离散数学(刘任任版)习题14
湘潭大学刘任任版离散数学课后习题答案习题
习 题 十 一1.设11≥p ,证明任何p 阶图G 与G 总有一个是不可平面图。
分析: G 与G 是两个互补的图,根据互补的定义,互补的图有相同的顶点数,且G 的边数与G 的边数之和等于完全图的边数p(p-1)/2;而由推论11.2.2,有任何简单平面图G ,其顶点数p 和边数q 满足:q ≤3p-6。
证明. 若),(q p G 与),(q p G ''均是可平面图,则63-≤p q (1) 63-'≤'p q (2) 但q p p q p p --='=')1(21, (3)将(3)代入(2)有63)1(21-≤--p q p p 整理后得 q p p 21272≤+- 又由(1)有)63(21272-≤+-p p p 即 024132≤+-p p也即 224413132244131322⨯-+≤≤⨯--p .得 2731327313+≤≤-p 得112<<p此与11≥p 矛盾。
因此任何p 阶图G 与G 不可能两个都是可平面图,从而G 与G 总有一个是不可平面图。
2.证明或否定:两个p 阶极大简单平面图必同构分析:极大平面图是指添加任何一条边以后不构成平面图的平面图;两个p 阶极大简单平面图不一定同构。
解:令6=p ,三个6阶极大简单平面图321,,G G G 如下:顶点上标的数字表示该顶点的度,但显然不同构.3.找出一个8阶简单平面G ,使得G 也是平面图.分析:由第1题证明过程可知,当p<11时,G 和G 可以同时为平面图。
解:如下平面图G ,显然其补图也是平面图。
123G 3344454.证明或者否定:每个极大平面图是H 图. 分析:极大平面图是指添加任何一条边以后不构成平面图的平面图;而H 图是存在一个H 回路的图,即存在一条经过图中每一个顶点一次且仅一次的回路。
由定理11.1.2知极大平面图的每个面都是三角形,因此G 中必存在回路,利用最长回路的性质使用反证法可证明每个极大平面图都是H 图。
离散数学 习题答案(刘任任)
(2)
A B ( A B) ( A B) ( B A) ( B A) B A
( A B) C (( A B) ( B A)) C (( A B ) ( B A )) C (((A B ) ( B A)) C) (((A B ) ( B A)) C)
A B AC
(4) 错误。例如,令 A={2,3,4},B={1,2,3},C={3,4,5}; (5)错误。例如,令A={2,4},B={1,2},C={2,3};
8.
(1)设A=B。于是
A B ( A B) ( A B) A A 反之,设 A B 。若 A B ,则不妨 设 x A而x B 。于是, x A B, 而x A B 从而 A B
3.
(1) 错; (2) 对; (3) 对; (4) 错;
(5) 错;
(9) 对;
(6) 对;
(10) 错;
(7) 错;
(11)错;
(8) 对;
(12)对.
4.
(1)正确。因BC,所以,对任何x∈B均有x∈C, 令A∈B,故A∈C。 (2)错误。例如,令A={1},B={{1},2}, C={{1},2,3}。
(B×A) 2 =(B × A) ×(A × B) ={<<2,1>,<2,1>>,<<2,1>,<2,2>>,<<2,1>,<3,1 >>,<<2,1>,<3,2>>,<<2,2>,<2,1>>,<<2,2>,< 2,2>>,<<2,2>,<3,1>>,<<2,2>,<3,2>>,<<3,1 >,<2,1>>,<<3,1>,<2,2>>,<<3,1>,<3,1>>,<< 3,1>,<3,2>>,<<3,2><2,1>>,<<3,2>,<2,2>>, <<3,2>,<3,1>>,<<3,2>,<3,2>>}
离散数学参考答案
答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.答题: A. B. C. D.12.(单选题) 设:p:派小王去开会。
q:派小李去开会。
则命题:“派小王或小李中的一人去开会” 可符号化为:()答题: A. B. C. D. (已提交)参考答案:B问题解析:答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.答题: A. B. C. D.问题解析:20.(单选题) 下面“”的等价说法中,不正确的为A.p是q的充分条件B.q是p的必要条件C.q仅当p D.只有q才p答题: A. B. C. D. (已提交)参考答案:C问题解析:答题: A. B. C. D.22.(单选题) 下列式子是合式公式的是( )A.(P Ú ® Q)B.Ø(P Ù(Q Ú R))C.(P Ø Q)D.Ù Q ® Ù R答题: A. B. C. D. (已提交)参考答案:B问题解析:23.(单选题) 公式Ø((p®q)Ù(q ® p))与的共同成真赋值为( ) A.01,10 B.10,01 C.11,00 D.01,11答题: A. B. C. D. (已提交)参考答案:A问题解析:24.(单选题) p,q都是命题,则p®q的真值为假当且仅当( )A.p为假,q为真B.p为假,q也为假C.p为真,q也为真D.p为真,q为假答题: A. B. C. D. (已提交)参考答案:D问题解析:25.(单选题) n个命题变元组成的命题公式,有( )种真值情况A.n B.C. D.2n答题: A. B. C. D. (已提交)参考答案:C问题解析:26.(单选题) 设A , B 代表任意的命题公式,则德?摩根律为Ø(A Ù B)Û( )A.ØA Ù ØB B.ØA Ú ØBC.A Ù ØB D.AÚB答题: A. B. C. D. (已提交)参考答案:B问题解析:27.(单选题) 设P , Q 是命题公式,德?摩根律为:Ø(P Ú Q)Û( )A.ØP Ù ØQ B.ØP Ú ØQC.P Ù ØQ D.PÚQ答题: A. B. C. D. (已提交)问题解析:28.(单选题) 命题公式A与B是等值的,是指()。
(完整版)离散数学题目及答案
数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
湘潭大学计算机科学与技术刘任任版离散数学课后习题答案---第三学期--代数结构
习题十六(整 数)1. 请推导出本节定理16.1.3中计算k S 和k T 的递推公式.分析:本题主要是考察矩阵的推导过程。
解:由(P154)T V S U q q q k k kk k ⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪121101101101 () 有T V S U T V S U q q T V T q S U S k k k k k k k k k k k k k k k k k ⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪----------11111111111102 ()比较(2)式两端,可知U S V T T q T V S q S U k k k k k k k k kk k k ==⎧⎨⎩=+=+⎧⎨⎩------11111134 ()() 由(3)有U S V T k k k k ----==⎧⎨⎩1212 (5) 由(4)和(5)得S q S S T q T T k k k k k k k k =+=+⎧⎨⎩----12126 () 由(3)可令S U T V 01017==⎧⎨⎩ () 又由(1)有T V S U q 11111110⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪ 于是 S U T V S T q 0101111011====⎧⎨⎩==⎧⎨⎩ 这样,对任意k ≥2, 由(6)可求出S k 和 T k 。
2. 求1331和5709的最大公因数,并表为它们的倍数之和.分析:本题主要是考察用辗转相除法来求两个数的最大公因数。
解:用辗转相除法求最大公因数,逐次得出商及余数并计算S k 和T k 。
今列表如下: k 0 1 2 3 4 5 r k 385 176 33 11 0 q k 4 3 2 5 3S k 0 1 3 7 38 空T k 1 4 13 30 163 空 由上表知,最大公因数为 r 411=, 且有r S T 44144415709113313857091631331=-⋅+-⋅=-⨯+⨯-()() 3. 求证:任意奇数的平方减1必是8的倍数.分析:本题首先根据奇数的概念,然后进行变形即得。
《离散数学》题库及答案
《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
湘潭大学 刘任任版 离散数学课后习题答案 习题9
习 题 九1.证明:任何树最多只有一个完美匹配分析:树是连通没有回路的图;树的完美匹配是树存在一个匹配M ,满足树的所有顶点v 都是M-饱和点。
而两个完美匹配中不同的边所关联的顶点的度至少为2,否则如果等于1的话,则该顶点关联的边只有一条,在构造完美匹配的时候为了使得这个点成饱和点,只有一种选择。
证明:设树T 有两个或两个以上的完美匹配,任取完美匹配1M 和2M ,21M M ≠。
于是Φ≠⊕21M M 。
易知边导出子图][21M M T H ⊕=中的每个顶点v 满足2)(≥v d H 。
于是H 中存在回路,从而T 中有回路。
此与T 是树矛盾,故结论成立。
2.证明:树G 有完美匹配当且仅当对任意)(G V v ∈,均有1)(=-v G O分析:一方面,由定理9.1.3 图G 存在完美匹配当且仅当对任意S ⊂V(G),有||)(S S G O ≤-,所以如果树G 有完美匹配,则1|}{|)(=≤-v v G O ;而G 有完美匹配,说明=|)(|G V 偶数,所以1)(≥-v G O ;从而有1)(=-v G O 。
另一方面,如果对任意)(G V v ∈,均有1)(=-v G O ,则对v 而言,可利用这个这个奇分支找到v 关联的唯一边,从而构造出G 的一个完美匹配。
证明:必要性 设G 有完美匹配。
由定理9.1.3,取}{v S =,则1||)()(=≤-=-S S G O v G O又 ∵G 有完美匹配,∴=|)(|G V 偶数。
于是|)(|v G V -=奇数。
故 1)(≥-v G O . 从而 1)(=-v G O .充分性 设对任意)(G V v ∈,有1)(=-v G O .即v G -恰有一个奇分支)(0v C ,因G 是树,故v 只能与)(0v C 中的一个顶点邻接。
设v 与)(0v C 的关联边为)()(G E vu v e ∈=。
显然v 确定以后,uv 是唯一确定的,且易知uv u C =)(0。
离散数学刘任任课后答案习题
习 题 三1.下列映射哪些是单射、满射或双射.(1)()⎩⎨⎧=→.0;1,:是偶数是奇数m m m Z Z σσ (2){}()⎩⎨⎧=→.1;0,1,0:是偶数是奇数m m m N σσ (3)()52,:-=→r r R R σσ解:(1) σ既不是单射也不是满射。
(2) 是满射但不是单射.。
(3) 双射。
2.设A 和B 是有限集,试问有多少A 到B 的不同的单射和双射.解:设 |A|=m , |B|=n .(1) 若 B A →:σ是单射, 则必有 |A|<=|B|, 即 m<=n .a) 当m= n 时, 共有m!个单射;b) 当m<n 时, 共有 !m m n C ⋅ 个单射;(2) 若B A →:σ是双射时, 则必有|A|=|B|, 即 m=n 。
于是, 共有n!个双射。
3.设()A B B A ρτσ→→:,:且定义如下:对于()(){}b x A x b B b =∈=∈στ,试证明,若σ是满射,则τ是单射,其逆成立吗?证明:设B A →:σ是满射。
任取2121,,,b b B b b ≠∈,则存在 A A A ⊆⊆∅21,, 使得 }{)(},{)(2211b A b A ==σσ。
于是, 2211)(,)(A b A b ==ττ 。
若)()(21b b ττ=, 即21A A =, 则存在 21A A a I ∈, 使得21)(,)(b a b a ==σσ,从而21b b =。
矛盾。
故21A A ≠。
.即τ是单射。
若τ是单射, 则σ不一定是满射。
例如, 令A={1,2}, B={x , y} ,∅====)(},2,1{)(,)2()1(y x x ττσσ.于是, τ是单射, 但σ不是满射。
4.设σ是A 到B 的映射,τ是B 到C 的映射,试证明:(1)若σ和τ是满射,则στ⋅是满射;(2)若σ和τ是单射,则στ⋅是单射;(3)若σ和τ是双射,则στ⋅是双射;证明:(1) 设τ和σ是满射, 则对任意的z ∈C, 有y ∈B, 使得τ(y)= z 。
离散数学刘任任版第14章答案.ppt
x 的作用域: H (x, y)
5.设谓词公式。判定以下改名是否正确 :
x (P(x, y) Q(x, z))
(1)u(P(u, y) Q(x, z))
错误
(2)u(P(u, y) Q(u, z))
正确
(3) x(P(u, y) Q(u, z))
x0 D或y0 D, 使得G(x0,y)或G(x, y0)为假,
于是,此xo或yo亦弄假 yxG(x, y)
(2) xyG(x,y) yxG(x,y)
证:设D是论域,I是G(x, y)的一个解释。
(a)若 xyG(x,y) 在 I 下的为真,则在 I 下,有
8.
• (1) x(G(x) H ) xG(x) H
• (2) x(G(x) H ) xG(x) H
• 证明(1)
x(G(x) H ) x(7G(x) H ) x7G(x) H 7(xG(x)) H xG(x) H
• 证明(2)
x(G(x) H ) x(7G(x) H ) x7G(x) H 7(xG(x)) H xG(x) H
解:P(x) : x是实数,Q(x) : x是有理数. x(P(x) Q(x))
(2)有些实数是有理数。 解:P(x) : x是实数,Q(x) : 是有理数。
xyPx Q(x)。
(3)并非所有实数都是有理数。 解:P(x) : x是实数,Q(x) : x是有理数. x(P(x) Q(x)) (4)如果明天天气好, 有一些学生将去公园. 解 : P(x) : x是公园, S(x) : x是学生,W :明天天气好. W x(P(x) S(x))
离散数学
习题解答
1、
离散数学课后习题答案
1-1,1-2(1) 解:a) 是命题,真值为T。
b) 不是命题。
c) 是命题,真值要根据具体情况确定。
d) 不是命题。
e) 是命题,真值为T。
f) 是命题,真值为T。
g) 是命题,真值为F。
h) 不是命题。
i) 不是命题。
(2) 解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a) 设P:王强身体很好。
Q:王强成绩很好。
P∧Qb) 设P:小李看书。
Q:小李听音乐。
P∧Qc) 设P:气候很好。
Q:气候很热。
P∨Qd) 设P: a和b是偶数。
Q:a+b是偶数。
P→Qe) 设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
PQf) 设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a) P:天气炎热。
Q:正在下雨。
P∧Qb) P:天气炎热。
R:湿度较低。
P∧Rc) R:天正在下雨。
S:湿度很高。
R∨Sd) A:刘英上山。
B:李进上山。
A∧Be) M:老王是革新者。
N:小李是革新者。
M∨Nf) L:你看电影。
M:我看电影。
┓L→┓Mg) P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh) P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。
离散数学课后答案
离散数学课后答案习题一6.将下列命题符号化。
(1)小丽只能从框里那一个苹果或一个梨.(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:(1)(p Λ¬q )ν(¬pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ¬q )ν(¬pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服.(4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语.(7)他一面吃饭, 一面听音乐.(8)如果天下大雨, 他就乘班车上班.(9)只有天下大雨, 他才乘班车上班.(10)除非天下大雨, 他才乘班车上班.(11)下雪路滑, 他迟到了.(12)2与4都是素数, 这是不对的.(13)“2或4是素数, 这是不对的”是不对的.答:(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.(12) ¬ (p∧q)或¬p∨¬q, 其中, p: 2是素数, q: 4是素数.(13) ¬ ¬ (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数.16.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r) (2)(p→¬q) →¬q(3) ¬ (q→r) ∧r(4)(p→q) →(¬q→¬p)(5)(p∧r) ↔( ¬p∧¬q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)答:(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式习题二9.用真值表求下面公式的主析取范式.(1) (pνq)ν(¬pΛr)(2) (p→q) →(¬p↔q)答:(1)(2)p q (p → q) →(¬p ↔ q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0从真值表可见成真赋值为01, 10.于是(p → q) →(¬p ↔ q) ⇔ m1 ∨ m211.用真值表求下面公式的主析取范式和主合取范式;(1) (pνq)Λr(2) p→(pνqνr)(3) ¬(q→¬p)Λ¬p15.用主析取范式判断下列公式是否等值:(1) (p→q) →r与q→ (p→r)(2) ¬(pΛq)与(¬pνq)答:(1)(p→q) →r ⇔¬(¬p∨q) ∨ r ⇔¬(¬p∨q) ∨ r ⇔ p¬∧q ∨ r ⇔p¬∧q∧(r¬∨r) ∨(p¬∨p) ∧(q¬∨q)∧r ⇔p¬∧q∧r ∨p¬∧q∧¬r ∨ p ∧q∧r ∨ p∧¬q∧r ∨¬p∧q∧r ∨¬p∧¬q∧r = m101 ∨ m100 ∨ m111 ∨m101 ∨ m011 ∨ m001 ⇔m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7 = ∑(1, 3, 4, 5, 7).而 q→(p→r) ⇔¬q ∨(¬p∨r) ⇔¬q ∨¬p ∨r ⇔(¬p∨p)¬∧q∧(¬r∨r) ∨¬p∧(¬q∨q)∧(¬r∨r) ∨(¬p∨p)∧(¬q∨q)∧r ⇔(¬p¬∧q∧¬r)∨(¬p¬∧q∧r)∨(p¬∧q∧¬r)∨(p¬∧q∧r) ∨(¬p∧¬q∧¬r)∨(¬p∧¬q∧r)∨(¬p ∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) = m0 ∨ m1 ∨ m4 ∨ m5 ∨ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m1 ∨ m3 ∨ m5 ∨m7 ⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7 ⇔∑(0, 1, 2, 3, 4, 5, 7). 两个公式的主吸取范式不同, 所以(p→q) →rk q→ (p→r).16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r与q→ (p→r)(2) ¬ (p∧q)与¬ (p∨q)答:(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) k q→ (p→r)(2)¬ (p∧q) ⇔m0∨m1∨m2¬ (p∨q) ⇔m0所以¬ (p∧q) k ¬ (p∨q)习题三15.在自然推理系统P中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q 结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u 结论: p→u答:(1)证明: ① s 附加前提引入② s→p 前提引入③ p ①②假言推理④ p→(q→r) 前提引入⑤ q→r ③④假言推理⑥ q 前提引入⑦ r ⑤⑥假言推理(2)证明: ① P 附加前提引入② p∨q ①附加③ (p∨q) → (r∧s) 前提引入④ r∧s ②③假言推理⑤④化简⑥ s∨t ⑤附加⑦ (s∨t) →u 前提引入⑧ u ⑥⑦假言推理16.在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s 结论: ¬p(2)前提: p∨q, p→r, q→s 结论: r∨s答:(1)证明: ① P 结论否定引入② p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥ r∧¬s 前提引入⑦ r ⑥化简⑧¬r∧r ⑤⑦合取⑧ 为矛盾式, 由归谬法可知, 推理正确.(2)证明: ①¬ (r∨s) 结论否定引入② p∨q 前提引入③ p→r 前提引入④ q→s 前提引入⑤ r∨s ②③④构造性二难⑥¬ (r∨s) ∧ (r∨s) ①⑤合取⑥为矛盾式, 所以推理正确.18.在自然推理系统P中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩. 今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(1)令 p: 今天是星期六;q: 我们要到颐和园玩;r: 我们要到圆明园玩;s:颐和园游人太多.前提: p→ (q∨r), s →¬q, p, s. 结论: r.证明① p 前提引入② p→q∨r前提引入③q∨r①②假言推理④s前提引入⑤ s →¬q前提引入⑥¬q ④⑤假言推理⑦ r ③⑥析取三段论r ¬q s →¬q sq∨r p→q∨r p(2)令p: 小王是理科生,q: 小王是文科生,r: 小王的数学成绩很好.前提: p→r, ¬q→p, ¬r 结论: q证明:① p→r 前提引入②¬r 前提引入③¬p ①②拒取式④¬q→p 前提引入⑤ q ③④拒取式习题四在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的.(4)有的人天天锻炼身体. 没指定个体域, 因而使用全总个体域.答:(1) ¬∃x(F(x) ∧¬G(x))或∀x(F(x) →G(x)), 其中, F(x): x为有理数, G(x): x能表示成分数.(2) ¬∀x(F(x) →G(x))或∃x(F(x) ∧¬G(x)), 其中, F(x): x在北京卖菜,G(x): x是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x是乌鸦, G(x): x是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x是人, G(x): x天天锻炼身体.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.答:因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x是火车, G(y): y是轮船, H(x,y):x比y快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x是火车, G(y): y是汽车, H(x,y):x比y快.(3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y))) 或∀x(F(x) →∃y(G(y) ∧¬H(x,y))), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y)) 或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) ), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y慢.9.给定解释I如下:(a)个体域DI为实数集合\.(b)DI中特定元素⎯a =0.(c)特定函数⎯f (x,y)=x−y, x,y∈DI.(d)特定谓词⎯F(x,y): x=y,⎯G(x,y): x<y, x,y∈DI.说明下列公式在I下的含义, 并指出各公式的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))答:(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x−y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x−y≠0)), 真值为1.(4) ∀x∀y((x−y<0) → (x=y)), 真值为0.习题五5.给定解释I如下:(a) 个体域D={3,4}.(b)⎯f (x)为⎯f (3)=4,⎯f (4)=3.(c)⎯F(x,y)为⎯F(3,3)=⎯F(4,4)=0,⎯F(3,4)=⎯F(4,3)=1.试求下列公式在I下的真值:(1) ∀x∃yF(x,y)(2) ∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))答:(1) ∀x∃yF(x,y)⇔(F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))⇔(0∨1)∧(1∨0) ⇔1(2)∃x∀yF(x,y)⇔(F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))⇔(0∧1)∨(1∧0)⇔0(3)∀x∀y(F(x,y)→F(f(x),f(y)))⇔(F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4))) ⇔ (0→0)∧(1→1)∧(1→1)∧(0→0)⇔112.求下列各式的前束范式.(1) ∀xF(x) →∀yG(x, y);(3) ∀xF(x, y) ↔∃xG(x, y);答:前束范式不是唯一的.(1) ∀xF(x) →∀yG(x, y) ⇔∃x(F(x) →∀yG(x, y))⇔∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔∃xG(x, y) ⇔ (∀xF(x, y) →∃xG(x, y)) ∧ (∃xG(x, y) →∀xF(x, y)) ⇔ (∀x1F(x1, y) →∃x2G(x2, y)) ∧ (∃x3G(x3, y) →∀x4F(x4, y)) ⇔∃x1∃x2(F(x1, y) → G(x2, y)) ∧∀x3∀x4(G(x3, y) → F(x4, y)) ⇔∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.答:(1)令F(x):x是汽车,G(y):y是火车,H(x,y):x比y跑得快.∃x(F(x)∧∃y(G(y)∧H(x,y))⇔∃x∃y(F(x)∧G(y)∧H(x, y)).(2)令F(x):x是火车, G( y): y 是汽车,H(x,y):x比y跑得快.∃x(F(x)∧∀y(G(y)→ H(x,y)))⇔∃x∀y(F(x)∧(G y)→H(x,y))).;错误的答案:∃x∀y(F(x)∧G(y)→H(x,y)).(3)令F(x):x是火车,G(y):y是汽车,H(x,y):x比y跑得快.¬∀x(F(x)→∀y(G(y)→H(x,y)))⇔¬∀x∀y(F(x)→(G(y)→H(x,y)))⇔¬∀x∀y(F(x)∧G(y)→H(x,y))(不是前束范式)⇔∃x∃y(F(x)∧G(y)∧H(x,y)).(4)令F(x):x是飞机,G(y):y是汽车,H(x,y):x比y跑得慢.¬∃x(F(x)∧∃y(G(y)∧H(x,y)))⇔¬∃x∃y(F(x)∧G(y)∧H(x,y))(不是前束范式)⇔∀x∀y¬(F(x)∧G(y)∧H(x,y))⇔∀x∀y(F(x)∧G(y)→¬H(x,y)).21.24.在自然推理系统F中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合) 答:令 F(x): x 喜欢步行, G( x): x喜欢骑自行车, H(x): x 喜欢乘汽车.前提:∀x(F(x)→¬G(x)), ∀x(G(x)∨H(y)),∃x¬H(x).结论:∃x¬F(x).② ∀x(G(x) ∨ H(y)) 前提引入② G(c) ∨ H(c) ①UI③∃x¬H(x) 前提引入④¬H(c) ③UI⑤ G(c) ②④析取三段⑥∀x(F(x) →¬G(x)) 前提引入⑦ F(c) →¬G(c) ⑥UI⑧¬F(c) ⑤⑦拒取⑨∃x¬F(x) ⑧EG习题七12.设A={0, 1, 2, 3}, R是A上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2,1〉, 〈2, 3〉, 〈3, 2〉} 给出R的关系矩阵和关系图.16.设A={a,b,c,d}, R1,R2为A上的关系, 其中R1={〈a,a〉,〈a,b〉,〈b,d〉}R2={〈a,d〉,〈b,c〉,〈b,d〉,〈c,b〉} 求R1·R2, R2·R1,R1²,R2³. R1·R2={〈a,a〉,〈a,c〉,〈a,d〉},R2·R1={〈c,d〉}, R1²={〈a,a〉,〈a,b〉,〈a,d〉},R2³={〈b,c〉,〈b,d〉,〈c,b〉}20.设R1和R2为A上的关系,证明: (1)(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1答:(1)(R1∪R2)−1=R1−1∪R2−1任取〈x,y〉〈x,y〉(∈R1∪R2)−1⇔〈y,x〉(∈R1∪R2)⇔〈y,x〉∈R1∨ (y,x)∈R2)⇔〈x,y〉∈R1−1∨〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∨R2−1所以(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1 任取〈x,y〉〈x,y〉(∈R1∩R2) −1⇔〈y,x〉(∈R1∩R2)⇔〈y,x〉∈R1∧ (y,x)∈R2)⇔〈x,y〉∈R1−1∧〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∧R2−1所以(R1∪R2) −1=R1−1∩R2−126.33.43.16.47.。
刘任任离散数学答案
刘任任离散数学答案【篇一:湘潭大学刘任任版离散数学课后习题答案习题17】设g是群,a,b?g.试证:(a?1)?1?a(ab)?1?b?1a?1证明:设e是单位元(下同),直接根据定义即有:? a?1a?e, (ab)(b?1a?1)?a(bb?1)a?1?(ae)a?1?aa?1?e,? (a?1)?1?a, (ab)?1?b?1a?12. 试举一个只有两元素的群。
解:设g??{0, 1}, ? ?,并且g的单位元为0,则可以确定乘法表中的三个元素,0?0=0;0?1=1;1?0=1;由群的定义,任意元素都有逆元,0的逆元为0,1的逆元为1,因此1?1=0?1易知,单位元e?0,运算满足封闭性和结合律,且1?1。
故g是群。
3. 设a?{1,2,3,4}的乘法表为1234124132123434321431 42问:a是否成为群?若不是群,结合律是否成立?a有无单位元?解:如果a是一个群,则一定有单位元i,乘法表中第i行第i列元素保持不变,而定义的乘法表不满足此性质。
因此a无单位元,故a 不成群。
且4?(2?3)?4?2?(3?4)?1,无结合律。
4. 设g是群.试证:若对任何a,b?g,均有a3b3?(ab)3,a4b4?(ab)4,a5b5?(ab)5,则g是交换群.证明:利用消去律,将各等式降阶。
? a3b3?(ab)3?a(ba)2b, ?a2b2?(ba)2 (1)5554444又 ? ab?(ab)?a(ba)b, ?ab?(ba) (2)22222222因此, ab?(ba)?(ba)(ba)?(ab)(ab)?a(ba)b, 于是,2222得 ab?ba, 再由(1)知,b2a2?a2b2?(ba)2?baba, 故有 ab?ba. 44(2)422(1)5. 设g是群.试证:若对任何a?g,有a?1?a,则g是交换群。
?1?1?1证明:利用群的性质(3),(4),对任意a, b?g,有ab?ab?(ba)?ba。
离散数学_刘任任_课后答案习题14
习题十四1.试判断下列语句是否为命题,并指出哪些是简单命题,哪些是复合命题。
(1)2是有理数。
解:是命题,且为简单命题(2)计算机能思考吗?解:非命题(3)如果我们学好了离散数学,那么,我们就为学习计算机专业课程打下了良好的基础。
解:是命题,且为复合命题。
(4)请勿抽烟!解:非命题。
(5)X+5>0解:非命题。
(6)π的小数展开式中,符号串1234出现奇数次。
解:是命题,且为简单命题。
(7)这幅画真好看啊!解:非命题。
(8)2050年元旦的那天天气晴朗。
解:是命题,且为简单命题。
(9)李明与张华是同学解:是命题,且为简单命题。
(10)2既是偶数又是质数。
解:是命题,且为复合命题。
2.讨论上题中命题的真值,并将其中的复合命题符号化。
解:(1)F (3)T (6)不知真假(8)不知真假(9)真或假,视情况而定(10)T (3)P:我们学好了离散数学。
Q:我们为学习计算机专业课程打下了良好的基础。
P→Q(10)P:2是质数;Q:2是偶数;P∧Q3.将下列命题符号化(1)小王很聪明,但不用功解:P:小王很聪明;Q:小王不用功;P∧Q(2)如果天下大雨,我就乘公共汽车上班。
解:P:天下大雨;Q:我乘公共汽车上班;P→Q(3)只有天下大雨,我才乘公共汽车上班解:P:天下大雨;Q:我乘公共汽车上班;Q→P(4)不是鱼死,就是网破解:P:鱼死;Q:网破;P∨Q(5)李平是否唱歌,将看王丽是否伴奏而定。
解:P:李平唱歌Q:王丽伴奏P Q4.求下列命题公式的真值表: (1)P →(Q ∨R)()11110000110110000111110111001111111101QVR P QVR R Q P →(2)P ∧(QV ⌝R )解:()11011010111001111011000100010110000101110111777R Q P R QV R R Q P ∨∧(3)())(Q Q P P →→∧解:()())((111101001111110001QQ P P Q P P Q P Q P →→∧→∧→(4)()Q Q P ∧→7解:()()011001000011101001Q Q P Q P Q P Q P ∧→⌝→⌝→(5)()()Q P Q P ∧↔∨11100001111100101)()(Q P Q P Q P Q P Q P ∧↔∨∧∨5.用真值表方法验证下列基本等值式 (1)分配律解:1))()()(R P Q P R Q P ∨∧∨⇔∧∨1100000000111100111111000111111110010001001111111111110101)()()(R P Q P R P Q P R Q P R Q R Q P ∨∧∨∨∨∧∨∧∴)()(R P Q P R Q P ∨∧∨⇔∧∨ (2)De Morgen 律ⅰ) ()Q P Q P ⌝∨⇔∧77 ⅱ) ()Q P Q P 777∧⇔∨ⅰ) ()111100010110101101001000011177777Q P Q P Q P Q P Q P ∨∧∧ⅱ) ()111100101100100101000011177777QP Q P Q P Q P Q P ∧∨∨ (3) 吸收律ⅰ)()P Q P P ⇔∨∧ ⅱ) ()P Q P P ⇔∧∨ⅰ) ()011000011111101Q P P Q P Q P ∨∧∨ⅱ) ()01000011111001Q P P Q P Q P ∧∨∧6.用等值演算的方法证明下列等值式: (1)()()P Q P Q P ⇔∧∨∧7解:()()()P Q Q P Q P Q P ⇔∨∧⇔∧∨∧77 (2)()()()()R Q P R P Q P ∧→⇔→∧→( 解:()()))(()(7)7()7()()(R Q P R Q P R P Q P R P Q P ∧→⇔∧∨⇔∨∧∨⇔→∧→(3)())(7)()(7Q P Q P Q P ∧∧∨⇔↔解:()())7()7(7)()(7)(7P Q Q P P Q Q P Q P ∨∧∨⇔→∧→⇔↔()()()()⇔∧∨∧⇔∨∨∨⇔P Q Q P P Q Q P 77)7(7)7(7()()()∧∨∧∨⇔∨∧∧∨∧)7()(7)7()7(Q Q Q P P Q P Q Q P()()()()Q P Q P P Q Q P P Q P P ∧∧∨⇔∨∧∨⇔∨∧∨7)77()77()7(7.设A 、B 、C 为任意命题公式,试判断以下的说法是否正确,并简单说明之。
离散数学参考答案
1.(单选题)A.明年“五一”是晴天。
B.这朵花多好看呀!。
C.这个男孩真勇敢啊! D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 在上面句子中,是命题的是( )A.1+101=110 B.中国人民是伟大的。
C.这朵花多好看呀! D.计算机机房有空位吗?答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 在上面句子中,是命题的是( )A.如果天气好,那么我去散步。
B.天气多好呀!C.x=3。
D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题) 在上面句子中( )是命题下面的命题不是简单命题的是( )A.3 是素数或4 是素数B.2018 年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 下面的表述与众不一致的一个是( )A.P :广州是一个大城市 B.ØP :广州是一个不大的城市C.ØP :广州是一个很不小的城市 D.ØP :广州不是一个大城市答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:()A.PÙQ B.P®QC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 设:P :刘平聪明。
Q:刘平用功。
在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A.PÙQ B.ØPÚQC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)设:P:他聪明;Q:他用功。
湘潭大学计算机科学与技术刘任任版离散数学课后习题答案第二学期图论与组合数学
习 题 六1.设G 是一个无回路的图, 求证:假设G 中随意两个顶点间有惟一的通路, 那么G 是树. 证明:由假设知,G 是一个无回路的连通图,故G 是树。
2.证明:非平凡树的最长通路的起点和终点均为悬挂点. 分析:利用最长通路的性质可证。
证明:设P 是树T 中的极长通路。
假设P 的起点v 满意1)(>v d ,那么P 不是T 中极长的通路。
对终点u 也可同理探讨。
故结论成立。
3.证明:恰有两个悬挂点的树是一条通路.分析:因为树是连通没有回路的,所以树中至少存在一条通路P 。
因此只需证明恰有两个悬挂点的树中的全部的点都在这条通路P 中即可。
证明:设v u ,是树T 中的两个悬挂点,即1)()(==v d u d 。
因T 是树,所以存在),(v u -通路P :0,1≥k v w uw k 。
明显,2)(≥i w d 。
假设2)(>i w d ,那么由T 恰有两个悬挂点的假设,可知T 中有回路;假设T 中还有顶点x 不在P 中,那么存在),(x u -通路,明显u 及x 不邻接,且2)(≥x d 。
于是,可推得T 中有回路,冲突。
故结论成立。
4.设G 是树, ()k G ≥∆, 求证:G 中至少有k 个悬挂点.分析:由于()k G ≥∆,所以G 中至少存在一个顶点v 的度≥k ,于是至少有k 个顶点及邻接,又G 是树,所以G 中没有回路,因此及v 邻接的点往外延长出去的分支中,每个分支的最终一个顶点必定是一个悬挂点,因此G 中至少有k 个悬挂点。
证明:设)(G V u ∈,且k m u d ≥≥)(。
于是,存在)(,,1G V v v m ∈ ,使m i G E uv i ,,1),( =∈。
假设i v 不是悬挂点,那么有),(G V v i ∈'使。
如此下去,有)()(G V v l i ∈,满意,,)(j i v v j l i ≠≠且1)()(=l i v d , m i ,,1 =。
(完整版)《离散数学》试题及答案解析,推荐文档
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.
离散数学习题解答 第十四章习题解答(2)
单位元e的阶为1; ∵G中元素个数为偶数=1+p+2q;
∴p为奇数,即阶为2的元素个数为奇数.
14.20G为群,a,b∈G,已知ab = ba,a的阶为n, b的阶为m,证明:
证明:设(a) (b)={e,x}.则存在r,t Z, s.t. x=ar=bt,且0< r< p. Qp为素数, (r,p)=1.
存在n,m Z, s.t. mr + np = 1.
Q a=amr+np=amr·anp=(bt)m · e=btm (b),矛盾.
Q (a) (b)={e}.
4.设G是rs阶循环群,H1和H2分别为G的r阶 和s阶子群,证明:G= H1H2
(2)当b为G的一个子群的生成元时,(k,n)=r.
解答:设H为G的一个子群,b为H的生 成元,记H的阶为p.
则由拉格朗日定理可得r =|G|/|H|,即n=pr.
b为H的生成元 bp = (ak)p = e (n/p)|k r|k.
(k,n)=r.
n |kp
补充题:
1.[H1;·] [H2; ·]是[G; · ]的子群,[H1 H2; 是否为群[G; · ]的子群?说明理由.
14.12将下述置换分解为不含公共元的循环 置换,然后再将其分c e) = (a f) (f b) (c e).
14.13已知置换δ =(1 2 … n), S = (1 2 3)(4 5),
T = (1 4)(3 2)(1 6).
求:(1)δ-1
(1)( n, m ) =1时,ab阶为nm.
离散数学习题十四答案刘爱民
习题十四答案*14.1 解:判定一个图是否为偶图,即二分图,可以实行着色,如果是2色图,则是偶图。
另一种方法就是偶图中不存在奇数长的回路。
由此可以判定(a)(c)是偶图,(b)(d)不是。
*14.2 证明用归纳法。
(1) 2,3个顶点时显然成立;(2)假设k 等于n 成立,当k=n+1时,假设V 1没有树叶,则树叶必在V 2中,设为v ,且悬挂边为(v , u ), 而T -v 是n 个顶点的树,显然V 1中节点数要多些,由归纳假设,V 1中有一片树叶,只能是u, 这时考虑T -u 时n -2个节点的树,而V 1-u 中节点数依然是较多的部分,V 1-u 还有树叶,这与假设矛盾。
或用反证法:设二分图< V 1, V 2, E>中card(V 1)≥card(V 2),V 1中没有树叶。
而该二分图又是树,边数为card(V 1)+card(V 2)-1,正好是V 1中所有点度数之和。
由于V 1中没有树叶,所有点的度数大于等于2,所以card(V 1)+card(V 2)-1≥2card(V 1)≥card(V 1)+ card(V 2)显然该式不成立,所以原假设也不成立,V 1中至少有一片树叶。
*14.3 证明:二分图G(n,m)=< V 1, V 2, E>,节点数为n=card(V 1)+card(V 2)。
显然二分图边数最多的是完全二分图,即边数m ≤ card(V 1)card(V 2), 由于card 2(V 1)+card 2(V 2) ≥ 2 card(V 1)card(V 2)n 2 = (card(V 1)+card(V 2))2 ≥ 4card(V 1)card(V 2)m ≤ card(V 1)card(V 2) ≤n 2/4*14.4 解:一个匹配是图中一些互不相邻的边构成的集合。
极大匹配则是不能再增加不相邻的边的匹配,最大匹配是边数最多的极大匹配,完美匹配是当匹配中边的端点包含了原图所有顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⇔ 1 ∧ (( P ∧ Q) ∨ Q ∨ P ) ⇔ Q ∨ P
∴主合取式为=M0
主析取式为:m1∨m2∨m3
⇔(¬P∧Q) ∨(P∧¬Q) ∨(P∧Q)
(2) P ∨ (7 P → (Q ∨ (7Q → R) ))
⇔ P ∨ ( P ∨ (Q ∨ (Q ∨ R ))) ⇔ P ∨ (P ∨ (Q ∨ R ) ) ⇔ P ∨ Q ∨ R
(2) P → R 前提
(5)证 明: (1) R (2) 7 R ∨ P (3) P 附加前提 前提 析取三段式(1)、(2)
P (4) →(Q→S) 前提
(5)7P∨(7Q∨ S) 等值置换(4) (6)7Q ∨ S (7) Q (8) S 析取三段式(3)、(5) 前提 析取三段式(6)、(7)
命题逻辑对(p→q)的翻译
在p→q中,p与q的逻辑关系是q是p的必要条件, p是q的充分条件。用自然语言表达时有多种叙述方法, 例如: (1)如果p,则q; (3)因为p,所以q (5)只有q,才p (2)只要p,就q (4)p仅当q (6)除非q,否则非p
(7)假如没有q,就没有p
例如
设p:王容努力学习,q:王容取得好成绩 将下列命题符号化。 (1)只要王容努力学习,她就会取得好成绩 (2)王容取得好成绩,如果她努力学习 (3)只有王容努力学习,她才能取得好成绩 (4)除非王容努力学习,否则她不能取得好成绩 (5)假如王容不努力学习,她就不能取得好成绩 (6)王容取得好成绩,仅当她努力学习了。
2.
(1)F (3)T (6)不知真假 (8)不知真假 (9)真或假,视情况而定 (10)T (3)P:我们学好了离散数学。 Q:我们为学习计算机专业课程打下了良好的基础 P→Q (10)P:2是质数; Q:2是偶数; P∧Q
3.
(1)设 P:小王很聪明; Q:小王不用功; P∧Q (2)设 P:天下大雨; Q:我乘公共汽车上班; P→Q (3)设 P:天下大雨; Q:我乘公共汽车上班; Q→P或~P →~Q (4)设 P:鱼死; Q:网破; (5)设 P:李平唱歌 Q:王丽伴奏 P∨Q P↔Q
∴主合取式=M0 = P ∨ Q ∨ R 主析取式为=
m1 ∨ m 2 ∨ m3 ∨ m 4 ∨ m5 ∨ m6 ∨ m7
即= (7 P ∧ 7Q ∧ R ) ∨ (7 P ∧ Q ∧ 7 R ) ∨ (7 P ∧ Q ∧ R ) ∨ (P ∧ 7Q ∧ 7 R ) ∨
(P ∧ 7Q ∧ R ) ∨ (P ∧ Q ∧ 7 R ) ∨ (P ∧ Q ∧ R )
• 解:
F1 : 0
F3 : P ∧ 7Q
F2 : P ∧ Q
F
4
: P
F8 : P ∨ Q
F5 : 7 P ∧ Q
F6 : Q
F1 : 7(P ↔ Q )
F9 : ¬P ∧ ¬Q
F10 : P ↔ Q
F11 : 7Q
F13 : 7 P
F12 : P ∨ 7Q
F14 : P → Q
F15 : 7(P ∧ Q )
7.
(1)解:不正确。 如A为真,B为假,C为真时,
A ∨ C ⇔ B ∨ C成立,但是 A ⇔ B不成立
(2)解:不正确,如A为真,B为假,C为 假时,
A ∧ C ⇔ B ∧ C成立, 但A ⇔ B不成立。
(3)解:成立。~A,~B同真时,A、B同 假,~A、~B假时,A,B同真。
8.
PQF F F F F F F F F F F F F F F F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 000 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 010 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 100 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 110 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
P Q P ∧ Q P ∨ (P ∧ Q ) 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0
6.
(1) (P ∧ Q ) ∨ (P ∧ 7 Q ) ⇔ P ∧ (Q ∨ 7 Q ) ⇔ P (2)
((P →Q) ∧(P →R)) ⇔((7P∨Q) ∧(7P∨ R)) ⇔7P∨(Q∧ R) ⇔
离散数学• • • • • • • (1)是命题,且为简单命题 (2)不是命题 (3)是命题,且为复合命题。 (4)不是命题。 (5)不是命题。 (6)是命题,且为简单命题 (7)不是命题 (8)是命题,且为简单命题 (9)是命题,且为简单命题 (10)是命题,且为复合命题
所以,析取和合取均为:
(P ∧ ¬Q ∧ R )
12
(1)
(7 P ∨ 7Q ) → (P ↔ 7Q )
⇔ (7 P ∨ 7Q ) → (( P → 7Q) ∧ (7Q → P) ) ⇔ (7 P ∨ 7Q ) →
((7 P ∨ 7Q) ∧ (Q ∨ P))
⇔ 7(7P ∨ 7Q) ∨ ((7P ∨ 7Q) ∧ (Q ∨ P)) ⇔ (7(7P ∨ 7Q) ∨ (7P ∨ 7Q)) ∧ (7(7P ∨ 7Q) ∨ (Q ∨ P))
(3) (7 P → R ) ∧ (P ↔ Q ) ⇔ (7 P → R ) ∧ (P → Q ) ∧ (Q → P ) ⇔ (P ∨ R ) ∧ (7 P ∨ Q ) ∧ (P ∨ ¬ Q )
⇔ (( P ∨ R) ∨ (Q ∧ ¬Q) ) ∧ ((7 P ∨ Q) ∨ ( R ∧ ¬R)) ∧ (( P ∨ ¬Q) ∨ ( R ∧ ¬R) )
4.
• (1)
P Q R QVR 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 P → (QVR ) 1 1 1 1 0 1 1 1
(2)
P 1 1 0 0 1 1 0 0
Q 1 0 1 0 1 0 1 0
R 1 1 1 1 0 0 0 0
合取范式为: (P ∨ R ) ∧ (7Q ∨ R )
(3)解: 原式⇔ (P ∨ Q ) → (7Q ∨ P )
⇔7(P∨Q) ∨(7Q∨ P) ⇔(7P ∧7Q) ∨(7Q∨ P) ⇔((7P ∧7Q) ∨7Q) ⇔7Q∨ P
所以,析取和合取均为:
7Q ∨ P
• (4)解 原式
⇔ 7(7P ∨ Q) ∧ P ∧ R ⇔ (P ∧ ¬Q) ∧ P ∧ R ⇔ P ∧ ¬Q ∧ R
证明:
13.
P∨(7P ∧Q) ⇔(P ∧(7Q∨Q))∨(7P ∧Q) ⇔(P ∧7Q) ∨ (P ∧Q) ∨ (7P ∧Q)
( P ∨ Q) ⇔ ( P ∧ (Q ∨ 7Q)) ∨ (Q ∧ (7 P ∨ P)) ⇔ ( P ∧ Q) ∨ ( P ∧ 7Q) ∨
(Q ∧ 7 P ) ∨ ( P ∧ Q ) ⇔ ( P ∧ Q ) ∨ ( 7 P ∧ Q ) ∨ ( P ∧ 7 Q )
F16 : 1
11.
(1)解:
(7 P ∧ Q ) → R 7(7P∧Q) ∨R⇔(P∨7Q) ∨R⇔P∨¬ ∨R Q
(P → Q ) → R ⇔(7P ∨ Q) →R ⇔7(7P ∨ Q) ∨ R ⇔(P ∧ 7Q) ∨ R
析取范式为: (P ∧ 7Q ) ∨ R
(P ∧ 7Q) ∨ R ⇔ (P ∨ R) ∧ (7Q ∨ R)
(6) 证明: (1)7 P ∧ 7Q (2) 7 P (3) 7 P ∨ 7Q (4) 7(P ∧ Q ) 前提 简化(1) 附加(2) 等值置换(3)
14.
(1)证明: (1)7R (2)7Q∨R (3)7Q (5)7P∨Q (6)7P 前提引入 前提此入 析取三段论(1)、(2) 等值置换(4) 析取三段论(3)、(5)
(4)7(P∧7Q) 前提引入
(2) 证明: (1)R (2)P∨7R (3)P 附加前提 前提 析取三段式(1)、(2)
Q P∨Q 7(P∨Q) 1 1 0 0 1 0 1 1 0 0 0 1
7P 0 0 1 1
7Q 7P∧7Q 0 0 1 0 0 0 1 1
(3)
• ⅰ)
P ∧ (P ∨ Q ) ⇔ P
P 1 1 0 0 Q 0 1 0 1 P∨Q 1 1 0 1 P ∧ (P ∨ Q ) 1 1 0 0
ⅱ)
P ∨ (P ∧ Q ) ⇔ P
7R 0 0 0 0 1 1 1 1
QV 7 R 1 0 1 0 1 1 1 1
P ∧ (Q ∨ 7 R ) 1 0 0 0 1 1 0 0
(3)
P Q P → Q P ∧ (P → Q ) 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0
((P ∧ (P → Q )) → Q
1 1 1 1
(4)
P Q P → Q ¬(P → Q ) ¬(P → Q ) ∧ Q 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0
(5)
P Q P ∨ Q P ∧ Q ( P ∨ Q) ↔ ( P ∧ Q) 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0
(4)P→(Q→S) 前提 (5)7P∨(7Q∨S)等价置换(4) (6)7Q∨S (7)Q (8)S 析取三段式(3)、(5) 前提 析取三段式(6)、(7)
(3) 证明: (1)P 附加前提 (2)P→Q 前提 (3)Q 假言推理(1)、(2) (4) 合取
(4) 证明: (1) P ∨ Q (3) Q → S (4) S ∨ R 前提 前提 构造二难性(1)、(2)、(3)
(P →(Q∧ R))
• (3)
7( P ↔ Q) ⇔ 7(( P → Q) ∧ (Q → P) ) ⇔ 7((7 P ∨ Q) ∧ (7Q ∨ P) ) ⇔ (7(7 P ∨ Q) ) ∨ (7(7Q ∨ P) ) ⇔ (P ∧ 7Q ) ∨ (Q ∧ 7 P ) ⇔