《建筑力学》第5章计算题教程文件

合集下载

建筑力学(5章)

建筑力学(5章)
PA M eA 9549 n 120 9549 Nm 300 3819.6N m 3.82kN m
M eB 0.95kN m
M eC 1.27kN m
M eD 1.59kN m
第5章 扭转杆的强度计算
(2)计算扭矩 1 1 2 2
截面1-1:
Mx 0
T2 WP2 14 106 MPa 71.3MPa π 1003 16
比较上述结果,该轴最大切应力位于BC段内任一截面的 边缘各点处,即该轴最大切应力为τmax=71.3MPa。
第5章 扭转杆的强度计算
圆轴扭转的强度计算
一、圆轴的扭转破坏试验与极限应力 圆轴的扭转试件可分别用Q235钢、铸铁等材料做成, 扭转破坏试验是在扭转试验机上进行。试件在两端外力偶
T1 M eB 0
T1 M eB 0.95kN m
截面2-2:
Mx 0
T1
T2 M eB M eA 0
T2 M eA M eB 2.87kN m
T2
第5章 扭转杆的强度计算
3
截面3-3:
Mx 0
T3 M eD 0
3
T3 M eD 1.59kN m
式中:[σC]为材料的许用挤压应力,可查有关设计手册。
注意:若两个相互挤压构件的材料不同,应对挤压强度 小的构件进行计算。
第5章 扭转杆的强度计算
挤压强度条件在工程中同样可以解决三类问题。 但工程中构件产生单纯挤压变形的情况较少,挤压强
度的计算问题往往是和剪切强度计算同时进行。
第5章 扭转杆的强度计算
第5章 扭转杆的强度计算
当挤压面为平面时,挤压计算面积与挤压面面积相等。

最新完美版建筑力学第五章杆件的内力

最新完美版建筑力学第五章杆件的内力

目录
第五章 杆件的内力\杆件拉(压)时的内力
解 (1)求支座反 A 力。由杆AD的平衡 x 方程∑Fx=0,可求得 支座反力FD=18 kN。 (2)求横截面1-1、2-2、3-3上的轴力。由于在横截 面B和C上作用有外力,须将杆分为AB、BC、CD三段。
应用截面法,假想地沿1 -1横截面把杆截开,取受力 较简单的右段为研究对象(如图),列出平衡方程 ∑Fx=0,F1-FN1=0 得 FN1= F1 =20 kN
目录
第五章 杆件的内力\杆件拉(压)时的内力
若取右段为研究对象,同样可求得轴力F = FN (如 图),但其方向与用左段求出的轴力方向相反。
为了使两种算法得到的同一截面上的轴力不仅数值相 等,符号相同,规定轴力的正负号如下:当轴力的方向与 横截面的外法线方向一致时,杆件受拉伸长,轴力为正; 反之,杆件受压缩短,轴力为负。 在计算轴力时,通常未知轴力按正向假设。若计算结 果为正,则表示轴力的实际指向与所设指向相同,轴力为 拉力;若计算结果为负,则表示轴力的实际指向与所设指 向相反,轴力为压力。
目录
第五章 杆件的内力\杆件拉(压)时的内力
同理,取2-2横 截面的右段为研究对 象,列出平衡方程
x

∑Fx=0,F1+ F2 -FN2=0 FN2= F1-F2=8 kN ∑Fx=0,FN3+ FD =0 FN3= -FD= - 18 kN
取3-3横截面的左段为研究对象,列出平衡方程 得
式中,FN3为负值,说明FN3的指向与假设的方向相反,即 FN3为压力。
5-2-1 外力偶矩的计算
工程中作用于传动轴上的外力偶矩往往不是直接给 出的,而是给出轴所传递的功率和轴的转速。它们之间的 换算关系为 {Me}N· m=9549

《建筑力学》第5章计算题课件

《建筑力学》第5章计算题课件

计 算 题( 第五章 )5.1 试作下列各轴的扭矩图。

5.1图5.2 图示传动轴,转速min r 300=n ,A 轮为主动轮,输入功率kW 50=A P ,B 、C 、D 为从动轮,输出功率分别为kW 10=B P ,kW 20==D CP P 。

⑴试作轴的扭矩图;⑵如果将轮A 和轮C 的位置对调,试分析对轴受力是否有利。

题5.2图 题5.3图5.3 T 为圆轴横截面上的扭矩,试画出截面上与T 对应的切应力分布图。

5.4 图示圆截面空心轴,外径mm 40=D ,内径mm 20=d ,扭矩m kN 1⋅=T ,试计算mm 15=ρ的A 点处的扭转切应力A τ以及横截面上的最大和最小的扭转切应力。

题5.4图5.5 一直径为mm 90的圆截面轴,其转速为min r 45,设横截面上的最大切应力为MPa 50,试求所传递的功率。

5.6 将直径mm 2=d ,长m 4=l 的钢丝一端嵌紧,另一端扭转一整圈,已知切变模量GPa 80=G ,求此时钢丝内的最大切应力max τ。

5.7 某钢轴直径mm 80=d ,扭矩m kN 4.2⋅=T ,材料的许用切应力[]MPa 45=τ,单位长度许用扭转角[]m )(5.0 =θ,切变模量GPa 80=G ,试校核此轴的强度和刚度。

5.8 阶梯形圆轴直径分别为d1=40mm ,d2=70mm ,轴上装有三个皮带轮,如图所示。

已知由轮3输入的功率为N3=3kW ,轮1输出的功率为N1=13kW ,轴作匀速转动,转速n=200r/min ,材料的许用切应力[]MPa 60=τ,GPa 80=G ,许用扭转角[]m 2=θ=。

试校核轴的强度和刚度。

题5.8图5.9 一钢轴受扭矩m kN 2.1⋅=T ,许用切应力[]MPa 50=τ,许用扭转角[]m 5.0 =θ,切变模量GPa 80=G ,试选择轴的直径。

5.10 桥式起重机题 5.10图所示。

若传动轴传递的力偶矩m kN M e ⋅=08.1,材料的许用切应力[]MPa 40=τ,GPa 80=G ,同时规定=][θ0.5°/m 。

建筑力学课件:第5章重心和形心

建筑力学课件:第5章重心和形心
力学教程电子教案
重心和形心
1
第5章 重心和形心
§5-1 重心和形心的坐标公式
§5-2 确定重心和形心位置的 具体方法
力学教程电子教案
重心和形心
2
地球表面或表面附近的物体都会受到地心引力。
任一物体事实上都可看成由无数个微元体组成,这些
微元体的体积小至可看成是质点。任一微元体所受重
力(即地球的吸引力)ΔPi ,其作用点的坐标xi、yi、
x A
的读数为1500 N。试算出机床
重心的坐标。
力学教程电子教案
重心和形心
20
作业 5-4
边长为a的均质等厚正方形板 ABCD,被截去等 腰三角形AEB。试求点E的极限位置 ymax以保证剩余 部分AEBCD的重心仍在该部分范围内。yDa来自CaE A
ymax
B
x
力学教程电子教案
重心和形心
21
作业 5-4
1. 重心坐标的一般公式
z
右图认为是一个空间力系,则
C1
C Ci
P=∑ΔPi
ΔP1
P ΔPi
合力的作用线通过物体的重
心,由合力矩定理
x
o
z1 zC zi
y1 yyiC x1 xC
xi
y
My (P) My (Δ Pi )
P xC Δ Pi xi
xC
Δ Pi xi P
同理有
yC
Δ Pi yi P
xi
y
力学教程电子教案
重心和形心
4
重心位置的确定在实际中有许多的应用。例如,
电机、汽车、船舶、飞机以及许多旋转机械的设计、
制造、试验和使用时,都常需要计算或测定其重心

《建筑力学(上下册)》电子教案 第五章

《建筑力学(上下册)》电子教案 第五章
材料的物质结构和性质比较复杂,为了研究的方便,通常采用下述假 设建立可变形固体的理想化模型。
1. 均匀连续性假设
假设物体在整个体积内都毫无空隙地充满着物质,是密实、连续的, 且任何部分都具有相同的力学性质。
有了这一假设,就可以从被研究物体中取出任一部分来进行研究,它 具有与材料整体相同的性质。还因为假定了材料是密实、连续的,材 料内部在变形前和变形后都不存在任何空隙,也不允许产生重叠,故 在材料发生破坏之前,其变形必须满足几何协调(相容)条件。
若上述理想的变形体的变形局限在弹性范围内,称其为理想弹性体。
上一页 返回
5.3 变形固体的几何分类
按照几何特征,变形固体构件可分为杆、板、壳和实体四大类。 杆的几何特征为长条形,长度尺寸远大于其他两个方向的尺寸(横截
面两个方向的尺寸)。杆横截面中心的连线称为轴线,轴线为直线的 杆称为直杆;轴线为曲线的杆称为曲杆。所有横截面的形状、大小均 相同者称为等截面杆。 板壳的厚度尺寸远小于其他两个方向的尺寸(长度和宽度),板的几 何特征为平面形,壳的几何特征为曲面形。 实体的几何特征为块体,其长、宽、高三个方向的尺寸大体相近,内 部大多为实体。 在本课程中,取等截面弹性直杆为主要研究对象。
下一页 返回
5.1变形固体的概念及变形固体静力学研 究的内容
5.1.2 变形固体静力学研究的内容
变形固体静力学研究的内容为,用变形固体制造成的结构构件或机械 零件(弹性杆件)的静力学响应——内力、应力、变形、变形能;以 及变形固体材料的宏观力学行为——变形、失效等。
上一页 返回
5.2 变形固体的基本假设
下一页 返回
5.4 变形固体的外力、内力及应力的概 念
要研究内力,要确定是变形体内部那部分对相邻部分的内力,最好的 办法是用一个面将这两部分分开,留下一部分研究,将内力暴露出来, 这种方法叫截面法。假想用一截面将如图5-1所示四个力作用下处于 平衡状态的变形固体体从指定截面出截开,分成两部分,若制造变形 固体的材料是均匀连续的,则在截开处的截面上,存在一分布内力系 (若制造变形固体的材料不是均匀连续的,如钢筋混凝土构件,则在 截开处的截面上,仍然存在一内力系,但此内力系就有可能不是分布 内力系)。这一分布内力系可看成上半部分施加给下半部分截面的力。

建筑力学教材课件第五章 静定结构的内力分析

建筑力学教材课件第五章 静定结构的内力分析

1kW = 1000N· m/s = 1.36PS(马力)
二、扭转内力—扭矩T 以图示圆轴扭转的力学模型为例,用截面法,以m-m截面将轴截分为两段。 取其左段列力偶平衡方程可得 m Me Me Mx(F)=0: T-Me=0 T=Me A B m T为截面的内力偶矩,称为扭 Me T 矩。同理,也可取右段求出截面 A 扭矩。 Mx(F)=0: Me-T' =0 T'=Me 图d为截面扭矩的正负规定。 Me T
解:1、计算各段的轴力。 Fx 0 AB段
FN 1 F1 0 FN 1 10KN
BC段
F
x
0
FN 2 F2 F1 0 FN 2 10KN
CD段
F
x
0
FN3
F4 FN 3 0 FN 3 25kN
F4
2、绘制轴力图。
FN kN
产生轴向拉伸或压缩的杆件称为轴向拉杆或压杆。
轴向拉压的受力特点:外力的作用线与杆的轴线重合。
轴向拉压的变形特点:沿轴线方向伸长或缩短。
力学模型如图
F
轴向拉伸,对应的力称为拉力。
F
F
轴向压缩,对应的力称为压力。
F
如图所示屋架中的弦杆、牵引桥的拉索和桥塔等均为拉 压杆。
工程实例一
轴向压缩构件
工程实例二
1. 轴向拉伸和压缩
2. 剪切 3. 扭转 4. 弯曲
1. 轴向拉伸和压缩
如果在直杆的两端各受到一个外力F的作用, 且二者的大小相等、方向相反、作用线与杆件的轴 线重合,那么杆的变形主要是沿轴线方向的伸长或
缩短,这种变形称为轴向拉伸或压缩。
2. 剪切
如果直杆上受到一对大小相等、方向相反、作

建筑力学 第五章(最终)

建筑力学 第五章(最终)

dA 2 y dz 2 R2 Z 2dz
于是求得
Sy
z dA
A
R
z
O
2
R2 z2 dz 2 R3 3
2R3
zc
Sy A
3 πR2
4R 3π
2
图5-6
5. 2. 3 组合图形的面积矩计算
当图形是由若干个简单图形(如矩形、圆形和三角形等)组合而成时, 这类图形称为组合图形。由于简单图形的面积及其形心位置均为已知,而且 由面积矩的定义可知,组合图形对某一轴的面积矩等于其各简单图形对该轴 面积矩的代数和,即
5.1.2 物体重心的坐标公式
1. 重心坐标的一般公式
设有一物体,如图5-1所示。重心 c 坐 标为(xc,yc,zc),物体的容重为 γ,总体积 为V。将物体分割成许多微小体积 ΔVi,每 个微小体积所受的重力 PGi Vi , 其作 用点坐标(xi,yi,zi)。整个物体所受的重力
为 PG PGi 。
n
xc
A1x1c A2x2c An xnc A1 A2 An
Ai xic
i 1 n
Ai
i 1
n
yc
A1 y1c A2 y2c An ync A1 A2 An
Ai yic
i 1 n
Ai
i 1
(5-6)
【例5-1】试求图5-2 所示 Z 形平面图形的形心。
解:将Z 形图形视为由三个矩形图形组合而成,以 c1 、c2 、c3 分别表示 这些矩形的形心。取坐标系如图5-2 所示,各矩形的面积和形心坐标为
5. 2. 2 面积矩与形心的关系
由平面图形的形心坐标公式 (5-4) 和面积矩的定义可得
yc
A

建筑力学第五章

建筑力学第五章
前述可知,按几何组成体系可分为: 几何不变体系、几何可变体系及瞬变体系。
从静力学方面探讨:
一、几何可变体系 对于几何可变体系,在任意荷载作用下一般不能
维持平衡而发生运动,因此无静力学解答。
11kN
A
B
二、几何不变体系 A、有多余约束的几何不变体系
q
X1
X2
X3
X4
结论: 有多余约束的几何不变体系 ——超静定结构的几何组成特征。
几何不变体系: 不考虑材料应变条件下,体系受到任意荷载作用 其位置、几何形状保持不变。
二、 瞬变体系
瞬变体系:某一瞬时可以产生微小运动,然后就不能继续运 动的体系。
瞬变体系
5.2 平面体系的自由度、联系的概念
一、自由度 自由度: 确定体系空间位置所需的独立坐标数,
或体系运动时可以独立改变的几何参数的数目。
A
B
(a)
附属部分
基本部分
(b)
附属部分
基本部分
(c)
例题:分析体系的几何组成
加二元体 减二元体
(a)
(b)
(c)
例题:分析体系的几何组成
EF
C
D
C
C
D
A
B
A
BA
B
EF
C
D
A
B
例题:分析体系的几何组成
C
B
D
I
II
A
III
利用规则进行几何组成分析的注意事项:
(1)体系只用三根不全交于一点也不全平行的支座链杆与基础 相连,只需对体系本身作几何组成分析。
其中:m---刚片数; h ---单铰数; r ---支座链杆数 如遇复铰:相当于(n-1)个单铰。

建筑力学-第5章静定杆件的内力-文档资料

建筑力学-第5章静定杆件的内力-文档资料
四川建筑职业技术学院
§5-2 杆件的变形形式
5- 2 - 1 基本变形
轴向拉伸和压缩 剪切
基本变形
扭转 弯曲
四川建筑职业技术学院
轴向拉伸和压缩: 受力特点:直杆的两端各受到一个外力F的作用,且二者的
大小相等、方向相反,作用线与杆件的轴线重合 。
变形特点: 沿轴线方向的伸长或缩短。
(a) 轴向拉伸
弯矩图绘在梁的受拉侧,而不须标明正负号。 此法称为内力方程法,这是绘制内力图的基本方法。
四川建筑职业技术学院
例5-4 绘制图所示简支梁的剪力图和弯矩图。 解 (1)求支座反力。 FA= FB=
ql 2
(2)列剪力方程和弯矩方程
FS ( x) FA qx ql qx 2
(0<x<l ) (0≤x≤l)
力F作用的C处,剪力图出现
向下的突变,突变值等于集中 力的大小。
四川建筑职业技术学院
由弯矩方程知,两段梁的 弯矩图均为斜直线,但两
直线的斜率不同,在C处
形成向下凸的尖角。
四川建筑职业技术学院
(b) 轴向压缩
四川建筑职业技术学院
剪切: 受力特点:直杆受到一对大小相等、方向相反、作用线平行
且相距很近的外力沿垂直于杆轴线方向作用 。
变形特点:杆件的横截面沿外力的方向发生相对错动 。
四川建筑职业技术学院
扭转: 受力特点:直杆的两端各受到一个外力偶Me的作用,且二者
的大小相等、转向相反,作用面与杆件的轴线垂直 。
实际情况:组成构件材料的各个晶粒是各向异性的。
理论分析:材料在任何一个方向的力学性能均可用于其他 方向。 说明:构件内所含微粒的数目极多,在构件内的排列又是 极不规则的,在宏观的研究中固体的性质并不显示方向的差

建筑力学第五章_静定结构位移计算

建筑力学第五章_静定结构位移计算

建筑力学第五章_静定结构位移计算静定结构位移计算是建筑力学中的重要内容,通过位移计算可以得到结构在荷载作用下的变形情况,从而评估结构的稳定性和安全性。

本文将介绍静定结构位移计算的基本原理和具体步骤。

首先,我们需要明确什么是静定结构。

静定结构指的是结构所有部件之间的变形由完全互相嵌入融合而不产生相对变动,这样的结构称为静定结构。

而非静定结构则是指结构所有部件之间的变形不会由于完全互相嵌入而互相制约的结构。

静定结构位移计算的基本原理是根据平衡条件和变形约束条件进行计算。

具体步骤如下:1.建立结构模型:根据实际情况,建立结构的几何形状和支撑条件的数学模型。

可以采用杆件模型、面单元模型等方法进行简化。

2.确定荷载:根据设计要求和实际情况确定结构所受的荷载,包括重力荷载、风荷载、地震荷载等。

3.建立方程:根据平衡条件,建立结构的受力平衡方程。

在平衡方程中,包括结构的受力平衡方程和变形约束条件等。

4.求解方程:根据建立的方程进行求解。

可以通过解析方法、数值方法或者计算机模拟等方式进行求解。

5.分析结果:得到结构在荷载作用下的位移情况。

根据计算结果进行分析,评估结构的稳定性和安全性。

如果结果超出了允许的范围,则需要对结构进行调整或优化重新计算。

静定结构位移计算过程中需要注意的是,要考虑结构的边界条件和材料的性质等因素。

边界条件包括支座的约束条件和结构的支承情况等,材料的性质包括刚度、强度等。

静定结构位移计算是建筑力学中的重要内容,对于结构的安全性和稳定性评估非常关键。

通过位移计算,可以得到结构的变形情况,为结构设计和优化提供重要的参考依据。

但需要注意的是,位移计算只能适用于静定结构,对于非静定结构需要采用其他方法进行分析和计算。

总之,静定结构位移计算是建筑力学中的重要内容,通过建立结构模型、确定荷载、建立方程、求解方程和分析结果等步骤,可以得到结构在荷载作用下的位移情况。

这对于评估结构的稳定性和安全性非常有帮助。

建筑力学 第五章答案

建筑力学 第五章答案

624435-2e 解:先后取4、5、3、6、2结点为研究对象,受力如图所示。

4结点:⎩⎨⎧=-=→⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛⨯--=+⎪⎭⎫ ⎝⎛⨯--→⎩⎨⎧=⨯--=⨯--→⎪⎩⎪⎨⎧==∑∑kN kN 316.30232202323210cos 0sin 10045432243452243434543N N N N N N N N X Y αα 5结点:⎩⎨⎧-===→⎩⎨⎧=--=-→⎪⎩⎪⎨⎧==∑∑kN kN130100455456535654NN N N N N Y X3结点:3432353432363432363635343236320cos cos cos 0sin sin sin 00222 1.580 4.74X N N N N N N Y N N N N N N N N N αααααα⎧=--=⎧⎪→→⎨⎨+-+==⎩⎪⎩--=⎧⎪⎪=⎧⎪→⎨⎨+-+==-⎩⎪⎪⎪⎩∑∑kN kN 6结点:656367676263620cos 0 4.501sin 0 1.500X N N N N N N N Y αα⎧=+-==⎧⎧⎪→→⎨⎨⎨---==-=⎩⎩⎪⎩∑∑kN kN2结点:23212723212726232127232127260cos cos cos 0sin sin sin 0002240X N N N N N N N Y N N N N N N N ααβααβ⎧=--=⎧⎪→→⎨⎨-++==⎩⎪⎩⎧-=⎪⎪⎪⎪⎨⎪++=⎪⎪⎪⎩∑∑2127 6.321.803N N =-⎧→⎨=⎩kN kN(a)方法二:内力分量法,先后研究4、5、3、6、2结点(1)4结点:43434345434543450101 3.1603Y Y Y NN X N X NX⎧=--==-=-⎧⎧⎧⎪→→→⎨⎨⎨⎨--==-==⎩⎩⎩⎪⎩∑∑kNkN由比例:434322/3X Y==,知:434545453.1633N X N X=-=-=-=,。

建筑力学第5章习题PPT课件

建筑力学第5章习题PPT课件
MA=0, MB=-2q×1=-8kN.m, AB段均布荷载,M图为向下凹抛物线; Mc=-8q×4+FB×6=-8kN.m, BC段均布荷载,M图为向下凹抛物线; MD=0, CD段均布荷载,M图为向下凹抛物线。
.
6
【5-8】
q
(a)
qa
qa
3qa2/2
qa2/2
A
a
Ca
B
A
C
B
A
C
B
FQ 图
M图
建筑力学
教材:建筑力学 主编:郭维俊 王皖临
第五章习题
邹定祺(重庆南方翻译学院)
.
1
【5-5】用截面法求图示梁1-1和2-2截面的剪力和弯矩。
【解】 (a)
F
F

A
1
2
B
1
2
l/3
l/3
l/3
FA
FB
A
1 M1 M2
1
FA
FQ1
l/3
F
2
B
2
FQ2 l/3 FB
(a)
(1)计算支座反力:FA=FB=F (2)将梁沿1-1截面假想截开,选左边卫研究对象,
MA=0, MB=ql2/8, AB段无荷载,FQ图为负值,M图为向上斜直 线;MC=0,BC段均布荷载,M图为向下凹抛物线。
.
8
(c) q
5qa2/2
2qa
F=qa
qa
qa
qa2
A
C
B
A
a
a
C
B
A
C
B
FQ 图
M图
【解】悬臂梁可以不求必支座反力,可从右向左计算。

建筑力学习题第五章

建筑力学习题第五章

1.已知一剪支梁如图所示,荷载P1=24KN,P2=80KN,求梁跨中截面E处的剪力Q E和弯矩M E。

解(1)求支反力,梁上无水平力,故只有垂直方向支反力V A和V B。

假设支应力的方向如图所示。

由平衡条件∑M A=0 V B•4-P1•1-P2•2.5=0V B=1/4(24•1+80•2.5)=56KN∑M B=0 V A•4-P1•3-P2•1.5=0V A=1/4(24•3+80•1.5)=48KN用∑My=0校核V A+V B-P1-P2=48+56-24-80=0校核结果表明支反力计算无误。

(2)用截面法求剪力Q E和弯矩M E用截面法在截面E处切开,考察左段梁的平衡,并假设Q E和M E均为正值,如图b所示。

由∑y=0V A-P1-Q E=0Q E= V A-P1=48-24=24KN∑M E =0M E-V A•2+P1•1=0M E= V A•2-P1•1=48•2-24•1=72KN•M得到的QE和ME 均为正值,说明假设方向对,E截面上的剪力QE和弯矩ME 均为正值。

2.简支梁受均布力q和集中力偶ME=ql2/4的作用,如图a所示。

求C截面的剪力和弯矩。

解(1)支反力此题求支反力时可用叠加法求较为方便,即分别求出在q和M E单独作用时梁的支反力,然后求其代数和:V A=ql/2+M E/L= ql/2+ ql2/4=3ql/4V B= ql/2-M E/L= ql/4再由∑y=0校核V A+V B-ql=3ql/4+ ql/4-ql=0上式表明支反力计算无误。

在求C截面的内力时,因为C截面作用有集中力偶M E,故C截面稍左面和稍右面的内力可能不同,现分别计算如下:(2)求C截面稍左截面处的剪力Q C左和弯矩M C左,如图b由∑y=0Q C左-V A+ qL/2=0故Q C左= V A-qL/2= 3ql/4-ql/2= ql/4由∑M C=0M C左-V A L/2+ qL/2·L/4=0故M C左= V A L/2-qL/2·L/4= 3qL/4·L/2-qL/2·L/4= ql2/4(3)求C截面稍右截面处的剪力Q C右和弯矩M C右由∑y=0Q C右-V A+ qL/2=0故Q C左= V A-qL/2= 3ql/4-ql/2= ql/4由∑M C=0M C右-V A L/2+ qL/2·L/4+=0故M C左= V A L/2-qL/2·L/4= 3qL/4·L/2-qL/2·L/4= ql2/43.简支梁作用均布荷载q,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算题( 第五章 ) 5.1 试作下列各轴的扭矩图。

5.1图
5.2图示传动轴,转速
m in
r
300
=
n,A轮为主动轮,输入功率kW
50
=
A
P,B、C、D为从动轮,输
出功率分别为
kW
10
=
B
P,kW
20
=
=
D
C
P
P。

⑴试作轴的扭矩图;⑵如果将轮A和轮C的位置
对调,试分析对轴受力是否有利。

题5.2图 题5.3图
5.3 T 为圆轴横截面上的扭矩,试画出截面上与T 对应的切应力分布图。

5.4 图示圆截面空心轴,外径mm 40=D ,内径mm 20=d ,扭矩m kN 1⋅=T ,
试计算mm 15=ρ的A 点处的扭转切应力A τ以
及横截面上的最大和最小的扭转切应力。

题5.4图
5.5 一直径为mm 90的圆截面轴,其转速为m in r 45,设横截面上的最大切应力为MPa 50,试求所传递的功率。

5.6 将直径mm 2=d ,长m 4=l 的钢丝一端嵌紧,另一端扭转一整圈,已知切变模量GPa 80=G ,求此时钢丝内的最大切应力
m ax τ。

5.7 某钢轴直径mm 80=d ,扭矩m kN 4.2⋅=T ,材料的许用切应力[]MPa 45=τ,单位长度许用扭
转角[]m )(5.0 =θ,切变模量GPa 80=G ,试校核此轴的强度和刚度。

5.8 阶梯形圆轴直径分别为d1=40mm ,d2=70mm ,轴上装有三个皮带轮,如图所示。

已知由轮3输入的功率为N3=3kW ,轮1输出的功率为N1=13kW ,轴作匀速转动,转速n=200r/min ,材料的许用切应力[]MPa 60=τ,GPa 80=G ,许用扭转角[]m 2
=θ=。

试校核轴的强度和刚度。

题5.8图
5.9 一钢轴受扭矩m kN 2.1⋅=T ,许用切应力[]MPa 50=τ,许用扭转角[]5
.0 =θ,切变模量
GPa 80=G ,试选择轴的直径。

5.10 桥式起重机题 5.10图所示。

若传动轴传递的力偶矩
m kN M e ⋅=08.1,材料的许用切应力
[]MPa 40=τ,GPa 80=G ,同时规定
=][θ0.5°/m 。

试设计轴的直径。

题5.10图
5.11 某空心钢轴,内外径之比8.0=α,转速m in r 250=n ,传递功率kW 60=N ,已知许用切应力[]MPa 40=τ,许用扭转角[]m )
(8.0 =θ,切变模量GPa 80=G ,试设计钢轴的内径和外径。

5.12 某传动轴,横截面上的最大扭矩m kN 5.1⋅=T ,许用切应力[]MPa 50=τ,试按下列两种方案确定截面直径:⑴横截面为实心圆截面;⑵横截面为9.0=α的空心圆截面。

5.13 横截面面积相等的实心轴和空心轴,两轴材料相同,受同样的扭矩T 作用,已知实心轴直径m m 301=d ,空心轴内外径之比值8.0==D d α。

试求二者最大切应力之比及单位长度扭转角之比。

5.14 钢质实心轴和铝质空心轴(内外径比值
6.0=α)的横截面面积相等,钢轴许用应力[]MPa 801=τ,铝轴许用应力[]MPa 502=τ,若仅从强度条件考虑,哪一根轴能承受较大的扭矩?
5.15 实心轴和空心轴通过牙嵌式离合器连接在一起,已知轴的转速m in r 100=n ,传递功率kW 5.7=N ,材料的许用切应力[]MPa 40=τ,试选择实心轴直径1d 和内外径比值5.0=α的空心轴外径2D 。

题5.15图
5.16 已知传动轴的功率分别为kW 300=A N ,kW 200=B N ,kW 500=C N ,若AB 段和BC 段轴的
最大切应力相同,试求此两段轴的直径之比及两段轴的扭转角之比。

题5.16图
5.17 已知轴的许用切应力[]MPa 21=τ,切变模量GPa 80=G ,许用单位扭转角[]m )(3.0 =θ,试
问此轴的直径d 达到多大时,轴的直径应由强度条件决定,而刚度条件总可满足。

5.18 长度、材料、外力偶矩相同的两根圆轴,一根是实心轴,直径为1d ,另一根为空心轴,内外径之比8.022==D d α,试求两轴具有相等强度时的重量比和刚度比。

5.19 图示圆轴承受集度为m 的均匀分布的扭力矩作用,已知轴的抗扭刚度
p GI 和长度l ,试求B 截面的
扭转角B ϕ。

题5.18图 题5.19图
5.20 传动轴外径mm 50=D ,长度mm 510=l ,1l 段内径m m 251=d ,2l 段内径m m 382=d ,欲使轴两段扭转角相等,则2l 应是多长。

5.21图5.21所示一圆轴,直径D=110mm ,力偶矩Me=14kN.m ,材料的许用切应力MPa 70][=τ,试校核轴的强度。

(安全)
题5.21图
部分参考答案
5.1~5.3略
5.4 MPa A 7.63=τ,MPa 9.84max =τ,MPa 4.42min =τ
5.5 kW P 7.33=
5.6 MPa 126max =τ
5.7 MPa 9.23max =τ,m /)(43.0 =θ
5.8 ][4.48max ττ<=MPa AC ,][9.20max ττ<=MPa DB ,
][/74.10max θθ
<=m ,安全 5.9 mm d 7.64=
5.10 mm D 63=
5.11 mm D 79=,mm d 63=
5.12 mm d 541=,mm D 762=,mm d 7.682=
5.13 实心轴与空心轴最大切应力之比为2.733, 实心轴与空心轴单位长度转角之比为4.56,
5.14 0
6.1T /=钢铝T
5.15 45m m d 1≥,46m m D 2≥
5.16 18
6.1d /d 21=,2121/843.0/ =ϕϕ
5.17 100mm d ≥
5.18 重量比为0.51或1.96,刚度之比为1.18或0.85 5.19 P
B GI M 22
=ϕ 5.20 mm 2122=。

相关文档
最新文档