ω2R1可知,角速度ω≈0.62 rad/s.A错:两个人的角速度相同,半径不同,故他们的线速度不相同.答案:D二、圆周运动中临界问题的解题策略关于圆周运动的临界问题,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动知识列方程求解.(1)与绳的弹力有关的临界问题:此问题要分析出绳子恰好无弹力(或恰好断裂)这一临界状态下的角速度(或线速度).(2)与支持面弹力有关的临界问题:此问题要分析出恰好无支持力这一临界状态下的角速度(或线速度).(3)因静摩擦力而产生的临界问题:此问题要分析出静摩擦力达到最大这一临界状态下的角速度(或线速度).【典例2】如图所示,在光滑水平面上相距20 cm处有两个钉子A和B,长1.2 m的细绳一端系着质量为0.5 kg的小球,另一端固在钉子A上.开始时,小球和钉子A、B在同一直线上,小球始终以2 m/s的速率在水平面内做匀速圆周运动.若细绳能承受的最大拉力是5 N,则从开始到细绳断开所经历的时间是( )A.1.2π s B.1.4π sC.1.8π s D.2π s【解析】小球每转过180°,转动半径就减小x=0.20 m,所需向心力F =mv2L-nx(n=0,1,2,…),由F≤5 N,可得n≤4,即小球转动半径缩短了4次,细绳第5次碰到钉子瞬间后,细绳断开.从开始到细绳断开,每转半周小球转动半径分别为L、L-x、L-2x、L-3x、L-4x,则运动时间t=π5L-10xv.【答案】D变式训练3 如图所示,两绳系一质量为0.1 kg的小球,两绳的另一端分别固于轴的A、B两处,上面绳长2 m,两绳拉直时与轴的夹角分别为30°和4 5°,问球的角速度在什么范围内两绳始终都有张力?(g取10 m/s2)解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如图甲所示.由牛顿第二律得:mg tan 30°=mω21r,又有r=L sin 30°,解得ω1=1033rad/s;当下绳绷紧,上绳恰好伸直无张力时,小球受力如图乙所示.由牛顿第二律得:mg tan 45°=mω22r,解得ω2=10 rad/s,故当1033rad/s<ω<10 rad/s时,两绳始终都有张力.答案:1033rad/s<ω<10 rad/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
12
变式题 D [解析] 在烧断细线前,A、B 两物体做圆周 运动的向心力均是静摩擦力及绳子拉力的合力提供的,且静摩
擦力均达到了最大静摩擦力.因为两个物体在同一圆盘上随盘
转动,故角速度 ω 相同.设此时细线对物体的拉力为 FT,则 有对 A 物体 FT+Ffm=mω2RA ;对 B 物体 Ffm-FT=mω2RB; 当线烧断时,FT=0,A 物体所受的最大静摩擦力小于它所需 要的向心力,故 A 物体做离心运动.B 物体所受的静摩擦力 变小,直至与它所需要的向心力相等为止,故 B 物体仍随圆 盘一起做匀速圆周运动,选项 D 正确.
+12mv2B+12mv2B2,解得 vB= 256gL,D 项错误.
a
5
[点评] 连接体问题属于共轴转动,如本题中球 A 和球 B 的角速度相同,则线速度与其圆周运动半径成正比.在最高 点时球 B 对杆恰好无作用力,则其重力提供向心力,从而求 得此时球 B 的速度.
a
6
[命题意图] 本题重点考查学生分析连接体圆周运动问 题的能力,通过本题应带给学生以下信息:其一,连接体的 圆周运动问题要同时研究构成连接体的多个物体的圆周运 动,各物体圆周运动的角速度相同;其二,连接体问题中涉 及系统的能量关系首先考虑机械能守恒定律,若涉及单个物 体功能问题,如本题中若求某阶段杆对球 A(或球 B)的做功 时,则应用动能定理求解;其三,涉及连接体圆周运动的动 力学分析,则多种多样,如下面的变式题中 A 物体,在圆 盘转速小时由圆盘对其静摩擦力提供向心力,在圆盘转速大 时由最大静摩擦力和 AB 间绳子的拉力的合力提供向心力.
A.球 B 在最高点时速度为零 B.球 B 在最高点时,球 A 的速度也为零 C.球 B 在最高点时,杆对水平轴的作用力 为 1.5mg D.球 B 转到最低点时,其速度为 vB=
16 5 gL
a
4
答案例 4 C [解析] 球 B 在最高点时速度为 v0,有 mg=m2vL20 , 得 v0= 2gL,A 项错误;此时球 A 的速度为v20=12 2gL,B 错 误;设杆对球 A 的作用力为 FA,则 FA-mg=mv2L02,得 FA =1.5mg,C 项正确;设球 B 在最低点时的速度为 vB,据机械 能守恒定律有 2mgL-mgL+12mv20+12mv202=-[解析] 在烧断细线前,A、B 两物体做圆周 运动的向心力均是静摩擦力及绳子拉力的合力提供的,且静摩
擦力均达到了最大静摩擦力.因为两个物体在同一圆盘上随盘
转动,故角速度 ω 相同.设此时细线对物体的拉力为 FT,则 有对 A 物体 FT+Ffm=mω2RA ;对 B 物体 Ffm-FT=mω2RB; 当线烧断时,FT=0,A 物体所受的最大静摩擦力小于它所需 要的向心力,故 A 物体做离心运动.B 物体所受的静摩擦力 变小,直至与它所需要的向心力相等为止,故 B 物体仍随圆 盘一起做匀速圆周运动,选项 D 正确.
a
13
备用习题
1.[2011·盐城模拟] 如图所示,OO′为竖直轴,MN 为 固定在 OO′上的水平光滑杆,有两个质量相同的金属球 A、 B 套在水平杆上,AC 和 BC 为抗拉能力相同的两根细线,C 端固定在转轴 OO′上.当线拉直时,A、B 两球转动半径之 比恒为 2∶1,若转轴的角速度逐渐增大,则( )
A.AC 先断 B.BC 先断 C.两线同时断 D.不能确定哪根线先断
► 连接体的圆周运动问题分析
两个物体通过线或杆连接起来一起做圆周运动的问 题是一类易错问题,出错主要体现在研究对象选取错误和 受力分析错误,下面我们通过四个典型情景的分析来突破 这一易错点.
a
1
a
2
a
3
例 4 如图 16-7 所示,轻杆长为 3L,在杆的 A、B 两端分别 固定质量均为 m 的球 A 和球 B,杆上距球 A 为 L 处的点 O 装在 光滑的水平转动轴上,外界给予系统一定的能量后,杆和球在竖 直面内转动.在转动的过程中,忽略空气的阻力.当球 B 运动 到最高点时,球 B 对杆恰好无作用力.下列 说法正确的是( )
a
11
变式题 [2010·山西师大附中] 如图 16-8 所示,在匀速转动的 水平盘上,沿半径方向放着用细线相连的质量相等的两个物
体 A 和 B,它们与盘间的动摩擦因数相同.当圆盘转速加快 到两物体刚要发生滑动时,烧断细线,则( )
A.两物体均沿切线方向滑动 B.两物体均沿半径方向滑动,离圆盘圆心越来越远 C.两物体仍随圆盘一起做匀速圆周运 动,不会发生滑动 D.物体 B 仍随圆盘一起做匀速圆周运 动,物体 A 发生滑动,离圆盘圆心越来 越远
a
9
[点评] 连接体问题属于共轴转动,如本题中球 A 和球 B 的角速度相同,则线速度与其圆周运动半径成正比.在最高 点时球 B 对杆恰好无作用力,则其重力提供向心力,从而求 得此时球 B 的速度.
a
10
[命题意图] 本题重点考查学生分析连接体圆周运动问 题的能力,通过本题应带给学生以下信息:其一,连接体的 圆周运动问题要同时研究构成连接体的多个物体的圆周运 动,各物体圆周运动的角速度相同;其二,连接体问题中涉 及系统的能量关系首先考虑机械能守恒定律,若涉及单个物 体功能问题,如本题中若求某阶段杆对球 A(或球 B)的做功 时,则应用动能定理求解;其三,涉及连接体圆周运动的动 力学分析,则多种多样,如下面的变式题中 A 物体,在圆 盘转速小时由圆盘对其静摩擦力提供向心力,在圆盘转速大 时由最大静摩擦力和 AB 间绳子的拉力的合力提供向心力.
a
7
变式题 [2010·山西师大附中] 如图 16-8 所示,在匀速转动的 水平盘上,沿半径方向放着用细线相连的质量相等的两个物
体 A 和 B,它们与盘间的动摩擦因数相同.当圆盘转速加快 到两物体刚要发生滑动时,烧断细线,则( )
A.两物体均沿切线方向滑动 B.两物体均沿半径方向滑动,离圆盘圆心越来越远 C.两物体仍随圆盘一起做匀速圆周运 动,不会发生滑动 D.物体 B 仍随圆盘一起做匀速圆周运 动,物体 A 发生滑动,离圆盘圆心越来 越远