找规律,列代数式

合集下载

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

: 1+2+3+…+n=
,则第
n 项公式为 1+
,已知共有 12 层,那么求图 3 最左边最底层这个圆圈中的数应是 12 层的第一个
数,那么 1+11( 11+1) /2=67.
解析:( 2)已知图中的圆圈共有 12 层,按图 4 的方式填上 -23 ,, -22 , -21 ,…… , 求图 4 中所有
10 个正方形(实线)四
条边上的整点共有
个。
天行健,君子以自强不息。
第4页,共 15页
解析:【例 13】第一个正方形的整点数为 2×4-4 = 4,第二个正方形的 正点数有 3×4- 4= 8,第 三个正方形的整点数为 4×4- 4=12 个,……故第 10 个正方形的整点数为 11×4-4 =40,
年陕西 省中 考题) 观 察下列 等式 :
式可以表示为

,…… 则第 n 个等
解析:【例 10】
【 例 11 】 (2005 年 哈 尔 滨 市 中 考 题 ) 观 察 下 列 各 式 :


, …… 根 据 前 面 的 规 律 , 得 :
。(其中 n 为正整数)
解析:【例 11】
【例 12】(2005 年耒阳市中考题 ) 观察下列等式: 观察下列等式: 4-1=3,9-4=5 ,16-9=7 ,25-16=9 ,
个数对是

天行健,君子以自强不息。
第3页,共 15页
解析: 【例 6】有序数对的 前一个数比后一个数小 1,而每一个有序数对的第一个数形成等差数数 列, 1, 4, 7,故第 5 个数为 13,故第 5 个有序数对为( 13, 14)。
【例 7】 (2005 年威海市中考题 ) 一组按规律排列的数:

中考总复习数学02- 第二部分 专题二 规律性问题

中考总复习数学02- 第二部分 专题二 规律性问题

3
4
专题二 规律性问题—点坐标变换规律 类型三 点坐标变换规律
题型讲解
返回类型清单
点坐标变换型的题目主要考查了点的坐标规律,这类题目一般是点的坐 标在平面直角坐标系中递推变化或周期性变化.通过观察和归纳,从所给 的数据和图形中寻求规律是解答本类问题的关键.
例题 3
5
6
专题二 规律性问题—点坐标变换规律
返回类型清单
(2)若第n个图案共有基础图形2 023个,则n的值是多少? 解:当1+3n=2 023时, 解得n=674, ∴n的值为674.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
4.某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三 角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形 地砖为连续排列. 当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2 ); 当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3 ),以此 类推.
排列,探究图形所反映的规律;另外一种是图形的变换规律,即根据一组
相关图案的变化,从中归纳图形的变换所反映的规律.在中考中以图形为
载体的数字规律最为常见.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
方法点拨 数形规律题的解题关键是通过观察图形发现数量关系,并用代数式归纳 出规律,再进行验证,进而解决问题;图形变换规律题的解题关键是抓住 图形的变化特征,找出规律,进而解决问题.
例题 1
1
2
专题二 规律性问题—竖式规律 例题1
返回类型清单
( 2022·河北模拟)观察 1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25= 625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.

找规律,列代数式

找规律,列代数式

中 学 )
I 47
故 答案为 :l6;2(n+1).
【点评 】本题 考查 了在图形 变化 中 寻应 序号 n联 系在一‘起 ,从 第 1个 、第 2个……
逐渐 到第 ,z个 ,找 出 号 , 与三 角形 个数的对 应关系 ,规律就找 到了.
(作者 单位 :浙江 省绍 兴市柯桥 区钱清 镇
律 列 代数 式 ,解 题 的关键 是 把 数字 和对 应 序
_『j联 系在一起 ,从 第 1个 、第 2个 ……逐渐 到
第n个,找 出序号 与数字 的对 应关系 ,规律就
找 到 J .
二 、在 图形 的变化 中寻 找规律
例 2 把 三 角 形 按 如 图 所 示 的 规 律 拼 图
案 ,其 中第① 个 图案 中有 4个三 角形 ,第② 个
可得 第45行 第一 个数 是 2025,推 出 第45行 、
6 的数 是 2025-5=2020.
解 :观 察图 表 可 ,第 n行 蒂 个数是 /1, ,
· ..

45行
第一一个数

2025
.第
45行
、第
6列
的数 是 2025—5=2020.
故答案为 :n ;2020.
【点评 】本题考查了在数字变化中寻找规
中三 角形 个数为 2(tl+1).
解 :第① 个图案 中 有 4个三 角形 ,可 知 4=
2(1十1);第② 个 图案 中有 6个三 角形 .可 矢u 6=
2(2+1);第③个 图案 中有 8个三 角形 ,可 知 8=
2(3+1).所以第 n个图案中三 角形个数为2(n+1),
则第⑦个图案中三角形的个数为2(7+1)=1 6.

初一代数式找规律的技巧

初一代数式找规律的技巧

“找规律”是从特殊到‎一般的归纳‎性思维训练。

初一代数式找规律的问‎题,通常有根据‎所给数字找‎规律和根据‎所给单项式找规律。

解答这种问‎题主要技巧‎是把数字和‎对应的序号‎n联系在一‎起,从第1个、第2个、.....逐渐到第n‎个,找出序号n‎与数字的对‎应关系,规律就找到‎了。

一、根据所给数‎字找规律,列出代数式:(例1):1 ,3 ,5 ,7,9, ......序号:1 2 3 4 5 ......数字找规律‎,可以先观察‎,猜想,然后逐一尝‎试。

观察所给的‎几个数,数字是序号‎的2倍减去‎1,猜想是2n‎-1,再试验看下‎几个是否适‎合,下面的数是‎11,13,......,当n=6时,2×6-1=11;当n=7时,2×7-1=13;......,适合。

这就可以确‎认这组数字‎的规律是2‎n-1. 其实这是一‎种合情推理‎。

(例2)::2,8,18。

根据所给数‎字找规律,列出代数式:其实就是2‎×1,2×4,2×9,......1,4,9,.....,都是完全平方数‎,是n^n,每项都乘2‎就可以了。

那就是2n‎^n.注:^是次方的意‎思。

2^3就是2的‎3次方,2^3=2×2×2=8练习如下问‎题:(1)1 ,4,7,10,......根据所给数‎字找规律,列出代数式:(2)1,4,9,16,25,36,......根据所给数‎字找规律,列出代数式:二、根据所给单项式找规律.例如:-2x,4x²,-8x³,16x^4,-32x^5,......序号:1 2 3 4 5 ......这类问题要‎把系数和字‎母部分分开‎考虑。

系数是:-2,4,-8,16,-32......序号是:1 2 3 4 5 ......系数绝对值‎的规律是2‎^n.负号用(-1)来控制。

这里第1、3、5、.....奇数项是负‎号,偶数项是正‎号。

(完整版)找规律列代数式(整理后)

(完整版)找规律列代数式(整理后)

找规律列代数式活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?问题1。

若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2。

若按图1方式摆放桌子和椅子桌子张数 1 2 3 4 5 n 可座人数问题3。

如果按图2的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。

活动三:1、用棋子摆出下列一组图形:(1)摆第一个图形用_________枚棋子,摆第二个图形用______枚棋子,摆第三个棋子用___枚棋子,按照这种方式摆下去,摆第n个图形用________枚棋子。

图形变化:●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●(2)摆第一个图形用_________枚棋子,摆第二个图形用______枚棋子,摆第三个棋子用___枚棋子,按照这种方式摆下去,摆第n个图形用________枚棋子。

三、拓展1、思考题:将一张长方形的纸对折,可得到一条折痕。

继续对折,对折时每次与上次的折痕保平行。

连续6次后,可以得到几条折痕?如果对折10次呢?对折n次呢?2. 木材加工厂堆放木料的方式如图所示:依此规律可得出第6堆木料的根数是 。

3、 如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n =20)根时,需要的火柴棍总数为 根。

4. 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__第3题 ________个圆组成。

6. 下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字 如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子; (2)第n 个“上”字需用 枚棋子.找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:实际应用问题

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:实际应用问题

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:实际应用问题一、选择填空题题型分类讲解(一)列代数式问题(11年8考,近三年未考;考查特点:以考查图形规律探索为主) 类型一.实际应用问题中的列代数式问题 考查次数:11年1考(仅2017年考查) 考查题型:填空题/选择 考查难度:送分题解决关键:找准题中的等量关系1.(2017山西12题3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.类型二.几何问题中的列代数式问题考查次数:11年1考(仅2009年考查) 考查题型:填空题/选择 考查难度:送分题解决关键:找准几何图形中的等量关系7.(2009山西7题3分)如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .B .m ﹣nC .D .拓展训练:练习1.(2018•河北)用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A 、4cmB 、8cm C、(a +4)cm D 、(a +8)cm类型三.代数式找规律问题中的列代数式问题 考查次数:11年1考(仅2013年考查) 考查题型:填空题/选择 考查难度:送分题解决关键:分别找对应部分的规律15.(2013山西15题3分)一组按规律排列的式子:a 2,,,,…,则第n 个式子是 (n 为正整数).4.图形找规律问题中的列代数式问题考查次数:11年5考 考查题型:填空题/选择 考查难度:送分题考查形式:结合图形考查等差数列找规律问题(即考查固定增加图形)解决步骤:①找关系:找后一个图形所求元素个数与前一个图形所求元素个数之间的关系,一 般通过作差的形式进行观察;②找规律:若第一个图形所求元素个数为a,第二个图形所求元素个数比第一个图形所求元素个数多b,且此后每一个图形所求元素个数比前一个图形所求元素个数多b,则第n 个图形所求元素个数为a+b(n-1);③验证:代入序号验证所求代数式.④注意:若结果有单位,则加括号原则:多加单不加(即多项式加括号, 单项式不加括号)13.(2016山西13题3分)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).12.(2015山西12题3分)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n 个图案有 个三角形(用含n 的代数式表示)16.(2012山西16题2分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .16.(2011山西16题3分)如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒…,按此规律摆下去,第n 个图案需要小棒 根(用含有n 的代数式表示).17.(2009山西17题2分)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 个.拓展训练:练习1.如图所示是用棋子摆成的“Y ”字图案,则第n 个图案中棋子的数量为 (用含n 的代数式表示).(二)列方程问题:类型一.一元一次方程的应用问题 考查次数:11年3考 考查题型:填空题/选择 考查难度:送分题考查形式:①列一元一次方程问题②解一元一次方程问题考查模型:利息问题/销售(折扣)问题/几何图形面积体积问题解决关键:找准等量关系9.(2013山西9题2分)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x 元,则下面所列方程正确的是( )A .x +3×4.25%x =33825B .x +4.25%x =33825C .3×4.25%x =33825D .3(x +4.25x )=33825 10.(2011山西10题2分)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2080B .x •30%•80%=2080C .2080×30%×80%=xD .x •30%=2080×80%17.(2012山西17题2分)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.类型二.一元二次方程的应用问题考查次数:11年2考 考查题型:填空题/选择 考查难度:送分题考查形式:①列一元二次方程问题②解一元儿次方程问题考查模型:增长率问题/几何图形面积体积问题 解决关键:找准等量关系13.(2019山西13题3分)如图,在一块长12m,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为.15.(2011山西15题3分)“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的主要动力.2010年全省全年旅游总收入大约1000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为.类型三.分式方程的应用问题考查次数:11年1考考查题型:填空题/选择考查难度:送分题考查形式:列分式方程问题考查模型:行程问题/工程问题/销售问题解决关键:找准等量关系找等量关系技巧:列表格法7.(2016山西7题3分)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A .B .C .D.类型四.一元一次不等式的应用问题考查次数:11年1考考查题型:填空题/选择考查难度:送分题考查形式:解一元一次不等式问题考查模型:行程问题/工程问题/销售问题解决关键:找准不等量关系找不等量关系技巧:找关键词(至多至少等等)13.(2018山西13题3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.类型五.二次函数的应用问题考查次数:11年2考考查题型:填空题/选择考查难度:送分题考查形式:①列二次函数解析式问题②用二次函数解析式解决求边长问题考查模型:拱桥问题解决关键:建系(即根据题中条件建立恰当的平面直角坐标系,进而求其解析式)9.(2019山西9题3分)(求二次函数解析式问题)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x 2 B.y=﹣x2C.y=x2 D.y=﹣x218.(2013山西18题3分)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为9m,AB=36m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为m.二、解答题题型分类讲解(一)函数类的应用问题考查形式1.一次函数的应用问题:类型一.方案选择问题考查次数:11年3考考查题型:解答题考查形式:①求解析式(注意:解决步骤不可少:设→列→解→下)②给y的大小求x的范围(解决关键:列不等式,解不等式)③给y的值求x的值(解决关键:列一元一次方程,解一元一次方程)考查难度:中档题考查模型:方案选择问题(文字/图形)19.(2019山西19题8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(2016山西20题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.24.(2013山西24题8分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是 .乙种收费的函数关系式是 . (2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?类型二.一次函数求最值问题考查次数:11年1考(仅20010年考查) 考查题型:解答题考查形式:求一次函数解析式+最值 考查难度:中档题考查模型:方案设计问题解决步骤:①求解析式→即求出一次函数的解析式y=kx+b(k ≠0)②定增减性→即由k 的正负,确定所求一次函数解析式的增减性③定范围→即确定所求一次函数解析式中自变量x 的范围④求最值→即由一次函数的增减性和自变量的范围,求函数的最值例如:所求的解析式是y=2x+200,x 的范围是10≤x ≤20则求函数值的最大值过程解答如下: “∵2>0 ∴y=2x+200是增函数 ∵2010≤≤x∴当x 取到最大值20时,y 取到最大值240”24.(2010山西24题8分)(一元一次不等式组+一次函数求最值问题+方案选择问题)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案? (2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?考查形式2.二次函数的应用问题:考查次数:11年1考(仅2009年考查) 考查题型:解答题考查形式:求二次函数解析式+最值 考查难度:中档题考查模型:销售(利润)问题 解决步骤:①求解析式→即求出二次函数的解析式(注意:所求二次函数解析式必须 要配成顶点式.)②定范围→即根据题中条件确定所求解析式中自变量x 的范围.③求最值→即由所求二次函数的解析性和自变量的范围,结合二次函数的草图求二次函数的最值.24.(2009山西24题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系y 甲=0.3x ;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系y 乙=ax 2+bx (其中a ≠0,a ,b 为常数),且进货量x 为1吨时,销售利润y 乙为1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元.(1)求y 乙(万元)与x (吨)之间的函数关系式. (2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?(二)方程+不等式的应用问题考查次数:11年5考(仅2009年考查) 考查题型:解答题 考查难度:中档题考查模型:销售(利润)问题/行程问题/工程问题/几何图形面积问题考查形式.①一元一次方程②分式方程③分式方程+一元一次不等式④二元一次方程组+一元一次不等式 ⑤分式方程+一元二次方程解决关键:(1)列方程(一元一次方程/分式方程/一元二次方程/一元一次方程)问题①解决关键:找准等量关系②找等量关系方法:表格法(适用于:行程问题/工程问题/销售(利润)问题)③注意:分式方程必检验分式方程检验模板:检验:当x=a 时,原方程成立 ∴x=a 时,是原方程的解(2)列不等式(一元一次不等式)问题 ①解决关键:找准不等量关系②找不等量关系方法:找准关键词(之多至少等等) ③注意:x>a(当a 为分数时,必须说明“∵x 为正整数∴x 取某数(某数为所求范围内距离a 最近的整数”)例如:所解的不等式结果是x>1160,必须说明 “∵x 为正整数 ∴x 取6”24.(2012山西24题10分)(一元二次方程+销售问题)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?20.(2018山西20题8分)(分式方程+行程问题)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.19.(2017山西19题7分)(二元一次方程组+一元一次不等式)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?22.(2015山西22题7分)(二元一次方程组+一元一次不等式)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?22.(2014山西22题9分)(分式方程+一元二次方程+工程问题+几何图形面积问题)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的 1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?。

初中数学找规律常见公式

初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b. 例:4、10、16、22、28……,求第n位数. 分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n- 2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法. 基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数. 举例说明:2、5、10、17……,求第n位数. 分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1 所以,第n位数是:2+ n2-1= n2+1 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了. (三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. (三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘. 例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是. 解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1. (二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关. 例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n (四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来. 例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、 5 分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1 (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来. 例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方. (六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见. (七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律? (2)第二、三组分别跟第一组有什么关系? (3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。

初中数学找规律常见公式

初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······。

初中数学找规律题(有答案)

初中数学找规律题(有答案)

初中数学找规律题(有答案)“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

代数式知识点总结

代数式知识点总结

代数式知识点总结集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-七年级第二章——代数式一、列代数式重点:用字母表示数·①比谁的几倍多(少)几的问题②比谁的几分之几多(少)几的问题③折扣问题:例:八折是乘0.8,八五折是乘0.85④提价与降价问题:例:一个商品原价a,先提价20%,在降价20%,即a(1+20%)(1-20%)⑤路程问题:把握s=vt⑥出租车计费问题:分类讨论思想,将总路程切割成不同的段(例:前三公里收费7元,之后每公里1.6元,公里数x,总费用y)≤3Y=(x-3)+7 x>3⑦已知各数位上的数字,表示数的问题:字母乘10表示在十位上,乘100表示在百位上。

⑧特定字母的意义:C:周长 S:面积 V:体积 r:半径 d:直径s :路程 t :时间 v :速度 n :正整数二、单项式与多项式1、概念① 单项式:数字与字母用乘号连接的式子称为单项式 ② 多项式:多个单项式的和称为多项式 ③ 整式:单项式与多项式合称为整式例:系数 bca 34-注:次数为1时一般省略不写字母 ④单项式的次数即所有字母指数的和按照次数可以将单项式分为一次项、二次项、三次项…… 其对应的系数为一次项系数、二次项系数……特别:没有字母的单项式(次数为零的单项式)称为常数项。

⑤多项式的次数为最高次幂项的次数,多项式的项数为单项式的个数。

例:6ab 45ab 432++-是一个四次三项式。

三、整式加法重点:合并同类项同类项概念:字母及字母指数相同的两个单项式称为同类项。

合并同类项:将两个同类项的系数相加,字母及字母的指数不变,即为合并同类项。

(考点)四、整式乘法和整式除法符号幂①幂的乘法:同底数幂相乘,底数不变,指数相加②幂的乘方:同底数幂的乘方,底数不变,指数相乘③幂的除法:同底数幂的除法,底数不变,指数相减④整式乘法:单项式与单项式相乘,系数与系数相乘,作为积的系数,将相同字母分别相乘,对于只在一个单项式里的系数,则作为积的一个因数。

数列的找规律

数列的找规律

精心整理数列的找规律:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、53、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?。

初一上找规律专题

初一上找规律专题

初一数学找规律找规律:数列中每一个数,或者图形所关联的数,用它们的序列号(n)的式子表示1、一些基本数字数列(1)自然数列:1、2、3、4……n(2)奇数列:1、3、5、7……2n-1(3)偶数列:2、4、6、8……2n(4)平方数列:1、4、9、16……n²(5)2的乘方数列:2、4、8、16……2 n(6)符号性质数列:-1、1、-1、1……(-1) n 1、-1、1、-1……(-1) n+1 1、-1、1、-1……(-1) n-12、数字数列的变形(1)数列的平移:有些数列里,每个数并不直接与它们的序列号形成基本的数字数列关系;比如下面的数列,是2的乘方数列变形而成的1、2、4、8、16……2 n-1数列中的每个数往右平移了一位,n就变成了n-1(2)考虑符号性质的数列:有些数列本身就是基本数字数列,但必须考虑符号性质,如:1、-4、9、-16……(-1) n-1n²很明显,是自然数的平方数列和符号性质数列的综合(3)基本数字数列的拓展:有些数列只是改变了基本数字数列的某个部份,如:5、25、125、625……5 n这个数列,只是2的乘方数列的拓展;(4)综合数列:有些数列看起来很复杂,其实只是多个基本数列的综合,如:3/2、-5/4、7/8、-9/16……(-1) n-1 (2n+1)/2n上面的数列是三个基本数列及其变型数列的综合。

数列中的每一个数都可以看成三个部分组成:符号部份是符号性质数列;分子部分是奇数列的平移数列;分母部分是2的乘方数列练习:按以下的数排列:8,9,11,15,23,39……,则第11个数是1031 ,第n个数是2 n-1+73、特殊数列(1)等差数列:数列中的每一个数减去它前面的数的差相等的数列叫等差数列。

如:2、5、8、11……2+(n-1)d其中数列中的第一个数叫首项,记作a1;相等的差叫公差,记作d;第n项的数记作an,称为通项an=a1+(n-1)d练习:凸多边形的所有内角的角度之和称为多边形的内角和。

七年级数学找规律题(最新整理)

七年级数学找规律题(最新整理)

七年级数学找规律题(最新整理)归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2 的平方,1+3+5=9=3 的平方,1+3+5+7=16=4 的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007 的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 173、请填出下面横线上的数字。

1 1 2358214、有一串数,它的排列规律是 1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第 100 个数是什么?5、有一串数字 3 6 10 15 21第 6 个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第 2005 个数是().A.1B.2 C.3 D.47、100 个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这 100 个数的前两个数依次为 1,0,那么这 100 个数中“0”的个数为个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第 1 个球起到第 2004 个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:11+2+3+…+99+100+99+…+3+2+1= .3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+ n 1 nn 1,其中n是正整数.现2在我们来研究一个类似的问题:1×2+2×3+… nn 1 =?观察下面三个特殊的等式1 2 1 1 2 3 0 1 232 3 1 2 3 4 1 2 333 4 1 3 4 5 2 3 43 将这三个等式的两边相加,可以得到1×2+2×3+3×4= 1 345 203 读完这段材料,请你思考后回答:⑴1 2 2 3 100 101⑵1 2 3 2 3 4 nn 1n 2⑶1 2 3 2 3 4 nn 1n 24、已知:2 2 22 2 ,3 3 32 3,4 4 42 4 ,5 5 52 53388 1515 2424…,若10 b 102 b 符合前面式子的规律,则a baa参考答案:一、1、(1)1004 的平方(2)n+1 的平方2、23 30。

找规律解题方法及技巧

找规律解题方法及技巧

初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2 (二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n 位的增幅; 2、求出第1位到第第n 位的总增幅; 3、数列的第1位数加上总增幅即是第n 位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. (四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

搭1条、2条、3条如图所示的小鱼 各用几根火柴棒?
小鱼条数 火柴棒根数
1 8
2 14
3 20
… …
20
122
… …
n
6n+2
搭20条这样的小鱼用几根火柴棒? 搭n条这样的小鱼用几根火柴棒?
8+6(n-1)
搭100条这样的小鱼用几根火柴棒?1000条呢?
· · · · · · 把搭第1条小鱼的方法看做是先搭2
2、下面是用棋子写成的“上”字:
第一个“上”字 字
第二个“上”字
第三个“上”
如果按照以上规律继续摆下去,那么通过观察,可以发 现: (1)第四、第五个“上”字分别需用 和 枚棋子; (2)第n个“上”字需用 枚棋子.
3、下图是某同学在沙滩上用石子摆成 的小房子.
观察图形的变化规律,写出第n个小房 子用了_________块石子
4、下面的图形是由边长为1的正方形按照 某种规律排列而组成的.
(1)观察图形,填写下表: 图形 ① ②

正方形的个数 图形的周长
8 18
(2)推测第n个图形中,正方形的个数为________, 周长为_______(都用含n的代数式表示).
请同学们谈谈上了这节课后的 感想……
找规律,列代数式
问题一: 现在有10个人前来坐在一起就餐,如 果你是餐厅主人,你将如何安排顾客就餐呢?
1张餐桌可坐6人
问题一: 现在有10个人前来坐在一起就餐,如 果你是餐厅主人,你将如何安排顾客就餐呢?
摆法一
摆法二
问题二: 按照摆法一,三张餐桌拼放在一起可以 坐多少人?n张呢?
搭第一个正方形需要4根火柴棒。 (1)搭一搭,填一填:
· · · · · ·n根 上面的一排和下面的一排各用了
火柴棒,竖直方向用了(n+1)根火柴棒, 共用了[n+n+(n+1)]根
正方形增加3根,那么搭n个正方形就 需要火柴棒[4+3(n-1)]根.
· · · · · 第一个正方形用4根,每增加1个 ·
每1个正方形都看成是用4根搭 成的,然后再减去多算的根数,将 会得到4n-(n-1)根
· · · · · ·
如图,摆搭1个五边形需火柴棒5根,2个五 边形需火柴棒9根,3个五边形需火柴棒13根, 那么n个这样的五边形需要火柴棒根数 是 .
以此类推,如果以上的方式,摆搭1个六边 形需火柴棒6根,2个六边形需火柴棒11根, 3个六边形需火柴棒___根,那么n个这样的 六边形需要火柴棒根数是________.
根再增加6根,那么搭n条小鱼就需要 (2+6n)根
· · · · · · 第一条小鱼用8根,每增加1条小
鱼增加6根,那么搭n条小鱼就需要火 柴棒[8+6(n-1)]根.
一、你能搭出其他图形吗?并解决类似 的问题?
二、你能根据规律,解决下列问题吗?
1、有一串单项式:-a,2a2,-3a3, 4a4,…,-19a19,20a20,… (1)你能说出它们的规律是什么吗? (2)写出第100个,第2007个单项式; (3)写出第n个,第2n+1个单项式.
正方形个数 火柴棒根数 1 2 3 4 5
4
7
10
13
16
31 根火柴棒。 (2)搭10个这样的正方形需要 _
(3)搭100个这样的正方形需要多少根火柴棒? 你是怎样得到的? (搭1根再增加3根,那么搭n个正方形就 需要(1+3n)根
· · · · · ·
相关文档
最新文档