平行四边形的性质第一课时教案
《平行四边形的性质》第一课时教案 (公开课)2022年1
平行四边形的性质(一)一、教学目标:1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3. 培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2. 难点:运用平行四边形的性质进行有关的论证和计算.3. 难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下根底.学习这一节的根底知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习稳固的问题,而是要加深理解,要防止学生把平行四边形概念当作,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形〞和“两组对边分别平行〞这两个条件,一个“四边形〞必须具备有“两组对边分别平行〞才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行〞的一个“四边形〞.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的根底上去探索数学开展的规律,到达用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步到达演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、课堂引入1.我们一起来观察以以下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“〞来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD〞,读作“平行四边形ABCD〞.注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.〔教学时要结合图形,让学生认识清楚〕2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?〔1〕由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.〔相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.〕〔2〕猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.〔作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为的关于三角形的问题.〕证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA 〔ASA〕.∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.四、例习题分析例1〔教材P84例1〕这道例题是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2〔补充〕如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边〞可得出所需要的结论.证明略.这道题是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。
18.1.1 平行四边形的性质教学设计
平行四边形的性质(第1课时)教学设计一、教学内容和内容解析(一)教学内容本节课是人教版八年级数学下册第十八章平行四边形第一节第一课时的内容,主要研究平行四边形的概念,平行四边形边、角的性质及平行线间的距离.(二)教学内容解析1.教材的地位与作用平行四边形是最基本的几何图形之一,也是生活中最常见的四边形,它不仅具有丰富的几何性质,而且它在生产生活中有着十分广泛的应用.本节课是在学生学习了平行线的性质与判定、全等三角形性质与判定等几何知识,掌握了一些探索和证明图形几何性质的方法的基础上,利用已有的几何知识和方法进一步研究平行四边形,探索并证明平行四边形的性质. 既是对已有知识的巩固,也是后续学习平行四边形的判定方法、特殊平行四边形的基础,还为我们证明两直线平行、线段相等、角相等提供了新的方法,对几何知识的学习起到了承上启下的重要作用.平行四边形的定义采用“属加种差”的方式,揭示了平行四边形与四边形的隶属关系.因此,本节作为本章的起始课,除了显性知识外,还引领着本章知识以及研究几何图形的方法指导.探究本节课的过程中蕴含着丰富的数学思想,通过回顾三角形的学习过程,体现了类比学习的思想;通过运用辅助线把四边形问题转化为三角形问题,把对平行四边形的研究化归为对两个全等三角形的研究,体现了转化和化归的数学思想方法,教学中引导学生把未知化归为已知,运用已有知识解决问题,进一步提高学生分析问题、解决问题的能力.2.教材的加工与重组教材中平行四边形的性质这一内容安排了两课时,第一课时研究平行四边形的概念、平行四边形边、角的性质及平行线间的距离;第二课时研究平行四边形对角线的性质,并应用性质解决简单问题.本节课设计的是第一课时的内容.基于以上分析,本节课的重点是:探索发现平行四边形的性质并推理证明.二、教学目标和目标解析(一)教学目标1.理解平行四边形的概念.2.通过观察、类比发现平行四边形的有关性质,提出猜想,发展合情推理能力.3.通过对平行四边形性质的证明,发展演绎推理能力.4.能运用平行四边形的性质解决一些简单的问题.(二)教学目标解析《义务教育数学课程标准(2022版)》中明确指出:“‘图形与几何’的课程内容,以发展学生的空间观念、几何直观、推理能力为核心展开.”依据《课程标准》,结合授课班级学生的年龄特征和认知规律确定了本节课的教学目标.目标1的具体要求是:理解平行四边形与一般四边形的区别和联系,能应用概念进行简单推理.目标2的具体要求是:能从边、角等不同角度猜想平行四边形的性质,并能通过实验操作验证关于平行四边形的性质的猜想.目标3的具体要求是:能合理运用辅助线利用平行四边形的定义、平行线的性质以及全等三角形等知识推理证明边、角的性质,体会化归的数学思想.目标4的具体要求是:能利用平行四边形对边平行且相等、对角相等等性质进行简单的计算或证明.三、学生学情分析(一)学情分析从知识储备来说,小学阶段,学生已经认识了平行四边形,会判断一个图形是否是平行四边形,对平行四边形对边平行这一性质有所了解;在七年级下学期学习了平行线的性质和判定,八年级上学期学习了全等三角形的相关知识,能够利用平行线证明角相等或者互补,利用全等三角形证明线段相等、角相等.从学习能力来看,通过小学和七、八年级的学习,学生已经初步具有观察,实验操作等动手体验经验,也具有一定的大胆尝试,归纳猜想的能力,初步掌握了一些探索和证明几何图形性质的方法.综合两方面来看,学生已基本具备发现问题和用已有知识解决新问题的能力,为本节学习奠定了基础.(二)可能存在的问题分析平行四边形性质的推理证明主要是把四边形问题转化为三角形问题,通过辅助线把平行四边形问题化归为三角形全等的问题是学生学习的难点,需要通过问题串引导学生突破这一难点.基于以上分析,确定本节课难点是:平行四边形性质的推理证明.四、教学策略分析(一)教学策略1.突出重点通过生活实例引入课题,通过观察、动手操作感知平行四边形对边相等,对角相等的性质,落实直观想象的数学核心素养.通过演绎推理证明平行四边形边、角性质,落实逻辑推理的数学核心素养.让学生充分经历“观察、猜想、验证、证明”的过程,探究并证明平行四边形的性质,让学生在经历发现问题—分析问题—解决问题的基本活动体验中体会“用合情推理猜想、用演绎推理证明”这一几何研究的基本思考方式,突出教学重点.2.突破难点在探究平行四边形性质的过程中,通过问题设计,引导学生用已有知识解决新问题.让学生动手用全等三角形拼平行四边形,观察发现辅助线作法,把平行四边形问题转化为学生熟悉的三角形问题,完成平行四边形性质的证明,从而突破教学难点.(二)教学方法与学法指导教法:演示法,启发法,探究法.学法:实验操作法,探究法.(三)教学用具教具:教材(学案)、多媒体课件、希沃白板.学具:两个不同颜色的全等三角形,平行四边形.五、教学过程设计(一)创设情境,引入新知问题1:观看重庆的宣传片,欣赏图片,你能从中抽象出哪些平面图形?师生活动:学生积极发言,教师PPT演示学生从图片中抽象出几何图形活动过程.引导学生回忆三角形的研究过程,类比得到几何图形的一般研究思路.设计意图:通过观察图片,让学生感受生活中蕴含丰富的几何图形,类比三角形的研究思路,总结几何图形的一般研究思路,让学生明确本节课的研究思路和方向,为后续研究其它几何图形埋下伏笔,也为这节课的研究奠定基础.(二)知识回顾,得到定义问题2:小学学过平行四边形吗?什么样的四边形叫平行四边形?如何表示?师生活动:引导学生回顾平行四边形的定义,引导学生把小学学过的文字定义转换成几何符号语言,抽象形成平行四边形的概念,教师引导学生类比三角形的表示表示平行四边形.定义:两组对边分别平行的四边形叫做平行四边形.如图,∵AD∥BC,AB∥DC∴四边形ABCD是平行四边形∵四边形ABCD是平行四边形∴AD∥BC,AB∥DC.平行四边形ABCD,可记作:ABCD.读作:平行四边形ABCD.设计意图:回顾小学知识,复习得出平行四边形的定义,加强新旧知识间的联系,从小学所学的知识自然过渡到初中阶段,体现了知识间的联系.在回顾、感知、抽象的基础上自然得出平行四边形的定义,定义的数学符号表示及语言间的转化强化了初中几何学习的符号意识及图形抽象过程.类比三角形学习平行四边形,为后续进一步类比全等三角形为研究平行四边形作铺垫,体现类比的数学思想方法.问题3:画图操作,应用定义.利用手中学具根据平行四边形的定义在学案上画一个平行四边形.(学具:直尺和三角板)进一步深化对定义的内涵的理解.师生活动:师生共同画图,参照视频画一个平行四边形.(三)实践活动,探究性质问题4:通过画图我们已经明确了平行四边形的定义和基本要素,那么平行四边形除了两组对边平行外,它的边、角还有什么关系?下面我们一起来对平行四边形的性质进行深入的研究.师生活动:合作探究1.观察你手中的平行四边形,猜想它的边、角的性质;2.将猜想写在材料单上;3.借助手中学具,验证你的猜想(学具:直尺、量角器、圆规、平行四边形纸板两张,全等的三角形纸板两张).学生首先通过独立思考,再小组交流,教师引导学生大胆猜想,情况预设:猜想1:平行四边形的对边相等.猜想2:平行四边形的对角相等.学生以主人的姿态参与合作探究中,教师以合作者的身份深入到各小组中,了解学生的探究过程,倾听学生的想法,并适当予以指导与评价,把学生的猜想写在黑板上.师生活动:不同小组的学生针对发现的边、角的猜想展开汇报,预设方法:度量、叠合、(旋转)等方法,直观感知平行四边形的边、角的特征,培养学生的空间观念和几何直观,培养学生形成探究图形性质的基本策略,渗透动手实践、合情推理,在探究活动中的重要地位.问题5:刚才同学们用了度量法,叠合法验证了我们手中的平行四边形的边角的猜想,那么对于任意的平行四边形这些猜想还成立吗?教师肯定学生的探究方法,几何画板演示度量过程.设计意图:引导学生通过观察--实验得出猜想,教师几何画板展示回避了测量的误差问题,但不能代表所有情况,类比三角形性质的探究过程,明确猜想只是个命题,只有通过证明才能上升为性质定理,使证明成为观察--实验--探究得出结论的自然延续,把合情推理和演绎推理有机结合起来,让学生体会“用合情推理分析结论,用演绎推理证明结论”这一几何研究的基本思考模式.体现几何学习的逻辑性,突出数学是一门严谨的科学.问题6:如何证明你的猜想?师生活动:引导学生结合图形写出已知,求证,将文字命题转化为几何符号语言.学生独立证明猜想,展示证明思路:方法一:连接AC,证明△ABC ≌△CDA;方法二:连接BD,证明△ABD ≌△CDB,可能会有同学直接证明对角相等,学生大胆阐述自己的想法,教师肯定学生的想法,展台展示学生证明过程,引导学生证明后总结出两条性质定理,并将其转化为几何符号语言并板书.平行四边形性质1:平行四边形的对边相等.如图,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC(平行四边形的对边相等).平行四边形性质2:平行四边形的对角相等.如图,∵四边形ABCD是平行四边形,∴∠A= ∠C, ∠B= ∠D(平行四边形的对角相等).设计意图:证明过程放手让学生尝试,体现学生的主体地位,教学中充分肯定学生将平行四边形转化为三角形研究的转化思想,让学生明白探究的过程就是把未知转化为已知,运用已有知识解决问题,体会转化和化归是数学学习中常用的方法,从而提高学生分析问题了、解决问题的能力.通过证明,把命题上升为性质定理,再次强调文字语言,图形语言和符号语言的相互转化.整个探究过程让学生参与观察--猜想--证明--形成定理的全过程,体会定理的研究思路和方法,为后续探究学习做准备.(四)应用性质,解决问题1.牛刀小试.如图,在ABCD中,(1)若∠B=40°,则∠A=________,∠C=________,∠D=________.(2)若AB=3,BC=5,则它的周长=________.(3)若∠A+ ∠C= 200°,则∠A=________,∠B=________.师生活动:学生学案上完成后上讲台讲解,教师倾听并肯定学生的想法,适时鼓励.设计意图:根据课本习题改编,从边、角两个方面直接利用平行四边形的性质计算,是对性质简单应用的考查,及时反馈学生对性质的理解情况.例1 如图,在ABCD中,DE⊥AB,BF⊥CD,垂足分别是点E、点F.求证:AE=CF.追问:DE=BF吗?师生活动:引导学生回顾证明线段和角相等的方法,在寻找证明全等的条件的过程中发现平行四边形的性质可以提供,学生说证明过程,教师板书.引导学生一题多解,多角度考虑本题.设计意图:例题突出应用性质进行简单证明,如何应用符号语言进行推理证明是解决问题的关键,对学生逻辑推理能力提出了要求,例题解答过程让学生体会平行四边形的边、角性质也可以作为证明三角形全等的条件,我们又多了一个证明线段相等和角相等的工具,突出学习的意义.学生分析,教师板书,规范书写过程,突出教师的示范作用.问题7:例1中的直线AB和直线CD有什么位置关系?追问:图中,怎么表示点D到直线AB的距离?师生活动:教师不断追问,通过复习点到直线的距离,适时介绍两条平行线间距离的概念.设计意图:在例题的基础上通过延长一组对边,引导学生自然得出两平行线间距离的概念,通过前面的学习进一步得出平行线间距离相等的结论.是对例题价值的进一步挖掘.问题8:剪两张对边平行的的纸条,随意交叉叠放在一起,重合的部分构成了一个四边形.转动其中一张纸条,线段AD 和BC 的长度有什么关系?为什么?师生活动:引导学生用平行四边形的定义和性质解决问题,问题解决过程中引导学生把实际问题转化为数学问题,从而得到解答,学生踊跃发言,表达自己的想法.设计意图:对平行四边形性质应用的考察,让学生经历把实际问题抽象成数学问题,用所学知识进行解答的过程,获得成功体验,体会数学与实际生活息息相关,激发学生的学习兴趣,让学生爱学数学,会学数学,会用数学知识解决实际生活中的问题.(六)归纳总结,反思提升你学到了哪些知识?积累了哪些方法经验?设计意图:让学生对自己所学知识和学习体验进行小结,回顾学习过程和所得,及时总结方法,构建本节课知识框架.(七)作业巩固如图,ΔABC 是等腰三角形,P 是底边BC 上的一个动点,且PE ∥AB , PF ∥AC.求证:PE+PF=ABA F P CB E。
《平行四边形的性质(第一课时)》教学设计
《平行四边形的性质(第一课时)》教学设计一、教学分析(一)教学内容分析《平行四边形的性质》是九年制义务教育课本八年级数学第二学期第十九章第一节内容,它是在学生学过平移和旋转等几何知识的基础上学习的,学习它不仅是对已学平行线、三角形等知识的综合应用和深化,同时对后面学习的矩形、菱形、正方形及梯形等特殊的平行四边形起到引领作用;其次,平行四边形性质在实际生产和生活中有广泛的应用,如:小区的伸缩门、庭院的竹篱笆等制造时都需要用到平行四边形的性质;第三:从培养学生的逻辑思维能力来说,学生已经初步掌握了推理论证方法,需要进一步巩固和提高,本节课及至本章都是为达到这个目标而设置的.(二)教学对象分析由于学生在“第七章三角形”中已经学过多边形的概念以及多边形内角和、外角和的相关知识,且平行四边形的定义也在小学学过,对它们并不陌生,但对于概念的本质属性的理解并不深刻,需加深理解.在认知过程中,对平行四边形通过辅助线与三角形相联系,加以引导,在学生自主探究的学习过程中,不仅要完成对平行四边形性质的认知,还需有效引导学生的探究欲与成就感.(三)教学环境分析本节教学内容是平行四边形的性质,针对数学学科培养学生逻辑思维与理性探究的学科特点,概念与性质的揭示需要一个渐进的探究过程,不适宜通过网络查阅查询,所以本课选择多媒体教室环境,而多媒体课件的作用,应体现在认知过程中,对学生认知前期的引导,和学生认知后期的验证,应避免以动画的过程替代学生大脑中推演的过程.二、教学目标(一)知识与技能理解平行四边形的定义,掌握平行四边形的有关性质,并能初步应用平行四边形的性质进行简单的计算和证明,解决生活中的实际问题.(二)过程与方法在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想.(三)情感态度与价值观引导学生观察、发现,激发学生的好奇心和求知欲,并且引导学生在应用数学知识解决实际问题的活动中体验成功,树立学习的自信心.三、教学重点难点(一)教学重点:让学生亲历平行四边形性质定理的“观察——猜想——验证”过程,理解定理内容,并学会用它们进行有关的论证和计算.(二)教学难点:通过性质定理的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.四、教学方法定理推导上采用引导探索法;设置疑问,引导学生通过观察、猜想、论证、应用等环节积极思考,勇于探索,较好地理解和掌握本节课的学习内容,体验解决问题的方法和乐趣,增强数学学习兴趣.在教学手段方面,利用PPT制作的课件,增大教学容量和直观性,提高教学质量和效率.五、教学过程。
人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时优秀教学案例
作为一名特级教师,我深知教学策略的重要性,它能够帮助我更好地实现教学目标,提高学生的学习效果。在教学过程中,我注重情景创设、问题导向、小组合作和反思与评价等策略的灵活运用,以激发学生的学习兴趣,培养学生的思维能力、合作意识和自我反思能力,促进学生的全面发展。
人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时优秀教学案例
一、案例背景
本案例背景基于人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时内容。本节课主要介绍平行四边形的性质,包括平行四边形的定义、对边相等、对角相等、对边平行和对角线互相平分等特点。
五、案例亮点
1.生活情境的创设:通过带领学生参观公园并观察现实生活中的平行四边形物体,我成功激发了学生对平行四边形性质的兴趣和好奇心。这种生活情境的创设使学生能够更好地将数学知识与实际生活联系起来,提高了学生的学习动力。
2.问题导向的运用:在教学过程中,我提出了一系列具有启发性的问题,引导学生进行思考和探索。这种问题导向的教学方法使得学生能够主动参与到学习过程中,培养了自己的逻辑思维和解决问题的能力。
5.教学策略的灵活运用:在教学过程中,我综合运用了情景创设、问题导向、小组合作和反思与评价等多种教学策略。这种策略的灵活运用使得学生能够在不同的学习活动中得到全面的发展,提高了学习效果。
作为一名特级教师,我深知教学案例亮点的重要性。这些亮点不仅体现了我对教学内容和方法的深入思考和精心设计,也体现了我对学生学习需求和发展的关注。在今后的教学中,我将继续努力,不断探索和创新,为学生提供更优质的教学服务。
《平行四边形的性质(第1课时)》说课稿
《平行四边形的性质(第1课时)》说课稿尊敬的评委、老师,大家好!今天我说课的内容是人教版《数学》八年级下册第十九章《四边形》第一节《平行四边形》第一课时。
下面,我将从教材分析、教法学法、教学过程和评价分析四个方面对本课的设计进行说明。
一、教材分析1.教材的地位与作用:本节课既是对已学的平行线、全等三角形等知识的延续和深化,又是进一步学习矩形、菱形、正方形等知识的基础。
为研究两直线平行、线段相等及角相等提供了新的方法和依据,在整个教材中起着承上启下的作用。
2.学情分析:(1)小学阶段对平行四边形的定义已有初步认识,但对于概念的本质属性的理解并不深刻。
(2)通过对平行线、全等三角形的相关知识,具备一定的推理能力。
(3)八年级学生抽象思维和推理能力有限,特别是添加辅助线证明几何命题还存在一定的困难。
3.学习目标:知识目标:理解平行四边形的概念和平行四边形边、角的有关性质。
能力目标:会用平行四边形的性质进行简单的论证和计算,培养学生的动手能力和推理能力。
情感目标:通过探究学习,激发学生学习数学的兴趣,体验数学来源于生活又服务于生活。
4.教学重难点:重点:平行四边形性质的探究和应用。
难点:通过添加辅助线证明平行四边形的性质。
二、教法和学法课程标准指出:教无定法,贵在得法。
为了更好地突出重点,突破难点,本节课主要采用了以合作交流为主的“启发引导式”教学方法。
学生通过自主探究,合作交流展开探究性学习活动。
三、教学过程本节课,我分五个环节进行设计:第1环节:创设情境,导入新课,用时约1分钟;第2环节:提出概念,揭示内涵,用时约6分钟;第3环节:自主探索,感悟新知,用时约10分钟;第4环节:应用迁移,训练思维,用时约20分钟;第5环节:总结反思,拓展升华,用时约3分钟;具体如下:教学环节教学程序设计意图创设情境,导入新课(约3’)猜一猜:“有种图形生的怪,有棱有角偏脑袋,上下左右共四边,两两平行围起来。
”它是什么图形?答案请在下列图片中找:(演示图片,引导学生观察这些图形的共同特征,得出答案:平行四边形)采用谜语引入新课,有利于激发学生的学习兴趣,通过欣赏平行四边形的实物图片,引导学生从实物中抽象出几何图形。
平行四边形的性质第一课时教学设计
《平行四边形的性质》第一课时教学设计
教材分析
平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用。
本节课所学内容是平行线、全等三角形知识的延伸,也是后续学习矩形、菱形、正方形等知识的坚实基础。
此外,本课是在学生掌握平移、旋转和中心对称知识的基础上来探究平行四边形的性质,在培养学生的合情推理水平、发散思维水平以及探索、体验数学思维规律方面起着重要作用。
教学目标
知识目标:理解平行四边形的定义及相关概念,能根据定义探究平行四边形的性质特,并能使用平行四边形的对边相等、对角相等的性质实行相关推理和计算。
水平目标:通过操作、观察、猜测、验证、推理等过程,提升学生用数学知识解决问题的水平,培养学生的演绎推理水平和发散思维水平。
情感、态度、价值观目标:在自主探索、观察、发现的过程中培养学生的探索精神,体会探索的乐趣。
教学重点难点
重点:理解并掌握平行四边形的概念及其性质,应用平行四边形的性质解决简单的推理和计算问题
难点:通过图形的变换探索平行四边形的性质及平行四边形性质的应用。
教学方法与手段
在课堂教学中表达教师是主导、学生是主体的地位,引导学生自主探索、观察、发现。
在教学中应用多媒体和自制教具,增强教学的直观性和实效性。
教与学互动设计。
18.1平行四边形的性质(教案)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是指具有两组对边分别平行的四边形。它在几何图形中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过分析黑板和书本的形状,了解平行四边形在实际中的应用,以及它如何帮平行且相等、对角相等、对角线互相平分等。
-学会运用平行四边形的性质解决实际问题,如计算平行四边形的面积和周长。
举例解释:
-通过动态演示或实际操作教具,让学生直观感受平行四边形的定义。
-通过具体例子,如矩形、菱形等特殊平行四边形,讲解性质,强调性质在不同情况下的应用。
-设计实际情境题目,如校园绿化带的设计,让学生应用性质解决具体问题。
18.1平行四边形的性质(教案)
一、教学内容
本节课选自八年级数学下册第十八章“平行四边形”第一小节“18.1平行四边形的性质”。教学内容主要包括以下几点:
1.掌握平行四边形的定义,理解两组对边分别平行的四边形被称为平行四边形。
2.学习并掌握平行四边形的性质,包括对边平行且相等、对角相等、对角线互相平分等。
在实践活动中,学生们分组讨论和实验操作都非常积极。他们通过实际动手操作,更好地体会到了平行四边形性质的应用。不过,我也观察到,在讨论过程中,有些小组的思路不够开阔,需要我在旁边适时引导。这提醒我在今后的教学中,要更加注重培养学生的独立思考和团队协作能力。
学生小组讨论环节,大家的表现让我感到欣慰。他们能够围绕平行四边形在实际生活中的应用展开热烈的讨论,并提出自己的观点。但在分享成果时,部分学生的表达还不够清晰,这让我意识到在今后的教学中,需要加强学生的表达和沟通能力训练。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的定义和性质这两个重点。对于难点部分,如对角线互相平分的证明,我会通过举例和比较来帮助大家理解。
平行四边形性质(第一课时)教学设计
平⾏四边形性质(第⼀课时)教学设计《平⾏四边形的性质(第⼀课时)》教学设计⼀、教材分析《平⾏四边形的性质》是北师⼤版⼋年级下册第六章第⼀节内容。
平⾏四边形作为最基本的⼏何图形,作为“空间与图形”领域中研究的主要对象,它在实际⽣产和⽣活中有着⼴泛的应⽤,纵观整个初中平⾯⼏何教材,它是在学⽣掌握了平⾏线、三⾓形及简单图形的平移和旋转等⼏何知识的基础上学习的。
平⾏四边形及其性质既是本节的重点,⼜是全章的重点。
学习它不仅是对已学的平⾏线性质、全等三⾓形等知识的综合应⽤和深化,⼜是下⼀步学习矩形、菱形、正⽅形等特殊的平⾏四边形奠定了基础,起着承上启下的作⽤。
同时平⾏四边形的性质还为证明两条线段相等、两⾓相等、两直线平⾏提供了新的⽅法和依据,拓宽了学⽣的解题思路。
⼆、教学⽬标:(1)知识⽬标理解平⾏四边形的定义,探究平⾏四边形的性质;利⽤平⾏四边形的性质进⾏有关的证明和计算,并解决简单的实际问题。
(2)能⼒⽬标通过探索、发现与证明平⾏四边形性质的过程,培养学⽣简单的推理谁能⼒和逻辑思维能⼒。
并渗透解决平⾏四边形问题的基本思想是化为三⾓形来解决这⼀"转化"的数学思想。
(3)情感⽬标在探索平⾏四边形性质的活动过程中发展学⽣的探究意识和合作交流的习惯。
三、教学重点和难点重点:平⾏四边形的性质的探究和应⽤⼜因为平⾏四边形性质难点:平⾏四边形的性质的探究。
以及如何添加辅助线将平⾏四边形问题转化为三⾓形问题来解决的思想⽅法。
突破重难点的⽅法是充分运⽤多媒体教学⼿段,设置问题、探究讨论、交流合作、合理推测、课后⼩结直⾄布置作业,突出主线,层层深⼊,逐⼀突破重难点。
四、教法分析根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学⽣的认知规律,遵循教师为主导,学⽣为主体,训练为主线的指导思想,采⽤观察发现法为主,多媒体演⽰法为辅。
五、学法指导本节课主要采⽤“动⼿实践----⼤胆猜想----⾃主探究----合作交流----推理验证”的学习⽅法,使学⽣积极参与教学过程,在教学过程中展开思考,培养学⽣的合情推理和演绎推理的能⼒,进⼀步理解转化的数学思想⽅法。
平行四边形的性质(1)教案
平行四边形的性质教学目标:1.掌握平行四边形的定义、性质,能根据性质解决简单问题,培养合情推理能力;2.经历观察、猜想、实践、验证的数学活动,逐步建立类比、转化的数学思想,获得证明线段相等和角相等的新的数学方法;3.在探索平行四边形性质的过程中培养学生的合作探究意识和独立思考的习惯,使学生在数学学习活动中获得成功的体验,感受数学美. 教学重点:平行四边形性质的探究,平行四边形性质的应用.教学难点:平行四边形性质的探究教学过程:一、创设情境发现性质----做生活的有心人前面我们已经系统的探究和学习了三角形的知识,今天开始我们再对另一种几何图形进行探究和学习,请大家看看这几幅图片。
善于观察PPT中出示图片,提出问题:你能在这些图片中找出我们熟悉的几何图形吗?2. 大家观察图形看它的两组对边有什么样的位置关系?我们定义:有两组对边分别平行的四边形叫做平行四边形.我们把平行四边形ABCD 记作:ABCD注意:1、①两组对边分别平行②四边形 2、顶点字母要按照顺时针或逆时针的方向标注。
3、由定义得到的性质:AD//BCAB//CDABCD 是平行四边形四边形那么你还能说说平行四边形还有什么性质呢? 二、合作探究 证明性质----做思维严谨的人 猜想1 平行四边形的对角相等 猜想2 平行四边形的对边相等 1.写出已知、求证.2.先独立思考,然后在小组内交流你的方法。
值得一提的是,学生在证明时想到了多种证法: 用同旁内角来证。
利用同位角和内错角来证。
分割成两个平行四边形来证。
(4)分割成两个全等三角形来证。
练习:1. 若四边形ABCD 为平行四边形 (1)则∠A:∠B:∠C:∠D=2:1:__:___(2)∠B=600,则∠A=____ ,∠C=____,∠D=____ (3)∠B+∠D=1100,则∠A=____,∠C=____,∠D=___ (4)∠C-∠B=400,则∠A=___,C=____,∠D=___ 2.若四边形ABCD 为平行四边形,(1)若AB=10,BC=15,则AD= ,CD= ,周长为 . (2)若周长为40,AB=12,则BC= ,AD= ,CD= . (3)若周长为40,BC 比AB 长4,则AB= ,BC= . 三、典型例题 应用性质——做善于应用的人 例题:如图小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m ,其他三边长分别为多少?例题:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形。
平行四边形的性质教案
19.1.1平行四边形的性质第一课时(教案)---------昆明市官渡区钟英中学罗从曦讲授课题:人教版八年级数学下册19.1.1平行四边形的性质(一)Ⅰ:教学目标:1、知识目标:理解平行四边形的概念,掌握平行四边形的边、角、性质,并能初步用其来解决实际问题.2、能力目标:通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.3、情感目标:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.Ⅱ:【教学重点】:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.【教学难点】:运用平行四边形的性质进行有关的论证和应用.【教学方法】:探究、启发式Ⅲ:教学过程:一、自学(学生阅读教材完成学案自学部分)例举生活中我们常见的四边形(观察它们对边的位置关系).通过观察,让学生勾勒出发现的几何图形 ------- 平行四边形,然后举出一些生活中的实例.指出平行四边形是我们生活中常见的一种图形,因此我们有必要系统学习平行四边形.二、互学(操作并得出结论)1、观察图形、引出定义:两组对边分别平行的四边形是平行四边形2、那么任意画一个平行四边形,你会用符号表示它吗?表示法:平行四边形用表示,如图,平行四边形ABCD,记作ABCD.读作平行四边形ABCD。
介绍平行四边形对边、对角概念.如上图,在平行四边形ABCD中,对边有组,AD边的对边是,AB边的对边是,对角有组,∠A的对角为,∠B与为一组对角。
师:进一步剖析定义:一个四边形具备了两组对边分别平行这个条件,这个四边形就是平行四边形,反之如果一个四边形是平行四边形,那么会有两组对边分别平行这个结论.3、探索平行四边形的性质由定义可知平行四边形两组对边分别的对边平行4、质疑:平行四边形除以上性质外还有其他性质吗?鼓励学生大胆猜想(提示:请学生仿照三角形的学习方法从边和角去探索)度量边和角之间的数量关系(任意画一个平行四边形,度量对边对角之间的关系)5、讨论得出平行四边形的性质,怎样用符号语言来描?①平行四边形的两组对边分别平行。
“平行四边形性质”(第一课时)说课稿
“平行四边形性质”(第一课时)说课稿一、教学内容人教版《义务教育课程标准实验教科书•数学》八年级下册第十九章第一节第一课时。
二、内容剖析平行四边形是最基本的几何图形之一,也是“空间与图形”领域中研究的主要对象之一,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用。
本节课是平行线的性质,既是全等三角形知识的延续和深化,又是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用,平行四边形性质还为证明两条线段相等,两角相等,两直线平行提供了新的方法和依据,拓宽了学生的解题思路。
另外,本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察,实验,猜想,验证,推理,交流等数学活动,对于培养学生的合情推理能力,发散思维能力以及探索、体验数学思维规律等方面起着重要的作用。
三、目标剖析本节课的知识技能目标是:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力。
数学思考主要有两点:一是经历运用平行四边形描述现实世界的过程,发展学生的抽象思维和形象思维。
二是根据平行四边形性质的探究与应用,让学生通过观察,实验,猜想,验证,推理,交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。
本节课“解决问题”是:一是通过多种方法探究平行四边形的性质,体验解决问题策略的多样性,初步形成评价和反思的意识;二是由平行四边形的定义,能以数学角度去探究平行四边行的其它性质,并能运用平行四边形的性质进行有关的证明和计算,发展应用意识。
本节课应渗透的情感态度是:培养学生独立思考习惯与合作交流意识,激发学生探索数学的兴趣,体验索成功后的快乐。
通过平行四边形的性质的应用,进一步认识数学与生活的密切联系。
本节课的重点是:理解并掌握平行四边形的概念及其性质。
难点是:运用平移、旋转的图形变换思想探究平行四边形的性质,并能进行简单的说理。
北师大版数学八年级下册6.1《平行四边形的性质》教案1
北师大版数学八年级下册6.1《平行四边形的性质》教案1一. 教材分析《平行四边形的性质》是北师大版数学八年级下册第6章第1节的内容。
本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,以及对边和对角线的关系。
这些性质是后续学习矩形、菱形、梯形等特殊平行四边形的基础,对于学生理解和掌握初中数学知识体系具有重要意义。
二. 学情分析学生在八年级上册已经学习了平行四边形的定义和一些基本性质,对于本节课的内容有一定的认知基础。
但学生对于证明平行四边形性质的过程和证明方法的运用还需加强。
此外,学生对于实际问题中平行四边形的性质应用也需进一步提高。
三. 教学目标1.知识与技能:掌握平行四边形的性质,并能运用性质解决简单问题。
2.过程与方法:通过小组合作、探究活动,培养学生的动手操作能力和团队协作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的观察能力、思考能力和创新精神。
四. 教学重难点1.重点:平行四边形的性质及证明。
2.难点:平行四边形性质在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究平行四边形的性质。
2.运用小组合作学习,培养学生的团队协作能力和沟通能力。
3.利用多媒体辅助教学,直观展示平行四边形的性质及其应用。
4.采用归纳总结法,引导学生概括平行四边形的性质。
六. 教学准备1.多媒体课件:制作平行四边形性质的课件,包括图片、动画、例题等。
2.学习材料:准备相关的学习资料,如教材、练习题等。
3.教学工具:准备黑板、粉笔、直尺、剪刀、彩笔等。
七. 教学过程1.导入(5分钟)利用多媒体展示平行四边形的图片,引导学生回顾平行四边形的定义及基本性质。
提问:你们已经掌握了平行四边形的哪些性质?今天我们将进一步学习平行四边形的性质。
2.呈现(10分钟)呈现平行四边形的性质,引导学生观察、思考并证明。
性质1:平行四边形的对边平行且相等。
性质2:平行四边形的对角相等。
初中数学《平行四边形的性质第课时》教案基于学科核心素养的教学设计及教学反思
②若∠B+∠D=120°,则∠A=____,∠B=_____;
③若∠D-∠C=120°,则∠A=____,∠B=_____;
若AB=2cm,BC=3cm,则□ABCD的周长为________;
初中数学《平行四边形的性质第课时》教案基于学科核心素养的教学设计及教学反思
基于学科核心素养的教学设计
课程名称:《平行四边形的性质第课时》
姓名
教师姓名
任教学科
数学
学校
学校名称
教龄
18年
教学内容分析
教学内容
“平行四边形的性质”第(1)课时
教学目标
使学生初步掌握什么是平行四边形的概念及其性质并用其来解决实际问题,通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生的自学能力和缜密的逻辑思维能力。
教学过程设计
教师活动
预设学生活动
设计意图
一.用电脑展示图片:
1)篱笆
2)小区的拉闸门
观察两张图片,勾勒出几何图形,从而引出平行四边形在日常生活中应用广泛,因此我们有必要系统学习平行四边形。
通过观察图片,引导学生从实物中抽象出几何模型,了解学习平行四边形的必要性。
使学生了解“几何来源于实践,而又反过来服务于实践”的辩证唯物主义观点。
学生学情分析
学生通过在七年级的学习已经积累了按边和角学习三角形的方法,固而学生对本节课的学习已经具备了一定的认知技能,所以本节课的教学方法,我采用了引导发现法和设疑诱导法。以提出问题为主线,对学生进行边启发,边分析,边推理,层层设疑,引导学生自己去发现和解决问题,这样既能调动学生的学习积极性又能在此过程中体现学生的学习主体地位又能激发学生自主、探究的意识,培养合作学习的能力。
“平行四边形的性质”(第一课时)教学设计
通 过 多种方 法探 索 平行 四边 形 的性 程 中,达到培养学生创新意识 和实践能力 行光 线在 室内的投影 ,让 学生感 受到平行
质 ,体验解决 问题策略的多样性 ,初步形 的教 学 目的.
… 一 一 … 商薮葶 一 …~ 一 一一薮膏一 9 骑… 3 …一 一 [ …车 一 … 0’ 9 一 3 2 一 0
师 :通过本节课的学 习,大家就能明 白其 中的道理 .今天 ,我们来共 同研究平
总之 ,对教材 的处理力求在深挖概 念 行 四边 形 及 其 性 质 .
() 3 解决问题.
内涵、拓展性质外延 、强化练 习效用 的过
【 计意 图 】 设 通过 研 究学 生常 见 的平
四边形 与生活 实际紧密联 系;同时,把学
教 学 难 点
要对象 之一 .它在生活 中有着 十分广泛 的 性 质 .
应用 ,这不仅表现在 E常生活 中有许多平 l 行 四边 形的 图案 ,还包括 其性质 在生产 、 生活各领域 的实际应用.
全等 的三角形纸板 、平行 四边形纸板
运用平移 、旋转 的图形 变换 思想探 究 各一对 ,一根细 纸板条 ,直尺 ,量 角器 , 平行 四边形 的性质 ,并 能进行简单的说理 . 三角板 ,图钉.
i ≮Xt } A ; } 0 0 i A 1
l
//教
学 频
道
平行四边形的性质" 第一课 (
( 山东省 邹平 县 实验 中学)
教 学 内容
成评价与反思 的意识.
( ) 感 态度. 4情
教 学 方 法 与 手 段
北师大版 《 义务 教育课程标 准实验 教 科书 ・ 数源自》 八 年级上册第 四章 第一节第
《平行四边形的性质》教案
§4.1平行四边形的性质(1)教案教学目标:知识与技能目标:1、掌握平行四边形有关概念和性质。
2、探索并掌握平行四边形的对边相等,对角相等的性质。
过程与方法目标:1、动手操作实践的过程中,探索发现平行四边形的性质。
2、知道解决平行四边形问题的基本思想是化为三角形问题来解决,渗透转化思想。
3、通过探索平行四边形的性质,培养学生简单的推理谁能力和逻辑思维能力。
情感与态度目标:1、探索平行四边形性质的过程中,感受几何图形中呈现的数学美。
2、在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。
教学重点:探索平行四边形的性质。
教学难点:平行四边形性质的理解。
教学方法:探索归纳法教材分析:本节内容是在图形的的旋转,把一个图形绕一个定点旋转一定度数后得到的图形与原图形例行;以及全等三角形对应边相等,对应角相等的知识基础上引入平行四边形及平行四边形的性质,教材加强了学生在教学过程中的实践活动,通过学生用纸片拼剪、测量、旋转等方法来探索平行四边形的定义及平行四边形的性质。
教材给学生自主探索留有很大空间,学生可以充分发挥想像,进一步加深对平行四边形的理解。
学情分析:学生在学习本节内容前具备三角形全等以及图形旋转的知识。
所以在本节知识的教学中要利用学生已的知识,将所学知识转化为三角形知识来解决,这样易于学生对新知识的接受。
教具准备:三角形纸片两张,多媒体课件、实物投影。
教学过程设计:一、观赏生活中的图片,引入课题(电脑演示)下面的图片中,有你熟悉的哪些图形?(设计这个活动,一方面可让学生认识到平行四边形在生活、生产中的应用,另一方面让学生在复杂的图形中认识平行四边形。
)二、开启智慧(“行家”看门道)1、操作活动:让学生进行如下操作后,思考以下问题:(幻灯片展示)将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,得到一个图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形的性质》第一课时教案
蔡兴文
平行四边形的性质第一课时教案
讲授课题:华师大版八年级数学上册16.1.1平行四边形的性质(一)教学目标:
1、知识目标:
理解平行四边形的概念,掌握平行四边形的边、角、对角线的性质,并能初步用其来解决实际问题.
2、能力目标:
通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.
3、情感目标:
让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.
教学重点:平行四边形的性质
教学难点:理解并应用平行四边形的性质
教学方法:探究、启发式
教学过程
一、创设情景引入新课
通过观察,让学生勾勒出发现的几何图形:平行四边形,然后举出一些生活中的实例。
从而引出平行四边形在日常生活中应用广泛,是一种美观实用的图形,因此我们有必要系统学习平行四边形.
二、判断图形,明确概念
通过一些图片的判断,让学生认识什么样的四边形是平行四边形。
然后让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形引入概念:
三、平行四边形的画法
让学生自己在练习本上画出平行四边形,老师指导学生完成。
接着老师展示画平行四边形的步骤,并演示给学生看。
四、探究平行四边形的旋转
用一枚图钉在O点穿过,将平行四边形ABCD绕点O旋转180º,观察旋转后的平行四边形ABCD与纸上画的平行四边形EFGH是否重合。
让学生讨论,得出结论,教师总结:我们发现,旋转之后的两个平行四边形完全重合,即平行四边形是中心对称图形,对角线的交点O就是对称中心。
五、例题与练习
1.例题1 :
如图,已知平行四边形ABCD, ∠A=40º,求其他各个内角的度数。
思路导引:已知一个平行四边形与其中的一个角,由平行四边形的性质可得两邻角互补,
所以∠A +∠D=180º, ∠A+∠B=180º,从而求出∠D和∠B,再求∠C 。
2.例题2 :已知在平行四边形ABCD中,AB=8 ,周长等于24,求
其余三条边的长。
解:∵在平行四边形ABCD中,
AB = DC,AD = BC(平行四边形的对边相等)又∵AB = 8
AB + BC + CD + DA = 24
∴CD = 8,AD = BC= 4
3.练习
1、在平行四边形ABCD中,已知AB=8,AO=3,∠ABC=50°
则CD=________,AC=________ ,
∠BAD=________,∠CDA=________
2、在平行四边形ABCD中,∠A+ ∠C= 150°那么∠A=__________,∠D=_________
3、在平行四边形ABCD中,∠A:∠B= 4:5,那么∠B=__________,∠C=_________
六、小结与作业
这节课你学到了什么?
1.平行四边形的概念
2.平行四边形的性质
3.运用性质解决问题
作业安排
作业
课本98页练习第1题和第2题。