高中解析几何求轨迹方程的常用方法(精华-例题和练习)

合集下载

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

高中数学:求轨迹方程的几种常用方法

高中数学:求轨迹方程的几种常用方法

高中数学:求轨迹方程的几种常用方法
由已知条件求动点轨迹方程是解析几何的基本问题之一,也是解析几何的重点。

轨迹方程的常用方法可归纳为以下四种。

一、普通法
例1. 求与两定点距离的比为1:2的点的轨迹方程。

分析:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。

解:设是所求轨迹上一点,依题意得
由两点间距离公式得:
化简得:
二、定义法
例2. 点M到点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程。

分析:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线
的距离相等。

由抛物线标准方程可写出点M的轨迹方程。

解:依题意,点M到点F(4,0)的距离与它到直线的距离相等。

则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。

故所求轨迹方程为。

三、坐标代换法
例3. 抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。

分析:抛物线的焦点为。

设△ABC重心P的坐标为,点C的坐标为。

解:因点是重心,则由分点坐标公式得:

由点在抛物线上,得:
将代入并化简,得:
四、参数法
例4. 当参数m随意变化时,求抛物线的顶点的轨迹方程。

分析:把所求轨迹上的动点坐标x,y分别用已有的参数m
来表示,然后消去参数m,便可得到动点的轨迹方程。

解:抛物线方程可化为
它的顶点坐标为
消去参数m得:
故所求动点的轨迹方程为。


▍ ▍
▍。

高考动点轨迹方程的常用求法含练习题及答案

高考动点轨迹方程的常用求法含练习题及答案

轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,那么有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 二、直接法:直接根据等量关系式建立方程.例1:点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,那么点P 的轨迹是〔 〕 A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---,,(3)PB x y =--,,由2PA PB x =·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.应选D .三、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题.例3:△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、待定系数法:当曲线的形状时,一般可用待定系数法解决.例5:A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.〔1〕求E 点轨迹方程;〔2〕过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:〔1〕设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,那么22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; 〔2〕设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量〔参数〕,把x ,y 联系起来 例4:线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OPOP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 那么由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.配套训练一、选择题1.椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,那么直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y 二、填空题3.△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,那么动点A 的轨迹方程为_________.4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7.双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y 〕,A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y 〕,依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0〕(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),那么Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),那么A 1P 的方程为:y =)(11m x mx y ++① A 2Q 的方程为:y =-)(11m x mx y --② ①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0〕,Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,那么(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

高考数学专题复习——轨迹方程的几种常见求法

高考数学专题复习——轨迹方程的几种常见求法

2008届高考数学专题复习——轨迹方程的几种常见求法1直接法:把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。

设点。

列式。

化简。

说明等【例1】 已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点. 则由题设,得||||MB MA =λ,坐标代入, 得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆.【例2】某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?(直接法)解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. 【例3】 双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标;(2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.解:(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 【例4】 已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入).2,5(),5(12,0)2()5()2(),14(444424:).24,14(4),1(12:).24,14(,242,0484,4)1(2).2,1(,14)2,()2(222222221222----=+=+--++---+=++--+=--=--+∴-===-+-=-=-∴==过定点即化简得方程为则直线得代入同理可设直线可得由得代入的方程为设直线的坐标为点得代入将x k ky y x k y k k x kk k k k y DE k k E x y x ky AE k kD k y y ky k y x y x k y AD A m x y m A ),1,(21212,2,0)2(24),(),,(,,14)2,()3(212211222211112≠=--⋅--∴=⋅=+-+⎪⎩⎪⎨⎧=+=+===x x x y x y k k b x kb x k xy b kx y y x E y x D b kx y DE m x y m A AE AD 得由的方程为设直线得代入将)2,1(,,),2,1(,2)1(22).2,1(,2)1(22).2().2(,)2(,)2(2,02)2())(22()2(,2222212212212122211--∴+-=-+=+=-=---+=-+=+=-=-±=∴-±=∴-==--=+=--+++-+-∴+=+=定点为舍去不合过定点得代入将过定点得代入将代入化简得将且x k k kx y b kx y k b x k k kx y b kx y k b k b k b k b k b x x k kb x x b x x k kb x x k bkx y b kx y2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.例1设Q是圆x2+y2=4上动点另点A(0)。

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。

求轨迹方程的常用方法

求轨迹方程的常用方法

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发 ______ 动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x, y 与该参数t的函数关系x = f (t),y= g (t),进而通过消参化为轨迹的普通方程F (x, y)= 0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x, y),用(x , y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC 的顶点A , B 的坐标分别为(-4 , 0), (4, 0), C 为 动点,且满足5sin B sin A sin C, 求点C 的轨迹。

4【变式】:已知圆(呂+知°4■护=2于的圆心为M ,圆価一4尸斗尸=1的圆心为M ,—动圆与 这两个圆外切,求动圆圆心 P 的轨迹方程。

的比等于2(即储2)'求动点P 的轨迹方程? 三:用参数法求轨迹方程 此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为 普通方程。

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。

求轨迹方程的常用方法及例题

求轨迹方程的常用方法及例题

求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。

隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。

极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。

通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。

下面是一个例题:
例题:求解椭圆的轨迹方程。

解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。

我们可以使用参数方程法来求解椭圆的轨迹方程。

假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。

取参数θ,定义点P在椭圆上的坐标为(x, y)。

那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。

通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。

进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。

以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。

根据具体的问题和曲线类型,选择合适的方法进行求解和推导。

求轨迹方程的常见方法

求轨迹方程的常见方法

求轨迹方程的常见方法由运动轨迹求方程是解析几何的一类重要问题,下面谈谈求轨迹方程的几种常用方法。

一、直接法建立适当的座标系后,设动点为,根据几何条件寻求之间的关係式。

例1 已知动点m到椭圆的右焦点的距离与到直线x=6的距离相等,求点m的轨迹方程。

变式:已知点m与椭圆的左焦点和右焦点的距离之比为,求点m的轨迹方程。

变式2:在三角形abc中,b(-6,0), c(-6,0),直线ab,ac斜率乘积为,求顶点a的轨迹。

说明:求轨迹需要说明是什幺曲线并指出曲线的位置与大小,求轨迹方程怎不必说明。

二、定义法由题设所给动点满足的几何条件,经过化简变形,可以看出动点满足圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程。

例2 已知圆的圆心为m1,圆的圆心为m2,一动圆与这两个圆外切,求动圆圆心p的轨迹方程。

解:设动圆的半径为r,由两圆外切的条件可得:,。

∴动圆圆心p的轨迹是以m1、m2为焦点的双曲线的右支,c=4,a=2,b2=12。

故所求轨迹方程为。

三、待定係数法由题意可知曲线型别,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定係数,进而求得轨迹方程。

例3 已知双曲线中心在原点且一个焦点为f(,0),直线y=x-1与其相交于m、n两点,mn中点的横座标为,求此双曲线方程。

解:设双曲线方程为。

将y=x-1代入方程整理得。

由韦达定理得。

又有,联立方程组,解得。

∴此双曲线的方程为。

四、引数法选取适当的引数,分别用参数列示动点座标,得到动点轨迹的引数方程,再消去引数,从而得到动点轨迹的普通方程。

例4 过原点作直线l和抛物线交于a、b两点,求线段ab的中点m的轨迹方程。

解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。

把它代入抛物线方程,得。

因为直线和抛物线相交,所以△>0,解得。

设a(),b(),m(x,y),由韦达定理得。

由消去k得。

又,所以。

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总一、轨迹为圆的例题:1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论)2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。

(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。

(1)求圆心的P 的轨迹方程;(2)若P 点到直线x y =的距离为22,求圆P 的方程。

如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x-4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

解析几何中求曲线轨迹方程的常见方法总结(学生用)

解析几何中求曲线轨迹方程的常见方法总结(学生用)

解析几何中求曲线轨迹方程的常见方法总结一.直接法:直接法是将动点满足的几何条件或者等量关系直接坐标化,列出等式,化简即得动点轨迹方程。

它的基本步骤是建系、设点、列式、代换、化简、证明。

例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。

习题:1.(2011新课标全国理)在平面直角坐标系xOy 中,已知()1,0-A ,B 点在直线3-=y 上,M 点满足,,//BA MB AB MA OA MB ⋅=⋅M 点的轨迹为曲线C ,求C 的方程。

2.(2010年北京卷)在平面直角坐标系xOy 中,点B 与点()1,1-A 关于原点O 对称,P 是动点,且直线AP 与直线BP 的斜率之积等于31-,求动点P 的轨迹方程。

3.(2012四川理)如图,动点M 到两定点(1,0)A -、(2,0)B 构成MAB ∆,且2MBA MAB∠=∠,设动点M 的轨迹为C ,求轨迹C 的方程;y xB A O M4.(2012年江西)已知三点()0,0O ,()1,2-A ,()1,2B ,曲线C 上任意一点()y x M ,满足()2MA MB OM OA OB +=⋅++ ,求曲线C 的方程;二.定义法:若动点轨迹的条件符合某一基本曲线的定义(如椭圆、双曲线、抛物线、圆等),则可先设出轨迹方程,再根据已知条件,求出待定方程中的常数,即可得到轨迹方程例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ∆的重心轨迹方程是_______________。

变式:1.方程222(1)(1)|2|x y x y -+-=++表示的曲线是 ( )A .椭圆B .双曲线C .线段D .抛物线2.一动圆与已知圆1Q :()1322=++y x 外切,与圆2Q :()813-22=+y x 内切,试求这个动圆圆心的轨迹方程。

三、代入法:代入法又称转移法或相关点发,即如果点P 的运动轨迹或所在曲线已知,而点Q 与点P 之间的坐标又可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹 转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案
②若 是 与椭圆 的交点,求 的面积的最小值.
解:(1)由题意得
椭圆方程: =1.Байду номын сангаас
(2)若AB所在的斜率存在且不为零,设
AB所在直线方程为y=kx(k≠0),A( ).
①由

设M(x,y),由|MO|=λ|OA|(λ≠0) |MO|2=λ2|OA|2 .
因为L是AB的垂直平分线,所以直线L的方程为y= k= ,代入上式有:
解:PA和QB的交点M(x,y)随A、B的移动而变化,故可设 ,
则PA: QB:
消去t,得
当t=-2,或t=-1时,PA与QB的交点坐标也满足上式,所以点M的轨迹方程是
例5、设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线.
故动点M的轨迹方程为x2+y2-4px=0(x≠0),
它表示以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.
解法二:设A(x1,y1),B(x2,y2),M(x,y)依题意,有
①-②得(y1-y2)(y1+y2)=4p(x1-x2)
若x1≠x2,则有 ⑥①×②,得y12·y22=16p2x1x2③代入上式有y1y2=-16p2⑦
轨迹方程的求法
一、知识复习
轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法
注意:求轨迹方程时注意去杂点,找漏点.
一、知识复习
例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。
例2、如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.

专题――常用求轨迹方程的技法(高三)

专题――常用求轨迹方程的技法(高三)

专题――常用求轨迹方程的技法 一、直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

(一)代入题设中的已知等式若动点的规律由题设中的已知等式明显给出,则采用直接将数量关系代数化的方法求其轨迹.1.动点P(x,y)到两定点A(-3,0)和B(3,0)的距离的比等于2(即),求动点P的轨迹方程?(二)列出符合题设条件的等式有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程.2.动点P到一高为h的等边△ABC两顶点A、B的距离的平方和等于它到顶点C的距离平方,求点P的轨迹?(三)运用有关公式有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程.3.△ABC的两顶点是B(-3,0),(3,0),两底角B、C之和恒为135°,求第三顶点A的轨迹方程.(四)借助平几中的有关定理和性质有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.4.一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB 中点P的轨迹方程?5.已知动点M到定点A(1,0)与到定直线L:x=3的距离之和等于4,求动点M的轨迹方程.6.在直角△ABC中,斜边是定长,求直角顶点C的轨迹方程。

二、定义法圆锥曲线是解析几何中研究曲线和方程的典型问题,当动点符合圆锥曲线定义时,可直接写出其轨迹方程。

7.已知动点满足则P点轨迹为( )A. 抛物线B. 直线C. 双曲线D. 椭圆8.已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。

9.已知椭圆的焦点是,P为椭圆上一点,且||是||和||的等差中项,求椭圆的方程。

10.已知△ABC中,,,三边长AC、AB、BC的长成等差数列,求顶点C的轨迹方程。

轨迹方程问题—6大常用方法

轨迹方程问题—6大常用方法

轨迹方程问题—6大常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。

高考数学解析几何中求轨迹方程的常见方法(含答案)

高考数学解析几何中求轨迹方程的常见方法(含答案)

解析几何中求轨迹方程的常见方法一、直接法 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.三、点差法将直线与圆锥曲线的交点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法"。

例3 抛物线24y x =焦点弦的中点轨迹方程是 。

四、几何法122=+y x MQ ()0>λλ几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.例6 设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.六、交轨法12-=t t OQ OP求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例7 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.例8 已知两点以及一条直线:y =x ,设长为的线段AB 在直线上移动,求直线P A 和QB 交点M 的轨迹方程.七、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满)2,0(),2,2(Q P -ι2λ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin B sin A
5 sin C , 求点 C 的轨迹。 4
【变式】 :已知圆
的圆心为 M1,圆
的圆心为 M2,一动圆与
这两个圆外切,求动圆圆心 P 的轨迹方程。
二:用直译法求轨迹方程 此类问题重在寻找数量关系。 例 2: 一条线段两个端点 A 和 B 分别在 x 轴和 y 轴上滑动, 且 BM=a, AM=b, 求 AB 中点 M 的轨迹方程?
5 sin C , 求点 C 的轨迹。 4 5 5 【解析】由 sin B sin A sin C , 可知 b a c 10 ,即 | AC | | BC | 10 ,满足椭 4 4 sin B sin A
圆的定义。令椭圆方程为
x2 a
'2

y2 b
'2
1 ,则 a ' 5, c ' 4 b ' 3 ,则轨迹方程为
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
y
B
Q R A
o
P
x
五、用交轨法求轨迹方程 例 5.已知椭圆
x2 y 2 1(a>b>o)的两个顶点为 A1 ( a, 0) , A2 (a, 0) ,与 y 轴平行的直 a 2 b2
x 2 y 2 a, x 2 y 2 a 2
M 点的轨迹是以 O 为圆心,a 为半径的圆周. 【点评】此题中找到了 OM=
1 AB 这一等量关系是此题成功的关键所在。一般直译法有下 2
列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用 直接将数量关系代数化的方法求其轨迹。 2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设 条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应 的恒等变换即得其轨迹方程。 4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何 中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其 数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法. 【变式 2】 : 动点 P (x,y) 到两定点 A (-3, 0) 和B (3, 0) 的距离的比等于 2 (即 求动点 P 的轨迹方程? 【解答】∵|PA|= ( x 3) y , | PB |
四:用代入法求轨迹方程 例 4.
x2 y 2 点B是椭圆 2 2 1上的动点 ,A(2a, 0)为定点 ,求线段 AB的中点 M的 a b
轨迹方程。
【变式】如图所示,已知 P(4,0)是圆 x2+y2=36 内的一点,A、B 是圆上两动点,且满足∠ APB=90°,求矩形 APBQ 的顶点 Q 的轨迹方程
线交椭圆于 P1、P2,求 A1P1 与 A2P2 交点 M 的轨迹方程.
六、用点差法求轨迹方程 例 6. 已知椭圆
x2 y2 1, 2
(1)求过点 P , 且被 P 平分的弦所在直线的方程; (2)求斜率为 2 的平行弦的中点轨迹方程; (3)过 A2, 1 引椭圆的割线,求截得的弦的中点的轨迹方程;
x2 y2 。 1 ( x 5) ,图形为椭圆(不含左,右顶点) 25 9
【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。 (1) 圆:到定点的距离等于定长 (2) 椭圆:到两定点的距离之和为常数(大于两定点的距离) (3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4) 到定点与定直线距离相等。 【变式 1】: 1:已知圆 的圆心为 M1,圆 圆与这两个圆外切,求动圆圆心 P 的轨迹方程。 解:设动圆的半径为 R,由两圆外切的条件可得: 。 ∴动圆圆心 P 的轨迹是以 M1、M2 为焦点的双曲线的右支,c=4,a=2,b2=12。 , 的圆心为 M2,一动
消去 k,得 x+2y-5=0。 另外,当 k=0 时,AB 中点为 M(1,2) ,满足上述轨迹方程; 当 k 不存在时,AB 中点为 M(1,2) ,也满足上述轨迹方程。 综上所述,M 的轨迹方程为 x+2y-5=0。 分析 2:解法 1 中在利用 k1k2=-1 时,需注意 k1、k2 是否存在,故而分情形讨论,能 否避开讨论呢?只需利用△PAB 为直角三角形的几何特性:
2




在抛物线上,求△ABC 重心 P 的轨迹方程。
8.已知动点 P 到定点 F(1,0)和直线 x=3 的距离之和等于 4,求点 P 的轨迹方程。
9.过原点作直线 l 和抛物线 y x 4 x 6 交于 A、B 两点,求线段 AB 的中点 M 的轨迹方 程。
2
参考答案
例 1:已知 ABC 的顶点 A,B 的坐标分别为(-4,0) , (4,0) ,C 为动点,且满足

故所求轨迹方程为 2:一动圆与圆 O: x y 1 外切,而与圆 C: x y 6 x 8 0 内切,那么动圆的圆
2 2 2 2
心 M 的轨迹是: A:抛物线 B:圆 C:椭圆 D:双曲线一支 【解答】令动圆半径为 R,则有
| MO | R 1 ,则|MO|-|MC|=2,满足双曲线定义。故选 D。 | MC | R 1
【变式】 : 动点 P (x,y) 到两定点 A (-3, 0) 和B (3, 0) 的距离的比等于 2 (即 求动点 P 的轨迹方程?
| PA | , 2) | PB |
三:用参数法求轨迹方程 此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的 取值范围。 例 3.过点 P(2,4)作两条互相垂直的直线 l1,l2,若 l1 交 x 轴于 A 点,l2 交 y 轴于 B 点, 求线段 AB 的中点 M 的轨迹方程。
二:用直译法求曲线轨迹方程 此类问题重在寻找数量关系。 例 2: 一条线段 AB 的长等于 2a,两个端点 A 和 B 分别在 x 轴 和 y 轴上滑动,求 AB 中点 P 的轨迹方程? 解 设 M 点的坐标为 ( x, y ) 由平几的中线定理1 1 AB 2a a, 2 2
化简,得 x+2y-5=0,此即 M 的轨迹方程。 分析 3: :设 M(x,y) ,由已知 l1⊥l2,联想到两直线垂直的充要条件:k1k2=-1,即 可列出轨迹方程,关键是如何用 M 点坐标表示 A、B 两点坐标。事实上,由 M 为 AB 的中点, 易找出它们的坐标之间的联系。 解法 3:设 M(x,y) ,∵M 为 AB 中点,∴A(2x,0) ,B(0,2y) 。 又 l1,l2 过点 P(2,4) ,且 l1⊥l2 ∴PA⊥PB,从而 kPA·kPB=-1,
1 1 2 2
练习 1.在 ABC 中,B,C 坐标分别为(-3,0) , (3,0) ,且三角形周长为 16,则点 A 的轨迹方 程是_______________________________. 2.两条直线 x my 1 0 与 mx y 1 0 的交点的轨迹方程是 __________ . _____
40 4 2y ,k PB 2 2x 20 4 4 2y · 1,化简,得x 2 y 5 0 2 2x 2 而k PA
注意到 l1⊥x 轴时,l2⊥y 轴,此时 A(2,0) ,B(0,4) 中点 M(1,2) ,经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为 x+2y-5=0。 【点评】 1) 解法 1 用了参数法,消参时应注意取值范围。解法 2,3 为直译法,运用了 kPA·kPB= -1, | MP |
高中解析几何求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 1. 定义法:如果动点 P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛 物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹 方程。 2. 直译法:如果动点 P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点 P 满足的等量关系易于建立,则可以先表示出点 P 所满足的几何上的等量关系,再用点 P 的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量 t,以此量作为参变数,分别建立 P 点坐标 x,y 与该参数 t 的函数关系 x=f(t) , y=g(t) ,进而通过消参化为轨迹的普通方程 F(x,y)=0。 4. 代入法(相关点法) :如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运动规律已知, (该点坐标满足某已知曲线方程) ,则可以设出 P(x,y) ,用(x,y)表示 出相关点 P'的坐标,然后把 P'的坐标代入已知曲线方程,即可得到动点 P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常 通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去 两方程的参数,也可直接消去参数得到轨迹方程) ,该法经常与参数法并用。 一:用定义法求轨迹方程 例 1:已知 ABC 的顶点 A,B 的坐标分别为(-4,0) , (4,0) ,C 为动点,且满足
| MP |
1 | AB | 2
解法 2:设 M(x,y) ,连结 MP,则 A(2x,0) ,B(0,2y) , ∵l1⊥l2,∴△PAB 为直角三角形
由直角三角形的性质, | MP |
1 | AB | 2
1 ( x 2) 2 ( y 4) 2 · (2 x) 2 (2 y ) 2 2
3.已知圆的方程为(x-1)2+y2=1,过原点 O 作圆的弦 0A,则弦的中点 M 的轨迹方程是
相关文档
最新文档