高等数学公式定理整理
全部高等数学计算公式
全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。
每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。
一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。
成考专升本高数公式大全
成考专升本高数公式大全高等数学是考研和专升本考试中必备的一门科目,掌握好高等数学的公式和定理对于高分通过考试非常重要。
下面是一些常用的高等数学公式和定理的汇总,供参考。
1.数列的常用公式:-等差数列通项公式:$a_n=a_1+(n-1)d$-等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)$-等比数列通项公式:$a_n=a_1 \cdot q^{n-1}$-等比数列前n项和公式:$S_n=\frac{a_1(q^n-1)}{q-1}$2.三角函数的基本公式:- 正弦函数的基本公式:$\sin(\alpha \pm \beta)=\sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$- 余弦函数的基本公式:$\cos(\alpha \pm \beta)=\cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$- 正切函数的基本公式:$\tan(\alpha \pm \beta)=\frac{\tan\alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$3.极限的常用公式:- 求和的极限公式:$\lim_{n \to \infty}\sum_{k=1}^{n}a_k = \lim_{n \to \infty}(a_1+a_2+...+a_n) = \lim_{n \to \infty}S_n$- 积分的定义公式:$\int_{a}^{b}f(x)dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n}f(\xi_i)\Delta x_i$4.微分的常用公式:- 导数的定义公式:$f'(x)=\lim_{\Delta x \to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$- 常见函数的导数公式:$(x^n)'=nx^{n-1}$,$(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tan x)'=\sec^2 x$,$(e^x)'=e^x$,$(\lnx)'=\frac{1}{x}$- 导数的四则运算公式:$(u \pm v)'=u' \pm v'$,$(cu)'=cu'$,$(uv)'=u'v+uv'$,$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$5.积分的常用公式:- 基本积分公式:$\int{x^n}dx=\frac{1}{n+1}x^{n+1}+C$,$\int{\frac{1}{x}}dx=\ln,x,+C$,$\int{e^x}dx=e^x+C$- 三角函数的积分公式:$\int{\sin x}dx=-\cos x + C$,$\int{\cos x}dx=\sin x+C$,$\int{\tan x}dx=\ln,\sec x,+C$ - 分部积分公式:$\int{uv}dx=uv-\int{u'v}dx$。
大学高等数学公式大全
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学公式定理全集(完整编辑版)
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
常用高数定理
高中常用高数定理1.拉格朗日中值定理:如果函数f(x)在[a,b]上连续可导,则至少存在一点c,使得f'(c)=[f(b)-f(a)]/(b-a)(a<c<b)初等作法:形如丨f(x2)-f(x1)丨≤k丨x2-x1丨(或者≥),求k取值范围。
解:丨f(x2)-f(x1)丨≤k丨x2-x1丨<=>丨〔f(x2)-f(x1)〕/(x2-x1)丨≤k当x2→x1时,丨〔f(x2)-f(x1)〕/(x2-x1)丨=f'(x1)≤k<=>丨f'(x)丨≤k i丨f(x2)-f(x1)丨≤k丨x2-x1丨(不妨设x2≥x1)<=>当f(x2)≥f(x1)时,f(x2)-kx2≤f(x1)-kx1当f(x1)≥f(x2)时,f(x2)+kx2≥f(x1)+kx1令h1(x)=f(x)-kx h2(x)=f(x)+kx由i知h1'(x)=f'(x)-k≤0 h2'(x)=〔丨f'(x)丨^2-k^2〕/h1'(x)≥0=>当f(x2)≥f(x1)时,f(x2)-kx2≤f(x1)-kx1当f(x1)≥f(x2)时,f(x2)+kx2≥f(x1)+k x1=>k≥丨f'(x)丨max例题:06年四川高考理数21已知函数f(x)=x^2+2/x+alnx,f(x)的导数为f'(x),对任意两个不相等的正数x1、x2证明:当a<4时,丨f'(x1)-f'(x2)丨>丨x1-x2丨解:丨f'(x1)-f'(x2)丨>丨x2-x1丨<=>丨〔f(x2)-f(x1)〕/(x2-x1)丨>1当x2→x1时,丨〔f’(x2)-f’(x1)〕/(x2-x1)丨=丨f'(x1)丨>1<=>丨f''(x1)丨>1 i =>a<4/x+x^2<4丨f'(x2)-f'(x1)丨>丨x2-x1丨(不妨设x2≥x1)<=>当f'(x2)≥f'(x1)时,f'(x2)-x2>f'(x1)-x1 ii当f'(x1)≥f'(x2)时,f'(x2)+kx2<f'(x1)+kx1 iii令h1(x)=f'(x)-x h2(x)=f'(x)+x由i知h1'(x)=f'(x)-1>0 h2'(x)=〔丨f'(x)丨^2-1〕/h1'(x)-1<0=>ii、iii成立=>丨f'(x2)-f'(x1)丨>丨x2-x1丨(当a<4时)2:单调有界原理若数列{an}递增(递减)有上界(下界),则数列{an}收敛,即单调有界数列必有极限。
高等数学公式、定理最全版
高等数学公式导数公式:根本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
关于高等数学公式大全几乎包含了所有
关于高等数学公式大全几乎包含了所有一、微分学公式1. 线性函数的导数:(kx)' = k2. 幂函数的导数:(x^n)' = nx^(n-1)3.e^x的导数:(e^x)'=e^x4. sinx 的导数:(sinx)' = cosx5. cosx 的导数:(cosx)' = -sinx6. tanx 的导数:(tanx)' = sec^2x7. cotx 的导数:(cotx)' = -csc^2x8. ln(x) 的导数:(ln(x))' = 1/x9. a^x 的导数:(a^x)' = ln(a) * a^x二、积分学公式1. 线性函数的积分:∫(kx)dx = (k/2)x^2 + C2. 幂函数的积分:∫(x^n)dx = (1/(n+1))x^(n+1) + C, (n≠-1)3. e^x 的积分:∫e^xdx = e^x + C4. sinx 的积分:∫sinxdx = -cosx + C5. cosx 的积分:∫cosxdx = sinx + C6. tanx 的积分:∫tanxdx = -ln,cosx, + C7. cotx 的积分:∫cotxdx = l n,sinx, + C8. 1/(x+a) 的积分:∫(1/(x+a))dx = ln,x+a, + C9. 1/(x^2+a^2) 的积分:∫(1/(x^2+a^2))dx = (1/a)arctan(x/a) + C三、级数和序列的公式1.等差数列的前n项和:Sn = n(a1+an)/22.等比数列的前n项和:Sn=a1(1-q^n)/(1-q)3.等差级数的和:S = (n/2)(a1+an)4.等比级数的和:S=a1/(1-q),,q,<15.幂级数的和:S=a/(1-r),,r,<16.泰勒级数:f(x)=f(a)+(x-a)f'(a)/1!+(x-a)^2f''(a)/2!+...四、微分方程的公式1. 一阶常微分方程:dy/dx + P(x)y = Q(x), y = C∫(e^(-∫P(x)dx))Q(x)dx2. 二阶常系数非齐次线性微分方程:ay''+by'+cy=g(x),其中非齐次解为 y = yc + yp3. 欧拉方程:x^n*d^n(y)/dx^n + a_(n-1)*x^(n-1)*d^(n-1)(y)/dx^(n-1) +...+ a_1*x*d(y)/dx + a_0*y = 0以上只是高等数学公式的一部分,包括微分学、积分学、级数和序列以及微分方程等方面的公式。
高等数学十大定理公式
高等数学十大定理公式高等数学十大定理公式有有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。
1、有界性|f(x)|≤K2、最值定理m≤f(x)≤M3、介值定理若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ4、零点定理若f(a)⋅f(b)<0∃ξ∈(a,b) ,使f(ξ)=05、费马定理设f(x)在x0处:1,可导2,取极值,则f′(x0)=06、罗尔定理若f(x)在[a,b] 连续,在(a,b) 可导,且f(a)=f(b) ,则∃ξ∈(a,b) ,使得f′(ξ)=07、拉格朗日中值定理若f(x)在[a,b] 连续,在(a,b) 可导,则∃ξ∈(a,b) ,使得f(b)−f(a)=f′(ξ)(b−a)8、柯西中值定理若f(x)、g(x)在[a,b] 连续,在(a,b) 可导,且g′(x)≠0 ,则∃ξ∈(a,b) ,使得f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)9、泰勒定理(泰勒公式)n阶带皮亚诺余项:条件为在$x_0$处n阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\ ,x\xrightarrow{} x_0$ n阶带拉格朗日余项:条件为n+1阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0 )^{n+1}\ ,x\xrightarrow{} x_0$10、积分中值定理(平均值定理)若f(x)在[a,b] 连续,则∃ξ∈(a,b),使得∫baf(x)dx=f(ξ)(b−a)。
高等数学必背公式大全
高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。
高等数学常用公式与定理总结
高等数学常用公式与定理总结作为一门基础学科,高等数学在各个领域中发挥着重要的作用。
学习高等数学,掌握一些常用的公式与定理是非常必要的。
本文将对高等数学常用的公式与定理进行总结,以供读者参考和下载使用。
一、常用公式总结1. 三角函数公式- 正弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:a/sinA = b/sinB = c/sinC- 余弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)2. 导数与微分公式- 导数的链式法则:若y = f(u)和u = g(x)都可导,则复合函数y = f(g(x))的导数为:dy/dx = f'(g(x)) * g'(x)- 微分的乘法法则:若z = u * v,则dz = u * dv + v * du- 微分的复合法则:若z = f(u)且u = g(x)都可导,则复合函数z = f(g(x))的微分为:dz = f'(g(x)) * g'(x) * dx3. 级数公式- 幂级数:若幂级数∑(n=0,∞)an(x-a)^n的收敛半径为R,则在收敛区间内函数f(x)的表达式为:f(x) = ∑(n=0,∞)an(x-a)^n- 等比数列的和:如果|q| < 1,则等比数列∑(n=0,∞)aq^n的和为:S = a / (1 - q)二、常用定理总结1. 一元函数极值定理设函数f(x)在[a, b]上连续,在(a, b)内可导,且在(a, b)内具有极值,那么它的极值点必定在(a, b)内的某个驻点或者两个端点上。
2. 泰勒公式设函数f(x)在点a附近有直到n阶的连续导数,那么函数在点a处的泰勒展开式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)3. 全微分定理设函数z = f(x, y)在点(x0, y0)的某一邻域内偏导数存在且连续,那么在点(x0, y0)处可微分,且有:δz = ∂f/∂x * δx + ∂f/∂y * δy三、总结与下载通过本文的总结,我们对高等数学的常用公式与定理进行了梳理。
大学高等数学定理公式
第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
高等数学公式定理(全)
高等数学公式定理(全)·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tan β)tan(α-β)=(tanα-tanβ)/(1+tanα·tan β)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cos α·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cos α·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高等数学公式定理(全)
………………………………………………最新资料推荐………………………………………·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α) ·积的关系:sinα=tanα*cosαcosα=cotα*sinαtan α=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1 sinα·cscα=1 cos α·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cos α·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cos α·sinβtan(α+β)=(tanα+tanβ)/(1-tan α·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cos β·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tan α·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式:sin(2α)=2sin α·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1= 1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式:sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cos α)/(1+cosα))=sinα/(1+cosα)=(1-cos α)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tan α=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sin α-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2 ·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段] 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sin αcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sin αcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z) 部分高等内容[编辑本段] ·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高等数学公式、定理 最全版(2020年10月整理).pdf
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+−=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅−='⋅='−='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +−='+='−−='−='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+−=⋅+=⋅+−==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=−+−+=−++−=−+=++−=++=+=+−=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++−=−+−+−−=−+++++=+−===−Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα−+=−−+=+−+=−−+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx −+=−+±=++=+−==+=−=−−−−11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin −=+=−+±=+=−=+−±=+±=−±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222−+=·反三角函数性质:arcctgx arctgx x x −=−=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++−−++''−+'+==−−−=−∑中值定理与导数应用:拉格朗日中值定理。
高数的基本公式大全
高数的基本公式大全高等数学(简称高数)是大多数理工科专业的重要学科之一,其理论基础和应用广泛深入。
在学习高数的过程中,熟练掌握各类基本公式是非常关键的。
本文将为大家总结并介绍一些高数中常用的基本公式,希望能对广大学生有所指导和帮助。
一、导数公式1. 基本导数:常数导数为0,幂函数求导是将幂次降低一次并乘以原幂次系数。
2. 乘积法则:$(u * v)' = u' * v + u * v'$3. 商法则:$\left(\frac{u}{v}\right)' = \frac{u' * v - u * v'}{v^2}$4. 复合函数求导法则:$(f(g(x)))' = f'(g(x)) * g'(x)$5. 反函数求导法则:$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$6. 指数函数求导法则:$(a^x)' = a^x * \ln(a)$7. 对数函数求导法则:$(\log_a{x})' = \frac{1}{x *\ln(a)}$8. 三角函数求导法则:$(\sin{x})' = \cos{x}$,$(\cos{x})' = -\sin{x}$,$(\tan{x})' = \sec^2{x}$9. 反三角函数求导法则:$(\arcsin{x})' = \frac{1}{\sqrt{1- x^2}}$,$(\arccos{x})' = -\frac{1}{\sqrt{1 - x^2}}$,$(\arctan{x})' = \frac{1}{1 + x^2}$二、积分公式1. 基本积分:幂函数的积分是将幂次升高一次并除以新的幂次。
2. 基本定积分:$\int_a^b{f(x)dx} = F(b) - F(a)$,其中$F(x)$为$f(x)$的一个原函数。
高等数学公式定理(全)
·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sin βtan(α+β)=(tanα+tanβ)/(1-tan α·tanβ)tan(α-β)=(tanα-tanβ)/(1+tan α·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cos α·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cos α·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tan β-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cot α)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)= 0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数公式大全
高数公式大全高等数学是一门涉及多个分支和概念的学科,其中包含了许多重要的公式和定理。
以下是一些高等数学中常用的公式和定理的详细内容:1. 极限与连续性:- 极限的定义:对于函数f(x),当x无限接近于某个值a时,如果f(x)的值无限接近于L,则称L为f(x)在x=a处的极限,记作lim(x→a)f(x)=L。
- 常用极限公式:- lim(x→a)(c) = c,其中c为常数。
- lim(x→a)(x^n) = a^n,其中n为正整数。
- lim(x→a)(sin(x)) = sin(a)。
- lim(x→a)(e^x) = e^a,其中e为自然对数的底数。
- lim(x→∞)(1/x) = 0。
- lim(x→0)(sin(x)/x) = 1。
2. 导数与微分:- 导数的定义:对于函数f(x),在某个点x=a处的导数表示函数在该点的变化率,记作f'(a)或df(x)/dx|_(x=a)。
- 常用导数公式:- (c)' = 0,其中c为常数。
- (x^n)' = nx^(n-1),其中n为正整数。
- (sin(x))' = cos(x)。
- (cos(x))' = -sin(x)。
- (e^x)' = e^x。
- (ln(x))' = 1/x。
- 微分的定义:对于函数f(x),在某个点x=a处的微分表示函数在该点的线性近似,记作df(x)。
- 常用微分公式:- df(x) = f'(x)dx。
3. 积分与定积分:- 不定积分的定义:对于函数f(x),其不定积分表示函数的原函数,记作∫f(x)dx。
- 常用不定积分公式:- ∫(c)dx = cx,其中c为常数。
- ∫(x^n)dx = (1/(n+1))x^(n+1),其中n不等于-1。
- ∫(sin(x))dx = -cos(x)。
- ∫(cos(x))dx = sin(x)。
- ∫(e^x)dx = e^x。
高等数学上常用公式定理
高等数学上常用公式定理1.导数的基本公式:(a) (c^k)' = kc^(k-1) * f'(x) ,其中c为常数,k为常数(b) (ax^n)' = anx^(n-1),其中a为常数,n为常数(c) (sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec^2x, (cotx)' = -csc^2x(d) (lnx)' = 1/x,(ex)' = ex , (a^x)' = a^x * ln(a)2.基本积分公式:(a) ∫kdx = kx + C,其中k为常数,C为常数(b) ∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1,C为常数(c) ∫1/x dx = ln,x, + C,其中C为常数(d) ∫e^xdx = e^x + C3.基本微分方程:(a) dy/dx + P(x)y = Q(x),其中P(x)和Q(x)为已知函数,求解y(x)(b)y'+P(x)y=g(x),其中P(x)和g(x)为已知函数,求解y(x)(c)y'+yP(x)=Q(x),其中P(x)和Q(x)为已知函数,求解y(x)4.泰勒级数展开:函数f(x)在a点的n阶泰勒级数展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x),其中R_n(x)为剩余项5.定积分的基本定理:(a) 若F(x)是f(x)的一个原函数,则有∫[a,b] f(x)dx = F(b) -F(a)(b) 若F(x)是f(x)的一个原函数,则有∫[a,b]f(x)dx =∫[a,c]f(x)dx + ∫[c,b]f(x)dx,其中a < c < b6.常用级数:(a)等比数列求和公式:Sn=a(1-q^n)/(1-q),其中a为首项,q为公比(b)幂级数:f(x)=Σ(a_n*x^n),其中a_n为常数,n从0到无穷大7.连续函数定理:如果函数f(x)在区间[a,b]上连续,且在[a,b]的任意一点x处可导,则f(x)在[a,b]上有界。
高数公式定理大全
高数公式定理大全一、导数和微分1.导数的定义:如果函数f(x)在点x0处可导,则函数f(x)在x0处的导数为:f'(x0) = lim(x→x0) (f(x) - f(x0))/(x - x0)。
2.常见函数的导数:(1)幂函数的导数:(x^n)' = nx^(n-1)。
(2)指数函数的导数:(a^x)' = a^x ln(a),其中a是一个正实数。
(3)对数函数的导数:(ln x)' = 1/x。
(4)三角函数的导数:- (sin x)' = cos x。
- (cos x)' = -sin x。
- (tan x)' = sec^2 x。
- (cot x)' = -csc^2 x。
- (sec x)' = sec x tan x。
- (csc x)' = -csc x cot x。
3.高阶导数:函数f(x)的n阶导数可表示为:f^(n)(x) 或 d^n f / dx^n。
4.微分的定义:函数f(x)在点x0处的微分为:df = f'(x0) dx。
5.微分的性质:(1)微分与导数的关系:df = f'(x) dx。
(2)微分的加法性质:d(u + v) = du + dv。
(3)微分的乘法性质:d(uv) = u dv + v du。
(4)微分的链式法则:如果 y = f(u) 和 u = g(x),则 dy/dx = dy/du * du/dx。
二、积分1.定积分的定义:如果函数f(x)在闭区间[a, b]上有定义,且在[a, b]上可积,则记作∫(a→b) f(x) dx,表示从a到b的f(x)在x轴正方向的面积。
2.基本积分公式:(1)幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数。
(2)三角函数的积分:- ∫sin x dx = -cos x + C。
大学高等数学定理公式
大学高等数学定理公式大学高等数学是大学阶段重要的一门课程,它涵盖了许多重要的定理和公式。
这些定理和公式在解决数学问题、推导数学证明以及应用数学和工程领域中发挥着重要作用。
在本文中,我们将介绍一些大学高等数学中常见的定理和公式,并探讨其应用。
一、极限与连续1. 导数的定义:对于函数f(x),若存在一个常数a,使得当x趋近于a时,函数的导数存在,并记为f'(a),则称函数在点a处可导。
2. 微分中值定理:若函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)内可导,则存在c∈(a,b),使得f'(c) = (f(b)-f(a))/(b-a)。
3. 泰勒公式:对于函数f(x),若f(x)在x=a处的n阶导数存在,则有:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! ,其中fⁿ(a)表示函数在点a处的n阶导数。
二、微积分1. 不定积分的基本公式:∫xⁿdx = xⁿ⁺¹/(n+1) + C ,其中C为常数。
2. 定积分的基本公式:若函数f(x)在区间[a,b]上连续,则∫[a,b]f(x)dx存在,且记为F(x)的原函数在区间[a,b] 的定积分为∫[a,b]f(x)dx = F(b) - F(a)。
3. 牛顿-莱布尼兹公式:若函数f(x)在[a,b]上连续,则∫[a,b]f'(x)dx = f(b) - f(a)。
三、向量与矩阵1. 向量的模和方向:对于向量A = (a₁,a₂,...,aₙ),其模记为|A|,方向记为θ,有A =|A|cosθ·i + |A|sinθ·j。
2. 向量的点积:对于向量A = (a₁,a₂,...,aₙ)和B = (b₁,b₂,...,bₙ),其点积记为A·B = a₁b₁ + a₂b₂ + ... + aₙbₙ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式定理整理1.01 版本定理,公式整理仅用于参考,具体学习请多做题目以增进对知识的掌握。
蓝色为定理红色为公式 三角函数恒等公式:两角和差cos(a ® cos a ?cos B sin a ?sin B COS (a - [3 )cos a os a +°s C a in a*s sin( a±3 ) sin a in a±cos a os a ・stan( a + 、(tan a +tan 3 a3)(1-tan a an a ・ tatan( a - | 和差化积3 ) (tan a -tan 3 an 3tan a an a ・ taa^icosgsin a -sin 3= 2cos[ cos a -cos 3= -2sin[(a + 3)in[( a - 3) 2 2(a + 2 3)in [号) cos a + cos 3= 2cos[(a + 2积化和差1 •sin a in a = c[sin( a+ B ) sin( a- B )] cos a os a=~Ssin( a+ B -sin( a- B )]1cos a os a = c[cos( a+ B + COS(a- B )]1sin a in a=,-s[cos( a+ B - cos( a- B )]倍角公式(部分):很重要!sin2 a =22sin a sin a= •(tan a+ cot aocos2 a ==cos2a- sin2a= 2cos2a-1 = 1- 2sin2atan2 a=2ta n a 1-tan2a、函数函数的特性:1. 有界性:假设函数在D上有定义,如果存在正数M使得对于任何的x € D都满足|f(x)| < M。
则称f (x)是D的有界函数。
如果正数M不存在,则称这个函数是D上的无界函数。
2. 单调性设f (x)的定义域为D,区间I Do X1, x2 € I,那么,如果x1vx2,那么就是单调增加函数;如果x1>x2,那么就是单调减少函数o3. 奇偶性如果f(-x)=f(x), 那就成为偶函数,如果f(-x)=-f(x) ,那就是奇函数。
4. 周期性设函数的定义域为D若存在不为零的数T,使得任一x € D有(x ± T)€ D且f (x ± T) =f (x )总是成立,就称该函数为周期函数,如sin x , cos x,它们就是以2 n为周期的周期函数。
反函数:就是用自变量X来表示原函数Y如下列式子:原函数f(x)=x+5,它的反函数为x=f(x)-5,也就是f( x)=x-5 ;复合函数和初等函数:重要!:六个基本初等函数是:幕函数f x a),指数函数f a x),对数函数f log a x, lg x 【log io x】,In x [log e x】),三角函数f sinx , cosx, tanx , ctnx , secx , cscx),反三角函数(常见反三角函数为arcsinx , arccosx , arctanx )复合函数就是初等函数,初等函数是基本初等函数经过有限次的运算后得到的,分段函数不是初等函数。
二、极限与连续极限就是一个数无限趋近于一个值,函数极限就是函数无限趋近于一个值,用lim x T xo f f x) =A如何得知一个函数有极限?算出左极限和右极限。
并且左右极限相等。
极限运算法则lim x T x0 [f f x) ±g(x)]=lim x T x0 f f x) ±lim X T x0 g f x) =A± B2.x x那么lim nlimlimY nZ nxna 这就是夹逼准则lim沁或者x 0 xlim sin - 亍1lim x i xo [cf (x ) ]=clim x xo f (x ) =cA limX Txo f (x ) • lim x xo g (x ) =lim x ^xo f (x ) • g (x )=A ・B重要!:两个重要极限1. 夹逼准则如果 X n , y n , Z n 满足 X n W 旳二 Z nlimf ( x )xxog ( x )limf ( x)xx olim=△ (B Zg ( x ) Bxx 0o )limX 。
[f(x)]nlim [ f(x)]xx oA nlim xXnf (n)nAx )xx如图 1, / AOC=x( 0<x<2/ n),由于 |BD|=x ,弧 BC=x, |CA|=ta n x 且厶 OBC 面积v 扇形 OBC 面积<△ AOC 面积,于是有:1 1 1 sinx x tanx2 2 2化简 sinx x tanx所以lim沁x 0 x题目有类似的把它转换成标准公式即可)两边同时除以sinx 1tanx即x cosx 即卩 cosxisin xsin xX 根据夹逼准则得出limcosxsin xlim1lim3・x 0(1lim(1(这是标准公式,x sin x lim1 -cosx 〜(1/2)* (x A 2)〜secx-1,4. 无穷大量和无穷小量(1) 性质1,无穷小量和有界函数的积仍为无穷小量 (2) 性质2,两个无穷小量之积仍为无穷小量 (3) 性质3,两个无穷小量的代数和仍为无穷小量 定理1,在自变量变化过程中,函数有极限的充分必要条件 是函数可写成常数和无穷小量的和。
定理2, b 与a 是等价无穷小的充分必要条件为b=a+o (a )定理 3,设 a 〜a ' ,b 〜b '且 limb ' /存在,则 lima/b=lima ' /b ' 无穷小量的比较:lim b0高阶无穷小alim —低阶无穷小lim — C0同阶无穷小aalim b1等价无穷小a其中等价无穷小可运用到极限运算中(加减关系不能用,乘 除关系可以用,且X 趋于0)等价公式:当 X T 0时,sinx 〜x , tanx 〜x ,arcsinx 〜x ,arctanx〜x ,(a A x) -1〜x*lna ( (a A x-1)/x〜Ina) , ( e A x) -1〜x , ln(1+x)〜x ,(1 +Bx)a-1~aBx ,[(1+x)1/n]-1~( 1/n ) *x,loga(1+x)~x/lna ,(1+x)a-1〜ax(a^ 0),5. 连续定义设函数f (x)在X o的某个去心邻域内有定义,若lim (△ X T0 ) △ y=0,则称函数f (x)在x0这个点连续。
条件:( (1) f (x0)有定义,有数值;(2) lim (x^xO )有极限,( 3)且左右极限相等;才连续。
limf (x) f (x)x x0 左右连续和左右极限相同,如图:limf (x) f (x)x x0就是说只有左右连续相等,且有定义,那么才连续。
( 1 )间断点根据函数连续的定义,可以分成四个间断点。
可去间断点:左右极限存在且相等,但是却没有定义。
跳跃间断点:左右极限存在却不相等,在该点有(无)定义1.y=c(c 为常数)y'=0震荡间断点:极限不存在,函数值在几个数之间摇摆。
1.y=c(c 为常数)y'=0无穷间断点:在区间内极限区域无穷大。
闭区间连续函数的性质:1、 [a,b ]区间里连续函数,必定存在最小值和最大值;2、 函数f (x )在[a,b ]区间连续,则在[a,b ]必定有界;3、若函数f(x)在[a,b ]连续,且f(a)=A,f(b)=B,又AT, C 是介于A , B 的一个值,则必定存在一个点E,使得 f (E) =C ;4、若函数f(x)在[a,b ]连续,且f(a) , f(b)异号,则一定存在 一个 x0€( a , b ),使得 f (x0 ) =0 ;三、导数导数的几何意义就是f(x)在x 点函数的切线的斜率;连续不一定可导,可导一定连续; 导数的求导公式:求某一点的导数f '(x)limf(x) f(X o )x x o x x o2.y=x n y'=nx (n-1)3.y=a x y'=a xlnaxxy=e y'=ey=lnx y'=1/x5. y=sinx y'=cosx6. y=cosx y'=-sinx27. y=tanx y'=1/cos x28. y=cotx y'=-1/sin x29. y=arcsinx y'=1/ V 1-x10.y=arccosx y'=-1/ V1-x11.y=arctanx y'=1/1+x 12.y=arccotx y'=-1/1+x函数的求导法则:[f(x)g(x)]' [f(x)]' [g(x)]'[f(x)g(x)]' [f(x)]'g(x) f(x)[g(x)][f(x)]'[f(x)]'g(x) f(x)[g(x)]g(x)[g(x)]2复合函数求导法则:f(x) e x1f'(x) e x 1?(x 1)'例:f'(x) e x1链式法则:dy鱼臾依次循环 dx du dx隐函数求导法:(1)两端同时求导x2 y225d / 2 2、d(x y ) 25dx dxd x2 d y225整理dx dx 2x 2y矽0求导dx2y dy 2xdxdy xdx y(2)等式两端取对数1. 先将等式两边取自然对数;2.对等式两边求导;参数方程求导法:罗尔定理:[a,b]连续,(a,b)可导,且f(a)=f(b), 则有一个数E,使得f' ( E )=0。
拉格朗日定理:[a,b]连续,(a,b)可导,则(a,b)至少有一点E,使得f(b)-f(a)=f ' ( E )(b-a)即f(bL_L(a) Eb a罗必塔法则,求极限,如果函数的关系诸如°或者-的未定式,可以直接对分子分母求导运算。
如果是0时可通过o・0丄1•来求。
如果是0-0如-"以通分来求函数的单调性和极值:四步走: 1.求定义域;2.求导;3.在定义域中求一阶导数为0的点(驻点);4.列表说明单调增减函数的凹凸率,1.求定义域;2.求二阶导;3.求定义域中二阶导为0的点(拐点);4.根据拐点和定义域列表。
二阶导为正数则是凹,为负数则是凸;四、不定积分不定积分和导数是逆运算关系;不定积分求法分三种:直接积分(直接使用基本公式求);第一类换元积分(用一cos2xdx个字母代替变量,女口:cos2xd2x);第二类换元积分法(当sin 2x c被积函数中有诸如:ax bx这样的根式,可令根式为u,然后依次往下,带入原式);分部积分法:udv uv vdu五、定积分1. 求定积分上限函数和下限函数上限函数x i2tdt 2x ( X )'下限函数1x 2tdt [2x (x')]就是求下限积分时,把符号倒过来变成上限积分;2. 牛顿拉布尼茨公式(用不定积分的公式求,最后不加常数 c )3. 广义积分(积分上(下)限无穷和瑕积分)(1)积分区间的无穷区间 即求广义积分的敛散性,如果aa axdx & xdx lim xdx lim xdxxxe x dx lim e x dx lim [ e x ]0 [ e x 1] 1 0 xx所以这个积分是收敛的;(2)瑕积分(在无穷间断点的广义积分) 11讨论广义积分当dx 勺敛散性;1x这题可别被外表蒙蔽,因为函数极限在f (0)外连续,在f(0)处无定义lim 4 ,所以x=0是被积函数的无穷间断X 0X点;于是:1 1 01 1 -12dx — dx (因为函数—是偶函数) 1 x1 x xxdx如果他们极限存在,则 可以称为收敛,反之,则是发散;如例题:0 1 1 1 lim 2dx lim [ ] 1lim [ 1]x 0 1 x2x 0 x 1x 0所以,该函数是发散的;六、微分方程1. 可分离变量的通解,直接计算2. 齐次方程通解,用u代替址x3. 一阶线性非齐次方程的通解形女口y' p(x)y q(x)备注q(x) 0p(x)dx p(x)dxy e [ q(x)?e c]附:一阶线性齐次方程的通解p(x)dxy e c4. 可降解二阶微分方程通解y'' (x)连续积分两次,注意,要有两个常数c1, c2 y'' (y',x)令y' u,y'' u',依次降阶计算y'' (y',y)令y' u,y'' u dU,依次计算dx5. 二阶线性齐次方程通解形如y'' p(x)y' q(x)y 02r p(x)r q(x) 0参数方程求法 解一元二次方程组,得 r1,r2;如果 r1 ,r2 是不相同的两个实数根(单根),那么y C1e r1x C2e r2x如果 r1 ,r2 是两个相同的实数根(重根),那么y (C1 C2x)e rx如果 r1 ,r2 是两个非实数根(共轭复数根),那么r a biy e ax (C1cosbx C2sinbx)二阶线性非齐次微分方程的通解二阶线性非齐次方程的通解等于 对应二阶线性齐次方程的 通解加上二阶线性废非弃次方程的特解yYy二阶线性非齐次方程的特解: 自由项f(x) P n (X )的特解P n*(x)=x k Q(x)eQ( x):看他是多少次的,例如二次就是A X2+B X+C,—次就是Ax+B;A的数值和参数方程的根r对应,如果只有一个数对应(单根),那么k 取1,, 如果是重根(两个数都对应,即r1=r2 ),则k 取2;如果没有相同的,则k 取1;。