物理仿真实验

合集下载

大学物理仿真试验仿真实验

大学物理仿真试验仿真实验

大学物理仿真实验实验名称:声速的测定目的要求:1.了解超声波的发射和接收方法。

2.加深对振动合成、波动干涉等理论知识的理解。

3.掌握用驻波法和相位法测声速。

实验原理:由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。

本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。

声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。

下图是超声波测声速实验装置图。

驻波法测波长设沿x 方向入射波的方程为:沿x 负方向反射波方程为:两波相遇干涉时,在空间某点的合振动方程为(驻波方程):12cos 2()cos 2()x xy y y A ft A ft ππλλ=+=-++(2cos 2)cos 2xA ft ππλ=当2/λn x =;(n =1,2,…)位置时,声振动振幅最大,为2A ,称为波腹,当4/)12(λ-=n x ,(n =1,2,…)位置上声振动振幅为零,这些点称为波节。

其余各点的振幅在零和最大值之间。

两相邻波腹(或波节)间的距离为λ/2即半波长。

相位比较法测波长从换能器S1发出的超声波到达接收器S 2,所以在同一时刻S 1与S 2处的波有一相位差:其中λ是波长,x 为S 1和S 2之间距离)。

因为x 改变一个波长时,相位差就改变2π。

利用李萨如图形就可以测得超声波的波长。

仪器用具:1.声速的测量实验仪器包括超声声速测定仪、函数信号发生器和示波器。

2.超声声速测定仪主要部件是两个压电陶瓷换能器和一个游标卡尺。

3.函数信号发生器1cos 2()xy A ft πλ=-2cos 2()x y A ft πλ=+提供一定频率的信号,使之等于系统的谐振频率。

4.示波器示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。

并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。

实验内容:1.调整仪器使系统处于最佳工作状态。

【大学物理实验(含 数据+思考题)】仿真实验 落球法测定液体的粘度

【大学物理实验(含 数据+思考题)】仿真实验  落球法测定液体的粘度

仿真实验 / 落球法测定液体的粘度一、实验目的(1)观察液体的粘滞现象;(2)用落球法测量不同温度下蓖麻油的粘度;(3)巩固使用基本测量仪器的技能;(4)了解PID温度控制的原理。

二、实验仪器变温黏度测量仪,ZKY-PID温控实验仪,停表,螺旋测微器,钢球若干,金属镊子。

三、实验原理1.落球法测定液体黏度原理一个在静止液体中下落的小球受到重力、浮力和黏滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示黏滞阻力的斯托克斯公式:(1)(1)式中d为小球直径。

由于黏滞阻力与小球速度v成正比,小球在下落很短一段距离后,所受外力达到平衡,小球将以匀速下落,此时有:(2)式中ρ为小球密度,ρ为液体密度。

由(2)式可解出黏度η的表达式:(3)本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时黏滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:(4)当小球的密度较大,直径不是太小,而液体的黏度值又较小时,小球在液体会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对中的平衡速度v斯托克斯公式的影响:(5)其中,Re称为雷诺数,是表征液体运动状态的无量纲参数。

(6)当Re小于0.1时,可认为(1)、(4)式成立。

当0.1<Re<1时,应考虑(5)式中1级修正项的影响,当Re大于1时,还须考虑高次修正项。

考虑(5)式中1级修正项的影响及玻璃管的影响后,黏度η1可表示为:(7)由于3Re/16是远小于1的数,将1/(1+3Re/16)按幂级数展开后近似为1-3Re/16,(7)式又可表示为:(8)已知或测量得到ρ、ρ、D、d、v等参数后,由(4)式计算黏度η,再由(6)式计算Re,若需计算Re的1级修正,则由(8)式计算经修正的黏度η1。

在国际单位制中,η的单位是Pa·s(帕斯卡·秒),在厘米,克,秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:1Pa·s=10P=1000cP (9)2.PID条件控制PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图1说明。

大学物理仿真实验报告

大学物理仿真实验报告

大学物理仿真实验报告大学物理仿真实验报告引言在大学物理实验中,物理仿真实验起着重要的作用。

通过仿真实验,学生可以在虚拟环境中进行各种物理实验,观察和分析实验现象,从而加深对物理原理的理解和掌握。

本文将以大学物理仿真实验为主题,探讨其在物理教学中的重要性和应用价值。

一、物理仿真实验的意义物理仿真实验是一种虚拟实验教学手段,通过计算机技术和数学模型,将真实的物理实验过程模拟到计算机软件中,使学生可以在虚拟环境中进行实验操作和观察实验现象。

与传统实验相比,物理仿真实验具有以下几个方面的意义。

1. 提供安全环境物理实验中常常涉及到高温、高压、高电压等危险因素,如果学生没有足够的实验经验和安全意识,很容易发生事故。

而物理仿真实验可以提供一个安全的环境,让学生在虚拟场景中进行实验操作,避免了实验过程中的安全隐患。

2. 提供多样实验条件物理仿真实验可以根据不同的实验要求和学生的学习进度,提供多样的实验条件。

学生可以通过调整参数、改变实验环境等方式,观察和分析不同条件下的实验现象,深入理解物理原理。

3. 提供实验重复性在传统实验中,学生可能因为操作不当或其他原因导致实验结果不准确或失败。

而物理仿真实验可以提供实验的重复性,学生可以反复进行实验,找出问题所在,并改正错误,从而提高实验的准确性和可靠性。

二、物理仿真实验的应用价值物理仿真实验在物理教学中具有广泛的应用价值,不仅可以提高学生的实验操作能力,还可以培养学生的科学思维和创新能力。

1. 提高实验操作能力物理仿真实验可以让学生熟悉实验仪器的使用方法和实验步骤,培养他们的实验操作能力。

通过虚拟实验,学生可以反复练习实验操作,掌握实验技巧,提高实验的准确性和效率。

2. 培养科学思维物理仿真实验可以培养学生的科学思维,让他们学会观察、分析和解释实验现象。

在虚拟实验中,学生需要通过观察实验现象、整理数据、分析规律等步骤,从而培养他们的科学思维和逻辑思维能力。

3. 提升创新能力物理仿真实验可以激发学生的创新能力。

大学物理仿真实验实验报告_分光计

大学物理仿真实验实验报告_分光计

大学物理仿真实验实验报告_分光计.大学物理仿真实验实验报告分光计土木21班2120702008崔天龙..验项目名称:分光计一、实验目的1(使学生深入了解分光计的构造和设计原理,学会调整分光计的正确方法;2(了解用最小偏向角法测棱镜材料折射率的基本原理;3(完成测量折射率实验,并正确分析实验误差。

二、实验原理1(分光计的结构分光计主要由三部分:望远镜,平行光管和主体(底座、度盘和载物台)组成。

附件有小灯泡、小灯泡的低压电源以及看度盘的放大镜。

望远镜的目镜叫做阿贝目镜,如图1所示。

2(分光计的调整原理和方法调整分光计,最后要达到下列要求:(1)平行光管发出平行光;(2)望远镜对平行光聚焦(即接收平行光);(3)望远镜、平行光管的光轴垂直仪器公共轴。

分光计调整的关键是调好望远镜,其他的调整可以以望远镜为标准。

在调整望远镜时,可以先将小灯泡的光引入分划板,当分划板的位置刚好在望远镜的焦平面上时,从载物台上放置的平面镜上反射回来的光正好落在分划板上形成一个清晰的十字象。

利用这个原理可以将望远镜调好(出射平行光以及使望远镜的主轴与仪器主轴垂直),当望远镜调好后就可以利用望远镜调节平行光管,此时就可以进行光线的角度的测量了。

3(用最小偏向角法测三棱镜材料的折射率..如下图,一束单色光以角入射到AB面上,经棱镜两次折射后,从AC面射出来,出射角为。

入射光和出射光之间的夹角称为偏向角。

当棱镜顶角A一定时,偏向角的大小随入射角的变化而变化。

而当=时,为最小(证明略)。

这时的偏向角称为最小偏向角,记为。

由上图可以看出,这时设棱镜材料折射率为n,则故..由此可知,要求得棱镜材料的折射率n,必须测出其顶角A和最小偏向角。

三、实验仪器图 1 : 分光计仪器分光计是一种基本的光学测量仪器,能准确快捷地测量各种角度,该仪器配上棱镜、光栅等可用于光谱测量。

配上偏振片、波片等,可作为椭偏仪使用。

图 2 : 分光计分光计中心为载物台,外围为刻度盘和游标盘,双游标的作用是为了消除刻度盘和游标盘中心不重合造成的偏心误差。

物理仿真实验报告

物理仿真实验报告

物理仿真实验报告物理仿真实验报告引言:物理仿真实验是一种通过计算机软件模拟真实物理实验的方法,它可以帮助我们深入理解物理现象和原理。

本篇报告将介绍我进行的一次物理仿真实验,重点讨论实验的目的、方法、结果和结论。

实验目的:本次实验的目的是研究物体在受到不同力的作用下的运动规律,并探究力对物体运动的影响。

通过仿真实验,我们可以观察和分析物体在不同力的作用下的运动轨迹、速度和加速度的变化。

实验方法:我们使用了一款物理仿真软件,在虚拟环境中进行实验。

首先,我们选择了一个简单的物理模型,如自由落体或平抛运动。

然后,我们设置不同的初始条件和力的大小,观察物体的运动情况。

通过改变初始速度、质量或施加的力的方向,我们可以研究不同情况下的运动规律。

实验结果:在实验中,我们观察到了许多有趣的现象和规律。

例如,在自由落体实验中,我们发现物体在没有外力作用下以恒定的加速度向下运动,这个加速度被称为重力加速度。

我们还发现,物体的质量对自由落体的运动没有影响,所有物体都以相同的加速度自由下落。

在平抛运动实验中,我们发现物体在水平方向上做匀速直线运动,而在竖直方向上受到重力的影响而做自由落体运动。

通过改变施加的力的大小和方向,我们还研究了物体在斜面上滑动的情况。

我们发现,施加的力越大,物体的加速度越大,滑动的速度也越快。

而改变施加力的方向会改变物体在斜面上的运动轨迹,例如,当施加的力与斜面垂直时,物体只会沿着斜面下滑,而不会在水平方向上运动。

结论:通过这次物理仿真实验,我们深入了解了物体在受到不同力的作用下的运动规律。

我们发现,物体的质量对自由落体和平抛运动没有影响,而施加的力的大小和方向会直接影响物体的加速度和运动轨迹。

这些发现对我们理解和应用物理学原理具有重要意义。

在实际的物理实验中,我们往往受到实验条件的限制,无法进行大范围的变量改变和数据记录。

而物理仿真实验则为我们提供了一个灵活、可控的环境,使我们能够更深入地研究物理现象。

大学物理仿真实验报告

大学物理仿真实验报告

实验名称:光电效应实验实验日期:2023年4月10日学号:2120302003实验人员:张三、李四一、实验目的1. 通过仿真实验,理解光电效应的基本原理。

2. 掌握光电效应方程的推导过程。

3. 分析入射光频率与光电子最大初动能之间的关系。

4. 熟悉光电效应在光电探测技术中的应用。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应方程,光电子的最大初动能 \(E_k\) 与入射光的频率 \(v\) 和金属的逸出功 \(W_0\) 之间存在以下关系:\[E_k = hv - W_0\]其中,\(h\) 为普朗克常数。

三、实验步骤1. 打开仿真软件,设置入射光的频率和强度。

2. 调整金属表面的逸出功,观察光电子的发射情况。

3. 记录不同频率入射光下的光电子最大初动能。

4. 分析入射光频率与光电子最大初动能之间的关系。

四、实验结果与分析1. 当入射光的频率较低时,光电子的发射率较低,且光电子的最大初动能较小。

2. 随着入射光频率的增加,光电子的发射率逐渐增加,光电子的最大初动能也随之增加。

3. 当入射光的频率达到一定值时,光电子的发射率达到最大,此时光电子的最大初动能也达到最大值。

4. 当入射光的频率继续增加时,光电子的发射率逐渐降低,光电子的最大初动能也逐渐降低。

根据实验结果,可以得出以下结论:1. 光电效应方程 \(E_k = hv - W_0\) 是正确的。

2. 入射光的频率与光电子的最大初动能之间存在正相关关系。

3. 光电效应在光电探测技术中具有广泛的应用。

五、实验总结本次实验通过仿真实验,使我们深入理解了光电效应的基本原理,掌握了光电效应方程的推导过程,并分析了入射光频率与光电子最大初动能之间的关系。

通过实验,我们认识到光电效应在光电探测技术中的重要性,为今后的学习和研究打下了坚实的基础。

六、实验拓展1. 研究不同金属的逸出功对光电效应的影响。

2. 探究光强度对光电效应的影响。

大学物理仿真实验报告

大学物理仿真实验报告

大学物理仿真实验报告目录1. 实验目的和意义1.1 实验目的1.2 实验意义2. 理论背景介绍2.1 牛顿力学2.2 动量守恒定律2.3 能量守恒定律3. 实验器材和原理3.1 实验器材3.2 实验原理4. 实验步骤4.1 实验准备4.2 实验具体步骤5. 实验数据记录及分析5.1 数据记录5.2 数据分析6. 实验结论与讨论6.1 实验结论6.2 结论讨论7. 实验中的问题及解决方法7.1 问题描述7.2 解决方法实验目的和意义实验目的本实验旨在通过物理仿真模拟,探究运动物体的力学规律,深入理解牛顿力学原理以及动量守恒和能量守恒定律。

实验意义通过本实验,可以加深对物理定律的理解,提高实验操作能力,培养科学思维和分析问题的能力。

理论背景介绍牛顿力学牛顿力学是经典物理力学的一个重要分支,主要描述了物体受力下的运动规律,包括牛顿三定律等内容。

动量守恒定律动量守恒定律表明,在一个封闭系统内,系统的总动量保持不变,即系统内所有物体的动量之和在任意时刻都是恒定的。

能量守恒定律能量守恒定律是物理学中的一个基本原理,即在一个封闭系统内,系统的总能量保持不变,能量可以转化形式但总量不变。

实验器材和原理实验器材本实验所需器材包括计算机、物理仿真软件等。

实验原理实验基于牛顿力学原理,通过模拟不同条件下物体的运动,验证动量守恒和能量守恒定律。

实验步骤实验准备1. 打开计算机,启动物理仿真软件。

2. 设置实验初始参数,包括物体质量、速度等。

实验具体步骤1. 进行单个物体的运动模拟,记录相关数据。

2. 进行碰撞实验,观察动量和能量的转移情况。

3. 分析实验结果,得出结论。

实验数据记录及分析数据记录在实验过程中记录了单个物体的运动轨迹、速度等数据,以及碰撞实验中的动量和能量转移情况。

数据分析通过对实验数据的分析,可以验证动量守恒和能量守恒定律是否得到满足,进一步探讨物体运动规律。

实验结论与讨论实验结论实验结果表明,在所设定条件下,动量守恒和能量守恒定律是成立的,验证了物理定律在模拟实验中的适用性。

大学物理仿真实验报告-利用单摆测量重力加速度(2)

大学物理仿真实验报告-利用单摆测量重力加速度(2)

西安交通大学
大学物理仿真实验
实验报告
利用单摆测量重力加速度
实验简介
单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。

本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。

实验原理
单摆的结构参考图1单摆仪,一级近似的周期公式为
T=2π√l
g
由此通过测量周期摆长求重力加速度。

实验仪器
单摆仪,摆幅测量标尺,钢球,游标卡尺,秒表,刻度尺实验过程及原始记录
测量内容及数据处理
T=1.825s
L=91.50cm
g=4π2L−D2⁄
T2
=4π2
(91.50−1.7462⁄)
1.8252
=10.74m s2

E g=
△D2⁄
L−D2⁄
=
0.022⁄
91.50−1.7462⁄
=0.11%△g=gE g=0.012m s2

所以实验结果:
g=10.74±0.012m/s2
误差分析
1.游标卡尺,直尺等读书误差;
2.钢球摆过平衡位置时未能及时计时;
总结反思
实验结果与实际结果存在一定偏差,实验过程检查无误,原理清晰,以后做类似实验需要设计更为精确的实验方案。

高中物理仿真实验教案

高中物理仿真实验教案

高中物理仿真实验教案
实验目的:通过模拟光线在不同介质中的折射过程,探究光的折射规律。

实验器材:光源、直尺、三棱镜、半圆筒形容器、白纸等。

实验原理:光线从一种介质射入到另一种介质中时,会发生折射现象。

根据折射定律可知,入射角和折射角之间的关系可以由下式描述,即$n_1 \cdot \sin \theta_1 = n_2 \cdot \sin
\theta_2$,其中$n_1$和$n_2$分别为两种介质的折射率,$\theta_1$和$\theta_2$分别为
光线在两种介质中的入射角和折射角。

实验步骤:
1. 将光源放置在一定距离外,并调整使其光线直射。

2. 将半圆筒形容器中加满水,放置在光源与直尺之间。

3. 在直尺上标注出不同角度的刻度。

4. 将三棱镜放在水中,使得光线从空气射入水中,观察并测量入射角和折射角。

5. 重复上述步骤,改变入射角度并记录数据。

实验评估:根据实验数据,绘制入射角和折射角的关系图,并与理论值进行比较分析,验
证折射定律的准确性。

拓展实验:可以将实验环境改为不同介质条件下进行光的折射实验,如空气和玻璃的折射
实验,以及不同角度的光线折射实验等。

实验总结:通过本实验,我们深入理解了光的折射规律,加深了对光学知识的理解和掌握,提高了实验操作能力和数据分析能力。

物理仿真实验的研究内容

物理仿真实验的研究内容

物理仿真实验的研究内容物理仿真实验是一种基于计算机技术的实验方法,它通过计算机软件对实验环境进行模拟,从而达到进行实验的效果。

物理仿真实验具有许多优点,如节省时间、降低成本、提高实验效率等。

下面就介绍一些物理仿真实验的研究内容。

1. 物理仿真实验的基本原理物理仿真实验的基本原理是利用计算机技术对物理过程进行模拟,从而得到实验结果。

物理仿真实验可以分为离散事件仿真和连续事件仿真两种。

离散事件仿真是指将物理过程离散化为一些离散事件,通过计算机模拟这些事件的发生和演变来得到实验结果。

连续事件仿真则是将物理过程连续化,通过计算机模拟这些连续过程的演变来得到实验结果。

2. 物理仿真实验的应用领域物理仿真实验的应用领域非常广泛,包括物理学、工程学、地球科学、医学等各个领域。

在物理学中,物理仿真实验可以用来研究各种物理现象,如量子力学、相对论等;在工程学中,物理仿真实验可以用来研究各种工程问题,如空气动力学、热力学等;在地球科学中,物理仿真实验可以用来研究地球内部的物理过程,如地震、火山等;在医学中,物理仿真实验可以用来研究人体的各种物理过程,如心血管系统、呼吸系统等。

3. 物理仿真实验的模拟方法物理仿真实验的模拟方法包括数值模拟和物理模拟两种。

数值模拟是指通过计算机对物理过程进行数值计算,从而得到实验结果。

物理模拟则是通过对实验环境进行物理构建,再通过计算机对其进行控制和监测,从而得到实验结果。

数值模拟主要适用于离散事件仿真,物理模拟主要适用于连续事件仿真。

4. 物理仿真实验的软件工具物理仿真实验的软件工具包括MATLAB、COMSOL、ANSYS等。

MATLAB是一种基于矩阵运算的高级计算机语言,可以用于各种科学计算,包括数值计算、符号计算、图像处理等。

COMSOL是一种基于有限元分析的物理仿真软件,可以用于各种工程问题的模拟和分析。

ANSYS是一种基于有限元分析的工程仿真软件,可以用于各种工程问题的模拟和分析。

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告

⼤学物理实验仿真实验实验报告仿真实验(单摆测重⼒加速度和单透镜焦距的测定)引⾔随着计算机应⽤的普及,在各个应⽤领域都采⽤计算机设计和仿真,在⼤学物理实验课教学中,除了实际操作外还可以进⾏计算机仿真实验,对有些内容采⽤仿真实验也可以起到很好的效果。

⼀、实验⽬的:1、了解仿真实验特点2、学会⽤仿真实验完成单摆测重⼒加速度3、学会⽤仿真实验完成单透镜焦距的测定⼆、实验仪器:计算机、仿真软件三、实验原理1、单摆的⼯作原理单摆在摆动过程中,当摆⾓⼩于5度时,其运动为简谐运动,周期2224LT g Tπ=?=,通过测定摆长L 与T 可测定加速度g 。

详细请见:课本240-243页 2、单透镜焦距测定的原理凸透镜的成像规律为:像的⼤⼩和位置是依照物体离透镜的距离⽽决定的当u f >>时,极远处的物体经过透镜在后焦点附近成缩⼩的倒⽴实像。

当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变⼤。

当u f =时,物体位于前焦点,像存在于⽆穷远处。

当u f <时,物体位于前焦点以内,像为正⽴放⼤的虚像,与物体位于同侧,由于虚像点是光线反⽅向延长的交点,因此不能⽤像屏接收,只能通过透镜观察。

(1)、⾃准直法测凸透镜的焦距光路图如下图1所⽰。

当物体A 处在凸透镜的焦距平⾯时,物A 上各点发出的光束,经透镜后成为不同⽅向的平⾏光束。

若⽤⼀与主光轴垂直的平⾯镜M 将平⾏光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平⾯上,此关系就称为⾃准直原理。

所成像是⼀个与原物等⼤的倒⽴实像A ′。

所以⾃准直法的特点是,物、像在同⼀焦平⾯上。

⾃准直法除了⽤于测量透镜焦距外,还是光学仪器调节中常⽤的重要⽅法。

凸透镜焦距: 12f x x =- (1)x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。

(2)、贝塞尔法(共轭法,⼆次成像法)测凸透镜的焦利⽤凸透镜物像共轭对称成像的性质测量凸透镜焦距的⽅法,叫共轭法。

大学物理仿真实验——霍尔效应

大学物理仿真实验——霍尔效应

仿真实验(霍尔效应)------霍尔效应1目的:(1)霍尔效应原理及霍尔元件有关参数的含义和作用)霍尔效应原理及霍尔元件有关参数的含义和作用(2)测绘霍尔元件的V H —Is Is,,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作电流Is Is,磁场应强度,磁场应强度B 及励磁电流I M 之间的关系。

之间的关系。

(3)学习利用霍尔效应测量磁感应强度B 及磁场分布。

及磁场分布。

(4)学习用“对称交换测量法”消除负效应产生的系统误差。

)学习用“对称交换测量法”消除负效应产生的系统误差。

2简单的实验报告简单的实验报告 数据分析数据分析(1)实验原理霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如下图向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如下图(1)(1)(1)所示,磁场所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流Is Is(称为工作电流),假设(称为工作电流),假设载流子为电子(载流子为电子(N N 型半导体材料),它沿着与电流Is 相反的X 负向运动。

由于洛仑兹力fL作用,电子即向图中虚线箭头所指的位于y 轴负方向的B 侧偏转,并使B 侧形成电子积累,而相对的A 侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力形成的反向电场力 f E 的作用。

随着电荷积累的增加,f E 增大,当两力大小相等(方向相反)时,相反)时, f L =-f E ,则电子积累便达到动态平衡。

这时在A 、B 两端面之间建立的电场称为霍尔电场E H ,相应的电势差称为霍尔电势V H 。

设电子按平均速度V ,向图示的X 负方向运动,在磁场B 作用下,所受洛仑兹力为:作用下,所受洛仑兹力为:f L =-e V B式中:式中:e e e 为电子电量,为电子电量,V 为电子漂移平均速度,为电子漂移平均速度,B B 为磁感应强度。

大学物理仿真实验报告

大学物理仿真实验报告

大学物理仿真实验报告篇一:大学物理仿真实验报告大学物理仿真实验报告实验日期:2011年5月31日实验人员:机自实验名称:热敏电阻的温度特性一、实验目的:1、了解热敏电阻的电阻—温度特性及测温原理;2、学习惠斯通电桥的原理及使用方法;3、学习坐标变换、曲线改直的技巧。

二、实验原理:热敏电阻---实验原理半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A、B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为惠斯通电桥的工作原理:如图所示:四个电阻R0,R1,R2,Rx 组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。

在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。

当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。

平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx 即可求出。

电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。

实验仪器三、实验仪器及使用方法:直流单臂电桥、检流计、待测热敏电阻和温度计、调压器、稳压电源。

四、实验内容:1、从室温开始,每隔5°C测量一次Rt,直到85°C。

撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。

2、作ln Rt ~ (R1 / T)曲线,确定式(R1)中常数A和B五、数据记录及处理:1、数据处理结果如下:2、作ln Rt ~ (R1 / T)曲线如下:六、实验结论,误差分析及建议:1、实验结论:了解了惠斯通电桥的原理及使用方法;基本掌握坐标变换、曲线改直的技巧。

作ln Rt ~ (R1 / T)曲线,成线性关系。

2、误差分析:由于在记录过程中温度计视数在变化,故出现误差; 电源不稳定,造成系统误差;数据处理时产生偶然误差。

3、建议:1)在使用检流计时,要注意保护检流计,不要让大电流通过检流计,实验中间要用跃接2)实验过程中要注意电池按钮和接通检流计按钮的使用,检流计按钮先使用粗,然后再使用细,不要两个按钮同时使用。

仿真物理实验-受迫振动

仿真物理实验-受迫振动

受迫振动一、实验目的:本实验目的在于研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。

二、实验原理:受迫振动图1 受迫振动质量M的重物按图1放置在两个弹簧中间。

静止平衡时,重物收到的合外力为0。

当重物被偏离平衡位置时,系统开始振动。

由于阻尼衰减(例如摩擦力),最终系统会停止振动。

振动频率较低时,可以近似认为阻力与振动频率成线性关系。

作用在重物上的合力:其中 k1, k2是弹簧的倔强系数。

K = k+ k2是系统的等效倔强系数。

1x是重物偏离平衡位置的距离,是阻尼系数。

因此重物的运动方程可表示为:其中 and 。

在欠阻尼状态时() ,方程解为:A, 由系统初始态决定。

方程的解是一幅度衰减的谐振动,如图2所示。

图2 衰减振动振动频率是:(1)如果重物下面的弹簧由一个幅度为a的振荡器驱动,那么这个弹簧作用于重物的力是。

此时重物的运动方程为:方程的稳态解为:(2)其中。

图3显示振动的幅度与频率的关系。

图3 衰减振动幅度与振动频率关系弱阻尼情况下,当,振动的幅度会很大,最大值出现在:(3)幅度衰减一半的区域:(4)三、实验仪器:砝码挂钩、砝码、电子天平、弹簧、振荡器、信号发生器、米尺、秒表。

四、实验内容: 1.测量弹簧倔强系数。

(1)测量两根弹簧和砝码挂钩的质量。

在实验场景中单击鼠标右键弹出菜单,对挂钩和弹簧进行称重。

通过鼠标选择并砝码并拖放到电子天平上完成砝码的称重操作。

(2)按照实验原理中图1安装好振动系统,把较紧的弹簧放在面。

(3)在砝码盘上添加砝码并记录砝码挂钩的偏移。

使用砝码前先用电子天平称量砝码。

使用鼠标选择砝码,并把砝码拖放在需要的位置。

(4)画出质量m和挂钩偏移x的曲线,算出系统等效弹簧倔强系数K。

2.阻尼振动(1)调整挂钩上砝码质量,使弹簧的长度基本相等。

(2)计算振动系统的本征频率f o 。

(3)连接好信号发生器和振荡器,打开信号发生器,设定频率为f o 。

大学物理仿真实验

大学物理仿真实验

大学物理仿真实验大学物理仿真实验大学物理仿真实验钢丝杨氏模量测定姓名:学号:学院:班级:实验日期:年月日一、实验名称:钢丝杨氏模量测定二、实验目的:1.测量钢丝杨氏模量;2.掌握利用光杠杆测定微小形变的方法;3.采用逐差法和作图法得出测量结果,掌握这两种数据处理的方法。

三、实验仪器:支架和金属钢丝,光杠杆,镜尺组四、实验原理:在胡克定律成立的范围内,应力和应变之比是一个常数,即E=(F/S)/(△L/L)=FL/S△L(1)E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。

某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。

杨氏模量的大小标志了材料的刚性。

通过式(1),在样品截面积S上的作用应力为F,测量引起的相对伸长量ΔL/L,即可计算出材料的杨氏模量E。

因一般伸长量ΔL很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL。

光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触。

当杠杆支脚随被测物上升或下降微小距离ΔL时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角。

当θ很小时,≈tan?=△L/l(2)式中l为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。

根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角tan2?≈2?=b/D(3)式中D为镜面到标尺的距离,b为从望远镜中观察到的标尺移动的距离。

从(2)和(3)两式得到△L/l=b/(2D)(4)由此得△L=bl/(2D)(5)合并(1)和(4)两式得E=2DLF/(Slb)(6)式中2D/l叫做光杠杆的放大倍数。

只要测量出L、D、l和d(S=Πdd/4)及一系列的F与b之后,就可以由式(5)确定金属丝的杨氏模量E。

五、实验内容1.调节仪器(1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

物理实验技术中的仿真实验设计与评估技巧

物理实验技术中的仿真实验设计与评估技巧

物理实验技术中的仿真实验设计与评估技巧引言:物理实验是学习物理学的重要方法之一,可以帮助学生更好地理解和应用物理理论。

然而,由于种种限制,现实实验可能无法涵盖所有的内容和现象。

这时,仿真实验成为一种重要的补充和辅助手段。

本文将探讨物理实验技术中的仿真实验设计与评估技巧,以帮助教师和学生更好地利用仿真实验进行物理学习。

一、仿真实验的设计1. 确定目标:在设计仿真实验前,需要明确实验的目标和任务。

例如,是希望通过仿真实验展示物理现象还是验证某个物理定律,或者是帮助学生理解某个概念等。

2. 选择仿真软件:根据实验目标和任务的要求,选择合适的仿真软件。

市面上有许多常用的物理仿真软件,如Circuit Construction Kit、PhET等。

每个软件都有其特点和适用范围,教师应根据自己的需求进行选择。

3. 设计实验步骤:仿真实验的步骤和现实实验类似,需要按照一定的顺序进行。

首先,设计实验的前期准备工作,包括调整仿真环境的参数、选择合适的初始条件等。

然后,设计具体的实验步骤,并在仿真软件中实施。

4. 提供观察和记录的方法:为了让学生更好地观察实验现象并记录实验数据,设计仿真实验时需要提供相应的观察点和记录方式。

可以通过添加仪器和测量工具来实现,以便学生能够获得准确和可靠的数据。

5. 结果分析和归纳:仿真实验的结果可能比较直观,但仍然需要学生进行结果分析和归纳。

教师可以提供相应的问题或指导,引导学生从实验中推导出物理定律或总结出模型。

二、仿真实验的评估技巧1. 设计评估标准:在进行仿真实验评估之前,教师需要制定评估标准。

评估标准应包括实验过程的规范性和实验结果的准确性等方面。

2. 进行自我评估:学生在完成仿真实验后,可以先进行自我评估。

通过回顾实验过程和结果的准确性,学生可以发现并修正实验中存在的问题,提高实验水平。

3. 同伴评估和讨论:将学生组织成小组,让他们互相评估和讨论实验结果。

通过同伴间的互动和交流,可以发现不同人在实验设计和结果分析上的不同观点,从而拓宽思路和加深理解。

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告

大学物理实验仿真实验实验报告I. 引言大学物理课程中的实验教学是培养学生科学思维和实践能力的重要环节。

然而,由于实验设备和资源的限制,学生往往难以亲自进行所有的物理实验。

为了解决这一问题,许多高校开始采用物理实验仿真实验,即利用计算机模拟技术进行物理实验的虚拟仿真。

本实验报告将详细介绍一次大学物理实验仿真实验的进行过程和结果。

II. 实验目的本次实验的目的是通过物理仿真软件,模拟测量并分析简谐振动的周期时间与质量、弹性系数的关系。

通过实验,掌握简谐振动的基本原理和实验方法,并通过仿真实验,加深对实验数据的分析和处理能力。

III. 实验原理简谐振动是指物体在一个恢复力作用下沿同一直线往复运动的物理现象。

其周期T与质量m以及弹性系数k之间的关系可以通过以下公式表示:T = 2π√(m/k)根据该公式,我们可以推导出质量对周期的影响,以及弹性系数对周期的影响。

通过仿真实验,我们可以得到不同质量和弹性系数下的周期时间数据,进而分析它们之间的关系。

IV. 实验装置与方法本次实验采用XXX物理仿真实验软件进行,该软件能够通过计算机模拟出各种物理实验的过程和结果。

具体的实验步骤如下:1. 打开XXX物理仿真实验软件,进入简谐振动实验模块。

2. 设置初始条件,包括质量、弹性系数等参数。

3. 点击开始按钮,开始模拟实验过程。

4. 观察模拟实验的过程,记录下每次振动的周期时间。

5. 根据记录的周期时间数据,计算出不同质量和弹性系数下的平均周期时间。

6. 绘制周期时间与质量、弹性系数之间的关系曲线。

V. 实验结果与分析根据模拟实验过程中记录的数据,我们计算出了不同质量和弹性系数下的平均周期时间,并绘制了周期时间与质量、弹性系数之间的关系曲线。

通过曲线的趋势,我们可以得出以下结论:1. 质量对周期时间的影响:质量越大,周期时间越长。

这是因为质量越大,惯性力也就越大,所需的恢复力也越大,导致周期时间增加。

2. 弹性系数对周期时间的影响:弹性系数越大,周期时间越短。

最新大学物理仿真实验实验报告1

最新大学物理仿真实验实验报告1

最新大学物理仿真实验实验报告1实验目的:本次实验旨在通过物理仿真软件,加深对基本物理原理的理解,并掌握使用现代科技手段进行物理实验的方法。

通过模拟不同的物理现象,提高分析和解决物理问题的能力。

实验原理:在本次实验中,我们将利用仿真软件模拟光的折射和反射现象。

光的折射遵循斯涅尔定律,即入射光线、折射光线和法线都在同一平面内,且入射角和折射角的正弦之比等于两种介质的折射率之比。

反射则遵循反射定律,即入射角等于反射角,且入射光线、反射光线和法线都在同一平面内。

实验设备:1. 物理仿真软件(如PhET Interactive Simulations)2. 计算机及显示器3. 数据记录表格实验步骤:1. 打开物理仿真软件,并选择适当的模拟实验模块。

2. 设定初始条件,如光源位置、介质的折射率、观察屏幕的位置等。

3. 启动模拟,观察光在不同介质间的传播情况,记录入射角、折射角和反射角。

4. 更改介质的折射率,重复步骤3,观察折射和反射角的变化。

5. 对收集到的数据进行分析,验证斯涅尔定律和反射定律。

实验结果与分析:在实验过程中,我们观察到当光从低折射率介质进入高折射率介质时,折射角小于入射角;反之,折射角大于入射角。

此外,反射角始终等于入射角,这一点在所有模拟实验中都得到了验证。

通过改变入射角和介质的折射率,我们得到了一系列的数据,这些数据与理论预测相符,从而验证了斯涅尔定律和反射定律的正确性。

结论:通过本次仿真实验,我们成功模拟了光的折射和反射现象,并验证了相关的物理定律。

实验结果表明,物理仿真软件是一种有效的教学和研究工具,可以帮助学生更好地理解复杂的物理概念。

此外,仿真实验的可重复性和可控性为深入研究提供了便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理仿真实验
姓名:索玉昌
班级:信息54
学号:2150508187
实验名称:不良导体热导率的测量
1、实验目的
1、学会用稳态平板法测定不良导体的导热系数;
2、学会用作图法求出冷却速率。

2、仪器用具及使用方法
仪器:自耦调压器,数字电压表,杜瓦瓶,游标卡尺,电子秒表。

使用方法:
(1)开始实验后,从实验仪器栏将橡胶盘、电子秒表和游标卡尺拖至实验台上。

(2)测量铜盘、橡胶盘的直径及厚度并记录到实验表格中。

(3)将橡胶盘拖至主仪器的支架上
(4) 连接好线路,调节自耦调压器,开始加热。

(5) 移走橡胶盘,加热铜盘A、C。

(6) 移走上铜盘,让下铜盘独立散热。

(7) 记录数据。

3、测量内容及数据处理
测量铜盘直径(单位:mm)
测量铜盘厚度(单位:mm)
测量橡胶盘直径(单位:mm)
测量橡胶盘厚度(单位:mm)
A盘加热到平衡温度时的温差电动势的绝对值: 3.25mv
C盘加热到平衡温度时的温差电动势的绝对值: 2.35mv
C盘降温过程中不同时刻温度对应的温差电动势(每隔30s记录一次):
测量次数 1 2 3 4 5 6
电压(mv) 2.77 2.72 2.68 2.63 2.59 2.54 7 8 9 10 11 12 13 2.49 2.45 2.41 2.36 2.32 2.28 2.24
由逐差法可得
散热盘散热速率测定:0.0015(mv/s)
由导热系数的公式:
λ=0.151
(3)
由题意可知,。

(4)由逐差法求得的
与线性拟合出的数据均为0.0357,
误差为0%,故橡胶盘的热导系数为0.151
4、小结
结论:橡胶盘的热导系数为0.151

=0.0357,冷却速率误差为0。

误差分析:(1)仪器误差使得测量不精确
(2)游标卡尺读数误差
建议:用更精确的仪器或者等仪器稳定后读数,多次测量取平
均值。

5、思考题
1 试分析实验中产生误差的主要因素以及实验中是如何减小误差的?
误差分析:(1)仪器误差使得测量不精确
(2)游标卡尺读数误差
建议:用更精确的仪器或者等仪器稳定后读数,多次测量取平
均值。

2. 傅里叶定律dQ(传热速率)是不易测准的量。

本实验如何巧妙地避开了这一难题?
答:本实验中利用了稳态下铜板散热量与待测板传热量相等这一条件,将测不良导体传热速率的问题转化为了测良导体散热速率的问题,而对于铜板这一良导体,其质量与比热是可知的,故测热量的变化又可转化为测量铜板温度的变化,又根据温差产生电压,并且电压大小同温差成正比,从而只需测量一些简单的量即可得出不良导体的传热速率。

相关文档
最新文档