高中数学函数的表示法教案

合集下载

人教版高中数学必修一《函数的表示法》教案设计

人教版高中数学必修一《函数的表示法》教案设计

1.2.2函数的表示法一、教材分析教材从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.教材将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.二、三维目标1.知识与技能(1)理解函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,掌握简单的分段函数及应用.2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法.三、教学重点:函数的三种表示方法,映射的概念.四﹑教学难点:分段函数的概念,分段函数的表示及其图象.五﹑教学策略:通过实例分析比较三种函数表示法的特点,分析比较映射与函数的区别与联系.六﹑教学准备教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率七﹑教学环节1、课堂导入⑴.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中则是Сднемрождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.⑵.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).2、课堂讲授⑴提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?讨论结果:①解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.②图象法:以自变量x 的取值为横坐标,对应的函数值y 为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.③列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.⑵明确三种方法各自的特点?解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况. 总结为下表:⑶例题讲解:例3.1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素. 解:这个函数的定义域是数集{1,2,3,4,5}, 用解析法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1例4.2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势. 解:把“成绩”y 看成“测试序号”x 的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大; 赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高. 例5.1.画出函数y=|x|的图象. 分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图1-2-2-10所示.图1-2-2-10解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例6.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:图1-2-2-13y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如图1-2-2-13所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦; (ⅲ)求平方; (ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例7.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f : A →B 是从集合A 到集合B 的一个映射,⑷中的对应f : A →B 不是从集合A 到集合B 的一个映射.课堂练习:1.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1); 第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)2.已知函数f (x )=2000x x x ⎧>⎨≤⎩,,,,求f (2),f (-3)的值.解:∵2>0,∴f (2)=22=4.∵-3≤0,∴f (-3)=0. 3.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ).(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. 【探究提升】求下列函数解析式.(1)已知2f ⎝ ⎛⎭⎪⎫1x +f (x )=x (x ≠0),求f (x );(2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,将原式中的x 与1x互换,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.于是得关于f (x )的方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .3﹑课堂活动:1.教师引导学生完成三种函数表示法的比较,并且归纳它们的优缺点. 2.教师引导学生完成教材例3﹑例4﹑例5﹑例6. 4﹑课堂小结:①分段函数的表示,求值等问题. ②表示函数的三种方法,映射的概念.5﹑作业布置:课本P 28 习题1.2(A 组) 第7题 (B 组)第3题 四、板书设计函数及其表示1.2.2函数的表示法一﹑教材分析二﹑三维目标三﹑教学重点四﹑教学难点五﹑教学策略六﹑教学准备七﹑教学环节九﹑教学反思:1.通过5个例题让学生体会三种表示函数的方法,掌握分段函数及其的概念.2.通过例5例6逐步培养学生分类讨论的数学思想,通过例4培养学生分析问题的能力.。

高中数学《函数的表示法》教案1北师版必修

高中数学《函数的表示法》教案1北师版必修

函数的表示方法教学目标:1.掌握函数的三种表示方法(列表法、解析法、图象法),会根据不同的需要选择恰当的方法表示函数。

2.根据实际问题中的条件列出函数解析式,然后解决实际问题.3.了解简单的分段函数,并能简单的应用。

一 课题引入与教材认知:1.以引入函数概念的三个问题为背景,引入函数的表示方法。

2.教材认知。

函数的三种表示方法:(1)列表法:用列表来表示两个变量之间函数关系的方法。

(2)解析法:用等式来表示两个变量之间函数关系的方法.(3)图象法:用图象表示两个变量之间函数关系的方法。

列表法优点:不必通过计算就知道当自变量取某些值时函数的对应值。

缺点:只用于自变量为有限个的函数。

解析法优点:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质。

缺点:一些实际问题很难找到它的解析式。

图象法优点:能直观形象地表示出函数的变化情况。

缺点:只能近似地反映函数的变化情况。

二 典型例题例1、购买某种饮料x 听,所需钱数为y 元。

若每听2元,试分别用解析法、列表法、图象法将y 表示x ({}4,3,2,1∈x )的函数,并指出该函数的值域。

小结:同一个函数可以用不同的方法表示,在实际情境中,能根据不同的要求选择恰当的方法表示函数。

中学阶段研究的函数主要是用解析式表示的函数。

例2、某市出租汽车收费标准如下:在3km 以内(含3km )路程按起步价7元收费,超过3km以外的路程按2.4元/km 收费,试写出收费关于路程的函数解析式.例2中的函数具有如下特点:在定义域内不同部分上,有不同的解析式。

像这样的函数通常叫做分段函数 (注:分段函数是一个函数,而不是几个函数。

)小结:(1)在解决实际问题时,求出函数解析式后,一定要写出定义域。

(2) 回顾初中所学内容,如正比例,一次,二次,反比例函数等若已知函数类型,求函数解析式时常用待定系数法其基本步骤是设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数。

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。

[2]通过观察、画图等具体动手,体会分段函数的概念。

[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。

[2]通过细致作图,培养学生的动手能力和识图能力。

2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。

[2]分段函数的概念。

2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。

3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。

4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。

6 教学过程6.1 引入新课【师】同学们好。

初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。

这节课我们来继续进一步学习和函数有关的内容。

【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。

【板演/PPT】PPT演示三个实例。

【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。

相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。

函数的表示方法教学设计

函数的表示方法教学设计

《函数的表示方法》教学设计钱蒙娜一、教材分析本节内容为苏教版《数学必修1》中2.1.2“函数的表示方法”。

在初中学生已经接触过较简单函数的一些不同表示方法,在高中阶段继函数的概念、定义域、值域之后学习函数的表示方法,这部分属于函数三要素之一,即对应关系的表达方式。

函数学习要“多次接触、反复体会、螺旋上升,逐步加深对函数概念的理解。

”在苏教版《数学必修4》中还会继续学习的三角函数,也是非常重要的一类函数模型。

学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。

同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。

学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。

在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。

函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念。

特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。

因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。

二、教学目标根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识与技能、过程与方法和情感态度与价值观三个维度制订教学目标。

知识与技能:掌握函数常用的三种表示方法(列表法、图象法、解析法),了解函数不同表示方法的优缺点并能根据不同需要选择恰当的方式表示函数;掌握分段函数、复合函数的概念;能根据不同情况求出函数的表达式和定义域。

过程与方法:通过实例,分析比较函数三种不同的表示方法;通过分段函数改变的形成过程,培养学生观察、归纳和抽象的能力,培养数形结合和分类讨论的数学思想。

情感态度与价值观:通过对函数不同表示方法的学习,从中体会数学的简洁统一美;通过探究函数的表达式,激发学生的学习热情。

函数的表示法教案三篇

函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

高中数学必修一 函数的表示方法(第二课时)教案

高中数学必修一   函数的表示方法(第二课时)教案

1.2.2 函数的表示方法(第二课时)教学目标:1.进一步理解函数的概念;2.使学生掌握分段函数及其简单应用。

教学重点:分段函数的理解教学难点:分段函数的图象及简单应用教学方法:自学法和尝试指导法教学过程:(Ⅰ)引入问题1.函数有几种常用的表示方法?它们分别是哪几种?2.如何作出函数y x =的图象?(II )讲授新课例1.作出函数y x =的图象和1y x =-的图象,并分别求出函数的值域。

注:分段函数的定义域和值域分别是各段函数的定义域和值域的并集。

例2.国内投寄信函(外埠),假设每封信函不超过20g 时付邮资80分;超过20g 不超过40g 时付邮资160分;依次类推,每封xg(100x 0≤<)的信函付邮资为:()(](](](]⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈∈∈∈=)100,80x (400)80,60x (320)80,60x (240)40,20x (160)20,0x (80y , 画出这个函数的图象。

说明:表示函数的式子也可以不止一个(如例1与例2),对于这类分几个式子表示的函数称为分段函数。

注意它是一个函数,不要把它误认为是“几个函数”。

例3.(教材24P 例6)例4.作出下列各函数的图象:(1)1(01)()(1)x f x x x x ⎧<<⎪=⎨⎪≥⎩; (2)222(0)()2(0)x x x f x x x x ⎧+≥=⎨--<⎩ 对第(2)小题的函数,试根据a 的取值讨论方程()f x a =的根的个数问题。

练习:1.在函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()3f x =,则x 的值为 。

2.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= 。

作业:课本P 28习题1.2第10、11、12、13题。

1.2.2 函数的表示方法(第三课时)教学目标:1.使学生了解映射的概念、表示方法;2.使学生了解象、原象的概念;3.使学生通过简单的对应图示了解一一映射的概念;4.使学生认识到事物间是有联系的,对应、映射是一种联系方式。

高一数学函数的教案优秀5篇

高一数学函数的教案优秀5篇

高一数学函数的教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!高一数学函数的教案优秀5篇作为一位不辞辛劳的人·民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。

高中数学函数的表示方法教案2 教案

高中数学函数的表示方法教案2 教案

函数的表示法教学目标:使学生掌握函数的三种常用表示方法,了解初等函数图象的几种情形,理解分段函数的意义,初步学会用函数的知识解决具体问题的方法;通过本节课的教学,使学生认识到知识无止境,对客观世界的认识也是永无止境的,树立终身学习的思想.教学重点:函数的表示方法,函数的应用.教学难点:函数的应用.教学过程:Ⅰ.复习回顾[师]上节课我们学习了判定两个函数是否相同的方法,哪位同学来回答一下如何判定两个函数是否相同呢?[生]判定两个函数是否相同,一要看其定义域是否相同,二要看其对应关系是否相同,当两者完全一致时,这两个函数就是相同的函数,当两者有一不同或两者完全不同时,这两个函数就不是相同的函数.[师]很好!我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).Ⅱ.指导自学[师]课下同学们已经进行了自学,函数的表示方法常用的有哪几种,各有什么优点?[生]函数的表示方法常用的有三种,分别是解析法、列表法、图象法.解析法是用解析式表示两个变量的函数关系,它的优点是关系清楚,容易求函数值,便于研究函数的性质.列表法是用表格表示两个变量的函数关系,它的优点是不必计算就可知道自变量取某些值时的函数值.图象法是用图象表示两个变量的函数关系,它的优点是表示函数的变化情况形象直观.[师]好!(再举些例子对各种表示方法进行说明,并强调:中学里研究的函数主要是用解析式表示的函数)[师]下面请同学们看课本P30例1、例2.(学生看课本、教师巡视)[师]例1、例2的图象有什么特点呢?[生]例1的图象是一些孤立的点,例2的图象是几条线段.[师]回答完全正确,在初中,我们学过的函数图象通常是一条光滑的(不打折)曲线(或直线).例1、例2告诉我们函数的图象有时也可以由一些弧立的点或几段线段组成,以后我们还将看到函数的图象还可以由几段光滑的曲线组成,从例2看到,有些函数在它的定义域中,对于自变量x的不同取值范围,对应关系不同,这种函数通常称为分段函数.注意:分段函数是一个函数,而不是几个函数.[师]例3是生活中的实际问题,对实际问题的解决,要求我们认真分析题意,将其抽象,转化成数学问题,通过解答数学问题,使实际问题得以解决,因此,解决应用问题的关键是将实际问题分析,抽象,转化成数学问题,即将实际问题数学化.下面我们一起对例4进行分析,请大家再仔细看一遍题.[例4]经市场调查,某商品在近100天内,其销售量和价格均是时间t的函数,且销售量近似地满足关系g(t)=-13t +1093(t∈N*,0<t≤100),在前40天内价格为f(t)=14t+22(t ∈N*,0≤t≤40),在后60天内价格为f(t)=-12t+52(t∈N*,40<t≤100),求这种商品的日销售额的最大值(近似到1元).分析:弄清“日销量”“价格”“日销额”这三个概念以建立它们之间的函数关系式.解:前40天内日销售额为:S=(14t+22)(-13t+1093)=-112t2+74t+77913∴S=-112(t-10.5)2+3784948后60天内日销售额为:S =(-12 t +52)(-13 t +1093 )=16 t 2-2136 t +56683∴S =16 (t -106.5)2-2524∴得函数关系式S =⎩⎪⎨⎪⎧-112 (t -10.5)2+3784948 (0<t ≤40且t ∈N +)16(t -106.5)2-2524 (40<t ≤100且t ∈N +)由上式可知:对于0<t ≤40且t ∈N *,有当t =10或11时,S max ≈809对于40<t ≤100且t ∈N *,有当t =41时,S max =714,综上所述得:当t =10或11时,S max ≈809 答:第10天或11天日售额最大值为809元[例5]某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题.(1)写出图一表示的市场售价间接函数关系P =f (t ).写出图二表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102 kg ,时间单位:天)解:(1)由图一可得市场售价间接函数关系为,f (t )=⎩⎪⎨⎪⎧300-t (0≤t ≤200)2t -300(200<t ≤300)由图二可得种植成本间接函数关系式为g (t )=1200(t -150)2+100 0≤t ≤300 (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g(t )即h (t )=⎩⎪⎨⎪⎧-1200 t2+12 t +1752(0≤t ≤200)-1200 t2+27 t -10252(200<t ≤300)当0≤t ≤200时,得h (t )=-1200(t -50)2+100∴当t =50时,h (t )取得在t ∈[0,200]上的最大值100当200<t ≤300时,得h (t )=-1200 (t -350)2+100∴当t =300时,h (t )取得在t ∈(200,300]上的最大值87.5综上所述由100>87.5可知,h (t )在t ∈[0,300]上可以取得最大值是100,此时t =50,即从二月一日开始的第50天时,上市的西红柿收益最大.评述:(1)以上两例都是考查用数学中函数知识思想、方法去解决实际问题的能力,注意其中关键词的理解,正确找出函数关系式.求最值时配方法是一种常用方法.(2)应用题是高考热点问题,且应用题的具体内容可以多种多样,千变万化,而抽象其数量关系,并建立函数关系式是具有普遍意义的方法.(3)数学应用题因其具有没有固定的背景与题型,难以摸拟分类的特点,也就更接近于我们的生产和实际生活.所以应用题是考查学生创新意识和创新能力的难得的有效题型,同时也不失为提高学生分析问题和解决问题能力的好题型.所以,我们广大师生应加强这一方面的训练,清除心理负面影响,以积极的姿态,迎接数学应用题的挑战,以适应高考的改革要求.[例6]季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P 与周次t 之间的函数关系式.(2)若此服装每件进价Q 与周次t 之间的关系为Q =-0.125(t -8)2+12,t ∈[0,16],t ∈N *试问该服装第几周每件销售利润L 最大?解: (1)P = ⎪⎩⎪⎨⎧∈∈-∈∈∈∈+*]16,10[ 240*]10,5[20*[0,5)210N N N t t t t t t t t 且且且 (2)因每件销售利润=售价-进价,即L =P -Q故有:当t∈[0,5)且t∈N*时,L=10+2t+0.125(t-8)2-12=18t2+6即,当t=5时,L max=9.125当t∈[5,10)时t∈N*时,L=0.125t2-2t+16即t=5时,L max=9.125当t∈[10,16]时,L=0.125t2-4t+36即,t=10时,L max=8.5由以上得,该服装第5周每件销售利润L最大.Ⅲ.课堂练习课本P31练习1,2,3,4Ⅳ.课时小结[师]本节课我们学习了哪些知识呢?请同学们总结一下.[生甲]函数的图象不仅可以是一段光滑的曲线,还可以是一些弧立的点.[生乙]还可以是若干条线段.[生丙]学习了函数知识的应用.[生丁]应用数学知识解决实际问题,关键是将实际问题数学化.[生戊]实际问题数学化就是要认真分析题意,将实际问题抽象,转化成数学问题.[师]好!同学们总结了本节课所学习的知识,重要的在于掌握尤其是函数知识的应用,更要多练,才能运用自如.Ⅴ.课后作业(一)课本P32习题2.2 1~12.(二)1.预习内容:函数的单调性.2.预习提纲:(1)增函数、减函数的定义是什么?(2)函数单调区间的定义是什么?(3)证明函数单调的方法步骤是怎样的?(4)单调性是个整体概念还是个局部概念?。

高一数学函数教案5篇

高一数学函数教案5篇

高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。

高中数学教案 第1讲 函数的概念及其表示

高中数学教案 第1讲 函数的概念及其表示

第1讲函数的概念及其表示1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.1.函数的概念一般地,设A,B是非空的□1实数集,如果对于集合A中的□2任意一个数x,按照某种确定的对应关系f,在集合B中都有□3唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.函数的三要素:□4定义域、□5值域、对应关系.2.同一个函数(1)前提条件:①定义域□6相同;②对应关系□7相同.(2)结论:这两个函数为同一个函数.3.函数的表示法表示函数的常用方法有□8解析法、□9列表法和图象法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的□10并集.常用结论1.直线x=a(a是常数)与函数y=f(x)的图象至多有1个交点.2.注意以下几类函数的定义域:(1)分式型函数,定义域为分母不为零的实数集合.(2)偶次方根型函数,定义域为被开方式非负的实数集合.(3)f(x)为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合.(4)若f(x)=x0,则定义域为{x|x≠0}.(5)正切函数y=tan x的定义域为{x|x≠kπ+π2,k∈Z}.1.思考辨析(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.()(2)对于函数f:A→B,其值域是集合B.()(3)若A=B=R,f:x→y=log2x,其对应是从A到B的函数()(4)若两个函数的定义域与值域分别相同,则这两个函数是同一个函数.()答案:(1)×(2)×(3)×(4)×2.回源教材(1)下列函数中与函数y=x是同一个函数的是()A.y=(x)2B.u=3v3C.y=x2D.m=n2n解析:B函数y=(x)2与函数m=n2n和y=x的定义域不同,则不是同一个函数,函数y=x2=|x|与y=x的解析式不同,也不是同一个函数.故选B.(2)已知f(x)=x+3+1x+2,若f(a)=133,则a=.解析:f(a)=a+3+1a+2=133,解得a=1或-5 3 .答案:1或-5 3(3)函数f(x)=-x2+2x+3+1x-2的定义域为.解析:x2+2x+3≥0,-2≠0得-1≤x≤3且x≠2.故f(x)的定义域为[-1,2)∪(2,3].答案:[-1,2)∪(2,3]函数的概念1.(多选)下列对应关系是集合A到集合B的函数的为()A.A=R,B={y|y>0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=xD.A={-1,1},B={0},f:x→y=0解析:BD对于A,A中有元素0,在对应关系下y=0,不在集合B中,不是函数;对于B,符合函数的定义,是从A到B的函数;对于C,A中元素x<0时,B中没有元素与之对应,不是函数;对于D,A中任意元素,在对应关系下y=0,在集合B中,是从A到B的函数.故选BD.2.(多选)下列每组中的函数不是同一个函数的是()A.f(x)=|x|,g(x)=(x)2B.f(t)=|t|,g(x)=x2C.f(x)=-2x3,g(x)=-2xD.f(x)=x2-9x-3,g(x)=x+3解析:ACD对于A,函数f(x)的定义域为R,函数g(x)的定义域为[0,+∞),所以这两个函数不是同一个函数;对于B,因为g(x)=x2=|x|,且f(t),g(x)的定义域均为R,所以这两个函数是同一个函数;对于C,f(x)=-2x3=-x-2x,f(x)和g(x)的对应关系不同,所以这两个函数不是同一个函数;对于D,函数f(x)的定义域为{x|x∈R,且x≠3},函数g(x)的定义域为R,所以这两个函数不是同一个函数.故选ACD.3.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y =f (x )的图象可能是()解析:B A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2],只有B 可能.反思感悟函数概念的判定方法(1)函数的定义要求非空数集A 中的任何一个元素在非空数集B 中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,但B 中有可能存在与A 中元素不对应的元素.(2)构成函数的三要素中,定义域和对应关系相同,则值域一定相同.函数的定义域例1(1)(2024·雅安期末)函数y =ln (x +1)4-x2的定义域为()A.(-1,2)B.(-1,2]C.(1,2)D.(1,2]解析:A +1>0,-x 2>0得-1<x <2,所以函数y =ln (x +1)4-x 2的定义域为(-1,2).故选A.(2)(2024·哈尔滨九中考试)已知函数y =f (x )的定义域是[-2,3],则函数y =f (2x -1)的定义域是()A.[-5,5]B.-12,2C.[-2,3]D.12,2解析:B函数y =f (x )的定义域是[-2,3],则-2≤2x -1≤3,解得-12≤x≤2,所以函数y =f (2x -1)的定义域是-12,2.故选B.反思感悟函数定义域的求解方法(1)求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义.(2)求抽象函数定义域的方法:①若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.训练1(1)函数f (x )=-x 2+x +6+|x |x -1的定义域为()A.(-∞,-2]∪[3,+∞)B.[-3,1)∪(1,2]C.[-2,1)∪(1,3]D.(-2,1)∪(1,3)解析:Cx 2+x +6≥0,-1≠0,解得-2≤x ≤3且x ≠1.(2)(2024·南昌二中第四次考试)已知函数f (x )的定义域为(1,+∞),则函数F (x )=f (2x -3)+3-x 的定义域为()A.(2,3]B.(-2,3]C.[-2,3]D.(0,3]解析:A 函数f (x )的定义域为(1,+∞),x -3>1,-x ≥0,>2,≤3,即2<x ≤3,故函数F (x )的定义域为(2,3].故选A.函数的解析式例2(1)已知f(1-sin x)=cos2x,求f(x)的解析式;(2)已知f(x+1x )=x2+1x2,求f(x)的解析式;(3)已知f(x)是一次函数且3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;(4)已知f(x)满足2f(x)+f(-x)=3x,求f(x)的解析式.解:(1)(换元法)设1-sin x=t,t∈[0,2],则sin x=1-t,∵f(1-sin x)=cos2x=1-sin2x,∴f(t)=1-(1-t)2=2t-t2,t∈[0,2].即f(x)=2x-x2,x∈[0,2].(2)(配凑法)∵f(x+1x)=x2+1x2=(x+1x)2-2,∴f(x)=x2-2,x∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f(x)是一次函数,可设f(x)=ax+b(a≠0).∴3[a(x+1)+b]-2[a(x-1)+b]=2x+17.即ax+(5a+b)=2x+17,a=2,5a+b=17,a=2,b=7.∴f(x)的解析式是f(x)=2x+7.(4)(解方程组法)∵2f(x)+f(-x)=3x,①∴将x用-x替换,得2f(-x)+f(x)=-3x,②由①②解得f(x)=3x.反思感悟函数解析式的求法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达方式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(4)方程思想:已知关于f (x )与f (1x )或f (-x )等的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).训练2(1)已知f (x +1)=x -2x ,则f (x )=.解析:令t =x +1,则t ≥1,x =(t -1)2,代入原式有f (t )=(t -1)2-2(t -1)=t 2-4t +3(t ≥1),所以f (x )=x 2-4x +3(x ≥1).答案:x 2-4x +3(x ≥1)(2)已知f (x )满足f (x )-2f (1x )=2x ,则f (x )=.解析:∵f (x )-2f (1x)=2x ,①以1x 代替①中的x ,得f (1x )-2f (x )=2x ,②①+②×2得-3f (x )=2x +4x ,∴f (x )=-2x 3-43x .答案:-2x 3-43x(3)已知f [f (x )]=4x +9,且f (x )为一次函数,则f (x )=.解析:因为f (x )为一次函数,所以设f (x )=kx +b (k ≠0),所以f [f (x )]=f (kx +b )=k (kx +b )+b =k 2x +b (k +1),因为f [f (x )]=4x +9,所以k 2x +b (k +1)=4x +9恒成立,2=4,(k +1)=9,=2,=3=-2,=-9,所以f (x )=2x +3或f (x )=-2x -9.答案:2x +3或-2x -9分段函数求分段函数的函数值例3已知函数f (x )e x +1,x <1,f x -2),x ≥1,则f (3)=.解析:因为f (x )e x +1,x <1,f x -2),x ≥1,所以f (3)=f (1)=f (-1)=e -1+1=1.答案:1分段函数与方程、不等式例4(1)(2024·济宁模拟)已知a ∈R ,函数f (x )log 2(x 2-3),x >2,3x +a ,x ≤2.f (f (5))=2,则a =.解析:因为5>2,所以f (5)=log 2(5-3)=1≤2,所以f (f (5))=f (1)=3+a =2,解得a =-1.答案:-1(2)(2024·咸阳模拟)已知函数f (x )2x ,x ≤0,|ln x |,x >0,则不等式f (x )<1的解集为.解析:当x ≤0时,f (x )=2x <1=20,解得x <0;当x >0时,f (x )=|ln x |<1,即-1<ln x <1,解得1e<x <e.综上,不等式f (x )<1的解集为(-∞,0)∪(1e ,e).答案:(-∞,0)∪(1e,e)反思感悟分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.训练3(1)(2024·合肥模拟)已知f (x )e x -2,x <4,log 5(x -1),x ≥4,则f (f (26))等于()A.1 5B.1 eC.1D.2解析:C f(26)=log5(26-1)=log525=2,∴f(f(26))=f(2)=e2-2=e0=1.(2)(2024·唐山模拟)设函数f(x)2+1,x≤0,x,x>0.若f(a)=0,则a=.解析:当a≤0时,a2+1≥1≠0(舍去);当a>0时,lg a=0,a=1,故实数a的值为1.答案:1限时规范训练(六)A级基础落实练1.(多选)(2024·宁德高级中学第一次月考)下列函数中,与函数y=x+2是同一个函数的是()A.y=(x+2)2B.y=3x3+2C.y=x2x+2 D.y=t+2解析:BD函数y=x+2的定义域为R.对于A,y=(x+2)2的定义域为[-2,+∞),故A错误;对于B,y=3x3+2=x+2,定义域为R,解析式相同,故B正确;对于C,y=x2x+2的定义域为{x|x≠0},故C错误;对于D,y=t+2,定义域为R,解析式相同,故D正确.故选BD.2.函数f(x)=lg(x-2)+1x-3的定义域是()A.(2,+∞)B.(2,3)C.(3,+∞)D.(2,3)∪(3,+∞)解析:D∵f(x)=lg(x-2)+1x-3,-2>0,-3≠0,解得x>2,且x≠3,∴函数f(x)的定义域为(2,3)∪(3,+∞).3.(多选)如图所示,可以表示y是x的函数的图象是()解析:ACD对于B:对每一个x的值,不是有唯一确定的y值与之对应,不是函数图象;对于A、C、D:对每一个x的值,都有唯一确定的y值与之对应,是函数图象.故选ACD.4.(2023·成都期末)已知函数f(x)x+2),x≤0,x,x>0,则f(f(-2))=()A.4B.8C.16D.32解析:C f(-2)=f(0)=f(2)=22=4,f(4)=16,故选C.5.一次函数f(x)满足:f[f(x)-2x]=3,则f(1)=()A.1B.2C.3D.5解析:C设f(x)=kx+b(k≠0),∴f[f(x)-2x]=f(kx+b-2x)=k(kx+b-2x)+b=(k2-2k)x+kb+b=3,2-2k=0,+b=3,解得k=2,b=1,∴f(x)=2x+1,∴f(1)=3.6.(2024·潍坊模拟)存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x3B.f(sin x)=x2C.f(x2+2x)=|x|D.f(|x|)=x2+1解析:D对于A,当x=1时,f(|1|)=f(1)=1;当x=-1时,f(|-1|)=f(1)=-1,不符合函数定义(一个自变量的值只有唯一一个函数值与之对应),A错误.对于B,令x=0,则f(sin x)=f(0)=0,令x=π,则f(sinπ)=f(0)=π2,不符合函数定义,B错误.对于C,令x=0,则f(0)=0,令x=-2,则f(0)=f((-2)2+2×(-2))=2,不符合函数定义,C错误.对于D,f(|x|)=x2+1=|x|2+1,x∈R,则|x|≥0,则存在x≥0时,f(x)=x2+1,符合函数定义,即存在函数f(x)=x2+1(x≥0)满足:对任意x∈R都有f(|x|)=x2+1,D正确.故选D.7.(2024·河南适应性考试)已知函数f(x)x+1-1,x≥1,log3(x+5)-2,x<1,且f(m)=-2,则f(m+6)=()A.-16B.16C.26D.27解析:C若m≥1,则f(m)=3m+1-1=-2,所以3m+1=-1,无解;若m<1,则f(m)=-log3(m+5)-2=-2,所以log3(m+5)=0,所以m=-4,所以f(m +6)=f(2)=32+1-1=26,故选C.8.(2024·江苏三校联考)已知函数y=f(2x-1)的定义域是[-2,3],则y=f(x)x+2的定义域是()A.[-2,5]B.(-2,3]C.[-1,3]D.(-2,5]解析:D因为函数y=f(2x-1)的定义域是[-2,3],所以-2≤x≤3,所以-5≤2x-1≤5,所以函数y=f(x)的定义域为[-5,5].要使y=f(x)x+2有意义,则5≤x≤5,+2>0,解得-2<x≤5,所以y=f(x)x+2的定义域是(-2,5].故选D.9.已知函数f(2x+1)=4x2-1,则f(x)=.解析:f(2x+1)=(2x+1)2-2(2x+1),所以f(x)=x2-2x.答案:x2-2x10.设函数f(x),x≤0,x,x>0,则满足f(x+2)<f(2x)的x取值范围为.解析:当x≤-2时,f(x+2)=1,f(2x)=1,则1<1,矛盾;当-2<x≤0时,f(x+2)=2x+2,f(2x)=1,则2x+2<1⇒x<-2,矛盾;当x>0时,f(x+2)=2x+2,f(2x)=22x,则2x+2<22x⇒x+2<2x⇒x>2,所以x >2.综述:x取值范围为(2,+∞).答案:(2,+∞)11.(2024·昆明市第一中学考试)已知f(x+1)=1x,则f(x)=,其定义域为.解析:0,0,解得x>0,所以f(x+1)=1x(x>0),令x+1=t,则t>1,x=(t-1)2,所以f(t)=1(t-1)2(t>1),所以f(x)=1(x-1)2(x>1).答案:1(x-1)2(1,+∞)12.已知函数f(x)的定义域为[-2,2],则函数g(x)=f(2x)+1-2x的定义域为.解析:2≤2x≤2,-2x≥0,解得-1≤x≤0,所以函数g(x)的定义域是[-1,0].答案:[-1,0]B级能力提升练13.(2024·东北师大附中模拟)已知函数f(x)满足2f(x)+f(-x)=3x2+2x+6,则()A.f(x)的最小值为2B.∃x∈R,2x2+4x+3f(x)<2C.f(x)的最大值为2D.∀x∈R,2x2+4x+5f(x)<2解析:B因为2f(x)+f(-x)=3x2+2x+6,2f(-x)+f(x)=3x2-2x+6,所以f(x)=x2+2x+2.对于A,C,f(x)=(x+1)2+1≥1,所以f(x)的最小值为1,无最大值,故A,C错误;对于B,2x2+4x+3f(x)=2x2+4x+3x2+2x+2=2-1x2+2x+2,因为0<1x2+2x+2≤1,所以1≤2-1x2+2x+2<2,即1≤2x2+4x+3f(x)<2,故B正确;对于D,2x2+4x+5f(x)=2x2+4x+5x2+2x+2=2+1x2+2x+2,2<2+1x2+2x+2≤3,即2<2x2+4x+5f(x)≤3,故D错误.故选B.14.(2024·武汉二调)已知函数f(x)+1,x≤a,x,x>a,若f(x)的值域是R,则实数a的取值范围是()A.(-∞,0]B.[0,1]C.[0,+∞)D.(-∞,1]解析:B法一:易知函数y=2x是R上的增函数,且值域为(0,+∞),函数y=x+1是R上的增函数,且值域为R,所以要使函数f(x)的值域为R,需满足2a≤a+1.在同一平面直角坐标系中作出函数y=2x与y=x+1的图象,如图所示,由图可知,当0≤x≤1时,2x≤x+1,所以实数a的取值范围为[0,1],故选B.法二:若a=-1,则当x≤a时,x+1≤0,当x>a时,2x>12,可知此时f(x)的值域不是R,即a=-1不满足题意,故排除选项A,D;若a=2,则当x≤a 时,x+1≤3,当x>a时,2x>4,可知此时f(x)的值域不是R,即a=2不满足题意,故排除选项C.故选B.15.设函数f (x )x +λ,x <1(λ∈R ),x ,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是.解析:当a ≥1时,2a ≥2,∴f (f (a ))=f (2a )=22a =2f (a )恒成立;当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2,综上,λ的取值范围是[2,+∞).答案:[2,+∞)16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )x +a ,-1<x <0,e 2x ,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f (92)=f (32),则ab的取值范围为.解析:因为f (x +2)=2f (x ),所以f (92)=f (12+4)=(2)2f (12)=2e b ,f (32)=f (-12+2)=2f (-12)=22×(-12)+a =2(a -1).因为f (92)=f (32),所以2(a -1)=2e b ,所以a =2e b +1,因为b 为正实数,所以a b =2e b +1b =2e +1b ∈(2e ,+∞),故ab的取值范围为(2e ,+∞).答案:(2e ,+∞)。

高一数学教案:函数的概念4篇

高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。

教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。

教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。

步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。

步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。

步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。

步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。

步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。

教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。

教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。

在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。

在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。

高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

人教版高中数学必修第一册函数的表示方法教案(二)

人教版高中数学必修第一册函数的表示方法教案(二)

函数的表示方法(二)三维目标 一、知识与技能1.了解实际背景的图象与数学情境下的图象是相通的.2.了解图象可以是散点.3.图象是数形结合的基础.4.了解映射的概念及表示方法. 二、过程与方法1.自主学习,了解作图的基本要求.2.探究与活动,明白作图是由点到线,由局部到全体的运动变化过程.3.会判断一个对应是不是映射.4.重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;通过教师指导发现知识结论,培养学生的抽象概括能力和逻辑思维能力.三、情感态度与价值观1.培养辩证地看待事物的观念和数形结合的思想.2.使学生认识到事物间是有联系的,对应、映射是一种联系方式.3.激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.教学重点 函数的作图. 教学难点如何选点作图,映射的概念. 教具准备多媒体课件、投影仪、打印好的材料. 教学过程一、创设情景,引入新课师:日常生活中我们见过许多曲线图象.让我们一起来看一看〔多媒体投影〕: 〔图象1〕股市走势图. 〔图象2〕产生的震动波曲线. 〔图象3〕医用心电图的波线.师:初中我们已研究过直线、反比例及二次函数的图象,请大家作出y =2x -1,y =x1,y =x 2的图象.〔学生在下面自己作图,老师巡视〕我们可以发现这些线的图象都有一个共同的特点,就是由满足一定条件的点构成的,具体地说就是x 作为横坐标,y 作为纵坐标描成的点,所有的点即构成该曲线的图象.二、讲解新课一般而言,如何作出y =f 〔x 〕的图象呢?我们将自变量的一个值x 0作为横坐标就得到坐标平面上的一个点〔x 0,f 〔x 0〕〕,自变量取遍函数定义域A 的每个值时,就得到一系列这样的点,所有这些点组成的集合〔点集〕为{〔x ,y 〕|y =f 〔x 〕,x ∈A },这些点组成的曲线就是函数y =f 〔x 〕的图象.可从以下几个方面加深对函数图象的理解:画函数的图象,不仅要依据函数的解析式,而且还必须考虑它的定义域.两个用不同的解析式表示的函数,只有在对应关系相同、定义域相同的条件下,才能是相同的函数,才能有相同的图象.由函数的图象的定义知道,点的集合{〔x ,y 〕|y =f 〔x 〕,x ∈A }是函数的图象,因此从理论上讲,用列表描点法总能作出函数的图象,但是不了解函数本身的特点,就无法了解函数图象的特点,如二次函数的图象是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图象的特征描绘出来的.函数的图象是函数的重要表示方法,它具有明显的直观性,以后可以看到,通过函数的图象能够掌握函数重要的性质.反之,掌握好函数的性质,将有助于正确地画出函数的图象.我们知道函数的图象是由点集构成的,如何作图即如何选点呢?我们看一看下面的一些例题. [例1] 试画出以下函数的图象:〔1〕f 〔x 〕=x +1〔x ∈{1,2,3,4,5}〕; 〔2〕f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕. 解:〔1〕我们先列表再描点y3 4 56-1-2-3-4〔1〕y-3-4〔2〕f 〔x 〕=x +1的图象?生:仅需把图〔1〕的散点连结起来构成一条直线就是f 〔x 〕=x +1的图象,如图〔2〕.师:对,在初中我们就研究过一次函数的图象,它表示一条直线,所以今后我们作一次函数的图象仅需作出其两点,然后再连成一条直线即可.〔2〕师:这是一个什么曲线? 生:抛物线.师:是一条完整的抛物线吗? 生:好像不是. 师:为什么?生:因为x ∈[1,3〕,所以x 的取值受限制.师:对,这个函数的图象与抛物线f 〔x 〕=〔x -1〕2+1有联系,它是其中一段,为了能够作出其图象,我们先作出抛物线f 〔x 〕=〔x -1〕2+1的图象,大家自己动手作出该函数的图象,用虚线表示.〔一会儿后〕请生甲回答如何作出其图象的.〔同时投影其所得的图象〕生甲:先作出顶点〔1,1〕,再作出两点〔2,2〕、〔3,5〕,然后根据抛物线的对称轴是x =1,作出〔2,2〕、〔3,5〕关于xf 〔x 〕=〔x -1〕2+1的图象.〔如图〔3〕〕y-1-2-3-4〔3〕师:生甲同学通过选关键点顶点,再结合二次函数的对称性取另外两点作出其关于对称轴的对称点,这样得到5点,最后用圆滑的曲线由左向右顺次连结这些点.这个方法是通常作二次函数的方法.这种方法提醒我们对一些熟知的函数要作出其图象仅需要选一些特征点及辅助点,然后就可以得出其图象.这样要作出f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕,仅需要在f 〔x 〕=〔x -1〕2+1的虚线图象上取x ∈[1,3〕的一段用实线描出,但端点〔3,5〕处用空心点表示.〔如图〔4〕〕y-1-2-3-4〔4〕[例2] 作出函数y =|x -2|〔x +1〕的图象. 分析:显然直接用函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对解析式进行等价变形.解:〔1〕当x ≥2,即x -2≥0时,y =〔x -2〕〔x +1〕=x 2-x -2=〔x -21〕2-49. 当x <2,即x -2<0时,y =-〔x -2〕〔x +1〕=-x 2+x +2=-〔x -21〕2+49,所以y =⎪⎪⎩⎪⎪⎨⎧<+--≥--.2,49)21(,2,49)21(22x x x x这是分段函数,每段函数图象可根据二次函数图象作出.〔如图〔5〕〕〔5〕方法引导:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x、y的变化X围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数等基本函数的图象.函数是“两个数集间的一种确定的对应关系〞.当我们将数集扩展到任意的集合时,就可以得到映射的概念.例如,亚洲的国家构成集合A,亚洲各国的首都构成集合B,对应关系f:国家a对应于它的首都b.这样,对于集合A中的任意一个国家,按照对应关系f,在集合Bf:A→B称为映射.设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.在我们的生活中,有很多映射的例子,例如,设集合A={x|x某场电影票上的},集合B={x|x是某电影院的座位号},对应关系f:电影票的对应于电影院的座位号,那么对应f:A→B是一个映射.[例3] 教科书P26例7.本例中的〔1〕〔2〕是以后经常用到的映射,教学时应引导学生认真理解.对于〔3〕,还可以把“内切圆〞换成“外接圆〞让学生思考.对于〔4〕,可以与本例后的“思考〞进行比较,让学生进一步体会映射是讲顺序的,即f:A→B与f:B→A是不同的,并且,它们中可以一个是映射而另一个不是映射,也可以两个都是映射或两个都不是映射.在此基础上归纳出映射概念值得注意的几点:〔1〕函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;〔2〕对于映射f:A→B,我们通常把集合A中的元素叫原象,而把集合B中与A中的元素相对应的元素叫象.所以,集合A叫原象集,集合B叫象所在的集合〔集合B中可以有些元素不是象〕.〔3〕映射只要求“对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应〞,即对于A中的每一个原象在B中都有象,至于B中的元素在A中是否有原象,以及有原象时原象是否唯一等问题是不需要考虑的.〔4〕用映射刻画函数的定义可以这样表达:设A、B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f〔x〕.其中x∈A,y∈B.原象集合A叫做函数y=f〔x〕的定义域,象集合C叫做函数y=f〔x〕的值域.很明显,C B.[例4] 集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素xa及k的值.方法引导:集合A中元素1,2,3在对应法那么的作用下,分别得到象4,7,10,关键是集合B中谁和10对应.解:∵B中元素y=3x+1和A中元素x对应,∴A中元素1的象是4,2的象是7,3的象是10.对于集合B而言能与10对应的元素有两种情况:a4=10或a2+3a=10.∵a∈N,∴a2+3a-10=0得a=-5〔舍去〕或a=2.当a=2时,a4=16.由3k+1=16得k=5.∴a=2,k=5为所求.A 集合中只有两个的元素,此时应该考虑四种对应关系.然后用条件和集合的性质加以排除.此题将集合与映射两个概念同时考查,有一定的新意.三、课堂练习1.根据所给定义域,画出函数y =x 2-2x +2的图象. 〔1〕x ∈R ; 〔2〕x ∈〔-1,2]; 〔3〕x ∈〔-1,2〕且x ∈Z . 答案:〔1〕 〔2〕〔3〕A 到集合B 的映射,哪些不是,为什么? 〔1〕A =B =N *,对应关系f :x →y =|x -3|.〔2〕A =R ,B ={0,1},对应关系f :x →y =⎩⎨⎧,0,1.0,0<≥x x〔3〕A =B =R ,对应关系f :x →y =±x .〔4〕A =Z ,B =Q ,对应关系f :x →y =x1. 〔5〕A ={0,1,2,9},B ={0,1,4,9,64},对应关系f :a →b =〔a -1〕2. 答案:〔1〕对于A 中的3,在f 作用下得0,但0∉B ,即3在B 中没有象,所以不是映射. 〔2〕对于A 中任意一个非负数都有唯一象1,对于A 中任意一个负数都有唯一象0,所以是映射. 〔3〕集合A 中的负数在B 中没有元素与之对应,故不是映射. 〔4〕集合A 中的0在B 中没有元素和它对应,故不是映射.〔5〕在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,所以是映射. 四、课堂小结1.本节学习的数学知识:函数的图象、函数图象的作法、作函数图象的要素、映射的概念. 2.本节学习的数学方法:定义法、数形结合与分类讨论的思想方法、归纳与发散的思想、思维的批判性. 五、布置作业1.画出以下函数的图象.〔1〕y =〔-1〕x ,x ∈{0,1,2,3}; 〔2〕y =x -|1-x |;〔3〕y =xx x -+||)21(0.A.y 轴所示的函数表达式为x =0B.y =x 〔x <0〕是定义域为空集的函数f 是从集合A 到集合B 的映射,那么A 中每一元素在B 中都有象 f 是从集合A 到集合B 的映射,那么B 为A 中元素的象的集合M ={x |0≤x ≤6},P ={y |0≤y ≤3},那么以下对应关系中,不能看作从M 到P 的映射的是 A.f :x →y =21x B.f :x →y =31x C.f :x →y =x D.f :x →y =61x 板书设计1.2.2 函数的表示法〔2〕作法 注意点 例1 例2映射的定义 对映射的几点说明 例3 例4 课堂练习 课堂小结。

高中数学《函数的表示法》(第2课时)教学设计

高中数学《函数的表示法》(第2课时)教学设计

函数的表示法(第2课时)教学设计一、内容和内容解析1.内容实际问题中的函数表示.2.内容解析数学教育的终极目标是让学生:会用数学的眼光观察世界、会用数学的思维思考世界、会用数学的语言表达世界.其中“会用数学的语言表达世界”体现的是数学的应用价值,即利用数学模型解决实际问题.通过第1课时的学习,学生已基本掌握了函数的三种表示法及其特点,并且初步体会了在具体的问题(分段函数)中如何选择适当的表示法解决数学问题.那么,如何选择适当的表示法解决实际问题呢?通过本节课的学习,学生应有所体会.在本节课中不仅可以进一步研究函数本身,将实际问题数学化,应用函数解决实际问题,而且可以加深对函数概念的理解,学会比较选择最优解法.例7是关于数学成绩的问题,贴近学生生活,体现了列表法向图象法的转化,通过对三名同学成绩的简单分析,学生可进一步体会图象法的直观性,可提倡学生用科学的方法看待自身成绩.例8是2019年国家热点问题——个税的新计算方式.函数以列表法给出,可通过对条件的分析,转化成解析法和图象法,体现了分段函数的应用价值.基于以上分析,确定本节课的教学重点:选择恰当的方法表示具体问题中的函数关系.二、目标和目标解析1.目标选择恰当的方法表示具体问题中的函数关系.2.目标解析达成上述目标的标志是:学生会正确选择合适的表示法解决教科书例7、例8所示的问题,结合例7,例8的学习,初步体会建立函数模型解决实际问题的过程,发展数学建模素养。

三、教学问题诊断分析经过义务教育阶段的数学学习,学生对具体数学知识和问题的求解比较熟悉,而解决带有情境的实际问题的能力相对欠缺,于是新版教材专门对前版教材结构进行了调整,搭建了两个与学生密切相关、应用性很强的实际问题情境,对其进行合理分析,培养学生选择恰当的方法表示具体问题中的函数关系的能力.对于例7,可能有的同学觉得表3.1-4包含了三名同学的6次成绩数据,已经很直观了,教师可进行相应解释:列表法虽然具有“不需要计算就可以直接看出与自变量的值相对应的函数值”的优点,但是不利于发现每位同学的成绩变化情况,以及与班级平均分的关系,换句话说仍然不够直观.学生一般可自然想到更加直观的表示方式——图象法.但是当学生们在同一直角坐标系中画出了三位同学6次成绩及班级6次平均分共24个散点时,问题随之而来——无法区分每个散点数据属于哪个学生,其直观性更是无从谈起.于是教师可进行相应引导:为了更容易看出一个同学的学习情况,我们将表示每位同学成绩的函数图象(离散的点)用虚线连接.在此基础上,可进一步引导学生对三名同学的数学学习情况进行分析.对于例8,学生首先面对的问题就是对题目的理解.带有情境的实际问题往往篇幅略长,因此需要给学生充足的时间读懂题目,明确研究对象,理清题中变量间的关系,是解决问题的前提和保障.之后就需要依据题目建立适当的数学模型,解决问题.本题是分段函数模型,每一段都是一次函数,相对简单,但要注意分段时自变量取值的原则——不重不漏.四、教学支持条件分析本节课的教学重点是选择恰当的方法表示具体问题中的函数关系.可借助图形计算器、几何画板、Geogebra等技术工具做出函数图象,用图象法表示函数,对问题进行直观分析.五、教学过程设计引导语:对于一个具体的问题,如果涉及函数,你会选择恰当的方法表示问题中的函数关系吗?这节课我们通过两个实例来做相关研究.(一)实际问题问题1:表3.1-4是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表.你能直接通过表3.1-4对这三位同学在高一学年的数学学习情况做一个分析吗?师生活动:教师给出问题后让学生先简单独立思考并尝试写出结论,大部分同学无法直接通过表3.1-4所给数据分析这三位同学在高一学年的数学学习情况.如有个别同学提出可以,教师可提醒:表3.1-4不太容易分析每位同学的成绩变化情况,不够直观,因而会制约结论的形成.追问:你选择哪种表示法分析这三位同学在高一学年的数学学习情况?为什么?学生会首先想到图象法.教师让学生在同一直角坐标系中画出与表3.1-4所对应的函数图象,并让学生尝试利用图象得出结论.面对毫无规律的24个散点,学生基本没有头绪.此时教师可做适当引导:为了更容易看出一个同学的学习情况,我们将表示每位同学成绩的函数图象(离散的点)用虚线连接.并用多媒体展示教科书第70页图3.1-6,然后让学生分组讨论,分享自己眼中的结论.最后教师找几位学生代表回答与补充,得出结论.设计意图:问题1是架设学生熟悉的数学成绩情境,引导学生直接通过列表法无法直观的看出学生成绩的变化情况,不要直接利用表格做出一些并不准确的结论,而应另寻他法;追问是为了启发学生主动选择更加直观的图象法解决问题,培养从列表法转到图象法表示函数的能力.正确合理地做出图象,问题就解决了一半.问题2:(教科书第71页练习1)下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车离开家后一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我从家出发后,心情轻松,一路缓缓加速行进.师生活动:教师可在多媒体上展示问题,让学生独立完成,然后找学生回答.对于选项C,可给出参考:我从家出发后,发现时间还早,于是慢慢放缓了脚步.设计意图:培养学生将实际情境转化成数学图象的能力,训练思维与表达能力.问题3:依法纳税是每个公民应尽的义务,个人取得的所得应依照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为个税税额=应纳税所得额×税率-速算扣除数. ①应纳税所得额的计算公式为应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其他扣除. ②其中,“基本减除费用”(免征额)为每年60 000元.税率与速算扣除数见表3.1-5.(1)设全年应纳税所得额为应缴纳个税税额为你能求出y=f(t)并画出图象吗?(2)小王全年综合所得收入额为189 600元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%,1%,9%,专项附加扣除是52 800元,依法确定其他扣除是4 560元,那么他全年应缴纳多少综合所得个税?师生活动:给学生充足的时间阅读题目,理清计算应缴纳个税税额的计算步骤.之后可将教科书第71页前三行用PPT展示,帮助学生了解解题脉络.(1)教师用PPT展示个税计算公式及表3.1-5,给学生适当时间阅读思考.之后可进行如下追问.追问:由表3.1-5第二列,你认为y=f(t)是什么函数?学生基本都可回答出是分段函数.教师可板书y=f(t)的前两段,带领学生感受求解析式的过程,后几段可让学生自己完成,注意提示最后写成分段函数的规范形式(大括号、范围不重不漏),并让学生自己画出相应图象,之后可利用多媒体将学生代表的图象放到屏幕上展示,最终确定正确结果.(2)利用之前明确的计算步骤,结合第(1)问的解析式,让学生自己解决剩余问题.设计意图:帮助学生读懂题目,提高学生的数学阅读能力,以及将实际问题数学化的能力;引导学生将表3.1-5的函数表示方式转化成解析式的方式,建立多元表示之间的联系。

人教A版高中数学必修一第二章教案函数的表示法,分段函数,区间

人教A版高中数学必修一第二章教案函数的表示法,分段函数,区间

第四教时教材: 函数的表示法,分段函数,区间。

目的: 要求学生明确函数的三种表示方法,继而要求学生掌握分段函数的概念和区间的概念。

过程:一、复习:函数的概念提出课题:函数的表示法。

常用的函数表示法有三种:解析法、列表法、图象法。

二、解析法:定义:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式。

它的优点是:关系清楚,容易求函数值、研究性质。

例:加速度公式: 221gt s = (如 260t s =) 圆面积公式: π=A 2r 圆柱表面积: rl s π2=二次函数 c bx ax y ++=2 )0(≠a 2-=x y (x ≥2)又例: 31--+=x x y 我们可用“零点法”把绝对值符号打开,即:31--+=x x y =⎪⎩⎪⎨⎧--4224x 3311>≤<--≤x x x这一种函数我们把它称为分段函数。

三、列表法:定义:列出表格来表示两个变量的函数关系。

它的优点是:不必通过计算就能知道函数对应值。

例:初中接触过的平方表,平方根表,立方表,立方根表,三角函数表,汽车、火车站的里程价目表等等。

又如:1984-1994年国民生产总值表。

P52四、图象法定义:用函数图象表示两个变量之间的关系。

例:平时作的函数图象:二次函数、一次函数、反比例函数图象。

又如:气象台温度的自动记录器,记录的温度随时间变化的曲线(略)人口出生率变化曲线(见P53)略它的优点是:直观形象地表示出函数变化情况。

注意:函数的图象可以是直线(如:一次函数)、曲线(如:抛物线),也可以是折线及一些孤立的点集(或点)。

例四、例五、例六见P55-56 (略)(注意强调分段函数概念)五、区间见课本P53-54注意:1)这是(关于区间)的定义2)今后视题目的要求,可用不等式、区间、集合表示(答案)3)“闭”与“开”在数轴上的表示4)关于“+∞”“ ∞”的概念六、小结:三种表示法及优点练习:P56 练习七、作业:P57 习题2、2 3,4,5,6。

高中数学 函数的表示法教案 新人教A版必修1

高中数学 函数的表示法教案 新人教A版必修1

课题:函数的表示法〔一〕课 型:新授课 教学目标:〔1〕掌握函数的三种表示方法〔解析法、列表法、图像法〕,了解三种表示方法各自的优点; 〔2〕在实际情境中,会根据不同的需要选择恰当的方法表示函数; 〔3〕通过具体实例,了解简单的分段函数,并能简单应用。

教学重点:会根据不同的需要选择恰当的方法表示函数。

教学难点:分段函数的表示及其图象。

教学过程: 一、课前准备〔预习教材19p ---21p ,找出疑惑之处)复习1.回忆函数的定义;复习2.函数的三要素分别是什么? 二、新课导学: 〔一〕学习探究探究任务:函数的三种表示方法讨论:结合课本P 15 给出的三个实例,说明 三种表示方法的适用X 围及其优点 小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如的实例〔1〕; 优点:简明扼要;给自变量求函数值。

图象法:就是用图象表示两个变量之间的对应关系,如的实例〔2〕; 优点:直观形象,反映两个变量的变化趋势。

列表法:就是列出表格来表示两个变量之间的对应关系,如的实例〔3〕;优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。

*典型例题 例1.〔课本P 19 例3〕某种笔记本的单价是2元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x) .{}5,4,3,2,1,5∈=x x y变式:作业本每本0.3元,买x 个作业本的钱数y 〔元〕,试用三种方法表示此实例中的函数。

反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?例3:某市“招手即停〞公共汽车的票价按以下规那么制定:〔1〕5公里以内〔含5公里〕,票价2元;〔2〕5公里以上,每增加5公里,票价增加1元〔不足5公里的俺公里计算〕。

如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。

⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<=.2015,5,1510,4,105,3,50,2x x x x y 图象〔略〕变式:邮局寄信,不超过20g 重时付邮资0.5元,超过20g 重而不超过40g 重付邮资1元,每封x 克〔400≤<x 〕重的信应付邮资数y 〔元〕,试写出y 关于x 的函数解析式,并画出函数图象。

学高中数学第二章函数函数函数的表示法教案北师大版必修第一册

学高中数学第二章函数函数函数的表示法教案北师大版必修第一册

第二章函数第2.2节函数的表示法教学设计函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.一.教学目标:(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;a(3)通过具体实例,了解简单的分段函数及应用.二. 核心素养1.数学抽象:函数的表示方法的理解2.逻辑推理:通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力;3.数学运算:会函数图像,根据图像分析函数的定义域,值域4.直观想象:通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。

5.数学建模:通过本节课的教学,使学生进一步认识到,数学源于生活,数学也可应用于生活,能够解决生活中的实际问题.教学重点函数的三种表示方法,分段函数的概念 教学难点根据题目的已知条件,写出函数的解析式并画出图像PPT1. 函数的表示方法(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。

如初中: 学习的一次函数、一元二次函数、反比例函数的关系式,都是解析法.(2)列表法:列表法直接通过表格读数,不必通过计算,就表示出了两个变量之间的对应值,非常直 观.但任何一个表格内标出的数都是有限个,也就只能表示有限个数值之间的函数关系.若 自变量有无限多个数,则只能给出局部的对应关系.(3)图象法:用函数图象表示两个变量之间的关系。

例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。

(见课本P 53页图2—2 我国人口出生变化曲线)比如心电图:但不是所有函数都可以用图像表示:如狄利克雷函数:{1,0()x x f x =为有理数,为无理数2. 函数表示的三种方法对比: 函数表示方法优点缺点 解析法1、简明、全面地概括了变量间的关系; 2、通过解析式求出任意一个自变量的值对应的函数值。

高中数学第三章函数概念与性质3.1.2函数的表示法函数的表示法第一册数学教案

高中数学第三章函数概念与性质3.1.2函数的表示法函数的表示法第一册数学教案

第1课时函数的表示法考点学习目标核心素养函数的三种表示方法了解函数的三种表示法及各自的优缺点,会根据不同需要选择恰当方法表示函数数学抽象求函数的解析式掌握求函数解析式的常用方法数学运算函数图象的作法及应用会作函数的图象并从图象上获取有用信息直观想象问题导学预习教材P67,并思考以下问题:1.函数的表示方法有哪几种?2.函数的表示方法有什么特点?函数的表示法■名师点拨(1)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性.(2)图象法:图象既可以是连续的曲线,也可以是离散的点.(3)解析法:利用解析法表示函数的前提是变量间的对应关系明确,且利用解析法表示函数时要注意注明其定义域.判断正误(正确的打“√”,错误的打“×”)(1)任何一个函数都可以用解析法表示.( )(2)函数的图象一定是定义区间上一条连续不断的曲线.( )答案:(1)×(2)×已知y与x成反比,且当x=2时,y=1,则y关于x的函数关系式为( )A .y =1x B .y =-xC .y =2xD .y =x2解析:选C.设y =k x ,由题意得1=k2,解得k =2,所以y =2x.已知函数f (x )由下表给出,则f (f (3))=________.x 1 2 3 4 f (x )3241解析:由题设给出的表知f (3)=4, 则f (f (3))=f (4)=1. 答案:1函数f (x )的图象如图所示,则f (x )的定义域是________,值域是________.答案:[-1,0)∪(0,2] [-1,1) 函数的三种表示方法某商场新进了10台彩电,每台售价3 000元,试求售出台数x (x 为正整数)与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.【解】 (1)列表法:x /台1234 5 6 7 8 9 10 y /元 3 000 6 000 9 00012 00015 00018 00021 00024 00027 00030 000(3)解析法:y =3 000x ,x ∈{1,2,3,…,10}.(1)函数三种表示方法的选择解析法、图象法和列表法分别从三个不同的角度刻画了自变量与函数值的对应关系.采用解析法的前提是变量间的对应关系明确,采用图象法的前提是函数的变化规律清晰,采用列表法的前提是定义域内自变量的个数较少.(2)应用函数三种表示方法应注意以下三点①解析法必须注明函数的定义域;②列表法必须能清楚表明自变量与函数值的对应关系;③图象法必须清楚函数图象是“点”还是“线”.1.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )解析:选D.由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.2.下表表示函数y=f(x),则f(x)>x的整数解的集合是________.x 0<x<55≤x<1010≤x<1515≤x<20 y=f(x)46810当5≤x<10时,f(x)>x的整数解为{5}.当10≤x<15时,f(x)>x的整数解为∅.当15≤x<20时,f(x)>x的整数解为∅.综上所述,f(x)>x的整数解的集合是{1,2,3,5}.答案:{1,2,3,5}3.已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其函数对应关系如下表:x 1 2 3 f (x ) 2 3 1 x 1 2 3 g (x )321则方程g (f (x ))=x 的解集为________.解析:当x =1时,f (1)=2,g (f (1))=2,不符合题意; 当x =2时,f (2)=3,g (f (2))=1,不符合题意; 当x =3时,f (3)=1,g (f (3))=3,符合题意. 综上,方程g (f (x ))=x 的解集为{3}. 答案:{3} 求函数的解析式(1)已知f (x )是一次函数,且f (f (x ))=9x +4,求f (x )的解析式;(2)已知f (x +1)=x +2x ,求f (x );(3)已知2f ⎝ ⎛⎭⎪⎫1x +f (x )=x (x ≠0),求f (x ).【解】 (1)设f (x )=kx +b (k ≠0),则f (f (x ))=k (kx +b )+b =k 2x +kb +b =9x +4.所以⎩⎪⎨⎪⎧k 2=9,kb +b =4.解得k =3,b =1,或k =-3,b =-2. 所以f (x )=3x +1或f (x )=-3x -2. (2)法一:(配凑法)因为f (x +1)=x +2x =(x +1)2-1(x +1≥1), 所以f (x )=x 2-1(x ≥1). 法二:(换元法)令x +1=t (t ≥1),则x =(t -1)2(t ≥1),所以f (t )=(t -1)2+2(t -1)2=t 2-1(t ≥1). 所以f (x )=x 2-1(x ≥1).(3)f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,令x =1x,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x .于是得到关于f (x )与f ⎝ ⎛⎭⎪⎫1x 的方程组 ⎩⎪⎨⎪⎧f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.解得f (x )=23x -x3(x ≠0).求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式.(2)换元法(有时可用“配凑法”):已知函数f (g (x ))的解析式求f (x )的解析式可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f (g (x ))中求出f (t ),从而求出f (x ).(3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数,而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法).1.(2019·辽源检测)设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A .f (x )=1+x 1-xB .f (x )=1+xx -1C .f (x )=1-x1+xD .f (x )=2x x +1解析:选C.令t =1-x1+x ,解得x =1-t1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =x , 可得f (t )=1-t1+t ,所以f (x )=1-x1+x.2.已知f (x )+2f (-x )=x 2+2x ,求f (x ). 解:因为f (x )+2f (-x )=x 2+2x ,① 所以将x 换成-x ,得f (-x )+2f (x )=x 2-2x .② ②×2-①得3f (x )=x 2-6x ,所以f (x )=13x 2-2x .函数图象的作法及应用作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2]. 【解】 (1)列表:x 0 12 1 32 2 y12345当x ∈[0,2]时,图象是直线的一部分,观察图象可知,其值域为[1,5].(2)列表:x2345…y 123 12 25…当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分,观察图象可知其值域为(0,1].(3)列表:x -2 -1 0 1 2 y-138画图象,图象是抛物线y=x2+2x在-2≤x≤2之间的部分.由图可得函数的值域是[-1,8].函数y=f(x)图象的画法(1)若y=f(x)是已学过的基本初等函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y=f(x)不是所学过的基本初等函数之一,则要按:①列表;②描点;③连线.三个基本步骤作出y=f(x)的图象.作出下列函数的图象:(1)y=x+2,|x|≤3;(2)y=x2-2,x∈Z且|x|≤2.解:(1)因为|x|≤3,所以函数的图象为线段,而不是直线,如图(1);(2)因为x∈Z且|x|≤2,所以函数的图象是五个孤立的点,如图(2).1.已知函数f(x)的图象如图所示,其中点A,B的坐标分别为(0,3),(3,0),则f(f(0))=( )A.2 B.4C.0 D.3解析:选C.结合题图可得f(0)=3,则f(f(0))=f(3)=0.2.已知函数f(2x+1)=6x+5,则f(x)的解析式是( )A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x-1 D.f(x)=3x+4解析:选A.法一:令2x +1=t ,则x =t -12.所以f (t )=6×t -12+5=3t +2,所以f (x )=3x +2.法二:因为f (2x +1)=3(2x +1)+2, 所以f (x )=3x +2.3.已知函数f (x )=x -mx,且此函数的图象过点(5,4),则实数m 的值为________.解析:因为函数f (x )=x -mx的图象过点(5,4),所以4=5-m5,解得m =5.答案:54.已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x ).解:因为f (x )是二次函数,设f (x )=ax 2+bx +c (a ≠0), 由f (0)=1,得c =1.由f (x +1)-f (x )=2x , 得a (x +1)2+b (x +1)+1-ax 2-bx -1=2x . 整理得2ax +(a +b )=2x ,由系数相等得⎩⎪⎨⎪⎧2a =2,a +b =0,所以⎩⎪⎨⎪⎧a =1,b =-1.所以f (x )=x 2-x +1.[A 基础达标]1.下表表示y 是x 的函数,则函数的值域是( )C .(0,20]D .N *解析:选B.由表格可知,y 的值为2,3,4,5.故函数的值域为{2,3,4,5}.2.已知f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=( )A .0B .8C .2D .-2解析:选B.因为f (x )=x 2+bx +c , 且f (1)=0,f (3)=0,所以⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3,即f (x )=x 2-4x +3, 所以f (-1)=1+4+3=8.3.已知函数f (x -1)=x 2-3,则f (2)的值为( ) A .-2 B .6 C .1D .0解析:选B.法一:令x -1=t ,则x =t +1, 所以f (t )=(t +1)2-3, 所以f (2)=(2+1)2-3=6.法二:f (x -1)=(x -1)2+2(x -1)-2, 所以f (x )=x 2+2x -2, 所以f (2)=22+2×2-2=6. 法三:令x -1=2,所以x =3, 所以f (2)=32-3=6.4.已知f (x )是一次函数,且满足3f (x +1)=2x +17,则f (x )等于( )A.23x +5 B.23x +1 C .2x -3D .2x +1解析:选A.因为f (x )是一次函数, 所以设f (x )=ax +b (a ≠0),由3f (x +1)=2x +17,得3[a (x +1)+b ]=2x +17, 整理得3ax +3(a +b )=2x +17,所以⎩⎪⎨⎪⎧3a =2,3(a +b )=17,所以⎩⎪⎨⎪⎧a =23,b =5,所以f (x )=23x +5,故选A.5.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水也不出水.则正确论断的个数是( )A.0 B.1C.2 D.3解析:选B.由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,故③错.6.已知函数y=f(x)的对应关系如表所示,函数y=g(x) 的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为________.解析:由函数g(x则f(g(2))=f(1)=2.答案:27.(2019·莆田检测)函数y=x2+2x-3在区间[-3,0]上的值域为________.解析:y=x2+2x-3=(x+1)2-4,抛物线的开口向上,对称轴为直线x=-1,因为x∈[-3,0],所以当x=-3时,y max=0,当x=-1时,y min=-4.函数的值域为[-4,0].答案:[-4,0]8.已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x +24,则5a -b =________.解析:由f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,得(ax +b )2+4(ax +b )+3=x 2+10x +24,即a 2x 2+(2ab +4a )x +b 2+4b+3=x 2+10x +24,由系数相等得⎩⎪⎨⎪⎧a 2=1,2ab +4a =10,b 2+4b +3=24,解得a =-1,b =-7或a =1,b =3,则5a -b =2.答案:29.已知函数p =f (m )的图象如图所示.求: (1)函数p =f (m )的定义域; (2)函数p =f (m )的值域;(3)p 取何值时,有唯一的m 值与之对应.解:(1)观察函数p =f (m )的图象,可以看出图象上所有点的横坐标的取值范围是-3≤m ≤0或1≤m ≤4,由题图知定义域为[-3,0]∪[1,4].(2)由题图知值域为[-2,2].(3)由题图知:p ∈(0,2]时,只有唯一的m 值与之对应. 10.已知函数f (x )=g (x )+h (x ),g (x )关于x 2成正比,h (x )关于x 成反比,且g (1)=2, h (1)=-3.求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1∈R ,且k 1≠0),h (x )=k 2x(k 2∈R ,且k 2≠0), 由于g (1)=2,h (1)=-3,所以k 1=2,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0,+∞).(2)由(1),得f (4)=2×42-34=612.[B 能力提升]11.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x2(x ≠-1),则f (x )的解析式为( )A .f (x )=x1+x 2(x ≠-1)B .f (x )=-2x1+x 2(x ≠-1)C .f (x )=2x1+x 2(x ≠-1)D .f (x )=-x1+x2(x ≠-1)解析:选 C.设1-x 1+x =t ,则x =1-t1+t(t ≠-1),所以f (t )=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=4t 2+2t 2=2t 1+t 2,即f (x )=2x1+x2(x ≠-1).故选C.12.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为( )A .1B .-1C .1或-1D .1或-2解析:选B.因为g (x )=14(x 2+3),所以g (f (x ))=14[(2x +a )2+3]=14(4x 2+4ax +a 2+3)=x 2-x +1,求得a =-1.故选B.13.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题:(1)比较f (0)、f (1)、f (3)的大小; (2)求函数f (x )的值域.解:f (x )=-(x -1)2+4的图象如图所示: (1)f (0)=3,f (1)=4,f (3)=0, 所以f (1)>f (0)>f (3).(2)由图象可知二次函数f (x )的最大值为f (1)=4,则函数f (x )的值域为(-∞,4].[C 拓展探究]14.设二次函数f (x )满足f (x -2)=f (-x -2),且f (x )的图象与y 轴交点的纵坐标为1,被x 轴截得的线段长为22,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0). 由f (x -2)=f (-x -2)得4a -b =0;①又因为|x 1-x 2|=b 2-4ac |a |=22,所以b 2-4ac =8a 2;② 又由已知得c =1.③由①②③解得b =2,a =12,c =1,所以f (x )=12x 2+2x +1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2 函数的表示法教学设计
安徽省宿州市第二中学 柏长胜
教学目标:
1.使学生掌握函数的常用的三种表示法;
2.使学生能根据不同的需要选择恰当的方法表示函数,了解函数不同表示法的优缺点;
3.使学生理解分段函数及其表示法,会处理某些简单的分段函数问题;
4.培养学生数形结合与分类讨论的数学思想方法,激发学生的学习热情。

教学重点:
函数的三种表示法及其相互转化,分段函数及其表示法
教学难点:
根据不同的需要选择恰当的方法表示函数,分段函数及其表示法。

教学过程:
一、新课引入
复习提问:函数的定义及其三要素是什么?
函数的本质就是建立在自变量x的集合A上对应关系,在研究函数的过程中,我们常用不同的方法表示函数,可以从不同的角度帮助我们理解函数的性质,是研究函数的重要手段。

请同学们回忆一下函数有哪些常用的表示法? 答:列表法是、图像法、解析法 二、新课讲解
请同学们阅读课本P28-P29例2以上部分内容,思考下列问题: 1. 列表法是、图像法、解析法的分别是怎样定义的? 2. 这三种表示法各有什么优、缺点?
函数的三种表示法并不是相互独立的,它们可以相互转化,是有机的一个整体,像我们非常熟悉的一次函数、二次函数,我们都可以用列表法是、图像法、解析法来表示和研究它们。

下面我们再通过几个具体实例来研究函数的列表法是、图像法、解析法的相互转化和应用。

例1、 请画出下列函数的图像。

,0
,0x x y x x x ≥⎧==⎨-≤⎩
解:图像为第一和第二象限的角平分线, y 如图2-5所示
0 x
图2-5
本题体现的是由数到形的变化,是数形结合的数学思想方法。

问1.如何作出函数1y x =-的图像? 2.如何作出函数1y x =-的图像? 3. 如何作出函数23y x =+-的图像?
4.思考:如何由函数y x =的图像得到函数y x a b =++的图像?
5.试求函数y x =与函数y=1的图像围成的图形的面积。

例2、 国内跨省市之间邮寄信函,每封信函的质量和对应的邮资如表2-5:
(多媒体课件显示)
表2-5
信函质量(m)/g
邮资(M)/元
1.20
2.40
3.60
4.80
6.00
画出图像,并写出函数的解析式。

分析:要让学生明白当信函质量020m <≤时邮资M=1.20是信函质量m 的函数,是一种典型的多对一的函数,可以通过多媒体动画演示让学生体会。

解:邮资M 是信函质量m 的函数,函数图像如图2-6所示
图2-6
2040m <≤4060m <≤6080
m <≤80100
m <≤020
m <≤
函数解析式为:
1.20,020
2.40,2040
3.60
,4060
4.80,60806.00
,80100
m m M m m m <≤⎧⎪<≤⎪⎪
=<≤⎨⎪<≤⎪<≤⎪⎩
注:像这样在定义域内的不同区间上对应着不同的解析式的函数叫分段函数
1. 分段函数是一个函数,而不是几个函数;
2. 分段函数的定义域是所有区间的并集,值域是各段函数值域的并集;
3. 分段函数的求解策略:分段函数分段解。

例3、 某质点在30s 内运动速度v 是时间t 的函数,它的图像如图2-7。

用解析法表示这个函数,并求出9s 时质点的速度。

(多媒体课件显示)
解:速度是时间的函数,且在不同的区间上对应这不同的解析式,因此速度是时间的分段函数,我们应当分段处理。

1.当05t ≤≤时,可设 (0)v kt b k =+≠,将(0,10)和(5,15)代入,得
10155b
k b
=⎧⎨
=+⎩ 10v t ∴=+
请同学们拿出笔和纸算出 510t ≤≤,1020t ≤≤,2030t ≤≤时所对应的解析式。

∴ 10,053,510
()30,1020390,2030
t t t t v t t t t +≤<⎧⎪≤<⎪=⎨
≤<⎪⎪-+≤≤⎩ 由上式可得,t=9s 时,质点的速度是 (9)3927(/)v cm s =⨯=
问1.如何求质点在t=19s 、20s 、0.2s 时的速度呢? 2.求((9))v v 的值;
3.当()27(/)v t cm s =时,对应的时间t 是多少? 3解法1:(分段函数分段解)
①当05t ≤<时,
()1027v t t =+= 解得17t =(舍)
②当510t ≤<时,
()327v t t == 解得9t =
③当1020t ≤<时,
()3027v t =≠ 无解
④当2030t ≤≤时,
()39027v t t =-+= 解得21t =
综上可知9t =或21
解法2:(数形结合)由v 与t 图像可知只有510t ≤<和2030t ≤≤时,()27(/)v t cm s =才可能成立,故()39027v t t =-+=或 ()327v t t == 解得9t =或21 三、思考交流
P30第1、2题。

四、课堂练习
P31第1、2、3题。

五、课堂小结
师生共同归纳本节主要内容
1. 函数的三种表示法和各自的优缺点;
2. 分段函数及其解法;
3. 函数解析式的求法。

六、布置作业
P34习题2-2 A 组 第1、2题。

相关文档
最新文档