高中数学必修知识点总结:第二章平面向量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修知识点总
结:第二章平面向量 The Standardization Office was revised on the afternoon of December 13, 2020
高中数学必修4知识点总结
第二章 平面向量
16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.
平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.
17、向量加法运算:
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:
a b a b a b -≤+≤+.
⑷运算性质:①交换律:a b b a +=+;
②结合律:()()
a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则
()1212,a b x x y y +=++. 18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:
⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ.
b
a
C B
A
a b C C -=A -AB =B
①a a λλ=;
②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.
⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()
a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.
20、向量共线定理:向量()
0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()
0b b ≠共线.
21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)
22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当
12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫
⎪++⎝⎭
.(当时,就为中点公式。)1=λ 23、平面向量的数量积:
⑴()
cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.
⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当
a 与
b 反向时,a b a b ⋅=-;2
2a a a a ⋅==或a a a =⋅.③a b a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()
a b a b a b λλλ⋅=⋅=⋅;③()
a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则2
22a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则
12120a b x x y y ⊥⇔+=.
设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则
121
cos a b a b
x θ⋅=
=
+.
第三章 三角恒等变换
24、两角和与差的正弦、余弦和正切公式:
⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ
αβαβ
--=
+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);
⑹()tan tan tan 1tan tan αβ
αβαβ
++=
- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).
25、二倍角的正弦、余弦和正切公式:
⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-
⇒升幂公式2
sin 2cos 1,2cos 2cos 12
2
α
αα
α=-=+
⇒降幂公式2cos 21cos 2αα+=
,21cos 2sin 2α
α-=. ⑶2
2tan tan 21tan α
αα
=-. 26、
27、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的
B x A y ++=)sin(ϕϖ形式。()sin cos αααϕA +B =+,其中tan ϕB
=
A
. α
ααααα
ααα半角公式cos 1sin cos 1cos 12tan 2
cos 12sin ;2cos 12cos :
-+-±=-±
=+±=2
tan 12tan 1 cos ;2tan 12tan
2
sin :
2
2
2α
α
αααα万能公式+-=+=