光电传感器英文和译文

合集下载

传感器中英文介绍

传感器中英文介绍

传感器中英文介绍(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除. sensorssensors(English name: transducer/sensor) is a kind of detection device, can feel the measured information, and will feel information transformation according to certain rule become electrical signal output, or other form of information needed to satisfy theinformation transmission, processing, storage, display, record and control requirements.Sensor's features include: miniaturization, digital, intelligent, multi-functional, systematic and network. It is the first step of automatic detection and automatic control. The existence and development of the sensor, let objects have sensory, such as touch, taste and smell let objects become live up slowly. Usually accordingto its basic cognitive functions are divided into temperature sensor, light sensor, gas sensor, force sensor, magnetic sensor, moisture sensor, acoustic sensor, radiation sensitive element, color sensorand sensor etc. 10 major categories.temperature transducerTemperature sensors (temperature transducer) refers to can feel temperature translates into usable output signal of the sensor. The temperature sensor is the core part of the temperature measuring instrument, wide variety. According to measuring methods could be divided into two types: contact and non-contact, according to the sensor material and electronic component features divided into two categories, thermal resistance and thermocouple.1 principle of thermocoupleThermocouple is composed of two different materials of metal wire, the welded together at the end. To measure the heating part of the environment temperature, can accurately know the temperature of the hot spots. Because it must have two different material of the conductor, so called the thermocouple. Different material to make the thermocouple used in different temperature range, their sensitivityis also each are not identical. The sensitivity of thermocouplerefers to add 1 ℃ hot spot temperature changes, the output variation of potential difference. For most of the metal material supportther mocouple, this value about between 5 ~ 40 microvolt / ℃.As a result of the thermocouple temperature sensor sensitivityhas nothing to do with the thickness of material, use very fine material also can make the temperature sensor. Also due to the production of thermocouple metal materials have good ductility, the slight temperature measuring element has high response speed, can measure the process of rapid change.Its advantages are:(1)high precision measurement. Because of thermocouple direct contact with the object being measured, not affected by intermediate medium.(2)the measurement range. Commonly used thermocouple from1600 ℃ to 50 ℃ ~ + sustainable measurement, some special thermocouple minimum measurable to - 269 ℃ (e.g., gold iron nickel chrome), the h ighest measurable to + 2800 ℃ (such as tungsten rhenium).(3) simple structure, easy to use. Thermocouple is usually composed of two different kinds of metal wire, but is not limited by the size and the beginning of, outside has protective casing, so very convenient to use. The thermocouple type and structure of the form.2. The thermocouple type and structure formation(1)the types of thermocoupleThe commonly used thermocouple could be divided into two types: standard thermocouple and non-standard thermocouple. Standard thermocouple refers to the national standard specifies its thermoelectric potential and the relationship between temperature, permissible error, and a unified standard score table of thermocouple, it has with matching display instrument to choose from. Rather than a standard thermocouple or on the order of magnitude less than therange to use standardized thermocouple, in general, there is no uniform standard, it is mainly used for measurement of some special occasions.Standardized thermocouple is our country from January 1, 1988, thermocouple and thermal resistance of all production according toIEC international standard, and specify the S, B, E, K, R, J, T sevenstandardization thermocouple type thermocouple for our countryunified design.(2)to ensure that the thermocouple is reliable, steady work, the structure of thermocouple requirements are as follows:①of the two thermocouple thermal electrode welding must be strong;②two hot electrode should be well insulated between each other, in case of short circuit;③compensation wires connected to the free cod of a thermocouple to convenient and reliable;④protect casing thermal electrodes should be able to make sufficient isolation and harmful medium.3.The thermocouple cold end temperature compensationDue to the thermocouple materials are generally more expensive (especially when using precious metals), and the temperature measurement points are generally more far, the distance to the instrument in order to save materials, reduce cost, usually adopt the compensating conductor) (the free end of the cold junction of the thermocouple to the steady control of indoor temperature, connectedto the meter terminals. It must be pointed out that the role of the thermocouple compensation wire extension hot electrode, so that only moved to the control room of the cold junction of the thermocouple instrument on the terminal, it itself does not eliminate the cold end temperature change on the influence of temperature, cannot have the compensation effect. So, still need to take some of the other correction method to compensate of the cold end temperatureespecially when t0 indicates influence on measuring temperature 0 ℃.Must pay attention to when using thermocouple compensating conductor model match, cannot be wrong polarity, compensation conductor should be connected to the thermocouple temperature should not exceed 100 ℃.传感器传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

光电式传感器论文中英文资料对照外文翻译

光电式传感器论文中英文资料对照外文翻译

附件1:外文资料翻译译文光电式传感器的应用与发展摘要目前,光电式传感器的应用范围越来越广,这大大促进了光电式传感器的发展。

光电式传感器结构简单而且形式多样。

它具有精度高,响应速度快,非接触等优点。

在本文中,我们分析了光电式传感器的工作原理,介绍了光电式传感器的分类,然后重点介绍了光电式传感器的应用和使用原理,分析了光电式传感器的现状和未来的发展趋势。

关键词光电式传感器,光电式传感器的应用,光电式传感器的发展1 引言光电式传感器是一种将光学元件和电子元件作为检测部分的传感器。

光电检测技术具有精度高,响应速度快,非接触式等优点。

该传感器结构简单,形式灵活多样。

因此,光电式传感器被广泛运用于控制和测试领域。

它可用于检测由于光量变化导致的非电量变化,如光强,辐射温度,气体成分等等。

它也可以通过光的传输,阻隔,反射,干扰来测量各种物理量,如物体的大小,位移,速度,温度等。

所以它是一个具有广泛应用前景的至关重要的灵敏器件。

当使用光电式传感器时,光电式传感器不直接与被测物体接触,光束质量几乎为零,在测量过程中不存在摩擦力,且在被测物体上几乎没有任何压力。

因此,光电传感器在很多应用方面都比其他传感器具有明显的优势。

然而,它的缺点是在某些应用场合中光学器件和电子设备是比较昂贵的,而且在测量过程中对环境条件的要求较高。

近年来,新型光电子器件的不断涌现为光电式传感器的进一步应用开创了新的一页尤其是CCD图像传感器的出现。

2 光电传感器的原理光电传感器是以光电器件作为转换元件的传感器。

该光电传感器的原理是把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号的光电组件。

光电传感器一般由光源、光学通路和光电元件三部分组成。

光电传感器的工作过程如图1所示。

图1 光电式传感器的工作过程光电器件的作用是将光信号转换成基于光电效应的电信号。

光电效应是一种物理现象,光照射到某些物质,并导致物体电性质发生重大改变。

光电传感器英文和译文

光电传感器英文和译文

Progress in Materials ScienceV olume 46, Issues 3–4, 2001, Pages 461–504The selection of sensorsJ Shieh,J.E Huber,N.A Fleck, ,M.F AshbyDepartment of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK Available online 14 March 2001./10.1016/S0079-6425(00)00011-6, How to Cite or Link Using DOI Permissions & ReprintsAbstractA systematic method is developed to select the most appropriate sensor for a particular application.A wide range of candidate sensors exist, and many are based on coupled electrical and mechanical phenomena, such as the piezoelectric, magnetostrictive and the pyro-electric effects. Performance charts for sensors are constructed from suppliers data for commercially available devices. The selection of an appropriate sensor is based on matching the operating characteristics of sensors to the requirements of an application. The final selection is aided by additional considerations such as cost, and impedance matching. Case studies illustrate the selection procedure.KeywordsSensors;Selection;Sensing range;Sensing resolution;Sensing frequency1. IntroductionThe Oxford English Dictionary defines a sensor as “a device which detects or measures some condition or property, and records, indicates, or otherwise responds to the information received”. Thus, sensors have the function of converting a stimulus into a measured signal. The stimulus can be mechanical, thermal, electromagnetic, acoustic, or chemical in origin (and so on), while the measured signal is typically electrical in nature, although pneumatic, hydraulic and optical signals may be employed. Sensors are an essential component in the operation of engineering devices, and are based upon a very wide range of underlying physical principles of operation.Given the large number of sensors on the market, the selection of a suitable sensor for a newapplication is a daunting task for the Design Engineer: the purpose of this article is to provide a straightforward selection procedure.The study extends that of Huber et al. [1] for the complementary problem of actuator selection. It will become apparent that a much wider choice of sensor than actuator is available: the underlying reason appears to be that power-matching is required for an efficient actuator, whereas for sensors the achievable high stability and gain of modern-day electronics obviates a need to convert efficiently the power of a stimulus into the power of an electrical signal. The classes of sensor studied here are detailed in the Appendices. 2. Sensor performance chartsIn this section, sensor performance data are presented in the form of 2D charts with performance indices of the sensor as axes. The data are based on sensing systems which are currently available on the market. Therefore, the limits shown on each chart are practical limits for readily available systems, rather than theoretical performance limits for each technology. Issues such as cost, practicality (such as impedance matching) and reliability also need to be considered when making a final selection from a list of candidate sensors.Before displaying the charts we need to introduce some definitions of sensor characteristics; these are summarised in Table 1.1 Most of these characteristics are quoted in manufacturers' data sheets. However, information on the reliability and robustness of a sensor are rarely given in a quantitative manner.Table 1. Summary of the main sensor characteristicsRange maximum minus minimum value of the measured stimulusResolution smallest measurable increment in measured stimulusSensing frequency maximum frequency of the stimulus which can be detectedAccuracy error of measurement, in% full scale deflectionSize leading dimension or mass of sensorOpt environment operating temperature and environmental conditionsReliability service life in hours or number of cycles of operationDrift long term stability (deviation of measurement over a time period)Cost purchase cost of the sensor ($ in year 2000)Full-size tableIn the following, we shall present selection charts using a sub-set of sensor characteristics: range, resolution and frequency limits. Further, we shall limit our attention to sensors which can detect displacement, acceleration, force, and temperature.2 Each performance chart maps the domain of existence of practical sensors. By adding to the chart the required characteristics for a particular application, a subset of potential sensors can be identified. The optimal sensor is obtained by making use of several charts and by considering additional tabular information such as cost. The utility of the approach is demonstrated in Section 3, by a series of case studies.2.1. Displacement sensorsConsider first the performance charts for displacement sensors, with axes of resolution δversus range R, and sensing frequency f versus range R, as shown in Fig. 1 and Fig. 2, respectively.Fig. 1. Resolution versus sensing range for displacement sensors. View thumbnail imagesFig. 2. Sensing frequency versus sensing range for displacement sensors.View thumbnail images2.1.1. Resolution —sensing range chart (Fig. 1)The performance regime of resolution δversus range R for each class of sensor is marked by a closed domain with boundaries given by heavy lines (see Fig. 1). The upper limit of operation is met when the coarsest achievable resolution equals the operating range δ=R. Sensors of largest sensing range lie towards the right of the figure, while sensors of finest resolution lie towards the bottom. It is striking that the range of displacement sensor spans 13 orders of magnitude in both range and resolution, with a large number of competing technologies available. On these logarithmic axes, lines of slope +1 link classes of sensors with the same number of distinctmeasurable positions, . Sensors close to the single position line δ=R are suitable as simple proximity (on/off) switches, or where few discrete positions are required. Proximity sensors are marked by a single thick band in Fig. 1: more detailed information on the sensing range and maximum switching frequency of proximity switches are summarised in Table 2. Sensors located towards the lower right of Fig. 1 allow for continuous displacement measurement, with high information content. Displacement sensors other than the proximity switches are able to provide a continuous output response that is proportional to the target's position within the sensing range.Fig. 1 shows that the majority of sensors have a resolving power of 103–106 positions; this corresponds to approximately 10–20 bits for sensors with a digital output.Table 2. Specification of proximity switchesProximity switch typeMaximum switching distance (m) Maximum switchingfrequency (Hz) Inductive6×10−4–1×10−1 5–5000 Capacitive1×10−3–6×10−2 1–200 Magnetic 3×10−3–8.5×10−2 400–5000 Pneumatic cylinder sensors (magnetic) Piston diameter 8×10−3–3.2×10−1300–5000 Ultrasonic1.2×10−1–5.2 1–50 Photoelectric 3×10−3–300 20–20,000Full-size tableIt is clear from Fig. 1 that the sensing range of displacement sensors cluster in the region 10−5–101 m. To the left of this cluster, the displacement sensors of AFM and STM, which operate on the principles of atomic forces and current tunnelling, have z-axis-sensing ranges on the order of microns or less. For sensing tasks of 10 m or above, sensors based on the non-contacting technologies of linear encoding, ultrasonics and photoelectrics become viable. Optical linear encoders adopting interferometric techniques can achieve a much higher resolution than conventional encoders; however, their sensing range is limited by the lithographed carrier (scale).A switch in technology accounts for the jump in resolution of optical linear encoders around the sensing range of 0.7 m in Fig. 1.Note that “radar ”, which is capable of locating objects at distances of several thousand kilometres,3 is not included in Fig. 1. Radar systems operate by transmitting high-frequency radio waves and utilise the echo and Doppler shift principles to determine the position and speed of the target. Generally speaking, as the required sensing range increases, sensors based on non-contact techniques become the most practicable choice due to their flexibility, fast sensing speed and small physical size in relation to the length scale detected. Fig. 1 shows that sensors based on optical techniques, such as fibre-optic, photoelectric and laser triangulation, cover the widest span in sensing range with reasonably high resolution.For displacement sensors, the sensing range is governed by factors such as technology limitation, probe (or sensing face) size and the material properties of the target. For example, the sensing distance of ultrasonic sensors is inversely proportional to the operating frequency; therefore, a maximum sensing range cut-off exists at about R=50 m. Eddy current sensors of larger sensing face are able to produce longer, wider and stronger electromagnetic fields, which increase their sensing range. Resolution is usually controlled by the speed, sensitivity and accuracy of the measuring circuits or feedback loops; noise level and thermal drift impose significant influences also. Sensors adopting more advanced materials and manufacturing processes can achieve higher resolution; for example, high-quality resistive film potentiometers have a resolution of better than 1 μm over a range of 1 m (i.e. 106 positions) whereas typical coil potentiometers achieve only 103 positions.2.1.2. Sensing frequency — sensing range chart (Fig. 2)When a displacement sensor is used to monitor an oscillating body, a consideration of sensing frequency becomes relevant. Fig. 2 displays the upper limit of sensing frequency and the sensorrange for each class of displacement sensor. It is assumed that the smallest possible sensing range of a displacement sensor equals its resolution; therefore in Fig. 2, the left-hand side boundary of each sensor class corresponds to its finest resolution.4 However, sensors close to this boundary are only suitable as simple switches, or where few discrete positions are to be measured.Lines of slope −1 in Fig. 2 link classes of sensors with the same sensing speed, fR. For contact sensors such as the LVDT and linear potentiometer, the sensing speed is limited by the inertia of moving parts. In contrast, many non-contact sensors utilise mechanical or electromagnetic waves and operate by adopting the time-of-flight approach; therefore, their maximum sensing speed is limited by the associated wave speed. For example, the maximum sensing speed of magnetostrictive sensors is limited by the speed of a strain pulse travelling in the waveguide alloy, which is about 2.8×103 m s−1.The sensing frequency of displacement sensors is commonly dependent on the noise levels exhibited by the measuring electronic circuits. Additionally, some physical and mechanical limits can also impose constraints. For example, the dynamic response of a strain gauge is limited by the wave speed in the substrate. For sensors with moving mass (for example, linear encoder, LVDT and linear potentiometer), the effects of inertial loading must be considered in cyclic operation. For optical linear encoders the sensing frequency increases with range on the left-hand side of the performance chart, according to the following argument. The resolution becomes finer (i.e. δdecreases in an approximately linear manner) with a reduced scan speed V of the recording head. Since the sensor frequency f is proportional to the scan speed V, we deduce that f increases linearly with δ, and therefore f is linear in the minimum range of the device.2.2. Linear velocity sensorsAlthough velocity and acceleration are the first and second derivatives of displacement with respect to time, velocity and acceleration measurements are not usually achieved by time differentiation of a displacement signal due to the presence of noise in the signal. The converse does not hold: some accelerometers, especially navigation-grade servo accelerometers, have sufficiently high stability and low drift that it is possible to integrate their signals to obtain accurate velocity and displacement information.The most common types of velocity sensor of contacting type are electromagnetic, piezoelectric and cable extension-based. Electromagnetic velocity sensors use the principle of magnetic induction, with a permanent magnet and a fixed geometry coil, such that the induced (output) voltage is directly proportional to the magnet's velocity relative to the coil. Piezo-velocity transducers (PVTs) are piezoelectric accelerometers with an internal integration circuit which produces a velocity signal. Cable extension-based transducers use a multi-turn potentiometer (or an incremental/absolute encoder) and a tachometer to measure the rotary position and rotating speed of a drum that has a cable wound onto it. Since the drum radius is known, the velocity and displacement of the cable head can be determined.5Optical and microwave velocity sensors are non-contacting, and utilise the optical-grating or Doppler frequency shift principle to calculate the velocity of the moving target. Typical specifications for each class of linear velocity sensor are listed in Table 3.Table 3. Specification of linear velocity sensorsSensor class Maximum sensingrange (m/s)Resolution (number ofpositions)Maximum operatingfrequency (Hz)Magnetic induction 25–360 5×104–5×105 100–1500Sensor class Maximum sensingrange (m/s)Resolution (number ofpositions)Maximum operatingfrequency (Hz)PVT 0.25–1.3 1×105–5×105 ∼7000Cable-extension 0.7–15 1×105–1×106 1–100Optical andmicrowave13–165 ∼1×105 > 10,000目录1. 简介 (8)2. 传感器性能图表 (9)2.1.位移传感器 (10)2.1.1.分辨率- 感应范围图(图1) (11)2.1.2.检测频率–检测范围图(图2) (12)2.2.线性速度传感器 (12)问题3-4,2001年第46卷,页461-504传感器的选择J Shieh,J.E Huber,N.A FleckM.F Ashby剑桥大学工程系,英国剑桥CB2的1PZ,,Trumpington街________________________________________摘要对于一个特定的应用系统来说要选择最为合适的传感器。

传感器中英文介绍

传感器中英文介绍

传感器中英文介绍Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998. sensorssensors(English name: transducer/sensor) is a kind of detection device, can feel the measured information, and will feel information transformation according to certain rule become electrical signal output, or other form of information needed to satisfy the information transmission, processing, storage, display, record and control requirements.Sensor's features include: miniaturization, digital, intelligent, multi-functional, systematic and network. It is the first step of automatic detection and automatic control. The existence and development of the sensor, let objects have sensory, such as touch, taste and smell let objects become live up slowly. Usually according to its basic cognitive functions are divided into temperature sensor, light sensor, gas sensor, force sensor, magnetic sensor, moisture sensor, acoustic sensor, radiation sensitive element, color sensor and sensor etc. 10 major categories.temperature transducerTemperature sensors (temperature transducer) refers to can feel temperature translates into usable output signal of the sensor. The temperature sensor is the core part of the temperature measuring instrument, wide variety. According to measuring methods could be divided into two types: contact and non-contact, according to the sensor material and electronic component features divided into two categories, thermal resistance and thermocouple.1 principle of thermocoupleThermocouple is composed of two different materials of metal wire, the welded together at the end. To measure the heating part of the environment temperature, can accurately know the temperature of the hot spots. Because it must have two different material of the conductor, so called the thermocouple. Different material to make the thermocouple used in different temperature range, their sensitivity is also each are not identical. The sensitivity of thermocouple refers to add 1 ℃ hot spot temperature changes, the output variation of potential difference. For most of the metal material support thermocouple, this value about between 5 ~ 40 microvolt / ℃.As a result of the thermocouple temperature sensor sensitivity has nothing to do with the thickness of material, use very fine material also can make the temperature sensor. Also due to the production of thermocouple metal materials have good ductility, the slight temperature measuring element has high response speed, can measure the process of rapid change.Its advantages are:(1)high precision measurement. Because of thermocouple direct contact with the object being measured, not affected by intermediate medium.(2)the measurement range. Commonly used thermocouple from 1600 ℃ to50 ℃ ~ + sustainable measurement, some special thermocouple minimum measurable to - 269 ℃ ., gold iron nickel chrome), the highest measurable to + 2800 ℃ (such as tungsten rhenium).(3) simple structure, easy to use. Thermocouple is usually composed of two different kinds of metal wire, but is not limited by the size and the beginning of, outside has protective casing, so very convenient to use. The thermocouple type and structure of the form.2. The thermocouple type and structure formation(1)the types of thermocoupleThe commonly used thermocouple could be divided into two types: standard thermocouple and non-standard thermocouple. Standard thermocouple refers to the national standard specifies its thermoelectric potential and the relationship between temperature, permissible error, and a unified standard score table of thermocouple, it has with matching display instrument to choose from. Rather than a standard thermocouple or on the order of magnitude less than the range to use standardized thermocouple, in general, there is no uniform standard, it is mainly used for measurement of some special occasions.Standardized thermocouple is our country from January 1, 1988, thermocouple and thermal resistance of all production according to IEC international standard, and specify the S, B, E, K, R, J, T seven standardization thermocouple type thermocouple for our country unified design.(2)to ensure that the thermocouple is reliable, steady work, the structure of thermocouple requirements are as follows:①of the two thermocouple thermal electrode welding must be strong;②two hot electrode should be well insulated between each other, in case of short circuit;③compensation wires connected to the free cod of a thermocouple to convenient and reliable;④protect casing thermal electrodes should be able to make sufficient isolation and harmful medium.3.The thermocouple cold end temperature compensationDue to the thermocouple materials are generally more expensive (especially when using precious metals), and the temperature measurement points are generally more far, the distance to the instrument in order to save materials, reduce cost, usually adopt the compensating conductor) (the free end of the cold junction of the thermocouple to the steady control of indoor temperature, connected to the meter terminals. It must be pointed out that the role of the thermocouple compensation wire extension hot electrode, so that only moved to the control room of the cold junction of the thermocouple instrument on the terminal, it itself does not eliminate the cold end temperature change on the influence of temperature, cannot have the compensation effect. So, still need to take some of the other correction method to compensate of the cold end temperature especially when t0 indicates influence on measuring temperature 0 ℃.Must pay attention to when using thermocouple compensating conductor model match, cannot be wrong polarity, compensation conductor should be connected to the thermocouple temperature should not exceed 100 ℃.传感器传感器(名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

激光、光电、光学词汇中英文对照

激光、光电、光学词汇中英文对照

激光、光电、光学词汇中英文对照1. 激光(Laser)2. 光电效应(Photoelectric Effect)3. 光学(Optics)4. 光纤(Fiber Optic)5. 光谱(Spectrum)6. 折射率(Refractive Index)7. 透镜(Lens)8. 反射(Reflection)9. 干涉(Interference)10. 衍射(Diffraction)11. 偏振(Polarization)12. 激光切割(Laser Cutting)13. 激光焊接(Laser Welding)14. 光电探测器(Photoelectric Detector)15. 光电传感器(Photoelectric Sensor)16. 光学显微镜(Optical Microscope)17. 光学望远镜(Optical Telescope)18. 光学镜头(Optical Lens)19. 光学滤波器(Optical Filter)20. 光学编码器(Optical Enr)21. 光学通信(Optical Communication)22. 光学存储(Optical Storage)24. 光学子系统(Optical Subsystem)25. 光学设计(Optical Design)26. 光学加工(Optical Fabrication)27. 光学镀膜(Optical Coating)28. 光学检测(Optical Inspection)29. 光学成像(Optical Imaging)30. 光学治疗(Optical Therapy)31. 光学材料(Optical Materials)32. 光学元件(Optical Elements)33. 光学路径(Optical Path)34. 光学平台(Optical Platform)35. 光学子件(Optical Component)36. 光学连接器(Optical Connector)37. 光学开关(Optical Switch)38. 光学调制器(Optical Modulator)39. 光学衰减器(Optical Attenuator)40. 光学放大器(Optical Amplifier)41. 光学显示器(Optical Display)42. 光学子午线(Optical Meridian)43. 光学分辨率(Optical Resolution)44. 光学畸变(Optical Distortion)45. 光学厚度(Optical Thickness)46. 光学密度(Optical Density)48. 光学干涉仪(Optical Interferometer)49. 光学相干断层扫描(Optical Coherence Tomography)50. 光学扫描器(Optical Scanner)51. 光学跟踪(Optical Tracking)52. 光学遥感(Optical Remote Sensing)53. 光学成像系统(Optical Imaging System)54. 光学跟踪系统(Optical Tracking System)55. 光学定位系统(Optical Positioning System)56. 光学子午仪(Optical Meridian Instrument)57. 光学补偿器(Optical Compensator)58. 光学补偿器(Optical Corrector)59. 光学基准(Optical Reference)60. 光学基准面(Optical Reference Plane)这些词汇涵盖了激光、光电和光学领域的基本概念、技术和设备。

sensor 翻译

sensor 翻译

sensor 翻译sensor 翻译为传感器,是一种能够感知和测量环境中各种物理量和信号的装置或设备。

传感器通常用于将物理量转换为电信号,然后通过电子电路进行处理和分析。

它广泛应用于各个领域,包括工业自动化、医疗、交通、农业等。

以下是一些常见的传感器及其用法和中英文对照例句:1. 温度传感器 (Temperature Sensor):用于测量环境或物体的温度。

- The temperature sensor accurately measures the room temperature. (温度传感器准确地测量室温。

)- The car's engine temperature sensor alerted the driver of overheating. (汽车引擎温度传感器提醒驾驶员发生过热。

)2. 光传感器(Light Sensor):用于检测光照强度或光线的存在与否。

- The light sensor automatically adjusts the screen brightness based on ambient light. (光传感器根据环境光自动调节屏幕亮度。

)- The security system's light sensor triggered the outdoor lights when it detected movement. (安全系统的光传感器在检测到运动时触发室外灯光。

)3. 压力传感器 (Pressure Sensor):用于测量物体或环境的压力。

- The pressure sensor in the car's tire warns the driver whenthe tire pressure is low. (汽车轮胎的压力传感器在轮胎压力过低时警告驾驶员。

)- The pressure sensor accurately measures the fluid pressure in the pipeline. (压力传感器准确测量管道中的流体压力。

汽车传感器中英文

汽车传感器中英文

汽车传感器中英文曲轴转速传感器 crankshaft sensor凸轮轴位置传感器 camshaft sensor节气门位置传感器 throttle position sensor爆震传感器 knock sensor (or detonation sensor)进气温度传感器 intake air temperature sensor进气歧管绝对压力传感器manifold absolute pressure sensor (manifold vacuum sensor) 空气流量计 air flow sensor质量型空气流量传感器 air mass sensor加速踏板位置传感器 accelerator pedal position sensor轮速传感器 wheel speed sensor车速传感器 vehicle speed sensor空气传感器 air sensor环境温度传感器 ambient sensor大气压力传感器 barometric pressure sensor双金属式温度传感器 bimetallic sensor增压器传感器 boost sensor冷却水温传感器 coolant temperature sensor曲轴传感器 crank sensor碰撞传感器 crash sensor (or impact sensor)汽缸传感器 cylinder sensor排气再循环功能传感器 erg function sensor发动机转速传感器 engine speed sensor发动机温度传感器 engine temperature sensor离地间隙传感器 ground clearance sensor霍尔效应传感器 hall-effect sensor霍尔传感器 hall sensor加热式氧传感器 heated exhaust gas oxygen sensor热氧传感器 heated oxygen sensor侧向加速度感测器 lateral acceleration sensor车内传感器 in-car sensor歧管空气温度感测器 manifold air temperature sensor进气温度传感器 manifold charge temperature sensor进气歧管温度传感器 manifold surface temperature sensor 机油油位传感器 oil level sensor机油压力传感器 oil pressure sensor大气压力传感器 atmospheric pressure sensor压差传感器 pressure differential sensor基准传感器 reference mark sensor转向压力传感器 steering pressure sensor开关传感器 switching sensor叶轮空气温度传感器 vane air temperature sensor可变磁阻传感器 variable reluctance sensor车轮滑动传感器 wheel slip sensor横摆传感器 yaw sensor热膜传感器 hot-film sensor燃油压力传感器 fuel pressure sensor (regulator)上止点传感器 TDC sensor轮胎气压传感器 tire pressure sensor防抱死制动传感器 anti-lock brake sensor差速防滑传感器 differential antiskid sensor背压[排气压力]传感器back pressure transducer堵塞报警传感器 clog warning sensor燃料成分传感器 fuel composition sensor(燃油系)燃油不足[低限]传感器 fuel low—level sensor玻璃破裂传感器 glass breakage sensor(悬架)调平[高度]传感器 leveling sensor液面[位]传感器 level sensor灯光故障传感器 light failure sensor负[载]荷传感器 load sensor主氧传感器 main oxygen sensor相位传感器 phase sensor光电传感器 photo(electric)sensor催化转化器前氧传感器 pre-catalyst lambda probe(刮水器)雨滴传感器 raindrop sensor(悬架)行驶高度传感器ride-height sensor车内温度传感器 room temperature sensor安全传感器 safety sensor副氧传感器(装在催化转化器出口后面) sub-oxygen sensor 悬架位移传感器 suspension sensor油箱(贮液罐]液面[位]传感器 tank-level sensor转[扭]矩传感器 torque sensor燃油水分传感器 water in-fuel detector[sensor]磨损传感器 wear sensor空气滤清器堵塞报警传感器 air filter clog warning sensor 车距传感器 distance sensor停车传感器 park sensor变速范围传感器 transmission range sensor。

传感器中英文介绍

传感器中英文介绍

. sensorssensors(English name: transducer/sensor) is a kind of detection device, can feel the measured information, and will feel information transformation according to certain rule become electrical signal output, or other form of information needed to satisfy the information transmission, processing, storage, display, record and control requirements.Sensor's features include: miniaturization, digital, intelligent, multi-functional, systematic and network. It is the first step of automatic detection and automatic control. The existence and development of the sensor, let objects have sensory, such as touch, taste and smell let objects become live up slowly. Usually according to its basic cognitive functions are divided into temperature sensor, light sensor, gas sensor, force sensor, magnetic sensor, moisture sensor, acoustic sensor, radiation sensitive element, color sensor and sensor etc. 10 major categories.temperature transducerTemperature sensors (temperature transducer) refers to can feel temperature translates into usable output signal of the sensor. The temperature sensor is the core part of the temperature measuring instrument, wide variety. According to measuring methods could be divided into two types: contact and non-contact, according to the sensor material and electronic component features divided into two categories, thermal resistance and thermocouple.1 principle of thermocoupleThermocouple is composed of two different materials of metal wire, the welded together at the end. To measure the heating part of the environment temperature, can accurately know the temperature of the hot spots. Because it must have two different material of the conductor, so called the thermocouple. Different material to make the thermocouple used in different temperature range, their sensitivity is also each are not identical. The sensitivity of thermocouple refers to add 1 ℃hot spot temperature changes, the output variation of potential difference. For most of the metal material support thermocouple, this value about between 5 ~ 40 microvolt / ℃.As a result of the thermocouple temperature sensor sensitivity has nothing to do with the thickness of material, use very fine material also can make the temperature sensor. Also due to the production of thermocouple metal materials have good ductility, the slight temperature measuring element has high response speed, can measure the process of rapid change.Its advantages are:(1)high precision measurement. Because of thermocouple direct contact with the object being measured, not affected by intermediate medium.(2)the measurement range. Commonly used thermocouple from 1600 ℃to 50 ℃ ~ + sustainable measurement, some special thermocouple minimum measurable to - 269 ℃ (e.g., gold iron nickel chrome), the highest measurable to + 2800 ℃ (such as tungsten rhenium).(3) simple structure, easy to use. Thermocouple is usually composed of two different kinds of metal wire, but is not limited by the size and the beginning of, outside has protective casing, so very convenient to use. The thermocouple type and structure of the form.2. The thermocouple type and structure formation(1)the types of thermocoupleThe commonly used thermocouple could be divided into two types: standard thermocouple and non-standard thermocouple. Standard thermocouple refers to the national standard specifies its thermoelectric potential and the relationship between temperature, permissible error, and a unified standard score table of thermocouple, it has with matching display instrument to choose from. Rather than a standard thermocouple or on the order of magnitude less than the range to use standardized thermocouple, in general, there is no uniform standard, it is mainly used for measurement of some special occasions.Standardized thermocouple is our country from January 1, 1988, thermocouple and thermal resistance of all production according to IEC international standard, and specify the S, B, E, K, R, J, T seven standardization thermocouple type thermocouple for our country unified design.(2)to ensure that the thermocouple is reliable, steady work, the structure of thermocouple requirements are as follows:①of the two thermocouple thermal electrode welding must be strong;②two hot electrode should be well insulated between each other, in case of short circuit;③compensation wires connected to the free cod of a thermocouple to convenient and reliable;④protect casing thermal electrodes should be able to make sufficient isolation and harmful medium.3.The thermocouple cold end temperature compensationDue to the thermocouple materials are generally more expensive (especiallywhen using precious metals), and the temperature measurement points are generally more far, the distance to the instrument in order to save materials, reduce cost, usually adopt the compensating conductor) (the free end of the cold junction of the thermocouple to the steady control of indoor temperature, connected to the meter terminals. It must be pointed out that the role of the thermocouple compensation wire extension hot electrode, so that only moved to the control room of the cold junction of the thermocouple instrument on the terminal, it itself does not eliminate the cold end temperature change on the influence of temperature, cannot have the compensation effect. So, still need to take some of the other correction method to compensate of the cold end temperature especially when t0 indicates influence on measuring temperature 0 ℃.Must pay attention to when using thermocouple compensating conductor model match, cannot be wrong polarity, compensation conductor should be connected to the thermocouple temperature should not exceed 100 ℃.传感器传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

光电英语词汇(I2)

光电英语词汇(I2)

光电英语词汇(I2)光电英语词汇(I2)光电英语词汇(I2)integrating capaciotor 积分电官integrating circuit 积分电路integrating detector 积分探测器integrating exposure meter 积分曝光计integrating filter 积分滤波器integrating motor 积分电动机integrating photmeter 积分光度计integrating photometer 积分光度计integrating sphere 积分球integrating spheres 积分球integration circuit 积分电路integration constant 积分常数integration filter 积分滤波器integrator (1)积分器(2)积累器intelligence (1)智能(2)情报,信息intenisty of spectral line 谱线强度intense colour 强色intense laser radiation 强激光辐射intense light pulse 强光脉冲intense light source 强光源intense tunable ir source 强可调红外源intensification 增强,强光intensified vidicon 增强视像摄影管intensifier 增强器intensifying foil 箔制增光屏intensity 强度intensity control 强度控制intensity convolution integral 强度卷积积分intensity diffration pattern 强度衍射图样intensity distriubtion 强度分布intensity fluctuation 强度起伏intensity impulse response 强度脉冲响应intensity interferometer 光强干涉仪intensity level 强度级intensity modulation 强度调制intensity of color 色强度intensity of ilumination 照明强度,照度intensity of pressure 压强intensity scale esneitometer 光强感光度计intensity spectrum 强度谱intensity transfer function 强度传递函数intensive reflector 强光反射镜inter-frame redundancy 帧间多余信息inter-image effect 像界效应inter-relation 相互关系interactive 交互作用的interacvity (1)内共振腔,内腔(2)腔内interatomic collisions 原子间碰撞interaxial angle 轴间角interaxial mode beat frequency 轴间模拍频interband transition 带间跃迁intercalibration 相互校准intercept ground-based optical recorder 监听地面光记录仪interchangable lens 可换镜头interchangeability 交换性,互换性interchangeable lens 可互换透镜interchangeable mirror 可换反射镜interconersion 相互转化intercorrelation 相互关intercoupling 寄生耦合intercrystalline 晶粒间的intercrystalline barrier 晶间势垒interdiffusion 相互扩散interelectrode 极间的interelectrode capacitance 极际电容interelectronic 电子间的interface (1)界面(2)相互关系interface energy 分界面能interface scattering 界面散射interfacial angle 晶面角interfacial film 界面膜interference (1)千涉(2)干扰interference absorber 干涉吸收体interference color 干涉色interference colors 干扰色interference condition 干涉条件interference contrast 干涉对比interference contrast microscopy 干涉对比显微术interference drag 干涉曳力,干涉阻力interference figure 干涉图形interference filter 干涉滤光器interference filters 干涉滤光镜interference fit 干涉配合interference fringe 干涉条纹interference function 干涉函数interference grating 干涉光栅interference inverter 干涉反演器interference microscope 干涉显微镜interference microscopy 干涉显微术interference modulation 千涉调制interference of equal inclination 等倾干涉interference of equal thickness 等厚干涉interference of light 光的干涉interference of overlapping of orders 叠级干涉interference order 千涉级interference path difference 干程程差interference pattern 干涉图形interference reflector 干涉反射镜interference ring 干涉环,干涉圈interference spectrometer 干涉光谱计interference spectroscope 干涉分光镜interference spectroscopy 干涉分光光谱学interference spectrum 干涉光谱interference surface micrscope 表面干涉显微镜interference tube 干涉管interference wave 干涉波interference-free (1)无干涉的(2)无干扰的interferences/differential interference contrast microscopes 干涉显微镜,微分干涉对interferend refractometer 干涉折射计interfermetric micrscopy 干涉测量显微术interfermetric radiometer 干涉辐射计interferogram 干涉图interferogram technique 干涉图技术interferography 干涉像术interferometer 干涉仪interferometer modes 干涉仪类型interferometer optics 干涉仪光学interferometer spectroadimeter 干涉分光辐射计interferometric calorimetry 干涉测热术interferometric filter 干涉滤光片interferometric null method 干涉测量零点法interferometry 干涉量度学interferoscope 干涉镜interfringe 条纹间的intergalactic space 星系际空间intergating gyroscope 积分回旋器,积分陀螺interior focusing 内调焦interior screw 内螺旋interior sub-multiple angles 内等分角interiror focusing telescope 内调焦望远镜interlaced scanning 隔行扫描interlayer 界层,隔层interlayer effect 界层效层interleave scanning 隔行扫描interlock (1)联锁,闭锁(2)连接interlocking device 联锁装置intermediary image 中间像intermediate axle 中间轴intermediate fequency 中频intermediate frequency (if)中频intermediate frequency transformer 中频变压器intermediate gear 中速齿轮,二档齿轮intermediate herschek effect 中度赫谢效应intermediate image 中间成像intermediate infrared region 中红外区intermediate level 中间能级intermediate wae 中波intermediate-index layer 中间折射率层intermeshed scannning 隔行扫描intermetallic compound semiconductor 金属间化合物半导体intermittency effect 断续效应intermittent camer 断续式摄影机intermittent exposure 断续曝光intermittent illumination 断续照明intermittent noise 断续噪声intermittent sprocket 断续链轮intermode beats 模间拍intermode spacing frequecny 模间间隔频率intermodulation 互调intermodulation distortion 互调变失真,模间失真intermodulation effect 互调制效应intermodulation interference 互调干扰internal 内部的internal absorptance 内吸收比internal absorption factor 内吸收因数internal adjustment scope 内调式瞄准镜internal calibration 内校准internal caliper gage 内径卡规internal conical refraction 内锥形折射internal conversion 内转换internal defocusing 内散焦internal dial gage 内径千分表internal diamteter 内径internal exposure (1)内曝光(2)内照射internal field 内场internal focusing 内调焦internal focusing telescope 内调焦望远镜internal gating 内选通,内开关作用internal gauge 内径规internal measuring instrument 内径测量仪器internal photoeffect 内部效应internal photoelectric effect 内部光电效应internal photolectric effect 内光电效应internal quanntum efficiency 内量子效率internal reflection 内反射internal reflective cavity 内反射腔internal reflector 内反射镜internal scanned laser 内扫描激光器internal self-defocusing 内自散焦internal self-focusing 内自聚焦internal standard 内标准internal standard line 内标准线internal stress 内胁强,内应力internal surface 内表面internal transmittance 内透射比internal-standard line 内标线internally loss modulated laser 内损耗调制激光器internally modulated gas laser 内调制气体激光器internally phase modulated laser 内相位调制激光器internation standard 国际标准international bureau of weights and measures 国际计量局international coulomb 国际库仑international organization for standardization (iso)国际标准化组织international organization of legal metrology 国际法制计量组织international prototype 国际原型international standard atmosphere 国际标准大气压international standardization association (i.s.a)国际标准化协会international system of units (si system)国际单位制international telecommunication satellite consortium (intelsat)国际通信卫星组织internnational candle 国际烛光interocular distance 瞳孔间距离interocular kistance 眼珠间距interorder distance 干涉带间距interphako interference microscopy 显微剪切干涉术interphase transformer 相间变压器interplanar distance 晶面间距interplanetary 行星际的interplanetary communication 行星际通interplanetary navigtion 行星际导航interplanetary space 太空interplanetrary flight 行星际航行interplay 相互作用interpolating coding area 插值编码区域interpolation 插值法,插值,内插法interpolation error 插值误仪interpolation formula 插值公式interpolation function 插值函数interpole 间极interpretation (1)解释,翻译(2)译码interpreter 直译程式,转译程式interpreter code 伪码interpretoscope 判读机interpupillary adjustment 光瞳间距调节interpupillary distance 瞳间距离interpupillary distance (ipd)光瞳间距调节interpupillometer 光瞳间距仪interrupt 中断,岔断interrupt flip-flop 中断触发器interrupted wae 间歇波interrupter (1)断续器(2)斩波器interrupter disk 斩光盘interruption (1)中断(2)阻挡interscan 中间扫描intersecting axle 交叉轴intersecting line 交叉线intersection (1)交叉(2)交叉intersection point 交点interspace (1)间隙(2)星际interstage 级际的,级间的interstellar absorption lines 星际吸收线interstellar gas 星际气体interstellar line 星际谱线interstellar spectrum 星际谱interstellar vehicle 星际飞船interstital site 填隙座interstitial fibre 隙间光纤intersymobl interference 码间干扰intersystem crossing tansition 系际交叉跃迁interval (1)间隔(2)区间intervalometer 曝光控制器intesifying cscreen 增光屏intraacvity loss modulation 腔内损失制intraband photoconductivity 带内光电导性intrabeam viewing 光束内视intracavity acoustic modulation 腔内声调制intracavity diffraction grating 腔内衍射光栅intracavity electroptic modulator 内腔式电光调解制器intracavity gas laser 内腔式气体激光器intracavity laser modulation 腔内激光调制intracavity prism 内腔式棱镜intracity dye-laser 内腔式染料激光器intracvavity resonantor 内腔式共振器intracvity image converter 内腔式变像管intralens reflection 透镜内反射intramodal distortion 模内畸变intramode 模内intraocular 眼内的intraocular fluid 眼内充填用液体intraocular gas 眼内充填用气体intraocular lens 人工水晶体intraocular lens guide 人工水晶体导引器intraocular pressure measuring device 眼内压测试装置intraretional 视网膜内的intravity phase modulation 腔内相调制intrinsic 本徵的,固有的,内禀的intrinsic brighness 固有亮度intrinsic carrier 本徵载流子intrinsic crystal 本徵晶体intrinsic defect 内在缺陕intrinsic detector 本微探测器intrinsic error 固有误差intrinsic flux density 本质通量密度intrinsic germanjum photodiode 本徵锗光电二极管intrinsic impedance 固有阻抗intrinsic linewidth 本徵线宽intrinsic loss 本徵损失intrinsic photoconductior 本徵光电导体intrinsic photoconductivity 内禀光电导性intrinsic photoemission 内禀光电发射intrinsic scattering 本徵散射intrinsic semiconductor 本徵半导体intrinsic transistor 本征晶体管introscope 内窥镜,内视镜intrusion detector 插入式探测器invar 殷钢invar tape 殷钢带invariance (1)不变性(2)不变式invariance of liner systemm 线性系统不变性invariant 不变量invariant scalar 不变标量inverse 倒逆,反向,倒置inverse bremsstrahlung 逆轫致辐射inverse compton effect 倒康普顿效应inverse correlation 逆相关inverse feedback 贫反馈inverse fllter 逆滤波器inverse fourier transform 傅里叶逆变换inverse matrix 逆矩阵inverse peak voltage 逆向峰值电压inverse piezoelectric effect 光电逆效应inverse problem 可逆问题,倒问题inverse proportion 反比例inverse raman effect 倒喇曼效应inverse raman scattering 反转喇曼散射inverse ratio 反比inverse relaxation 反弛豫inverse square law 平方反比率inverse stark effect 倒斯塔克效应inverse transform 逆变换inverse trigonometrical function 反三角函数inverse voltage 反转电压inverse zeeman effect 侧塞曼效应inverse-frequency spectrum 反转频谱inversion level 反转能级inversion mechanism 反转机制inversion prism 倒像棱镜inversion pump rate 反转抽运速率inversion symmetry (1)反向对称(2)镜面对称invert unit 倒相器inverted image 倒像棱镜inverted lamb dip 倒兰姆凹陷inverted microscope 倒显微镜inverted population density 反转粒子数密度inverted spectral term 倒光谱项inverted t-slot 倒丁字槽inverted telectphoto objective 倒远摄物镜inverted telphoto lens 倒远距照相镜inverter (1)变换器(2)倒相器(3)转换开关invertibility 可逆性invertible matrix 可泄矩阵inverting eyepiece 倒像目镜inverting parametric device 倒反参变装置inverting prism 倒像棱镜inverting range finder 倒像测距仪invesrsion spectrum 反转谱invisible chromatogram 不可见色谱图invisible light filter 不可见光滤波器invisible light filters 不可见的光滤器invisible line (1)隐线,虚线(2)不可见谱线invisible radiation 不可见辐射invisible ray 不可见射线invisible spectrum 不可见辐射谱involute 渐开线,渐伸线involute curfe 渐开线齿轮involute gear 渐开线齿条involute rack 渐开线齿条involute tester 渐开线检查仪involute worm 渐开线蜗杆involution (1)乘方(2)对立inwall 内壁inward curving field 向内弯曲场iodide 碘化物iodine (i)碘iodine cycle 碘循环iodine laser 碘激光器iodine photodissociation laser 碘光解激光器iodine stabilized laser 碘稳频激光器iodine tungste filament lamp 碘钨灯ion 离子ion activity electrode 离子活性电极ion avalanche 离子雪崩ion beam 离子束ion bombardment 离子虫击ion chamber 离子室ion choncentration 离子浓度ion contamination 离子污染ion emission 离子发射ion exchange 离子交换ion exchange chromatorgraphy 离子交换色谱法ion exchange resion 离子交换脂ion exchange technique 离子交换技术ion focujsing 离子聚焦ion gas laser 离子气体激光器ion grid theory 离子栅极说ion image 离子像ion implantation 离子注入ion implantation equipment 离子植入机ion laser 离子激光器ion microprobe mass spectrometer 离子探针质谱仪ion microscope 离子显微镜ion mobility 离子迁移率ion pair 离子对ion polishing 离子抛光ion tarnsition 离子跃迁ion-acoustic fluctuation 离子声起伏ion-acoustic turblence 离子声湍流ion-diple bond 离子偶极键ion-exchange electrolyte cell 离子交换电解电池ion-heated cathode 离子加热阴极ionic birefringence 离子双折射ionic bonding force 离子链合力ionic crystal 离子晶体ionic focusing 离子聚焦ionic link 离子键ionic polarizaton 离子极化ionium (io)锾ionization 电离,离子化ionization chamber 电离室,游离室ionization energy 电离能ionization gauge 电离规ionization potential 电离电位ionization spectrometer 游离分光计ionization time 电离时间ionization vacuum gauge 游离真空计ionization voltage 电离电压ionized acceptor 离子化受主ionized argon laser 氩离子激光器ionized gas 电离气体,离子化气体ionized laser plasma 电离激光等离子体ionized layer 电离层ionized stratum 电离层ionizing radiation 致电离辐射ionogam 电离圆ionography 离子摄影ionosphere 电离层ionospheric storm 电离层风暴ionospheric wave 电离层波iontegration (1)积分法(2)集成iosotope mixture 同位素混合物ir airglow 红外大气光辉光ir camouflage-dectection camera 假目标红外探测相机ir detector 红外探测器ir diode laser 红外二极管激光器ir filter 红外滤光片ir fringe computer 红外条纹计算机ir guided warhead 红外制导弹头ir horizon sensor 红外地平传感器ir imaging senor 红外热像仪ir laser tracker ranger 红外激跟踪测距仪ir modulated ellipsometry 红外调制椭圆测量术ir optical component 红外光学部件ir phosphor 红外磷光体ir picture 红外图像ir recording equipment 红外记录仪ir response 红外响应ir scanning camera 红外扫描照相机ir seeker 红外寻的器,红外搜索器ir senor 红外传感器ir window 红外窗ir-aimed lidar 红外瞄准激光雷达ir-radiometer 红外辐射计ir-transmission glass 透红外玻璃iraser (1)红外激射(2)红外激射器irdome 红外整流罩iridescence 虹彩iridescent color 彩虹色iridium (ir)铱irirs change mechmaism 可变光阑变化机制iris (1)虹膜(2)可变光阑iris aperture 可变光阑孔径iris blade 可变光阑片iris diaphragm 可变光阑iris diaphrams (stops),apertures 虹膜光阑,孔径iris mount 可变光阑套iris photometer 可变光阑光度计iris ring 可变光阑环iron (fe)铁iron arc 铁电弧iron oxidfe 氧化铁iron sulfide film 硫化铁膜irradiance 辐照度irradiant (1)光照的(2)光亮的irradiated gas 受辐照气体irradiated surface 受辐照表面irradiation (1)发光(2)辐照(3)光渗irradiation bomb 照明弹irradiator 辐照器irradome 红外整流罩irrationa dispesion 无理色散,不规则色散irrational (1)无理数(2)无理的irreducible matricx 不可约阵irreflexive 漫反射的irregar array irrelevant image 不相关像irreqularity 不规则性irreueible componet 不可射成分irreversibility 不可逆性irreversible circulation 不可逆循环irreversible laser damage 不可逆激光损伤irreversible reaction 不可逆反应irrgular movement 不规则运动irrgular reflection 不规则反射irrgular refraction 不规院折射irrgular spiking 不规则尖峰irrgularity of inter-ference fringe 干涉条纹不规则性irrotational (1)无旋的,非旋转的(2)非旋光的irrotational vector 无旋矢量irtran-i 艾尔特兰-i irtran-ii 艾尔特兰-ii irtron 红外光雷管ischromtic stimuli 等色剌激iscolinic 等倾线isentropic (1)等熵线(2)等熵的isis wave-beam device 可变光阑波束装置islometer (1)同分异构体(2)同质累能素iso code 国际标准码iso speed standard 国际感光度标准isobar (1)等压线(2)同量异位素isobric line 等压线isocandela diagram 等烛光图isocandla diagram 等烛光图isochromatic 等色的isochromatic (orthochromatic)等色的isochromatic line 等色线isochromatic lines 等色线isochromatics 等色性isochromatics-isopachices patern 等色-等厚线图样isochronis, 等时性isochronous scanning 同步扫描isocmetric projection 等角投影isodiffusion surface 等漫射面isodivs 等布图isoelastic 等弹性的isoelcectronic transition 等电子跃迁isoelectronic sequence 等电子数序isogonic mapping 等角测绘isogonic tranformation 等角变换isogyre 同消色线isohedral 等面的isolation (1)绝绿(2)隔离isolation mounting 隔离装置isolator (1)绝缘体(2)隔离器isoline 等值器isomeride 同分异构体isomerism 同质异能性isometric (1)等轴的,立方的(2)等量的isometric system 立方晶系isometrics 等体积线,等容线isometropia 同等视觉isomrorphis 同晶性,同构性isomrphic substance 同晶型物质isopach 等厚线isopache measurment 等厚测量isopanchromatic film 等全色胶片isophase 等相线isophlanatic image formation 等晕成像isophote 等照度线isophotometer 等光度计isoplanatic 等平面的isoplanatic condition 等晕条件isoplanatic patch 等晕面元isoplanatic region 等晕区isoplanatism 等晕现象isopreference curves 等如曲线isorotation 等旋光度isorphous crystal 同形晶体isospace 同空间isosrbs 等吸收isostaic ajdusment 均衡调整isotemperature line 等温线isotherm 等温线isothermal solid region 等温固态区isotojpic abundance 同位素丰度isotope 同位素isotope enrichment 同位素浓缩isotope excitation 同位素激发isotope lamp 同位素灯isotope separation 同位素分离isotope shift 同位素移动isotrocpic material 各向同性材料isotropic 各自同性的isotropic crystal 各向同性晶体isotropic material 各向同性材料isotropic medium 各向同性媒质isotropic radiator 各自同性辐射体isotropic resolution 各向同性分解isotropic scatterning 各向同性散射isotropism 各向同性现像isotropy 各向同性itensified image 增强像iteration correction 迭代校正iterative method 迭代法itercnnection 互连iterfermetry 干涉量度学itermolecvular 分子间的itersatllite communication 卫星间通信itnersection height 交点高度ito glass substrate 导电膜玻璃基板itracavity modulation 腔内调制itv 工业电视iversion density 反转密度ivory 象牙色光电英语词汇(I2) 相关内容:。

光电传感器(中英文对照版)

光电传感器(中英文对照版)

Photoelectric sensorKey word: photoelectric effect photoelectric element photoelectric sensor classification sensor application characteristics .Abstract: in the rapid development of science and technology in the modern society, mankind has into the rapidly changing information era, people in daily life, the production process, rely mainly on the detection of information technology by acquiring, screening and transmission, to achieve the brake control, automatic adjustment, at present our country has put detection techniques listed in one of the priority to the development of science and technology. Because of microelectronics technology, photoelectric semiconductor technology, optical fiber technology and grating technical development makes the application of the photoelectric sensor is growing. The sensor has simple structure, non-contact, high reliability, high precision, measurable parameters and quick response and more simple structure, form etc, and flexible in automatic detection technology, it has been widely applied in photoelectric effect as the theoretical basis, the device by photoelectric material composition.Text:First, theoretical foundation - photoelectric effectPhotoelectric effect generally have the photoelectric effect, optical effect, light born volts effect.The light shines in photoelectric material, according to the electronic absorption material surface energy, if absorbed energy large enoughelectronic electronic will overcome bound from material surface and enter the outside space, which changes photoelectron materials, this kind ofphenomenon become the conductivity of the photoelectric effectAccording to Einstein's photoelectron effect, photon is moving particles, each photon energy for hv (v for light frequency, h for Planck's constant, h = 6.63 * 10-34 J/HZ), thus different frequency of photons have different energy, light, the higher the frequency, the photon energy is bigger. Assuming all the energy photons to photons, electronic energy will increase, increased energy part of the fetter, positive ions used to overcome another part of converted into electronic energy. According to the law of conservation of energy:Type, m for electronic quality, v for electronic escaping the velocity, A microelectronics the work done.From the type that will make the optoelectronic cathode surface escape thenecessary conditions are h > A. Due to the different materials have different escaping, so reactive to each kind of cathode materials, incident light has a certain frequency is restricted, when the frequency of incident light under this frequency limit, no matter how the light intensity, won't produce photoelectron launch, this frequency limit called "red limit". The corresponding wavelength forA-h m 212νν=type, c for the speed of light, A reactive for escaping.When is the sun, its electronic energy, absorb the resistivity reduce conductive phenomenon called optical effects. It belongs to the photoelectric effect within. When light is, if in semiconductor electronic energy big with semiconductor of forbidden band width, the electronic energy from the valence band jump into the conduction band, form, and at the same time, the valence band electronic left the corresponding cavities. Electronics, cavitation remained in semiconductor, and participate in electric conductive outside formed under the current role.In addition to metal outer, most insulators and semiconductor have photoelectric effect, particularly remarkable, semiconductor optical effect according to the optoelectronics manufacturing incident light inherent frequency, when light resistance in light, its conductivity increases, resistance drops. The light intensity is strong, its value, if the smaller, its resistance to stop light back to the original value.Semiconductor produced by light illuminate the phenomenon is called light emf, born volts effect on the effect of photoelectric devices have made si-based ones, photoelectric diode, control thyristor and optical couplers, etc. Second, optoelectronic components and characteristicsAccording to the outside optoelectronics manufacturing optoelectronic devices have photoelectron, inflatable phototubes and photoelectric times once tube. 1. Phototubes phototubes are various and typical products are vacuumphototubes and inflatable phototubes, light its appearance and structure as shown in figure 1 shows, made of cylindrical metal half cathodic K and is located in the wires cathodic axis of anode in A package of smoke into the vacuum, when incident light within glass shell in the cathode, illuminate A single photon took all of its energy transfer to the cathode materials A free electrons, so as to make the freedom electronic energy increase h. When electrons gain energy more than escape of cathode materials, it reactive A metal surface constraints can overcome escape, form electron emission. This kind of electronic called optoelectronics, optoelectronic escaping the metal surface for after initial kinetic energyPhototubes normal work, anode potential than the cathode, shown in figure 2. In one shot more than "red light frequency is premise, escape from the optoelectronic cathode surface by positive potential attracted the anode in photoelectric tube forming space, called the current stream. Then if light intensity increases, the number of photons bombarded the cathode multiplied, unit of time to launch photoelectron number are also increasing, photo-current greatens. In figure 2 shows circuit, current and resistance is the voltage drop across the only a function of light intensity relations, so as to achieve a photoelectric conversion. When the LTT optoelectronic cathode K, electronic escape from the cathode surface, and was the photoelectric anode is an electric current, power plants absorb deoxidization device in the load resistance - I, the voltagePhototubes photoelectric characteristics fig.03 shows, from the graph in flux knowable, not too big, photoelectric basic characteristics is a straight line.2. Photoelectric times had the sensitivity of vacuum tube due to low, so with people developed has magnified the photomultiplier tubes photo-current ability. Figure 4 is photomultiplier tube structure schematic drawing.图4光电倍增结构示意图From the graph can see photomultiplier tubes also have A cathode K and an anode A, and phototubes different is in its between anode and cathode set up several secondary emission electrodes, D1, D2 and D3... They called the first multiply electrode, the second multiply electrode,... Usually, double electrode for 10 ~ 15 levels. Photomultiplier tubes work between adjacent electrode, keeping a certain minimum, including the cathode potential potentials, each multiply electrode potential filtering increases, the anode potential supreme. When the incident light irradiation, cathodic K escape from the optoelectronic cathode multiplied by first accelerated, by high speed electrode D1 bombarded caused secondary electron emission, D1, an incident can generate multiplesecondary electron photonics, D1 emit of secondary electron was D1, D2 asked electric field acceleration, converged on D2 and again produce secondary electron emission... So gradually produce secondary electron emission, make electronic increased rapidly, these electronic finally arrived at the anode, form a larger anode current. If a n level, multiply electrodes at all levels for sigma, the multiplication of rate is the multiplication of photomultiplier tubes can be considered sigma n rate, therefore, photomultiplier tube has high sensitivity. In the output current is less than 1mA circumstances, it in a very wide photoelectric properties within the scope of the linear relationship with good. Photomultiplier tubes this characteristic, make it more for light measurement.3 and photoconductive resistance photoconductive resistance within the working principle is based on the photoelectric effect. In semiconductor photosensitive material ends of mount electrode lead, it contains transparent window sealed in the tube and shell element photoconductive resistance. Photoconductive resistance properties and parameters are:1) dark resistance photoconductive resistance at room temperature, total dark conditions stable resistance called dark resistance, at the current flow resistance is called dark current.2) light resistance photoconductive resistance at room temperature and certain lighting conditions stable resistance measured, right now is called light resistance of current flow resistance is called light current.4, volt-ampere characteristics of both ends photoconductive resistance added voltage and current flows through photoconductive resistance of the relationship between called volt-ampere characteristics shown, as shown in figure 5. From the graph, the approximate linear volt-ampere characteristics that use should be limited, but when the voltage ends photoconductive resistance, lest than shown dotted lines of power consumption area5, photoelectric characteristics photoconductive resistance between the poles, light when voltage fixed the relationship between with bright current photoelectric characteristics. Called Photoconductive resistance photoelectric characteristics is nonlinear, this is one of the major drawback of photoconductive resistance.6, spectral characteristics is not the same incident wavelength, the sensitivity of photoconductive resistance is different also. Incidence wavelength and photodetector the relationship between relative sensitivity called spectral characteristics. When used according to the wavelength range by metering, choose different material photoconductive resistance.7, response time by photoconductive resistance after photo-current need light,over a period of time (time) rise to reach its steady value. Similarly, in stop light photo-current also need, over a period of time (down time) to restore the its dark current, this is photoconductive resistance delay characteristics. Photoconductive resistance rise response time and falling response time about 10-1 ~ 10-3s, namely the frequency response is 10Hz ~ 1000Hz, visible photoconductive resistance cannot be used in demand quick response occasion, this is one of the main photoconductive resistance shortcomings.8 and temperature characteristic photoconductive resistance by temperature affects greatly, temperature rise, dark current increase, reduced sensitivity, which is another photoconductive resistance shortcomings.9, frequency characteristic frequency characteristics refers to an external voltage and incident light, strong must be photo-current I and incident light modulation frequency, the relationship between the f, photoelectric diode is the frequency characteristic of the photoelectric triode frequency characteristics, this is because of the photoelectric triode shot "yankees there capacitance and carrier base-combed need time's sake. By using the principle of the photoelectric efficiency of optoelectronics manufacturing frequency characteristics of the worst, this is due to capture charge carriers and release charge need a certain time's sake.Three, photoelectric sensorsPhotoelectric sensor is through the light intensity changes into electrical signal changes to achieve control, its basic structure, it first figure 6 by measuring thechange of change of converting the light signal, and then using photoelectric element further will light signals into electrical signal by photoelectric sensor general. Illuminant, optical path and optoelectronics. Three components of photoelectric detection method has high precision, fast response, non-contact wait for an advantage, but measurable parameters of simple structure, sensors, form flexible, therefore, photoelectric sensor in the test and control is widely used.By photoelectric sensor generally is composed of three parts, they are divided into: transmitter and receiver and detection circuit shown, as shown in figure 7, transmitter aimed at the target launch beam, the launch of the beam from semiconductor illuminant, general light emitting diode (LED), laser diode and infrared emission diode. Beam uninterrupted launch, or change the pulse width. Receivers have photoelectric diode, photoelectric triode, composed si-based ones. In front of the receiver, equipped with optical components such as lens and aperture, etc. In its back is detection circuit, it can filter out effective signal and the application of the signal. In addition, the structural components in photoelectric switch and launch plate and optical fiber, triangle reflex plate is solid structure launch device. It consists of small triangle cone of reflective materials, can make a beam accurately reflected back from plate, with practical significance. It can be in with the scope of optical axis 0 to 25, make beams change launch Angle from a root almost after launch line, passes reflection or from the rotating polygon.some basic returns.图7Photoelectric sensor is a kind of depend on is analyte and optoelectronics and light source, to achieve the relationship between the measured purpose, so the light source photoelectric sensor plays a very important role, photoelectric sensor power if a constant source, power is very important for design, the stability of the stability of power directly affect the accuracy of measurement, commonly used illuminant have the following kinds:1, leds is a change electric energy into light energy semiconductor devices. It has small volume, low power consumption, long life, fast response, the advantages of high mechanical strength, and can match and integrated circuits.Therefore, widely used in computer, instruments and automatic control equipment.2, silk light bulb that is one of the most commonly used illuminant, it has rich infrared light. If chosen optoelectronics, constitutes of infrared sensor sensitive colour filter can be added to the visible tungsten lamps, but only filter with its infrared does illuminant, such, which can effectively prevent other light interference.3, compared with ordinary light laser laser with energy concentration, directional good, frequency pure, coherence as well as good, is very ideal light sources.The light source, optical path and photoelectric device composition photoelectric sensor used in photoelectric detection, still must be equipped with appropriate measurement circuit. The photoelectric effect to the measurement circuit of photoelectric element of widerange caused changes needed to convert the voltage or current. Different photoelectric element, the measurement circuit required is not identical also. Several semiconductor introduces below optoelectronic devices commonly used measurement circuit. Semiconductor photoconductive resistance can through large current, be in so usually, need not equipped with amplifier. In the output power of demand is bigger, can use figure 8 shows circuit.Figure 9 (a) with temperature compensation given the photosensitive diode bridge type measuring circuit. When the incident light intensity slow change,the reverse resistance photosensitive diode is the slow change, the change of the temperature will cause the bridge output voltage, must compensate. Drift Picture a photosensitive diode as the test components, another into Windows, in neighboring bridge, the change of the temperature in the arms of the influence of two photosensitive diode, therefore, can eliminate the same output with temperature bridge road drift.Light activated triode incident light in work under low illumination, or hope to get bigger output power, also can match with amplifying circuit, as shown in figure 9 shows.Because even in the glare photosensitive batteries, maximum output voltage also only 0.6 V, still cannot make the next level 1 transistor have larger current output, so must add positive bias, as shown in figure 9 (a) below. In order to reduce the transistor circuit impedance variations, base si-based ones to reduce as much as possible without light, when the reverse bias inherit in parallel a resistor si-based ones at both ends. Or like figure 9 (b) as shown bythe positive ge diode produces pressure drop and test the voltage produced when exposed to light, make silicon tube e stack, b the voltage between actuators than 0.7 V, and conduction work. This kind of circumstance also can use silicon light batteries, as shown in figure 10 (c) below.Semiconductor photoelectric element of photoelectric circuit can also use integrated operational amplifier. Silicon photosensitive diode can be obtained by integrating op-amp larger output amplitude, as shown in figure 11 (a) below. When light is produced, the optical output voltage in order to guarantee photosensitive diode is reverse biased, in its positive to add a load voltage. Figure 11. (b) give the photocell transform circuit, because the photoelectricsi-based ones short-circuit current and illumination of a linear relationship between, so will it up in the op-amp is, inverse-phase input, using these two potential difference between the characteristics of close to zero, can get bettereffect. In the picture shows conditions, the output voltageThe photoelectric element by flux the role of different made from the principle of optical measurement and control system is varied, press the photoelectric element (optical measurement and control system) output nature, namely, can be divided into second analog photoelectric sensor and pulse (switch) photoelectric sensor. Analog photoelectric sensors will be converted into continuous variation of the measure, it is measured optical with a single value relations between analog photoelectric sensor. According to be measured (objects) method detection of target can be divided into transmission (absorption) type, diffuse type, shading type (beam resistance gears) three categories. So-called transmission style means the object to be tested in optical path in constant light source, the light energy through things, part of being measured by absorption, transmitted light onto photoelectric element, such as measured liquid, gas transparency and photoelectric BiSeJi etc; speed.gratifying The so-called diffuse style means the constant light by the light onto the analyte from the object to be tested, and projected onto surfaces reflect on after optoelectronic devices, such as photoelectric colorimetricthermometer and light gauge etc; The so-called shading style means the when illuminant issued by the flux of light analyte covered by a part Jing optoelectronics, make projection on the flux change, change the object to be tested and extent of the position with the light path, such as vibration measurement, the size measurement; And in pulse photoelectric sensor in the sensors, photoelectric element acceptable optical signal is intermittent change, therefore photoelectric element in switch work of the state, the current output it is usually only two steady state of the signal, the pulse form used for photoelectric counting and photoelectric speed measurement and so on.And infrared photoelectric sensor classification and working way generally have the following kinds:1, groove photoelectric sensor put a light emitter and a receiver in a slotface-to-face outfit are on opposite sides of the photoelectric groove. Lighter emits infrared light or visible light, and in unimpeded cases light receptors can receive light. But when tested objects from slot zhongtong obsolete, light occluded, photoelectric switches and action. Output a switch control signal, cut off or connect load current, thus completing a control movement. Groove switch is the overall of detection distance because general structure limits only a few centimeters.2, DuiShe type optoelectronic sensor if you put lighter and receive light is separated, can make the detection distance increase. By a lighter and an inbox light sensor into a photoelectric switch is called DuiShe separatephotoelectric switches, referred to DuiShe photoelectric switch. Its detection distance can reach a few meters and even a dozen meters. When usinglight-emitting device and receive light device are installed in test object through the path of the sides, test object by blocking light path, accept light implement action output a switch control signals.3, reflex plate.it photoelectric switch light-emitting device type and receive light device into the same device inside, in its front pack a reflex plate.the using the reflection principle of complete photoelectric control function is called reflex plate.it reflex (or reflector reflex) photoelectric switch. Under normal circumstances, lighter the light reflected by reflex plate.it is received by accept light; Once the light path be test object to block, accept light, the light is not receive photoelectric switch is action, output a switch control signals.4, diffusion reflective photoelectric switches its detection head with a lighter and also an inbox light ware, but no reflex plate.it ahead. Normally lighter for the light collect light is not found. When test object by blocking the light, and the light reflected light, receive part implement received light signals, output a switch signals.Four, I'm the idea of photoelectric sensorWith the development of science and technology people on measuring accuracy had the higher request, this has prompted the pace with The Times photoelectric sensor have updated, improve the main means photoelectric sensor performance is the application of new materials, new technologymanufacturing performance is more superior photoelectric element. For example, today the prototype of the photoelectric sensor is a small metal cylindrical equipment, with a calibration lens, transmitter into receiver focused light, the receiver out of cable to the device got a vacuum tube amplifiers in metal cylinder on the incandescent light bulb inside a small as the light source a strong incandescent lamp sensor. Due to the sensor various defects existing in the fields, gradually faded. To appear, because of it of fiber of excellent performance, then appeared with sensors supporting the use of optical passive components, another fiber without any interference of electromagnetic signal, and can make the sensor of the electronic components and other electrical disturbance in isolation. Have a piece of plastic optical fiber core or glass light core, light outside a metallic core skins and bread this layer metal cortical density lower than light core, so low, the beam refraction in the two materials according to the border (incident Angle within a certain range, reflected), is all. Based on optical principle, all beams can be made by optical fiber to transmission. Two incident beam Angle in an Angle (along the fiber length direction within) by multiple reflections from the other end after injection, another incident angles than accept the incident light in metal skin, loss. This accept Angle within the biggest incident Angle than two times, this is because fiber slightly larger from air into density larger fiber materials hitting may have a slight refraction. In light of the optical fiber transmission from inside the influence of fiber bending (whether more than bending radius minimal bendingradius). Most optical fiber is flexible, easy to install in the narrow space. Photoelectric sensor is a kind of non-contact measurement small electronic measurement equipment, rely on detect its receives the light intensity change, to achieve measurement purposes, and it's also a vulnerable to external disturbance and lose the measurement accuracy of the device. When be being designed so besides the choice optoelectronic components, still must set GSCC signal and temperature compensating measures used to weaken or eliminate the impact of these factors.Photoelectric sensor must pass a light modulation, like radio waves of light modulation of sends and receives, the radio to a station, can ignore other radio signal sensors without modulation long-focal-length only through the use of mechanical shielded, scenes that receiver transmitter only can receive the emission of light, can make its energy becomes very high. In contrast, through modulation transceivers can ignore ambient light, only to own light or with the same modulation frequencies of light without modulation response. The sensor used to test the infrared rays or around the radiation, if just baked red bottle, in this application situation if use other sensor, may be incorrect actions. Photoelectric sensor due to non-contact, high reliability, etc, and to change in measurement, damage the object to be testedSo since its invention in fields since play a significant role, at present it has been widely used in measuring mechanical quantity, thermal quantity, weight, intelligent vehicle system into etc. Now it in power system automatically griddevice plays a very important role, because generator input power grid operation often USES accurate with law, must meet: three-phase line sequence is consistent, frequency, phase agree unanimously, voltage amplitude equal, one of the conditions in system design has been satisfied, after three conditions must also meet to grid, of course, artificially grid is more difficult, photoelectric grid is easier.The development of times, science and technology in the update, photoelectric sensor types are increasing and application domain more and more widely, such as a recent kind of infrared already in intelligent vehicle electrical sensors in to the application, one of which had based on infrared sensor is the core of intelligent vehicle, reflective type infrared sensor using reflex infrared sensor design path detection module and speed monitoring module; Another method based on infrared sensor using the car tracing is to collect infrared sensor data.Photoelectric sensor has cannot be replaced by other sensors superiority, so it development foreground is very good, the application will also become more widespread.光电传感器关键字:光电效应光电元件光电特性传感器分类传感器应用摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。

传感器英文文献翻译-光电传感器

传感器英文文献翻译-光电传感器
传感器英文文献翻译
———光电传感器 报告人: 学 号: 专 业: 老 师:
Photoelectric sensor
Key word: photoelectric effect photoelectric element photoelectric sensor classification sensor application characteristics . Abstract: in the rapid development of science and technology in the modern society, mankind has into the rapidly changing information era, people in daily life, the production process, rely mainly on the detection of information technology by acquiring, screening and transmission, to achieve the brake control, automatic adjustment, at present our country has put detection techniques listed in one of the priority to the development of science and technology. Because of microelectronics technology, photoelectric semiconductor technology, optical fiber technology and grating technical development makes the application of the photoelectric sensor is growing. The sensor has simple structure, non-contact, high reliability, high precision, measurable parameters and quick response and more simple structure, form etc, and flexible in automatic detection technology, it has been widely applied in photoelectric effect as the theoretical basis, the device by photoelectric material composition.

传感器中英文演讲PPT

传感器中英文演讲PPT

Working principle
• Light sensors can converts light signals into electrical signals with photosensitive element sensor , its sensitive wavelengths is close to the visible light wavelength, incln, security, security alarm, and energy saving and so on.
back
Pressure sensitive, temperature ,fluid sensor,sense of touch
Now ,let’s have a realization on the different
senses of machine.现在,让我们有一个感官的不
同机器上实现。
chemical sensor化学 传感器
Photosensitive sensor 光敏传感器
Acoustic sensors 声学传感器
optical signal changes(光信号变化).
Application
• Photosensitive sensor is mainly used in
solar energy lawn lamp(太阳能草坪 灯), small optical night lights(光学小 夜灯), camera, monitors [‘mɑnətɚ],
electric toys, electric switches, antitheft wallet, electric music box, music birthday candle, music cup, the body

传感器——通信电子工程类中英文翻译、外文翻译

传感器——通信电子工程类中英文翻译、外文翻译

What is a smart sensorOne of the biggest advances in automation has been the development and spread of smart sensors. But what exactly is a "smart" sensor? Experts from six sensor manufacturers define this term.A good working "smart sensor" definition comes from Tom Griffiths, product manager, Honeywell Industrial Measurement and Control. Smart sensors, he says, are "sensors and instrument packages that are microprocessor driven and include features such as communication capability and on-board diagnostics that provide information to a monitoring system and/or operator to increase operational efficiency and reduce maintenance costs."No failure to communicate"The benefit of the smart sensor," says Bill Black, controllers product manager at GE Fanuc Automation, "is the wealth of information that can be gathered from the process to reduce downtime and improve quality." David Edeal, Temposonics product manager, MTS Sensors, expands on that: "The basic premise of distributed intelligence," he says, is that "complete knowledge of a system, subsystem, or component's state at the right place and time enables the ability to make 'optimal' process control decisions."Adds John Keating, product marketing manager for the Checker machine vision unit at Cognex, "For a (machine vision) sensor to really be 'smart,' it should not require the user to understand machine vision."A smart sensor must communicate. "At the most basic level, an 'intelligent' sensor has the ability to communicate information beyond the basic feedback signals that are derived from its application." saysEdeal. This can be a HART signal superimposed on a standard 4-20 mA process output, a bus system, or wireless arrangement. A growing factor in this area is IEEE 1451, a family of smart transducer interface standards intended to give plug-and-play functionality to sensors from different makers.Diagnose, programSmart sensors can self-monitor for any aspect of their operation, including "photo eye dirty, out of tolerance, or failed switch," says GE Fanuc's Black. Add to this, says Helge Hornis, intelligent systems manager, Pepperl+Fuchs, "coil monitoring functions, target out of range, or target too close." It may also compensate for changes in operating conditions. "A 'smart' sensor," says Dan Armentrout, strategic creative director, Omron Electronics LLC, "must monitor itself and its surroundings and then make a decision to compensate for the changes automatically or alert someone for needed attention."Many smart sensors can be re-ranged in the field, offering "settable parameters that allow users to substitute several 'standard' sensors," says Hornis. "For example, typically sensors are ordered to be normally open (NO) or normally closed (NC). An intelligent sensor can be configured to be either one of these kinds."Intelligent sensors have numerous advantages. As the cost of embedded computing power continues to decrease, "smart" devices will be used in more applications. Internal diagnostics alone can recover the investment quickly by helping avoid costly downtime.Sensors: Getting into PositionAs the saying goes, 'No matter where you go, there you are.' Still, most applications require a bit more precision and repeatability than that, so here's advice on how to select and locate position sensors.The article contains online extra material.What's the right position sensor for a particular application? It depends on required precision, repeatability, speed, budget, connectivity, conditions, and location, among other factors. You can bet that taking the right measurement is the first step to closing the loop on any successful application.Sensor technologies that can detect position are nearly as diverse as applications in providing feedback for machine control and other uses. Spatial possibilities are linear, area, rotational, andthree-dimensional. In some applications, they're used in combination. Sensing elements are equally diverse.Ken Brey, technical director, DMC Inc., a Chicago-based system integrator, outlined some the following position-sensing options.Think digitallyFor digital position feedback:∙Incremental encoders are supported by all motion controllers; come in rotary and linear varieties and in many resolutions; are simulated by many other devices; and require a homing process to reference the machine to a physical marker, and when power is turned off.∙Absolute encoders are natively supported by fewer motion controllers; can be used by all controllers that have sufficient available digital inputs; report a complete position within theirrange (typically one revolution); and do not require homing.∙Resolvers are more immune to high-level noise in welding applications; come standard on some larger motors; simulate incremental encoders when used with appropriate servo amps; and can simulate absolute encoders with some servo amps.∙Dual-encoder feedback, generally under-used, is natively supported by most motion controllers; uses one encoder attached to the motor and another attached directly to the load; and is beneficial when the mechanical connection between motor and load is flexible or can slip.∙Vision systems , used widely for inspection, can also be used for position feedback. Such systems locate objects in multiple dimensions, typically X, Y, and rotation; frequently find parts ona conveyor; and are increasing in speed and simplicity.A metal rolling, stamping, and cut-off application provides an example of dual-encoder feedback use, Brey says. 'It required rapid and accurate indexing of material through a roll mill for a stamping process. The roll mill creates an inconsistent amount of material stretch and roller slip,' Brey explains.'By using the encoder on the outgoing material as position feedback and the motor resolver as velocity feedback in a dual-loop configuration, the system was tuned stable and a single index move provided an accurate index length. It was much faster and more accurate than making a primary move, measuring the error, then having to make a second correction move,' he says.Creative, economicalSam Hammond, chief engineer, Innoventor, a St. Louis, MO-area system integrator, suggests that the application's purpose should guide selection of position sensors; measurements and feedback don't have to be complex. 'Creative implementations can provide simple, economical solutions,' he says. For instance, for sequencing, proximity sensors serve well in many instances.Recent sensor applications include the AGV mentioned in lead image and the following.∙In a machine to apply the top seals to tea containers, proximity and through-beam sensors locate incoming packages. National Instruments vision system images are processed to find location ofa bar code on a pre-applied label, and then give appropriate motorcommands to achieve the desired position (rotation) setting to apply one of 125 label types. Two types of position sensors were used. One was a simple inductive proximity sensor, used to monitor machine status to ensure various motion components were in the right position for motion to occur. The camera also served as a position sensor, chosen because of its multi purpose use, feature location, and ability to read bar codes.∙ A progressive-die stamping machine operates in closed loop. A linear output proximity sensor provides control feedback for optimizing die operation; a servo motor adjusts die position in the bend stage. A linear proximity sensor was selected to give a dimensional readout from the metal stamping operation; data are used in a closed-loop control system.∙Part inspection uses a laser distance measurement device to determine surface flatness. Sensor measures deviation in return beams, indicating different surface attributes to 10 microns insize. An encoder wouldn't have worked because distance was more thana meter. Laser measurement was the technology chosen because it hadvery high spatial resolution, did not require surface contact, and had a very high distance resolution.An automotive key and lock assembly system uses a proximity sensor for detecting a cap in the ready position. A laser profile sensor applied with a robot measures the key profile.What to use, where?Sensor manufacturers agree that matching advantages inherent to certain position sensing technologies can help various applications.David Edeal, product marketing manager, MTS Sensors Div., says, for harsh factory automation environments, 'the most significant factors even above speed and accuracy in customer's minds are product durability and reliability. Therefore, products with inherently non-contact sensing technologies (inductive, magnetostrictive, laser, etc.) have a significant advantage over those that rely on physical contact (resistive, cable extension, etc.)'Other important factors, Edeal says, are product range of use and application flexibility. 'In other words, technologies that can accommodate significant variations in stroke range, environmental conditions, and can provide a wide range of interface options are of great value to customers who would prefer to avoid sourcing a large variety of sensor types. All technologies are inherently limited with respect to these requirements, which is why there are so many options.'Edeal suggest that higher cost of fitting some technologies to a certain application creates a limitation, such as with linear variabledifferential transformers. 'For example, LVDTs with stroke lengths longer than 12 inches are rare because of the larger product envelope (about twice the stroke length) and higher material and manufacturing costs. On the other hand, magnetostrictive sensing technology has always required conditioning electronics. With the advent of microelectronics and the use of ASICs, we have progressed to a point where, today, a wide range of programmable output types (such as analog, encoder, and fieldbus) are available in the same compact package. Key for sensor manufacturers is to push the envelope to extend the range of use (advantages) while minimizing the limitations (disadvantages) of their technologies.'Listen to your appDifferent sensor types offer distinct advantages for various uses, agrees Tom Corbett, product manager, Pepperl+Fuchs. 'Sometimes the application itself is the deciding factor on which mode of sensing is required. For example, a machine surface or conveyor belt within the sensing area could mean the difference between using a standard diffused mode sensor, and using a diffused mode sensor with background suppression. While standard diffused mode models are not able to ignore such background objects, background suppression models evaluate light differently to differentiate between the target surface and background surfaces.'Similarly, Corbett continues, 'a shiny target in a retro-reflective application may require use of a polarized retro-reflective model sensor. Whereas a standard retro-reflective sensor could falsely trigger when presented with a shiny target, a polarized retro-reflective model uses a polarizing filter to distinguish the shiny target from the reflector.'MTS' Edeal says, 'Each technology has ideal applications, which tend to magnify its advantages and minimize its disadvantages. For example, inthe wood products industry, where high precision; varied stroke ranges; and immunity to high shock and vibration, electromagnetic interference, and temperature fluxuations are critical, magnetostrictive position sensors are the primary linear feedback option. Likewise, rotary optical encoders are an ideal fit for motor feedback because of their packaging, response speed, accuracy, durability, and noise immunity. When applied correctly, linear position sensors can help designers to ensure optimum machine productivity over the long haul.'Thinking broadly first, then more narrowly, is often the best way to design sensors into a system. Edeal says, 'Sensor specifications should be developed by starting from the machine/system-level requirements and working back toward the subsystem, and finally component level. This is typically done, but what often happens is that some system-level specifications are not properly or completely translated back to component requirements (not that this is a trivial undertaking). For example, how machine operation might create unique or additional environmental challenges (temperature, vibration, etc.) may not be clear without in-depth analysis or past experience. This can result in an under-specified sensor in the worst situation or alternatively an over-specified product where conservative estimates are applied.'Open or closedEarly in design, those involved need to decide if the architecture will be open-loop or closed-loop. Paul Ruland, product manager, AutomationDirect, says, 'Cost and performance are generally the two main criteria used to decide between open-loop or closed-loop control in electromechanical positioning systems. Open-loop controls, such as stepping systems, can often be extremely reliable and accurate when properly sized for the system. The burden of tuning a closed-loop systemprior to operation is not required here, which inherently makes it easy to apply. Both types can usually be controlled by the same motion controller. A NEMA 23 stepping motor with micro-stepping drive is now available for as little as $188, compared to an equivalent servo system at about $700.'Edeal suggests, 'Control systems are created to automate processes and there are many good examples of high-performance control systems that require little if any feedback. However, where structural system (plant) or input (demand or disturbance) changes occur, feedback is necessary to manage unanticipated changes. On the process side, accuracy—both static and dynamic—is important for end product quality, and system stability and repeatability (robustness) are important for machine productivity.'For example,' Edeal says, 'in a machining or injection molding application, the tool, mold or ram position feedback is critical to the final dimension of the fabricated part. With rare exceptions, dimensional accuracy of the part will never surpass that of the position sensor. Similarly, bandwidth (response speed) of the sensor may, along with response limitations of the actuators, limit production rates.'Finally, a sensor that is only accurate over a narrow range of operating conditions will not be sufficient in these types of environments where high shock and vibration and dramatic temperature variations are common.'The latestWhat are the latest position sensing technologies to apply to manufacturing and machining processes and why?Ruland says, 'Some of the latest developments in positioning technologies for manufacturing applications can be found in even the simplest ofdevices, such as new lower-cost proximity switches. Many of these prox devices are now available for as little as $20 and in much smaller form factors, down to 3 mm diameter. Some specialty models are also available with increased response frequencies up to 20 kHz. Where mounting difficulties and cost of an encoder are sometimes impractical, proximity switches provide an attractive alternative; many position control applications can benefit from increased performance, smaller package size, and lower purchase price and installation cost.'Corbett concurs. 'Photoelectric sensors are getting smaller, more durable, and flexible, and are packed with more standard features than ever before. Some new photoelectrics are about half the size of conventional cylindrical housings and feature welded housings compared with standard glued housings. Such features are very desirable in manufacturing and machining applications where space is critical and durability is a must. And more flexible connectivity and mounting options—side mount or snout mount are available from the same product—allow users to adapt a standard sensor to their machine, rather than vice versa.'Another simple innovation, Corbett says, is use of highly visible,360-degree LED that clearly display status information from any point of view. 'Such enhanced LED indicates overload and marginal excess gain, in addition to power and output. Such sensors offer adjustable sensitivity as standard, but are available with optional tamperproof housings to prevent unauthorized adjustments.'Photoelectric SensorsPhotoelectric sensors are typically available in at least nine or more sensing modes, use two light sources, are encapsulated in three categories of package sizes, offer five or more sensing ranges, and can be purchasedin various combinations of mounting styles, outputs, and operating voltages. It creates a bewildering array of sensor possibilities and a catalog full of options.This plethora of choices can be narrowed in two ways: The first has to do with the object being sensed. Second involves the sensor's environment.Boxed inThe first question to ask is: What is the sensor supposed to detect? "Are we doing bottles? Or are we detecting cardboard boxes?" says Greg Knutson, a senior applications engineer with sensor manufacturer Banner Engineering.Optical properties and physical distances will determine which sensing mode and what light source work best. In the case of uniformly colored boxes, for example, it might be possible to use an inexpensive diffuse sensor, which reflects light from the box.The same solution, however, can't be used when the boxes are multicolored and thus differ in reflectivity. In that case, the best solution might be an opposed or retroreflective mode sensor. Here, the system works by blocking a beam. When a box is in position, the beam is interrupted and the box detected. Without transparent boxes, the technique should yield reliable results. Several sensors could gauge boxes of different heights.Distance plays a role in selecting the light source, which can either be an LED or a laser. LED is less expensive. However, because LED are a more diffuse light source, they are better suited for shorter distances. A laser can be focused on a spot, yielding a beam that can reach long distances. Tight focus can also be important when small features have tobe sensed. If a small feature has to be spotted from several feet, it may be necessary to use a laser.Laser sensors used to cost many times more than LED. That differential has dropped with the plummeting price of laser diodes. There's still a premium for using a laser, but it's not as large as in the past.Environmental challengesOperating environment is the other primary determining factor in choosing a sensor. Some industries, such food and automotive, tend to be messy, dangerous, or both. In the case of food processing, humidity can be high and a lot of fluids can be present. Automotive manufacturing sites that process engines and other components may include grit, lubricants, and coolants. In such situations, the sensor's environmental rating is of concern. If the sensor can't handle dirt, then it can't be used. Such considerations also impact the sensing range needed because it may be necessary to station the sensor out of harm's way and at a greater distance than would otherwise be desirable. Active alarming and notification may be useful if lens gets dirty and signal degrades.Similar environmental issues apply to the sensor's size, which can range from smaller than a finger to something larger than an open hand. A smaller sensor can be more expensive than a larger one because it costs more to pack everything into a small space. Smaller sensors also have a smaller area to collect light and therefore tend to have less range and reduced optical performance. Those drawbacks have to be balanced against a smaller size being a better fit for the amount of physical space available.Sensors used in semiconductor clean room equipment, for example, don't face harsh environmental conditions, but do have to operate in tight spaces. Sensing distances typically run a few inches, thus the sensorstend to be small. They also often make use of fiber optics to bring light into and out of the area where changes are being detected.Mounting, pricingAnother factor to consider is the mounting system. Frequently, sensors must be mechanically protected with shrouds and other means. Such mechanical and optical protection can cost more than the sensor itself—a consideration for the buying process. If vendors have flexible mounting systems and a protective mounting arrangement for sensors, the products could be easier to implement and last longer.List prices for standard photoelectric sensors range from $50 or so to about $100.Laser and specialty photoelectric sensors cost between $150 and $500. Features such as a low-grade housing, standard optical performance, and limited or no external adjustments characterize the lower ends of each category. The higher end will have a high-grade housing, such as stainless steel or aluminum, high optical performance, and be adjustable in terms of gain or allow timing and other options. Low-end products are suitable for general applications, while those at the higher end may offer application-specific operation at high speed, high temperature, or in explosive environments.Finally, keep in mind that one sensing technology may not meet all of the needs of an application. And if needs change, a completely different sensor technology may be required. Having to switch to a new approach can be made simpler if a vendor offers multiple technologies in the same housing and mounting footprint, notes Ed Myers, product manager at sensor manufacturer Pepperl+Fuchs. If that's the case, then one technology can be more easily swapped out for another as needs change.译文什么是智能传感器自动化领域所取得的一项最大进展就是智能传感器的发展与广泛使用。

传感器技术常用英汉对照

传感器技术常用英汉对照
集成、整合
integrate
饱和电流
saturation current
势垒
barrier
摄像机
vidicon
波导
waveguide
金属丝应变计
wire strain gauge
电池
cell
扭矩
torque
触觉传感器
tactile sensor
扩散电阻
spreading resin effect
photodiode
光敏三极管
photo transistor
光生伏特效应
photo voltage effect
光敏电阻
photo resistors
光纤传感器
fiber optical sensors
编码器
coder
译码器
encode
超声波
ultrasonic
红外线
infrared
激光
laser
hysteresis
重复性
repeatability
灵敏度
sensitivity
阈值
threshold
分辨力
resolution
稳定性
stability
漂移
drift
精度
precision
阶跃响应
step response
电阻
resistor
电容
capacity
电感
inductor
磁电式传感器
magnetoelectric sensors
二极管
diode
三极管
transistor
变压器
transformer
压电式传感器

光电信息专业英语

光电信息专业英语

⏹Light detectors(光探测器)⏹Light can be detected by the eye. The eye is not suitable for modern fiber眼睛可以探测到光。

但是眼睛不适合用在现在的光线通信上因为它的反应太慢了。

communications because its response is too slow, its sensitivity to low-level signals is它的敏感度对于低频信号来说太不足了,而且对于电子接收器进行调幅解码还有其他信号处理也不是很简单。

inadequate, and it is not easily connected to electronic receivers for amplification,decoding, or other signal processing. Furthermore, the spectral response of the eye is而且眼睛的光谱响应仅限于0.4和0.7UM 之间的波长,而这也正是光损失最多的波长。

limited to wavelengths between 0.4 and 0.7 u m, where fibers have high loss.Nonetheless, the eye is very useful when fibers are tested with visible light. Break and虽然如此,眼睛在用光纤探测可见光时是非常有用的。

终止和打断能够通过观察散射的光观察到discontinuities can be observed by viewing the scattered light.⏹System, such as couplers and connectors, can be visually aligned with the visiblesource before the infrared emitter is attached. The remainder of this chapter is confined to an investigation of devices that directly convert optic radiation to electrical signals (either current or voltage) and that respond quickly to changes in the optic power level.⏹Principles of Photodetection⏹We will look at two distinct photodetection mechanisms. The first is the externalphotoelectric effect, in which electrons are freed from the surface of a metal by the energy absorbed from an incident stream of photons. The vacuum photodiode and the photomultiplier tube are based on this effect. A second group of detectors are semiconductor junction devices in which free charge carriers (electrons and holes) are generated by absorption of incoming photons. This mechanism is sometimes called the internal photoelectric effect.⏹hree common devices using this phenomenon are the pn junction photodiode, the最常用的应用这个现象的手段是pn节光电二极管,pin二极管,还有雪崩二极管PIN photodiode, and the avalanche photodiode.⏹Important detector properties are responsivity, spectral response, and rise time. The重要的探测要素有敏感度,光谱响应,还有回升时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Progress in Materials ScienceV olume 46, Issues 3–4, 2001, Pages 461–504The selection of sensorsJ Shieh,J.E Huber,N.A Fleck, ,M.F AshbyDepartment of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK Available online 14 March 2001./10.1016/S0079-6425(00)00011-6, How to Cite or Link Using DOI Permissions & ReprintsAbstractA systematic method is developed to select the most appropriate sensor for a particular application.A wide range of candidate sensors exist, and many are based on coupled electrical and mechanical phenomena, such as the piezoelectric, magnetostrictive and the pyro-electric effects. Performance charts for sensors are constructed from suppliers data for commercially available devices. The selection of an appropriate sensor is based on matching the operating characteristics of sensors to the requirements of an application. The final selection is aided by additional considerations such as cost, and impedance matching. Case studies illustrate the selection procedure.KeywordsSensors;Selection;Sensing range;Sensing resolution;Sensing frequency1. IntroductionThe Oxford English Dictionary defines a sensor as “a device which detects or measures some condition or property, and records, indicates, or otherwise responds to the information received”. Thus, sensors have the function of converting a stimulus into a measured signal. The stimulus can be mechanical, thermal, electromagnetic, acoustic, or chemical in origin (and so on), while the measured signal is typically electrical in nature, although pneumatic, hydraulic and optical signals may be employed. Sensors are an essential component in the operation of engineering devices, and are based upon a very wide range of underlying physical principles of operation.Given the large number of sensors on the market, the selection of a suitable sensor for a newapplication is a daunting task for the Design Engineer: the purpose of this article is to provide a straightforward selection procedure.The study extends that of Huber et al. [1] for the complementary problem of actuator selection. It will become apparent that a much wider choice of sensor than actuator is available: the underlying reason appears to be that power-matching is required for an efficient actuator, whereas for sensors the achievable high stability and gain of modern-day electronics obviates a need to convert efficiently the power of a stimulus into the power of an electrical signal. The classes of sensor studied here are detailed in the Appendices. 2. Sensor performance chartsIn this section, sensor performance data are presented in the form of 2D charts with performance indices of the sensor as axes. The data are based on sensing systems which are currently available on the market. Therefore, the limits shown on each chart are practical limits for readily available systems, rather than theoretical performance limits for each technology. Issues such as cost, practicality (such as impedance matching) and reliability also need to be considered when making a final selection from a list of candidate sensors.Before displaying the charts we need to introduce some definitions of sensor characteristics; these are summarised in Table 1.1 Most of these characteristics are quoted in manufacturers' data sheets. However, information on the reliability and robustness of a sensor are rarely given in a quantitative manner.Table 1. Summary of the main sensor characteristicsRange maximum minus minimum value of the measured stimulusResolution smallest measurable increment in measured stimulusSensing frequency maximum frequency of the stimulus which can be detectedAccuracy error of measurement, in% full scale deflectionSize leading dimension or mass of sensorOpt environment operating temperature and environmental conditionsReliability service life in hours or number of cycles of operationDrift long term stability (deviation of measurement over a time period)Cost purchase cost of the sensor ($ in year 2000)Full-size tableIn the following, we shall present selection charts using a sub-set of sensor characteristics: range, resolution and frequency limits. Further, we shall limit our attention to sensors which can detect displacement, acceleration, force, and temperature.2 Each performance chart maps the domain of existence of practical sensors. By adding to the chart the required characteristics for a particular application, a subset of potential sensors can be identified. The optimal sensor is obtained by making use of several charts and by considering additional tabular information such as cost. The utility of the approach is demonstrated in Section 3, by a series of case studies.2.1. Displacement sensorsConsider first the performance charts for displacement sensors, with axes of resolution δversus range R, and sensing frequency f versus range R, as shown in Fig. 1 and Fig. 2, respectively.Fig. 1. Resolution versus sensing range for displacement sensors. View thumbnail imagesFig. 2. Sensing frequency versus sensing range for displacement sensors.View thumbnail images2.1.1. Resolution —sensing range chart (Fig. 1)The performance regime of resolution δversus range R for each class of sensor is marked by a closed domain with boundaries given by heavy lines (see Fig. 1). The upper limit of operation is met when the coarsest achievable resolution equals the operating range δ=R. Sensors of largest sensing range lie towards the right of the figure, while sensors of finest resolution lie towards the bottom. It is striking that the range of displacement sensor spans 13 orders of magnitude in both range and resolution, with a large number of competing technologies available. On these logarithmic axes, lines of slope +1 link classes of sensors with the same number of distinctmeasurable positions, . Sensors close to the single position line δ=R are suitable as simple proximity (on/off) switches, or where few discrete positions are required. Proximity sensors are marked by a single thick band in Fig. 1: more detailed information on the sensing range and maximum switching frequency of proximity switches are summarised in Table 2. Sensors located towards the lower right of Fig. 1 allow for continuous displacement measurement, with high information content. Displacement sensors other than the proximity switches are able to provide a continuous output response that is proportional to the target's position within the sensing range.Fig. 1 shows that the majority of sensors have a resolving power of 103–106 positions; this corresponds to approximately 10–20 bits for sensors with a digital output.Table 2. Specification of proximity switchesProximity switch typeMaximum switching distance (m) Maximum switchingfrequency (Hz) Inductive6×10−4–1×10−1 5–5000 Capacitive1×10−3–6×10−2 1–200 Magnetic 3×10−3–8.5×10−2 400–5000 Pneumatic cylinder sensors (magnetic) Piston diameter 8×10−3–3.2×10−1300–5000 Ultrasonic1.2×10−1–5.2 1–50 Photoelectric 3×10−3–300 20–20,000Full-size tableIt is clear from Fig. 1 that the sensing range of displacement sensors cluster in the region 10−5–101 m. To the left of this cluster, the displacement sensors of AFM and STM, which operate on the principles of atomic forces and current tunnelling, have z-axis-sensing ranges on the order of microns or less. For sensing tasks of 10 m or above, sensors based on the non-contacting technologies of linear encoding, ultrasonics and photoelectrics become viable. Optical linear encoders adopting interferometric techniques can achieve a much higher resolution than conventional encoders; however, their sensing range is limited by the lithographed carrier (scale).A switch in technology accounts for the jump in resolution of optical linear encoders around the sensing range of 0.7 m in Fig. 1.Note that “radar ”, which is capable of locating objects at distances of several thousand kilometres,3 is not included in Fig. 1. Radar systems operate by transmitting high-frequency radio waves and utilise the echo and Doppler shift principles to determine the position and speed of the target. Generally speaking, as the required sensing range increases, sensors based on non-contact techniques become the most practicable choice due to their flexibility, fast sensing speed and small physical size in relation to the length scale detected. Fig. 1 shows that sensors based on optical techniques, such as fibre-optic, photoelectric and laser triangulation, cover the widest span in sensing range with reasonably high resolution.For displacement sensors, the sensing range is governed by factors such as technology limitation, probe (or sensing face) size and the material properties of the target. For example, the sensing distance of ultrasonic sensors is inversely proportional to the operating frequency; therefore, a maximum sensing range cut-off exists at about R=50 m. Eddy current sensors of larger sensing face are able to produce longer, wider and stronger electromagnetic fields, which increase their sensing range. Resolution is usually controlled by the speed, sensitivity and accuracy of the measuring circuits or feedback loops; noise level and thermal drift impose significant influences also. Sensors adopting more advanced materials and manufacturing processes can achieve higher resolution; for example, high-quality resistive film potentiometers have a resolution of better than 1 μm over a range of 1 m (i.e. 106 positions) whereas typical coil potentiometers achieve only 103 positions.2.1.2. Sensing frequency — sensing range chart (Fig. 2)When a displacement sensor is used to monitor an oscillating body, a consideration of sensing frequency becomes relevant. Fig. 2 displays the upper limit of sensing frequency and the sensorrange for each class of displacement sensor. It is assumed that the smallest possible sensing range of a displacement sensor equals its resolution; therefore in Fig. 2, the left-hand side boundary of each sensor class corresponds to its finest resolution.4 However, sensors close to this boundary are only suitable as simple switches, or where few discrete positions are to be measured.Lines of slope −1 in Fig. 2 link classes of sensors with the same sensing speed, fR. For contact sensors such as the LVDT and linear potentiometer, the sensing speed is limited by the inertia of moving parts. In contrast, many non-contact sensors utilise mechanical or electromagnetic waves and operate by adopting the time-of-flight approach; therefore, their maximum sensing speed is limited by the associated wave speed. For example, the maximum sensing speed of magnetostrictive sensors is limited by the speed of a strain pulse travelling in the waveguide alloy, which is about 2.8×103 m s−1.The sensing frequency of displacement sensors is commonly dependent on the noise levels exhibited by the measuring electronic circuits. Additionally, some physical and mechanical limits can also impose constraints. For example, the dynamic response of a strain gauge is limited by the wave speed in the substrate. For sensors with moving mass (for example, linear encoder, LVDT and linear potentiometer), the effects of inertial loading must be considered in cyclic operation. For optical linear encoders the sensing frequency increases with range on the left-hand side of the performance chart, according to the following argument. The resolution becomes finer (i.e. δdecreases in an approximately linear manner) with a reduced scan speed V of the recording head. Since the sensor frequency f is proportional to the scan speed V, we deduce that f increases linearly with δ, and therefore f is linear in the minimum range of the device.2.2. Linear velocity sensorsAlthough velocity and acceleration are the first and second derivatives of displacement with respect to time, velocity and acceleration measurements are not usually achieved by time differentiation of a displacement signal due to the presence of noise in the signal. The converse does not hold: some accelerometers, especially navigation-grade servo accelerometers, have sufficiently high stability and low drift that it is possible to integrate their signals to obtain accurate velocity and displacement information.The most common types of velocity sensor of contacting type are electromagnetic, piezoelectric and cable extension-based. Electromagnetic velocity sensors use the principle of magnetic induction, with a permanent magnet and a fixed geometry coil, such that the induced (output) voltage is directly proportional to the magnet's velocity relative to the coil. Piezo-velocity transducers (PVTs) are piezoelectric accelerometers with an internal integration circuit which produces a velocity signal. Cable extension-based transducers use a multi-turn potentiometer (or an incremental/absolute encoder) and a tachometer to measure the rotary position and rotating speed of a drum that has a cable wound onto it. Since the drum radius is known, the velocity and displacement of the cable head can be determined.5Optical and microwave velocity sensors are non-contacting, and utilise the optical-grating or Doppler frequency shift principle to calculate the velocity of the moving target. Typical specifications for each class of linear velocity sensor are listed in Table 3.Table 3. Specification of linear velocity sensorsSensor class Maximum sensingrange (m/s)Resolution (number ofpositions)Maximum operatingfrequency (Hz)Magnetic induction 25–360 5×104–5×105 100–1500Sensor class Maximum sensingrange (m/s)Resolution (number ofpositions)Maximum operatingfrequency (Hz)PVT 0.25–1.3 1×105–5×105 ∼7000Cable-extension 0.7–15 1×105–1×106 1–100Optical andmicrowave13–165 ∼1×105 > 10,000目录1. 简介 (8)2. 传感器性能图表 (9)2.1.位移传感器 (10)2.1.1.分辨率- 感应范围图(图1) (11)2.1.2.检测频率–检测范围图(图2) (12)2.2.线性速度传感器 (12)问题3-4,2001年第46卷,页461-504传感器的选择J Shieh,J.E Huber,N.A FleckM.F Ashby剑桥大学工程系,英国剑桥CB2的1PZ,,Trumpington街________________________________________摘要对于一个特定的应用系统来说要选择最为合适的传感器。

相关文档
最新文档