斜拉桥与悬索桥计算理论简析

合集下载

斜拉桥与悬索桥受力性能分析

斜拉桥与悬索桥受力性能分析

斜拉桥与悬索桥受力性能分析发表时间:2018-11-17T16:01:46.710Z 来源:《基层建设》2018年第29期作者:刘剑锋[导读] 摘要:近些年来我国经济和科学技术处于高速发展时期,社会水平得到大幅度提升,于道路交通方面的需求也不断增加,因此桥梁建设无论是规模还是数量都得到持续增长。

身份证号码:14212419711105XXXX;武汉大通武汉大通公路桥梁工程咨询监理有限责任公司摘要:近些年来我国经济和科学技术处于高速发展时期,社会水平得到大幅度提升,于道路交通方面的需求也不断增加,因此桥梁建设无论是规模还是数量都得到持续增长。

桥梁不仅作为道路交通中的基础建筑而存在,而且是城市经济发展水平的直接表现形式。

近些年来桥梁跨度不断增大,比如斜拉桥和悬索桥,都是对钢材预应力性能进行充分应用的大跨度桥梁。

本文以实际案例为依据探究斜拉桥和悬索桥的受力性能。

关键词:斜拉桥;悬索桥;受力性能交通工程中的基础建筑当属桥梁,其根本作用是连接河流两岸甚至海峡两岸。

此外跨越障碍的目的也得以达成。

桥梁的诞生和发展促使交通便利程度的不断提升,并且可一定程度推动地方经济的发展。

当前阶段桥梁的建设更是完美融合经济学、美学以及力学的各类观点,逐渐成为可代表地区经济水平的基础建筑。

随着我国经济的不断发展,对于桥梁建设方面的要求随之提升,桥梁跨度不断增加。

近些年预应力结构在桥梁结构的应用十分瞩目,也就是现阶段的高强度预应力拉索,从而推动了斜拉桥与悬索桥的快速发展,下面本文就斜拉桥与悬索桥的受力性能展开分析。

一、斜拉桥受力特点分析斜拉桥对拉索进行利用,并通过拉索将落于桥面的荷载力向桥塔传递。

承弯的梁体、承压的塔以及受拉的索是桥梁结构的主要组成部分。

由于此种桥梁结构受拉索数量较多,因此降低了支墩数量,进而对量内的弯矩进行降低,其自重也相对较低,建筑材料得到节省。

广东省肇庆市阅江大桥起点位于肇庆端州区古塔路与端州路交叉路口,主要沿古塔路高架,跨越西江,在南岸高要乌榕村与世纪大道(S272)衔接。

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

分别从结构构造、力学特性、适用范围、结构内力计算方法以及主要施工工艺五个方面对梁式桥、拱式桥、悬索桥与斜拉桥进行对比分析总结。

一、梁桥以受弯为主的主梁作为主要承重构件的桥梁。

主梁可以是实腹梁或者是桁架梁(空腹梁)。

实腹梁外形简单,制作、安装、维修都较方便,因此广泛用于中、小跨径桥梁。

但实腹梁在材料利用上不够经济。

桁架梁中组成桁架的各杆件基本只承受轴向力,可以较好地利用杆件材料强度,但桁架梁的构造复杂、制造费工,多用于较大跨径桥梁。

桁架梁一般用钢材制作,也可用预应力混凝土或钢筋混凝土制作,但用的较少。

过去也曾用木材制作桁架梁,因耐久性差,现很少使用。

实腹梁主要用钢筋混凝土、预应力混凝土制作,也可以用钢材做成钢钣梁或钢箱梁。

实腹梁桥的最早形式是用原木做成的木梁桥和用石材做成的石板桥。

二、拱桥是以承受轴向压力为主的拱(称为主拱圈)作为主要承重构件的桥梁。

1.按照主拱圈的静力图式,拱轿可分为三铰拱、两铰拱和无铰拱(图3 拱桥形式示意图)。

(1).三铰拱是静定结构,其整体刚度较低,尤其是挠曲线在拱顶铰处产生折角,致使活载对桥梁的冲击增强,对行车不利。

拱顶铰的构造和维护也较复杂。

因此,三铰拱除有时用于拱上建筑的腹拱圈外,一般不用作主拱圈。

(2).两铰拱取消了拱顶铰,构造较三铰拱简单,结构整体刚度较三铰拱为好,维护也较三铰拱容易,而支座沉降等产生的附加内力较无铰拱为小,因此在地基条件较差和不宜修建无铰拱的地方,可采用两铰拱桥。

(3).无铰拱属三次超静定结构,虽然支座沉降等引起的附加内力较大,但在荷载作用下拱的内力分布比较均匀,且结构的刚度大,构造简单,施工方便,因此无铰拱是拱桥中,尤其是圬工拱桥和钢筋混凝土拱桥中普遍采用的形式。

2.按照主拱圈的构成形式,拱又可分为板拱、肋拱、双曲拱、箱形拱、桁架拱等(图4主拱圈的构成形式示意图)。

①板拱:拱圈横截面呈矩形实体截面,它横向整体性较好、拱圈截面高度小、构造简单,但抵抗弯矩能力较差,一般用于圬工拱桥。

斜拉桥和悬索桥的总体布置和结构体系

斜拉桥和悬索桥的总体布置和结构体系

主跨跨径
索 塔 高 度
索面形式(辐射式、竖琴式或扇式) 双塔:H/l2=0.18~0.25
拉索的索距
单塔:H/l2=0.30~0.45
拉索的水平倾角
6
拉索布置
斜拉索横向布置
空间布置形式
单索面
竖直双索面 双索面
倾斜双索面
7
拉索在平面内的布置型式
辐射式 竖琴式 扇式

拉索间距
早期:稀索
混凝土达 15m~30m 钢斜拉桥达 30m~50m
31
1)斜拉桥施工的理论计算
斜拉桥施工的理论计算方法主要有以下几种:1、倒拆法;2)正算法
倒拆法从斜拉桥成桥状态出发(即理想的恒载状态出发)用与实际施工 步骤相反的顺序,进行逐步倒退计算来获得各施工节段的控制参数,根据 这些参数对施工进行控制与调整,并按正装顺序施工。
正算法是按斜拉桥的施工顺序,依次计算出各施工节段架设时的内力和 位移。并依据一定的计算原则,选定相应的计算参数作为未知变量,通过 求解方程得到相应的控制参数。
1)主梁的边跨和主跨比 2) 主梁端部处理 3) 主梁高度沿跨长的变化
混凝土主梁横截面形式
1)实体双主梁截面;2)板式边主梁截面;3)分 离双箱截面;4)整体箱形截面;5)板式梁截面
双索面钢主梁横截面形式
双主梁、单箱单室钢梁、两个单箱单室钢梁、 多室钢梁和钢桁梁
21
3、主梁构造特点(续)
主要尺寸拟定
混凝土斜拉桥的拉索一般为柔性索,高强钢丝外包的索套仅作为保护材 料,不参加索的受力,在索的自重作用下有垂度,垂度对索的受拉性能有影 响,同时索力大小对垂度也有影响。 为了简化计算,在实际计算中索一般采 用一直杆表示,以索的弦长作为杆长。关健 问题是考虑索垂度效应对索的伸长与轴力的 关系影响,这种影响采用修正弹性模量来考 虑。

斜拉桥与悬索桥

斜拉桥与悬索桥
由力学知识可知:在截面相同的情况下,塔的抗水平位移 刚度与塔高的三次方成反比,因而塔高降低则塔身刚度迅 速提高,但塔高降低后拉索的水平倾角也将减小,拉索对 主梁的支撑作用减弱,而水平压力增大,这相当于拉索对 主梁施加了一个较大的体外预应力。矮塔部分斜拉桥由于 拉索不能提供足够的支撑刚度,故要求主梁的刚度较大。
索塔
索塔
索塔
吊索
吊索
吊索
主梁
主梁 主梁
索塔 吊索 主梁
(a)
(b)
(c)
(a)
13
索塔的横向形式-2
索塔 吊索 主梁 (a)
索塔 索塔
吊索 主梁 吊索 主梁
索塔 吊索
吊索 主梁
索塔 主梁
(b)
(c)
(d)
(e)
14
二、塔的高跨比Байду номын сангаас
双塔:H/l2=1/4~1/7,单塔:H/l2=1/2.7~1/4.7
10
§4.1.3 索塔布置
一、索塔的形式 1、纵向形式(见附图) 单柱形、倒V形或A形、倒Y形。 2、横向形式(见附图) (1)单索面桥:单柱形、倒V形或A形、倒Y形。 (2)双索面桥:双柱式、门式、H形、倒V形、
倒Y形
11
桥塔的纵向形式
(a)单柱形
(b)倒V形
(c)倒Y形
12
索塔的横向形式-1
间距约5~15m 优点:索间距小,可使主梁弯矩减小 目前斜拉桥大多采用密索布置。
21
稀索和密索
(a) 稀索
(b) 密索
22
§4.1.5 主要结构体系
斜拉桥的结构体系,可以有几种不同的划分方式:
(1)按照塔、梁、墩相互结合方式:漂浮体系、半漂浮 体系、塔梁固结体系和刚构体系;

斜拉桥与悬索桥之比较

斜拉桥与悬索桥之比较

斜拉桥与悬索桥之比较令狐采学斜拉桥与悬索桥作为现代桥梁的主要建筑方式,二者之间又存在着怎样的区别与联系呢?下面我们通过结构力学的方法对其进行受力方面的定性分析,来解决一些现实中的现象。

首先我们来了解一下他们的定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。

其可看作是拉索代替支墩的多跨弹性支承连续梁。

其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。

斜拉桥由索塔、主梁、斜拉索组成。

悬索桥,又名吊桥(suspension bridge)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。

其缆索几何形状由力的平衡条件决定,一般接近抛物线。

从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。

斜拉桥与悬索桥的结构简图如图a,b所示。

下面对一些现实现象进行定性分析。

1.为什么斜拉桥和悬索桥可以比其他桥梁的跨度大很多?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥和悬索桥都是通过钢索的拉力来代替了桥墩的支持力。

因此可以减少桥墩的数量,实现桥梁的大跨度。

2.为什么悬索桥可以比斜拉桥的跨度更大?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥的钢索是斜着的,以a图C点进行受力分析,为了在C点提供足够的竖直拉力Fcy随着AC距离的增加,Fc和Fcx将会不断增大,这样会不断增大钢索的拉力和桥面的轴向压力,这也是为什么斜拉桥的钢索大多集中在索塔的上端的原因。

因此AC之间的距离不能太大,即斜拉桥的跨度不能太大。

而通过悬索桥的结构简图可以看出,悬索桥的钢索受力是竖直方向的,随着跨度的增加并不会增加钢索的受力。

因此悬索桥的跨度可以比斜拉桥更大。

3.为什么斜拉桥比悬索桥稳定?由斜拉桥的结构简图可以看出绷紧的钢索与索塔及桥面根据三钢片原则构成了不变体系,而有悬索桥的结构简图不难看出悬索桥的主索、细钢索、索塔及桥面之间构成的是可变体系。

斜拉桥和悬索桥基本受力原理

斜拉桥和悬索桥基本受力原理

斜拉桥和悬索桥基本受力原理斜拉桥和悬索桥是现代桥梁工程学中最常见的桥梁类型之一。

与其他类型的桥梁相比,斜拉桥和悬索桥在结构构造、受力原理以及建造技术方面都具有独特的特点。

斜拉桥是一种由主体梁、斜拉索和塔组成的桥梁结构。

主体梁通常由桥面板、箱梁或钢桁架等构成。

斜拉索由高强度的钢丝绳或钢缆制成,用于固定主体梁。

塔是支撑斜拉索的主要悬挂结构。

斜拉桥的受力原理是利用斜拉索对主体梁进行牵拉,从而使主体梁能够承受大约90%的桥面荷载。

在斜拉桥的受力分析中,通过牵拉斜拉索,使力沿着斜拉索传递到塔的支撑墩上,然后再传递到地基。

因此,斜拉桥的塔和支撑墩必须足够坚固,以承受主体梁的重量和拉力。

在斜拉桥的结构设计中,斜拉索的数量、长度和位置是非常关键的。

斜拉索的正确设置可以增强桥梁的稳定性,减少对主体梁的振动和抖动。

同时,斜拉索的拉力方向也需要考虑,以确保它们不会相互冲突或互相干扰。

悬索桥的受力原理是靠索在两个或多个支撑点上承载主体梁和荷载。

索的支撑在塔顶,塔的重力传递到地面,自然就形成了一个悬挂状态。

此时,由于主体梁的承载能力有限,悬挂在索上的荷载必须分散到多个支撑位置上。

在悬索桥的结构设计中,索的支撑点的距离、索的长度和角度等都是非常关键的。

如果索的支撑点距离太远,索的结构就会变得不稳定。

如果角度太小,索的滞后效应就会变得越来越大。

这些因素都需要在悬索桥的设计阶段得到充分考虑。

3. 两种桥梁类型的比较尽管斜拉桥和悬索桥在受力原理方面存在差异,两种结构类型在一些方面都具有相似之处。

例如,它们都依靠主体梁承载荷载,并且都需要塔来支撑索或斜拉索。

此外,两种结构类型都需要进行静态和动态受力计算,以确保结构的稳定性和安全性。

但是,斜拉桥和悬索桥在实际应用中也有许多不同之处。

例如,由于斜拉索承担了大部分的荷载,斜拉桥的主体梁可以相对较轻,而悬索桥的主体梁需要更多的材料和设计。

另外,在建造过程中,斜拉桥需要更长时间的预构件制作和拼装,而悬索桥则需要更多的和更高的起重设备来安装长而重的索。

斜拉-悬索协作体系桥合理成桥状态的确定

斜拉-悬索协作体系桥合理成桥状态的确定
斜拉一 悬索协作体 系桥 合理成桥状态 的确定
Th e S t ud y o n t h e Re a s o n a b l e F i n i s h e d S t a t e o f t he La r g e — — s p a n Ca b l e — — s t a y e d — — s us p e n s i o n Br i d g e s
一 一 一 一 ~ ~ ~ 一 ~ ~ 一 ~ 一
内。
在成桥状态下 , 加劲梁 的恒载 弯矩要控 制在 “ 可行域” 范 围
( 4 ) 主塔 弯矩
对于 自锚式斜拉一悬索协作体系桥来说 , 应该使 主塔在恒 载作用下 的弯矩尽量小 , 并且使塔 顶水 平变位 接近于 零。
二. 斜拉・愚素协作体系桥合理成桥状态确定的算法
参 数 方程 法 、 节线法等。
2斜拉一悬 索协作体 系桥合理成桥状态 的确定原则
( 1 ) 斜 拉 部 分 索 力 分 布
很 少 。本 文 结合 A NS YS的优 化 模 块 . 对 斜 拉一 悬 索协 作 体 系
索力要分 布均 匀 , 但又有较大的灵活性。通常短 索的索力
小, 长索 的索力大 , 呈递增趋势 , 但 局 部 地 方 应 允 许 索 力 有 突 变。 ( 2) 主 缆 线 形
5 6
的确 定是 设 计 中要 解 决 的一 个 重 要 的 结 构 受 力 问 题 . 目前 针 对 斜 拉 桥 和 悬 索桥 成 桥 状 态 的 确 定 方 法 已 经 比 较 成 熟 .但 关
于斜 拉 一 悬 索协 作 体 系这 种 新 桥 型 的 成 桥 状 态 的 确 定 方 法 还
小法 、 用索量最小法和影响矩 阵法等。 悬索桥成桥状 态确定 的主要 方法有 : 抛 物线法、 悬链线法 、

斜拉桥与悬索桥性能对比分析

斜拉桥与悬索桥性能对比分析
斜拉桥结构计算的原则是:
(1)对于一般跨径的混凝土斜拉桥结构计算,可按经典结构力学或有限元方法计算;
(2)对于跨径较大的斜拉桥,应计入结构几何非线性及材料非线性对结构的影响;
(3)斜拉桥为空间结构体系,在静力分析时可将空间结构简化为平面结构进行计算,动力分析应按空间结构计算;
(4)在结构计算中,必须计入拉索垂度对结构的非线性影响,可源自用拉索换算弹性模量的方法计入其影响;
几点增加风动力稳定性的措施:
1.梁的宽高比B/h要大于6,最好在6~10之间;
2.迎风面做成流线形;
3.可用横向放置的 形人行道板之类来形成导流器,以减少桥面局部真空;
4.尽可能使两索面拉开,以增加抗扭刚度,用三角形索面效果最好;
5.结构体系选用密索体系的连续梁;
6.减小索距
结语
通过以上的特点对比可以很清晰的看到悬索桥与斜拉桥的结构特点、受力特点、适用范围,再次的基础上要更注意二者之间的区别:1、两者的刚度差别很大;2、前者主梁受很大的水平分力而成为偏心受压构件,后者加劲梁不承受轴向力;3、前者课通过调整索力调整内力分布,后者不可;4、前者可通过斜拉索初张力、间距和数量的改变来改变刚度,后者不可。因此在设计选择桥梁类型时,要充分考虑桥梁的性能,选出最经济合理的设计方案。
四、风振问题及抗风措施
特点:
(1)一般的中、小跨径桥梁风作为静力计算,对风荷载也化为静力处理。
(2)大跨径桥梁中,除了考虑风的静力作用外,还必须考虑风的动力作用。
(3)桥梁的风振包括两大类,
(4)一类是当自然风达到某一临界值时,桥梁振幅不断增大直至结构损坏的自激振动,它是一种发散振动;
(5)另一类是限幅振动,它所引起的振幅有限,不会发散,但在低风速下经常发生。对桥梁危害最大的就是自激发散振动。

斜拉桥与悬索桥之比较

斜拉桥与悬索桥之比较

斜拉桥与悬‎索桥之比较‎斜拉桥与悬‎索桥作为现‎代桥梁的主‎要建筑方式‎,二者之间又‎存在着怎样‎的区别与联‎系呢?下面我们通‎过结构力学‎的方法对其‎进行受力方‎面的定性分‎析,来解决一些‎现实中的现‎象。

首先我们来‎了解一下他‎们的定义:斜拉桥又称‎斜张桥,是将主梁用‎许多拉索直‎接拉在桥塔‎上的一种桥‎梁,是由承压的‎塔、受拉的索和‎承弯的梁体‎组合起来的‎一种结构体‎系。

其可看作是‎拉索代替支‎墩的多跨弹‎性支承连续‎梁。

其可使梁体‎内弯矩减小‎,降低建筑高‎度,减轻了结构‎重量,节省了材料‎。

斜拉桥由索‎塔、主梁、斜拉索组成‎。

悬索桥,又名吊桥(suspe‎n sion‎bridg‎e)指的是以通‎过索塔悬挂‎并锚固于两‎岸(或桥两端)的缆索(或钢链)作为上部结‎构主要承重‎构件的桥梁‎。

其缆索几何‎形状由力的‎平衡条件决‎定,一般接近抛‎物线。

从缆索垂下‎许多吊杆,把桥面吊住‎,在桥面和吊‎杆之间常设‎置加劲梁,同缆索形成‎组合体系,以减小活载‎所引起的挠‎度变形。

斜拉桥与悬‎索桥的结构‎简图如图a‎,b所示。

下面对一些‎现实现象进‎行定性分析‎。

1.为什么斜拉‎桥和悬索桥‎可以比其他‎桥梁的跨度‎大很多?通过斜拉桥‎和悬索桥的‎结构简图可‎以看出,斜拉桥和悬‎索桥都是通‎过钢索的拉‎力来代替了‎桥墩的支持‎力。

因此可以减‎少桥墩的数‎量,实现桥梁的‎大跨度。

2.为什么悬索‎桥可以比斜‎拉桥的跨度‎更大?通过斜拉桥‎和悬索桥的‎结构简图可‎以看出,斜拉桥的钢‎索是斜着的‎,以a图C点‎进行受力分‎析,为了在C点‎提供足够的‎竖直拉力F‎cy随着A‎C距离的增‎加,Fc和Fc‎x将会不断‎增大,这样会不断‎增大钢索的‎拉力和桥面‎的轴向压力‎,这也是为什‎么斜拉桥的‎钢索大多集‎中在索塔的‎上端的原因‎。

因此AC之‎间的距离不‎能太大,即斜拉桥的‎跨度不能太‎大。

而通过悬索‎桥的结构简‎图可以看出‎,悬索桥的钢‎索受力是竖‎直方向的,随着跨度的‎增加并不会‎增加钢索的‎受力。

悬索桥和斜拉桥受力特点及设计要点

悬索桥和斜拉桥受力特点及设计要点

拟定悬索 桥形式, 跨数
边孔与主 孔跨度比, 主缆的垂 跨比
拟定尺寸 与截面, 推算主缆 及加劲梁 高处的设 计风力
二、悬索桥和斜拉桥设计要点
1、悬索桥设计要点 (2)主缆
假定恒载、截面及刚度进行初步计算,根据计算结果确定主缆 与加劲梁截面,算出恒载与刚度,将计算的截面、刚度及恒载 与原先假设进行比较,如有较大富余或不足,则应重新假设计 算,直到计算结果比较吻合为止。
二、悬索桥和斜拉桥设计要点
2、斜拉桥设计要点 (2)整体静力分析
合理成桥状态
拉索的安装索力
施工过程计算
二、悬索桥和斜拉桥设计要点
2、斜拉桥设计要点 (2)整体静力分析 ①合理的成桥状态
主梁上缘的最大压应力 主梁下缘的最大拉应力
预应力和主梁成桥恒载 弯矩合理值
成桥状态为“合理状态”
二、悬索桥和斜拉桥设计要点
2
参考类似悬索桥来初步假定主缆 的钢丝索股数与每股钢丝根数
1
确定主缆的垂跨比f/l
二、悬索桥和斜拉桥设计要点
1、悬索桥设计要点 (3)桥塔

式 尺



初步假定
纵向 应力
横向 应力
主缆与加劲梁
桥塔稳 定性
验算
二、悬索桥和斜拉桥设计要点
2、斜拉桥设计要点 (1)结构几何尺寸的确定



二、悬索桥和斜拉桥设计要点
2、斜拉桥设计要点 (1)结构几何尺寸的确定
桥跨布 置
主梁断 面形式
索塔形 式
索塔高 度
支承体 系
主梁高 度
索塔尺 寸
受力
构造要 求
各部分 尺寸
平面杆系程序试算调整

悬索桥和斜拉桥的区别

悬索桥和斜拉桥的区别

悬索桥和斜拉桥的区别斜拉桥,又称斜张桥,是将桥面用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。

其可看作是拉索代替支墩的多跨弹性支承连续梁。

其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。

斜拉桥由索塔、主梁、斜拉索组成。

桥的主要承重并非它上面的汽车或者火车,而是它本身,也即我们看的的路面。

现在我们就分析这个:我们以一个索塔来分析。

索塔两侧是对称的斜拉索,通过斜拉索将索塔主梁连接在一起。

现在假设索塔两侧只有两根斜拉索,左右对称各一条,这两根斜拉索受到主梁的重力作用,对索塔产生两个对称的沿着斜拉索方向的拉力,根据受力分析,左边的力可以分解为水平向向左的一个力和竖直向下的一个力;同样的右边的力可以分解为水平向右的一个力和竖直向下的一个力;由于这两个力是对称的,所以水平向左和水平向右的两个力互相抵消了,最终主梁的重力成为对索塔的竖直向下的两个力,这样,力又传给索塔下面的桥墩了。

斜拉索数量再多,道理也是一样的。

之所以要很多条,那是为了分散主梁给斜拉索的力而已。

斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。

斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。

索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。

斜拉索布置有单索面、平行双索面、斜索面等。

第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。

目前世界上建成的最大跨径的斜拉桥为法国的诺曼底桥,主跨径为856米。

1993年建成的上海杨浦大桥是我国目前最大的斜拉桥,主跨径为602米斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。

它由梁、斜拉索和塔柱三部分组成。

斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。

按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。

斜拉桥是我国大跨径桥梁最流行的桥型之一。

悬索桥和斜拉-悬索协作体系桥的比较

悬索桥和斜拉-悬索协作体系桥的比较

悬索桥和斜拉-悬索协作体系桥的比较悬索桥(suspension bridge)是利用主缆及吊索作为加劲梁的悬挂体系,将荷载作用经桥塔、锚碇传递到地基的桥梁。

悬索桥主要由缆索系统、塔墩、加劲梁及附属结构四大部分组成。

地锚式悬索桥中锚碇、桥塔和主缆是主要的承载结构,吊索与加劲梁则主要起传递直接作用其上的荷载的作用;自锚式悬索桥中锚碇、桥塔、主缆、加劲梁都是主要的承载结构。

斜拉-悬索协作体系桥(cable-stayed-suspension bridge)是在悬索桥上增加斜拉索,或者在斜拉桥上增加主缆,故斜拉-悬索协作体系桥也是主要由缆索系统、桥塔、加劲梁及附属结构四大部分组成。

其中锚碇、桥塔、主缆、斜拉索、主梁是主要的承载结构。

日本明石海峡桥纽约布鲁克林桥一、悬索桥和斜拉-悬索协作体系桥的优缺点悬索桥的优点:(1)受力非常合理:悬索桥的主要受力构件为缆索,缆索主要受拉,次弯矩非常小,应力在截面上分布比较均匀;桥塔以受压为主,弯矩也较小;加劲梁只作为桥面来传递荷载,不是主受力构件,就静力来说,梁高与跨度无关而只与吊索间距有关。

(2)跨越能力大:在大跨度悬索桥中,缆索的恒载拉力远大于活载值,因此一般疲劳的影响较小。

(3)桥型优美;悬索桥加劲梁的梁高比同跨度的梁桥的梁高小得多,所以建筑高度较小,具有优美的曲线,外形比较美观,在城市中采用此种桥式将为城市增加风景点。

如美国旧金山的金门大桥。

(4)抗震能力强:悬索桥是轻而柔的桥梁,刚度较小,在地震作用下,受地震惯性力较小,往往位移大而内力小,消能能力强,因此抗震能力强。

(5)施工方便:悬索桥施工时是先架设好桥塔,然后利用桥塔架设牵引索和施工猫道等,利用猫道来架设主缆,然后再架设加劲梁和桥面系,施工方便;在交通不便的山区,修建悬索桥较为有利;在交通方便的江河湖海和城市外,悬索桥除了开始架设先导索外,不会中断交通。

悬索桥的缺点:(1)荷载作用下变形较大:由于缆索是柔性结构,当活载作用时,会改变几何形状,会引起桥跨结构较大的变形。

悬索桥与斜拉桥的区别与应用

悬索桥与斜拉桥的区别与应用

悬索桥与斜拉桥的区别与应用当我们谈论桥梁时,很难忽视悬索桥和斜拉桥。

悬索桥和斜拉桥是两种常见的桥梁结构形式,它们之间有许多区别和应用。

本文将探讨悬索桥与斜拉桥的区别,以及它们在不同场景中的应用。

首先,让我们来了解悬索桥的特点和结构。

悬索桥以悬挂在悬索上的主桥墩为特征。

主横梁被悬挂在主桥墩上,主横梁的两端有多条悬索连接到另一个桥墩上。

悬索桥的结构类似于一根绳子,其中主横梁充当承受桥面荷载的主要支撑部分。

悬索桥可以跨越较大的距离,但主横梁的起伏有时会对车辆或行人的行驶产生影响。

与悬索桥相比,斜拉桥的结构形式稍有不同。

斜拉桥的特点是主横梁不是悬挂在桥墩上,而是通过斜拉索连接到桥墩上。

斜拉桥的斜拉索使得主梁能够承受荷载并稳定地悬挂在桥墩上。

斜拉桥的主梁通常呈倾斜角度,这有助于分散荷载并提高桥梁的稳定性。

相较于悬索桥,斜拉桥在较大跨度下具有更好的承载能力和稳定性。

悬索桥和斜拉桥在应用方面也各有优势。

悬索桥通常被用于跨越较长距离的河流或峡谷。

悬索桥的设计使得它能够以较少的支撑点来承担大量的重量。

这样的设计在大型交通枢纽或河流航道等场景中非常适用。

但需要注意的是,悬索桥的主横梁起伏可能会对桥上车辆或行人产生影响,因此在设计时需要充分考虑。

与此相反,斜拉桥通常适用于中跨度的桥梁,其结构可以提供更好的桥面稳定性。

斜拉桥的特点使得它更适合承载交通流量大且密集的场景。

在城市中心或大型公路上,斜拉桥具有更好的抗风能力和稳定性。

此外,斜拉桥的设计也更美观,常常成为城市地标的一部分。

值得一提的是,悬索桥和斜拉桥的设计和建造都需要严密的工程计算和材料选择。

这些桥梁结构须同时考虑荷载、抗风能力以及材料的耐久性。

在设计和建造过程中,工程师们需要根据特定的条件和环境,权衡各种因素以确保桥梁的安全性和可靠性。

总的来说,悬索桥和斜拉桥是两种常见的桥梁结构形式。

悬索桥以悬挂在悬索上的主横梁为特点,适用于跨越较长距离的河流或峡谷。

而斜拉桥则通过斜拉索连接主横梁和桥墩,适用于中跨度的桥梁,具有更好的稳定性和美观性。

对悬索桥受力特性和计算理论的综述

对悬索桥受力特性和计算理论的综述

综述悬索桥受力特性和计算理论一、悬索桥的受力特性悬索桥是由主缆、主塔、加劲梁、吊索、锚碇等构成的组合体系。

恒载作用下,主缆、主塔承受结构自重,加劲梁受力由施工方法而定。

成桥后,主缆和加劲梁共同承受外荷载作用,受力按刚度分配。

1、主缆的受力特征主缆是结构体系中的主要承重构件,其形状直接影响到整个体系的受力分配和变形,主缆的主要受力特征如下:(1)主缆是几何可变体,主要承受张力。

主缆可通过自身几何形状的改变来影响体系平衡,具有大位移的力学特征,这是区别于一般结构的重要特征之一。

(2)主缆在恒载作用下具有很大的初始张力,使主缆维持一定的几何形状。

初始张力对后续结构形状提供强大的“重力刚度”,这是悬索桥跨径得以不断增大,加劲梁高跨比得以减小的根本原因。

2、主塔的受力特征主塔是悬索桥抵抗竖向荷载的主要承重构件,在外荷载作用下,以轴向受压为主,并应尽量使外荷载在主塔中产生的弯曲内力减小,以减小混凝土桥塔因为徐变而使塔型改变,增加结构抵抗外载的能力。

主塔在外荷载作用下的受力特征可表现为两种形式:(1)恒载状态下,主塔基本无弯曲内力。

这是大部分已建悬索桥桥塔的受力状态。

(2)恒、活载及地震荷载作用下,主塔正负弯曲包络图基本对称或正负弯矩包络按某一比例分配。

3、加劲梁的受力特征加劲梁是悬索桥保证车辆行驶、提供结构刚度的二次结构,主要承受弯曲内力。

由悬索桥施工方法可知,加劲梁的弯曲内力主要来自二期恒载和活载。

按照不同的施工方法,加劲梁的受力特征可表现为两种情况:(1)一期恒载作用下,加劲梁段呈简支梁弯矩分配;二期恒载作用下,加劲梁承受与主缆共同作用下的弯曲内力。

这种受力状态是按加劲梁先铰接后连续,再施加二期荷载而得到的。

由于这种施工方法简单并已成熟,目前大部分已建悬索桥多用这种方法施工。

(2)加劲梁的弯矩根据使恒、活载作用下其应力分布趋于合理的标准人为确定。

这种受力必须通过特定的施工方法来实现。

这一方法目前很少应用,但是随着施工技术的发展, 在设计阶段通过充分考虑施工过程来改善悬索桥结构受力必将成为可能。

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结

分别从结构构造、力学特性、适用范围、结构内力计算方法以及主要施工工艺五个方面对梁式桥、拱式桥、悬索桥与斜拉桥进行对比分析总结。

一、梁桥以受弯为主的主梁作为主要承重构件的桥梁。

主梁可以是实腹梁或者是桁架梁(空腹梁)。

实腹梁外形简单,制作、安装、维修都较方便,因此广泛用于中、小跨径桥梁。

但实腹梁在材料利用上不够经济。

桁架梁中组成桁架的各杆件基本只承受轴向力,可以较好地利用杆件材料强度,但桁架梁的构造复杂、制造费工,多用于较大跨径桥梁。

桁架梁一般用钢材制作,也可用预应力混凝土或钢筋混凝土制作,但用的较少。

过去也曾用木材制作桁架梁,因耐久性差,现很少使用。

实腹梁主要用钢筋混凝土、预应力混凝土制作,也可以用钢材做成钢钣梁或钢箱梁。

实腹梁桥的最早形式是用原木做成的木梁桥和用石材做成的石板桥。

二、拱桥是以承受轴向压力为主的拱(称为主拱圈)作为主要承重构件的桥梁。

1.按照主拱圈的静力图式,拱轿可分为三铰拱、两铰拱和无铰拱(图3 拱桥形式示意图)。

(1).三铰拱是静定结构,其整体刚度较低,尤其是挠曲线在拱顶铰处产生折角,致使活载对桥梁的冲击增强,对行车不利。

拱顶铰的构造和维护也较复杂。

因此,三铰拱除有时用于拱上建筑的腹拱圈外,一般不用作主拱圈。

(2).两铰拱取消了拱顶铰,构造较三铰拱简单,结构整体刚度较三铰拱为好,维护也较三铰拱容易,而支座沉降等产生的附加内力较无铰拱为小,因此在地基条件较差和不宜修建无铰拱的地方,可采用两铰拱桥。

(3).无铰拱属三次超静定结构,虽然支座沉降等引起的附加内力较大,但在荷载作用下拱的内力分布比较均匀,且结构的刚度大,构造简单,施工方便,因此无铰拱是拱桥中,尤其是圬工拱桥和钢筋混凝土拱桥中普遍采用的形式。

2.按照主拱圈的构成形式,拱又可分为板拱、肋拱、双曲拱、箱形拱、桁架拱等(图4主拱圈的构成形式示意图)。

①板拱:拱圈横截面呈矩形实体截面,它横向整体性较好、拱圈截面高度小、构造简单,但抵抗弯矩能力较差,一般用于圬工拱桥。

斜拉桥与悬索桥计算理论简析

斜拉桥与悬索桥计算理论简析

斜拉桥与悬索桥计算理论简析斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。

通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。

在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。

一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。

有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。

斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。

(一)、斜拉桥的静力设计过程1、方案设计阶段此阶段也称为概念设计。

本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。

根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。

2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。

主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。

3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。

主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。

(二)、斜拉桥的计算模式1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。

还可用于技术设计阶段,仅仅计算恒载作用下的内力。

2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。

此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。

桥梁工程第四篇 悬索桥与斜拉桥

桥梁工程第四篇 悬索桥与斜拉桥
(二)加劲梁的支承形式
加劲梁在塔墩上的支承,分为简支与连续两种。简支 形式的优点是:加劲梁构造简单;制造和架设时的误差对 加劲梁无影响;简支的加劲梁不需通过桥塔,桥塔横向两 塔柱的距离比连续加劲梁要小,因此其基础尺寸也相应小。 连续梁并不省钢,它的优点是:梁端转角小,在索塔处不 产生折角,有利车辆行驶;可以减少加劲梁的挠度。
索塔的材料可以是混凝土或钢的。我国的悬索桥都 采用混凝土塔。
索塔型式分顺桥方向与横桥方向。顺桥方向为柱型 等宽或从塔顶向塔底以一定坡度扩大,塔底固定(图4-111a)。横桥方向为底部固定的平面桁架或刚架或混合式 (图4-1-11b、c、d) 箱等索。塔的塔柱断面多数为箱形,钢塔也有采用十字形
NEXT
(三)主缆支架
当主缆在锚碇处改变方向时,则需设置主缆支架 (图4-1-12a)。主缆支架设计,必须适应主缆伸缩要求。
六、鞍座 (一) 由主缆传来的很大的竖直力通过鞍座均匀分布到塔柱 顶截面。鞍座底部与塔顶箱体吻合,且两者的内部格状, 加劲肋板位置也尽可能一致,以使鞍座上竖直力直接传给 塔柱。鞍座和塔顶板用螺栓连接。鞍座上设索槽,安设主 缆。成桥状态主缆对鞍座不发生相对滑动。图4-1-13是塞

第一节 悬索桥的构造
悬索桥主要由主缆、加劲梁、吊索、索塔、锚碇和鞍 座六部分组成,如图4-1-1所示。
一、主缆 主缆是悬索桥的主要承重构件,除承受自重和吊索重
(一)主缆结构 悬索桥大都采用双面主缆,一般是一侧布置一根,个 别有一侧用两根主缆的设计。大多数悬索桥主缆由平行高 强钢丝束股合成。由于架设方法的不同,平行钢丝束股分 空中纺线法(AS法)与预制钢丝束股法(PPWS法或PS法)两 种。
BACK
BACK
五、锚碇 锚碇是主缆的锚固体,与索塔一样是支承主缆的重要 部分,它将主缆的拉力传递给地基。锚碇一般由锚碇基础、 锚块、主缆的锚碇架及固定装置、遮棚等部分组成(图4-112a)。当主缆需要改变方向时,锚碇中还包括主缆支架和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、有限位移理论
应用有限位移理论的矩阵位移法,可综合考虑体系节点位移影响、轴力影响,把悬索桥结构的非线性分析方法统一到一般非线性有限元法中,是目前普遍采用的方法。
(四)、悬索桥的计算方法及相应的计算内容
分为近似分析法和精确分析法,近似分析法可用弹性理论和挠度理论,而精确计算只能用有限位移理论。
2、空间杆系计算模式
此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。
3、空间板壳、块体和梁单元计算模式
此模式用在计算全桥构件的应力分布特性,这类模式要特别注意不同单元结合部的节点位移协调性。
4、从整体结构中取出的特殊构件
4、问题:在确定好理想的恒载内力状态后,如何进一步进行倒退分析。
1、近似分析法
由于悬索桥的施工过程较简单,近似计算法即计算各部分构件的位形、内力与位移。主要计算内容有:(1)成桥状态的近似计算 根据悬索桥的布置形式的总断面线形,和由此确定的控制主缆的几何线形的基本点的位置,来分析主缆及其它构件成桥是的构形、受力状态,并求出主缆、吊索的无应力索长和施工阶段的鞍座偏移量。(2)加劲梁在竖向荷载下的分析 可以由弹性理论计算,也可由挠度理论计算。(3)主塔的计算 (4)水平静风载作用下的计算。
斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。
三、 体会和问题
1、斜拉桥与悬索桥相比而言,斜拉桥的计算要复杂一些。斜拉桥计算中的关键是合理恒载内力状态的确定,而悬索桥中的则是成桥状态实际索形的确定。
2、要精确分析这两种体系的受力,均要用几何非线性的有限元分析程序。开发桥梁专用计算程序是完全必要的。
3、对倒退分析的理解:凡是要确定理想成桥状态的桥型,并且施工过程较复杂,内力影响因素很多时,均要做此分析。
(二)、悬索桥的受力特征
成桥时,主要由主缆和主塔承受结构自重,加劲梁受力由施工方法确定。成桥后,结构共同承受外荷载作用,受力按刚度分配。主缆在恒载作用下具有很大的初始张拉力,对后续结构提供强大的“重力刚度”。主塔是悬索桥抵抗竖向荷载的主要承重构件,在恒载作用下,以轴向受压为主,在活载作用下以压弯为主,呈梁柱构件特征。加劲梁承受的弯曲内力主要来自结构的二期恒载和活载。吊索是传力构件,吊索内恒载轴力的大小,既决定了主缆在成桥状态的真实索形,而且也决定了加劲梁的恒载弯矩。锚碇是锚固主缆的结构。
(三)、悬索桥的计算理论
1、弹性计算理论
不考虑恒载初内力及大位移非线性的影响,适用于200米悬桥设计之用。假定悬索为完全柔性,吊杆沿跨密布,假定悬索曲线形状和纵坐标在加载后保持不变。缆索的形状假定为抛物线,按膜理论进行计算。
2、挠度理论
考虑位移的非线性影响,即考虑轴力并且在变形后的位置上建立平衡方程,通过建立基础微分方程来求解析解。方程是非线性的,相应的求解方法有线性挠度理论、等代梁法等。
(一)、斜拉桥的静力设计过程
1、方案设计阶段
此阶段也称为概念设计。本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。
2、初步设计阶段
本阶段在前一阶段工作的基础上进一步细化。主要任务恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。
2、准非线性计算理论
包括三种:计入收缩徐变的线性弹性分析理论、考虑二阶效应的近似计算以及弹性理论计算结果乘以增大(大于1)系数。适用于概念设计阶段的计算,或计算中小跨径的斜拉桥。
3、有限位移理论
这是精确分析施工和正常使用阶段,以及结构在各种荷载下的静力响应的方法,适用于大跨桥梁设计的技术设计阶段的计算。用于前进分析与倒退分析中,以及成桥状态最优索力的确定。引起斜拉桥几何非线性的因素主要有以下三个方面:(1)索的垂度的影响 将斜拉索模拟成桁单元,并用修正的弹性模量。当索力应力水平较低时,可直接用柔索单元来模拟斜拉索。(2)梁柱效应 斜拉桥的主梁、主塔都工作在压弯状态,引起了梁柱效应。用梁单元分析时,可用稳定函数表示的几何非线性刚度矩阵和一般的几何刚度矩阵,来计入这一效应。(3)大位移效应 由于斜拉桥为柔性结构,外荷载作用下结构变形较大。可用大位移刚度矩阵或基于U.L列式的有限位移理论(拖动坐标法)计入这一效应。恒载与附加荷载的非线性计算,以计算荷载作用前的状态为初态,活载的非线性计算以成桥状态为初始内力状态,活载用影响区加载法来计算。
(四)、斜拉桥的计算内容
按照设计过程,斜拉桥的计算内容包括:
1、斜拉桥的恒载受力状态的优化计算
以往的斜拉桥索力优化计算归为三大类:指定受力状态的索力优化、无约束的索力优化和有约束的索力优化。肖老师利用调值计算的原理,提出了索力优化的影响矩阵法,用于成桥状态的索力优化与施工阶段的索力优化。
2、倒退分析
以成桥状态t=t0时刻的最优内力状态为参考状态,以设计的成桥线形为参考线形,对结构进行倒退分析。考虑到计算状态的不闭合;结构预应力、徐变、收缩引起结构倒退分析内力和实际内力的不闭合;以及斜拉索垂度效应和大位移效应等几何非线性的因素,肖老师提出了采用前进、倒退分析交互迭代法,可消除这些不闭合因素。通过倒退分析,可以得到初始张拉力、施工张拉力及预拱度。
3、施工图设计阶段
此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。
(二)、斜拉桥的计算模式
1、平面杆系加横分系数
此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。还可用于技术设计阶段,仅仅计算恒载作用下的内力。
2、精确分析法
确定悬索桥成桥状态和施工状态的关键是确定主缆成桥是的线型,也就是在已知基本设计参数和施工方法的前提下,计算主缆与吊索交点位置及主缆与鞍座的切点坐标。计算内容主要包括:(1)计算吊索在恒载作用下的轴力 主要问题为二期恒载轴力,此时桥已形成整体,假定主缆为抛物线,对结构进行二期恒载的非线性分析,可计算出二期恒载下吊索力。(2)确定吊索的真实形状 从而可以确定主索鞍、转鞍鞍座与主缆的切点坐标,可计算出吊杆长度。(3)悬索桥施工状态计算 包括确定主缆各索段无应力索长、鞍座基准回退量、空索合理状态以及加劲梁安装阶段的合理状态。(4)悬索桥局部应力分析 包括整体分析与局部分析,整体分析中,主塔和加劲梁一般用计入几何刚度的梁单元模拟,主缆和吊索用计入几何刚度的桁单元模拟,但要考虑主缆自重引起垂度对轴向刚度的影响。对于单元长度较小的主缆,可用修正弹性模量,对于单元长度较大时,要用柔索单元。悬索桥大位移效应一般用U.L列式计入。要注意各部分荷载作用前的初内力状态。局部应力分析包括:主梁三维应力分析、主塔三维应力分析及鞍座应力分析等。
一、斜拉桥的计算理论
斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。
(一)、悬索桥的设计过程
开始-----结构总体布置-----构件尺寸初选-----确定恒、活载集度-----竖向恒、活载非线性分析------通过修正恒载集度、构件强度与刚度验算,反复计算以确定构件尺寸与矢跨比-----计算成桥实际构形与内力------验算强度刚度------计算构件无应力尺寸-----计算鞍座预偏量和挂索初态-----结束。
3、前进分析
即施工仿真计算,施工终态的内力即为实际内力状态。
4、构件应力分析
5、其它计算内容
施工控制计算、稳定计算、静风作用下的横向稳定分析以及动力计算等。
二、悬索桥的计算理论
悬索桥是跨越能力最强的桥型之一,其雏形三千多年前已在我国出现。悬索桥可分为柔性悬索桥与刚性悬索桥,两者区别是有无加劲梁。悬索桥由悬索(主索、边索和锚索)、桥塔、吊杆、加劲梁和桥面系(或桥道梁)及锚碇组成。
此模式主要是为了研究斜拉索锚固区等的应力集中现象。根据圣维南原理,对结构进行二次分析。
(三)、斜拉桥的计算理论
根据线性与非线性将其分为三类。
1、微小变形理论,即弹性理论
这种计算方法将拉索简化为桁单元,其余部分用梁单元进行模拟,不考虑非线性影响。此计算方法适用于中小跨径的斜拉桥,或用于方案设计阶段。
相关文档
最新文档