巨磁电阻效应及应用

合集下载

巨磁电阻效应及其应用

巨磁电阻效应及其应用

实验十七巨磁电阻效应及其应用2007年诺贝尔物理学奖授予了巨磁电阻(Rianr magneto resistance,简称GMR)效应的发现者,法国Paris-Sud大学的物理学家阿贝尔·费尔(Albert Fert)和德国尤里希研究中心物理学家彼得·格伦贝格尔(Peter Grunberg)。

他们于1988年独立作出的发现巨磁阻效应。

诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它计算机硬盘的容量从几百兆,几千兆,一跃而提高几百倍,达到几百G乃至上千G。

”凝聚态物理研究原子,分子在构成物质时的微观结构,他们之间的互相作用力,及其与宏观物理性质之间的联系。

人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。

量子力学出现后,德国科学家海森伯(W.Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。

后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如图17-1所示。

图17-1 反铁磁有序磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。

这种磁有序状态称为反铁磁性。

法国科学家奈尔(L. E. F. Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。

在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。

另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。

相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。

直接交换作用的特征长度为0.1—0.3nm,间接交换作用可以长达1nm以上。

1nm已经是实验室中人工微结构材料可以实现的尺度。

【2017年整理】巨磁阻效应的原理及应用

【2017年整理】巨磁阻效应的原理及应用

【2017年整理】巨磁阻效应的原理及应用巨磁阻效应(Giant Magnetoresistance, GMR)是一种物理现象,指在特定条件下,铁磁或亚铁磁材料中的磁电阻发生显著变化的现象。

这种现象在工业和科研领域具有广泛的应用价值,因此了解其原理及在各领域的应用十分重要。

一、巨磁阻效应的原理巨磁阻效应主要由以下几个因素决定:1.交换耦合:当两个磁性材料之间有耦合作用时,它们的磁矩会互相影响。

在特定的条件下,这种耦合作用会使材料的磁电阻发生显著变化。

2.层状结构:巨磁阻材料通常采用多层膜结构,其中每一层都可以作为电流通道。

当电流垂直于膜面流动时,各层中的磁矩会相互作用,导致电阻发生变化。

3.钉扎场:钉扎场是指材料内部由于杂质、缺陷或其他因素引起的局部磁场。

当电流在材料中流动时,钉扎场会对电流产生散射作用,导致电阻增加。

二、巨磁阻效应的应用巨磁阻效应在多个领域具有广泛的应用价值,以下是几个主要应用领域:1.硬盘读取头:巨磁阻材料制成的硬盘读取头是现代计算机和数据中心的核心组件之一。

由于其具有高灵敏度和低噪音的特性,使得硬盘读取头的读取速度和准确性得到大幅提升。

2.磁传感器:巨磁阻材料制成的磁传感器在医疗、工业和科研领域得到广泛应用。

例如,在医疗领域中,磁传感器可用于检测人体内的金属物体和进行磁场导航;在工业领域中,磁传感器可用于检测电动机和发电机的转子位置;在科研领域中,磁传感器可用于研究物质的磁性和电磁场分布。

3.磁场探测器:巨磁阻材料制成的磁场探测器可用于检测弱磁场和高精度测量磁场方向和大小。

例如,在地球物理勘探、生物医学和核磁共振等领域,磁场探测器具有重要应用价值。

4.磁记忆材料:巨磁阻材料制成的磁记忆材料具有高密度、高速度和高可靠性等优点,可用于数据存储和逻辑运算等领域。

与传统的半导体存储器相比,磁记忆材料具有更高的存储密度和更长的使用寿命。

5.磁场调控:巨磁阻效应还可以用于调控磁场分布和方向,从而在多个领域具有潜在的应用价值。

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告引言巨磁电阻(GMR)效应是一种在特定材料中的电阻随着磁场强度的改变而发生改变的现象,这个现象在1988年被发现并且被认为是一种非常重要的物理现象。

GMR效应的发现因其在信息存储和传输方面的应用而获得广泛的关注。

本实验旨在通过对GMR效应的测量来研究其基本性质以及应用。

实验器材本实验的器材包括:恒流源、磁场控制器、数显万用表、集成电路(IC)芯片、电阻板和薄膜,其中集成电路芯片是一种悬挂在磁性薄膜上的表面贴装器件,薄膜是一种金属薄膜,可以产生磁场。

实验步骤1.将IC芯片放置在电阻板的中心位置。

2.将磁性薄膜放置在IC芯片顶部,注意不要碰到芯片。

3.将恒流源的电流调节到正确的数值,根据实验需求选择恒流源的最大或最小电流值。

4.打开磁场控制器,使用磁场控制器来控制磁场的强度,根据需要进行改变。

5.使用数显万用表来测量芯片中的电压。

6.根据实验的需要调整电阻板和薄膜之间的距离。

实验结果实验结果表明,在施加不同大小的磁场时,IC芯片的电阻会发生变化,这种变化非常灵敏,能够实现高精度的控制。

此外,IC芯片的电阻随着磁场的强度增加而减小,这表明芯片的电阻具有“负巨磁电阻”效应。

讨论与结论巨磁电阻效应是一种非常重要的物理现象,它在信息存储和传输方面具有非常广泛的应用。

本实验展示了GMR效应的基本特性,并探讨了其在实际应用中的潜在价值。

我们可以通过调整材料的性质来提高其敏感度和精度,从而扩展其现有应用。

总之,GMR效应在信息技术领域是一个革命性的技术,它为我们提供了一种新的方式来控制和处理信息。

通过进一步研究和优化,我们可以更好地利用这个效应,实现更高效的数据传输和处理。

巨磁阻效应

巨磁阻效应

巨磁阻效应发展的奠基人
法国科学家阿尔贝· 费尔和德国科学家彼得· 格林贝格尔 因1988年先后各自独立发现“巨磁电阻”效应而共同获得2007 年诺贝尔物理学奖。
阿尔贝· 费尔
彼得· 格林贝格尔
三、巨磁阻效应的应用
巨磁阻效应自从被发现以来就被用于开发研制使 硬磁盘的体积更小和更灵敏的数据读出头。这使得存 储单字节数据所需的磁性材料尺寸大为减少,从而使 得磁盘的存储能力得到大幅度的提高。
硬磁盘存储器的结构
磁记录原理和记录方式
• 磁记录中的“位”和二进制信息中的“位 ”大多数情况下都是对应的:大多数情况 下磁场方向代表“0”,而它的反向磁场代表 “1”,这是一种最容易理解的信号调制方式 ,是很可靠的一种理论理解,可以在理论 分析的时候使用。
原理图
磁记录方式 写入数据
写线圈 I 铁芯 磁通 写线圈 I
二、效应发现
早在1988年,费尔和格林贝格尔就各自 独立发现了这一特殊现象:有些磁性材料在 非常弱小的磁性变化下就能导致发生非常显 著的电阻变化。那时,法国的费尔在铁、铬 相间的多层膜电阻中发现,微弱的磁场变化 可以导致电阻大小的急剧变化,其变化的幅 度比通常高十几倍,他把这种效应命名为巨 磁阻效应。
二、请利用巨磁阻材料,设计一个可以实现“通” 、和“断”的装置,并分析该装置可能的一些应用


“通”和”断“在电脑磁盘读取数据中的设计 图
谢谢大家!
组长:张羲 组员:赵玉平,陈烜,张超,张荣贵,李若 恒,叶顺。
巨磁阻效应及其应用
一、什么是巨磁阻效应?
平行磁化方向(低阻态)
相反磁化方向(高阻态)
巨磁阻效应是指当铁磁材料和非磁性金属层交替组合成的材料在
足够强的磁场中时,电阻突然巨幅下降的一种现象。如果相邻材料中的 磁化方向平行的时候,电阻会变得很低;而当磁化方向相反的时候电 阻则会变得很大。电阻值的这种变化是由于不同自旋的电子在单层磁 化材料中的散射性质不同而造成的。

巨磁电阻效应及其应用

巨磁电阻效应及其应用

巨磁电阻效应及其应用巨磁电阻效应(GMR)是指一种材料在外加磁场作用下,其电导率发生改变,从而导致电阻率发生变化的现象。

这一现象最早是在20世纪50年代由Alfred G. Yelon等人在垂直于金属层面的磁场作用下观察到的。

但直到1988年,Prinz等人才发现了铁磁性薄膜间的GMR现象,这也使得GMR效应引起了科学家们的广泛兴趣。

GMR效应在接下来的几年里得到了深入研究,被发现可以用于高密度数据存储和无线通讯等多种应用中。

GMR效应可以由一系列不同的物理机制所产生。

其中,最为常见的是自旋環境杂化(SEH)和直接交换耦合(DEC)。

在SEH机制下,电流通过一条薄膜时会造成电子的自旋极化,这个自旋极化可以将与之相邻的薄膜中的自旋磁矩引起旋转,导致自旋的损失。

因此,在自旋磁矩方向相同的情况下,电阻率会较小,而在自旋反向的情况下,电阻率会较大。

在DEC机制下,自旋子交换能会通过金属层之间的电场作用而引起自旋磁矩的反向。

这也可以导致GMR效应的体现,但其具体机理仍有待深入探究。

GMR效应在很多领域都具有重要的应用。

其中最为广泛的是在数据存储中的应用。

磁头读取硬盘上的数据时,通过读取与保存数据时的自旋方向差异来区分不同的数据信息。

而GMR头比传统头更加灵敏,因此能够更准确地读取数据,同时也能够提高数据存储的密度。

此外,GMR效应还可以应用于磁性传感器中。

例如,GMR平面传感器可以精确地测量磁场的强度和方向,因此被广泛应用于导航、探矿以及科学实验中。

此外,GMR还可以应用于生物医学领域中的诊断和治疗。

比如在生命科学中,GMR传感器可以用于检测药物和蛋白质的相互作用,在诊断和治疗中也具有潜在的应用价值。

总之,GMR效应是一种基于材料电导率随磁场变化的现象。

其重要的应用领域包括数据存储、磁性传感器以及生物医学等领域。

随着技术的进步和理解的不断深入,GMR效应将有更多广阔的应用前景。

巨磁电阻效应及应用的原理

巨磁电阻效应及应用的原理

巨磁电阻效应及应用的原理巨磁电阻效应的定义巨磁电阻效应是指当外加磁场发生变化时,材料的电阻发生改变的现象。

这种现象的发现和研究引发了巨磁电阻效应的探索和应用。

巨磁电阻效应的原理巨磁电阻效应是由磁性材料自旋极化和电子传输的相互作用引起的。

这种效应主要依赖于磁性材料中的自旋极化态以及电子的传输方式。

当磁场施加在磁性材料上时,磁场与材料中的自旋相互作用会引起自旋的重新排列。

自旋的重新排列会导致电子在材料中的传输行为发生变化,从而影响材料的电阻。

这种自旋排列的重新配置会引起电子的散射和反射,从而影响电子的传输路径和速度。

巨磁电阻效应的应用巨磁电阻效应的发现和研究为许多实际应用提供了可能。

以下是巨磁电阻效应的一些主要应用:1.磁存储器:巨磁电阻效应被广泛应用于磁存储器中,可用于读取和写入数据。

磁存储器可以储存大量的数据,而且巨磁电阻效应能够实现快速、高密度的读写操作。

2.磁传感器:巨磁电阻效应广泛应用于磁传感器中,用于检测磁场的变化。

磁传感器可以用于地理导航系统、磁共振成像仪、汽车导航系统等。

3.磁阻变传感器:巨磁电阻效应还可应用于磁阻变传感器中,用于检测物体的位置、位移和旋转角度。

磁阻变传感器可以应用于汽车制动系统、手持设备的姿态感知等领域。

4.磁阻随机存取存储器(MRAM):巨磁电阻效应在磁阻随机存取存储器中的应用有很大潜力。

MRAM具有非易失性、低功耗、高速度和高密度等优点。

5.磁阻式角度传感器:巨磁电阻效应还可以应用于磁阻式角度传感器中,用于检测物体的角度变化。

磁阻式角度传感器可以应用于机械臂、机器人和汽车的转向系统等。

巨磁电阻效应的应用范围还在不断扩大,随着磁性材料和电子技术的进一步发展,巨磁电阻效应的新应用也在不断涌现。

总结巨磁电阻效应是材料的电阻在外加磁场变化时发生改变的现象,其实现需要磁性材料的自旋极化与电子传输的相互作用。

巨磁电阻效应的应用广泛,包括磁存储器、磁传感器、磁阻变传感器、磁阻随机存取存储器和磁阻式角度传感器等。

【2017年整理】巨磁阻效应的原理及应用

【2017年整理】巨磁阻效应的原理及应用

【2017年整理】巨磁阻效应的原理及应用
巨磁阻效应,也称为巨磁电阻效应,是一种在磁场中通过材料产生电阻变化的现象。

这种现象在诺贝尔物理学奖中也得到了高度的重视。

这个现象被广泛地应用于传感器和磁存储器等领域。

巨磁阻效应的原理是通过运用材料磁电阻效应来实现的,其中涉及到了磁导率及磁相的变化。

在巨磁阻效应的材料中,主要是利用了铁磁体与非磁体之间的交替排列。

铁磁体面对磁场的导磁率要高于非磁体,在磁场中,磁力线会挤压铁磁体并且让自由电子的活动空间更小,电子的运动受到磁力线的影响也就越来越弱,因此阻力增大,使电阻率发生了变化。

巨磁阻效应被应用到传感器中的原理是将磁场信号转换成电阻变化信号。

传感器将磁场转换成电阻,从而通过实时测量电阻变化来确定磁场强度。

巨磁阻效应也被广泛应用于磁存储器的读写头中。

在磁存储器中,通过记录小磁场的相对方向来记录数字信息,而磁读头的读取则是通过测量磁场来实现的。

磁读头中借助巨磁阻效应来检测记录的数字,探针接收到来自介质表面所反射的信号,将信号转换成电阻变化信号,进而形成数字信息识别和读写的过程。

巨磁阻效应不单单只应用于磁存储器和传感器领域,它还可以被应用到其他领域,例如在生产线上的质量检测和转换设备上的电子分类等领域,逐渐地将其应用范围拓展到了其他领域中。

巨磁电阻效应的原理及应用

巨磁电阻效应的原理及应用

巨磁电阻效应的原理及应用1. 巨磁电阻效应的介绍巨磁电阻效应(Giant Magnetoresistance,GMR)是一种描述材料电阻随外加磁场变化的现象。

GMR的发现被认为是短距离存储技术的突破,对磁敏感材料和磁传感器的发展具有重要意义。

2. 巨磁电阻效应的原理巨磁电阻效应的产生与磁性多层膜结构中存在的顺磁性层和铁磁性层之间的相互作用有关。

当外加磁场改变时,磁性多层膜中的磁性层会发生磁矩的重排和旋转,从而导致电子的自旋定向与电子传输方向的关系发生变化。

这种变化会导致电阻的变化,即巨磁电阻效应的产生。

3. 巨磁电阻效应的应用巨磁电阻效应的应用非常广泛,主要包括以下几个方面:3.1 磁存储器巨磁电阻效应在磁存储领域发挥着重要作用。

由于巨磁电阻效应的出现,磁存储器的读写速度得到了显著提高。

传统磁存储器需要通过读写头的接触来读取数据,而采用巨磁电阻效应材料制成的磁存储器只需通过测量电阻值的变化来完成数据读取,大大提高了读取速度和数据存取密度。

3.2 磁传感器巨磁电阻效应材料常常被用于制作磁传感器。

巨磁电阻效应材料的电阻值随外加磁场的变化而变化,因此可以利用巨磁电阻效应材料制成的传感器来测量磁场的强度和方向。

磁传感器在航空航天、交通运输、医疗设备等领域中得到了广泛应用。

3.3 磁电阻随机存取存储器(MRAM)巨磁电阻效应也被应用于磁电阻随机存取存储器(Magnetoresistive Random Access Memory,MRAM)的制造。

MRAM是一种新型的非易失性存储器,兼具闪存和DRAM的优点。

相比传统存储器技术,MRAM具有读取速度快、功耗低、抗辐射等优势。

3.4 理论研究与材料改进巨磁电阻效应的研究也对材料科学领域有着重要意义。

科学家们通过对巨磁电阻效应的原理和机制的研究,不断改进巨磁电阻材料的性能和稳定性,以实现更高的电阻变化率和更佳的传感特性。

4. 结论巨磁电阻效应作为一种重要的磁电效应,具有广泛的应用前景。

巨磁电阻表明在不同的磁场方向中电阻随之改变的一类效应

巨磁电阻表明在不同的磁场方向中电阻随之改变的一类效应

巨磁电阻表明在不同的磁场方向中电阻随之改变的一类效应巨磁电阻(giant magnetoresistance,简称GMR)效应是一种发现于1988年的物理现象,它揭示了磁场对材料电阻的巨大影响。

GMR效应在许多领域具有重要应用,尤其在信息存储技术方面,为硬盘驱动器和磁存储器的发展做出了巨大贡献。

本文将介绍巨磁电阻效应的原理、应用以及未来的发展趋势。

一、巨磁电阻效应原理巨磁电阻效应的基本原理是由两个或多个磁性层夹着一个非磁性层构成的多层薄膜结构。

这些磁性层可以是铁、镍、钴等材料,而非磁性层通常是铜或铬。

当这个多层薄膜结构处于一个磁场中时,磁性层的磁矩会在外力的作用下重新排列。

这个过程会导致电子在磁性层之间发生散射,从而影响到整个结构的电阻。

当磁场与多层薄膜结构的磁矩平行排列时,电子在磁性层之间的散射最小,电阻值较小。

而当磁场与磁矩反平行排列时,电子在磁性层之间的散射最大,电阻值较大。

通过测量不同磁场下的电阻值,可以得到巨磁电阻效应。

这一效应的特点是,当磁场方向发生变化时,电阻随之改变。

二、巨磁电阻效应的应用1. 磁存储器巨磁电阻效应在磁存储器领域有着广泛的应用。

传统的硬盘驱动器中,磁头通过感应磁性材料的磁场变化来读取和写入数据。

而巨磁电阻效应可以提供更高的读取灵敏度和更大的磁场响应范围,从而提高了数据的读取速度和存储密度。

2. 磁传感器巨磁电阻效应还可以用于制造高灵敏度的磁传感器。

这种传感器可广泛应用于磁场测量、位置检测、磁导航等领域。

相比传统的磁传感器,基于巨磁电阻效应的磁传感器具有更高的灵敏度和更快的响应速度。

3. 磁阻随机存储器磁阻随机存储器(magnetic random-access memory,简称MRAM)是一种新兴的存储器技术。

它基于巨磁电阻效应来存储数据,具有非易失性、快速读写、高密度等优点。

相比传统存储器技术,MRAM能够提供更高的数据存储密度和更低的功耗。

三、巨磁电阻效应的发展趋势巨磁电阻效应的研究仍在不断深入,未来有以下几个发展趋势:1. 新的材料和结构:研究人员正在寻求新的材料和结构,以增强巨磁电阻效应。

巨磁电阻效应和应用_实验报告

巨磁电阻效应和应用_实验报告

巨磁电阻效应和应⽤_实验报告巨磁电阻效应及其应⽤【实验⽬的】1、了解GMR效应的原理2、测量GMR模拟传感器的磁电转换特性曲线3、测量GMR的磁阻特性曲线4、⽤GMR传感器测量电流5、⽤GMR梯度传感器测量齿轮的⾓位移,了解GMR转速(速度)传感器的原理【实验原理】根据导电的微观机理,电⼦在导电时并不是沿电场直线前进,⽽是不断和晶格中的原⼦产⽣碰撞(⼜称散射),每次散射后电⼦都会改变运动⽅向,总的运动是电场对电⼦的定向加速与这种⽆规散射运动的叠加。

称电⼦在两次散射之间⾛过的平均路程为平均⾃由程,电⼦散射⼏率⼩,则平均⾃由程长,电阻率低。

电阻定律 R=l/S 中,把电阻率视为常数,与材料的⼏何尺度⽆关,这是因为通常材料的⼏何尺度远⼤于电⼦的平均⾃由程(例如铜中电⼦的平均⾃由程约34nm),可以忽略边界效应。

当材料的⼏何尺度⼩到纳⽶量级,只有⼏个原⼦的厚度时(例如,铜原⼦的直径约为0.3nm),电⼦在边界上的散射⼏率⼤⼤增加,可以明显观察到厚度减⼩,电阻率增加的现象。

电⼦除携带电荷外,还具有⾃旋特性,⾃旋磁矩有平⾏或反平⾏于外磁场两种可能取向。

早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡⾦属中,⾃旋磁矩与材料的磁场⽅向平⾏的电⼦,所受散射⼏率远⼩于⾃旋磁矩与材料的磁场⽅向反平⾏的电⼦。

总电流是两类⾃旋电流之和;总电阻是两类⾃旋电流的并联电阻,这就是所谓的两电流模型。

在图2所⽰的多层膜结构中,⽆外磁场时,上下两层磁性材料是反平⾏(反铁磁)耦合的。

施加⾜够强的外磁场后,两层铁磁膜的⽅向都与外磁场⽅向⼀致,外磁场使两层铁磁膜从反平⾏耦合变成了平⾏耦合。

电流的⽅向在多数应⽤中是平⾏于膜⾯的。

电阻\欧姆磁场强度/ ⾼斯图3 某种GMR材料的磁阻特性⽆外磁场时顶层磁场⽅向⽆外磁场时底层磁场⽅向图2 多层膜GMR 结构图图3是图2结构的某种GMR 材料的磁阻特性。

由图可见,随着外磁场增⼤,电阻逐渐减⼩,其间有⼀段线性区域。

巨磁电阻效应及应用实验报告

巨磁电阻效应及应用实验报告

巨磁电阻效应及应用实验报告巨磁电阻效应及应用实验报告引言在现代科技领域中,材料科学的发展一直是一个重要的研究领域。

巨磁电阻效应作为一种重要的磁电效应,在材料科学中具有广泛的应用前景。

本实验旨在探究巨磁电阻效应的原理和特性,并通过实验验证其在实际应用中的可行性。

一、巨磁电阻效应的原理巨磁电阻效应是指在外加磁场作用下,材料电阻发生变化的现象。

这一效应的发现对磁性材料的研究和应用带来了革命性的变化。

巨磁电阻效应的原理主要是基于磁矩自旋相互作用和电子传输过程中的自旋极化效应。

当外加磁场作用于材料时,磁矩会发生定向排列,导致电子在材料中传输时会受到不同程度的散射,从而改变了材料的电阻。

二、实验方法1. 实验材料准备本实验选用了一种常见的巨磁电阻材料,如铁磁合金。

首先,将铁磁合金样品切割成适当的尺寸,并对其进行表面清洁处理,以确保实验的准确性。

2. 实验装置搭建将铁磁合金样品固定在实验装置中,并连接电源和电流计,以便测量电阻的变化。

同时,设置一个可调节的磁场装置,用于施加外加磁场。

3. 实验步骤首先,将实验装置置于零磁场环境中,测量铁磁合金样品的初始电阻。

然后,逐渐增加外加磁场的强度,并测量相应的电阻值。

记录每个磁场强度下的电阻值,并绘制电阻-磁场曲线。

三、实验结果与分析通过实验测量得到的电阻-磁场曲线如下图所示。

从图中可以看出,在外加磁场作用下,铁磁合金样品的电阻发生了明显的变化。

随着磁场的增加,电阻呈现出逐渐减小的趋势。

图1:电阻-磁场曲线根据实验结果可以发现,铁磁合金样品在外加磁场作用下呈现出典型的巨磁电阻效应。

这是由于外加磁场改变了材料中磁矩的排列方式,导致电子在传输过程中受到不同程度的散射,从而改变了电阻值。

四、巨磁电阻效应的应用巨磁电阻效应在实际应用中具有广泛的潜力。

其中最典型的应用就是磁存储技术。

通过利用巨磁电阻效应,可以实现高密度、高速度的磁存储器件。

此外,巨磁电阻效应还可以应用于传感器、磁场测量和磁性材料的研究等领域。

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用1. 引言巨磁阻效应(Giant Magneto Resistance,简称GMR)是一种材料特性,是指在外加磁场下,材料电阻发生大幅度变化的现象。

由于其在信息存储、传感器等领域具有广泛的应用,因此对其原理及应用进行深入研究和了解具有重要意义。

2. 巨磁阻效应的原理巨磁阻效应源于磁性多层结构材料中的自旋阻尼效应和磁性交换效应。

当多层结构材料中的两个磁性层之间被非磁性层隔开时,自旋极化电流通过这些层会引起阻尼之间的传递,导致电阻发生变化。

巨磁阻效应的原理可以用以下几点进行解释:•磁性多层结构:采用多层薄膜结构,其中包含不同磁性层和非磁性层。

•自旋极化电流:施加自旋极化电流时,电子的自旋会对电子传输产生影响。

•自旋阻尼效应:自旋极化电流通过磁性层时,会与该层磁矩发生相互作用,引起自旋的阻尼。

•磁性交换效应:自旋极化电流引起的自旋阻尼会与相邻磁性层之间的磁性交换作用产生耦合,导致电阻变化。

3. 巨磁阻效应的应用3.1 磁存储器巨磁阻效应在磁存储器中有广泛应用。

磁存储器利用外加磁场的变化,改变磁性多层结构材料中的电阻,从而存储和读取信息。

巨磁阻效应的高灵敏度和可控性,使得磁存储器具有更高的容量和更快的速度。

3.2 磁传感器巨磁阻效应也可以应用于磁传感器中。

磁传感器利用材料的电阻变化来感应磁场的变化。

巨磁阻传感器具有高灵敏度、宽工作范围和低功耗的特点,广泛应用于磁测量、地磁导航和磁生物学等领域。

3.3 磁电阻头巨磁阻效应还可以用于磁电阻头的制造。

磁电阻头是读取硬盘驱动器中存储信息的装置,利用材料电阻的变化来感知磁场中的数据。

巨磁阻效应的高灵敏度和稳定性,使得其在磁电阻头中有广泛的应用。

3.4 其他应用领域除了上述应用领域,巨磁阻效应还可应用于磁生物学、磁传导等领域。

例如,巨磁阻效应可以用于生物传感器中,实现对生物磁场的检测和分析。

此外,巨磁阻效应还可以用于磁传导器件中,实现磁传导的控制和调节。

6-巨磁电阻效应及应用

6-巨磁电阻效应及应用

巨磁电阻效应及应用一. 实验目的理解多层膜巨磁电阻(Giant Magneto Resistance —GMR )效应的原理,通过实验了解几种GMR 传感器的结构、特性及应用领域。

二. 实验内容1.GMR 模拟传感器的磁电转换特性测量改变螺线管励磁电流,记录传感器的输出模拟电压。

螺线管电流范围-100mA~100mA 。

由公式nI B 0μ=(n 为线圈密度,I 为流经线圈的电流强度,m H /10470-⨯=πμ)计算出磁感应强度B ,以B 为横坐标,电压表读数为纵坐标做出磁电转换特性曲线。

2.GMR 磁阻特性测量改变螺线管励磁电流,记录巨磁阻的输出电流。

螺线管电流范围-100mA~100mA (正负电流的切换需手动改变导线连接)。

根据欧姆定律计算巨磁阻的电阻,以磁感应强度B 为横坐标,磁阻为纵坐标做出磁阻特性曲线。

3.GMR 开关(数字)传感器的磁电转换特性曲线测量改变螺线管励磁电流,记录传感器的输出开关电压。

螺线管电流在-50mA~50mA 。

以磁感应强度B 为横坐标,电压读数为纵坐标做出开关传感器的磁电转换特性曲线。

4.用GMR 模拟传感器测量电流将待测电流设为0,改变偏置磁场,使得巨磁阻输出电压最大,记录此值。

保持该偏置磁场,改变待测电流,每隔50mA 记录一次巨磁阻的输出电压。

其中,待测电流变换范围-300mA~300mA 。

改变偏置磁场,重复测量3组数据。

以电流读数为横坐标,电压表读数为纵坐标作图,分别作出4条曲线。

5.GMR 梯度传感器的特性及应用逆时针慢慢转动齿轮,当输出电压为0时记录起始角度,以后每转3度记录一次角度与电压表的读数。

转动48度齿轮转过2齿,输出电压变化2个周期。

以齿轮实际转过的度数为横坐标,电压表的度数为纵向坐标作图。

6.磁记录与读出读写模块启用前,同时按下“0/1转换”和“写确认”按键约2秒,将读写组件初始化。

将此卡有刻度区域的一面朝前,沿着箭头标识的方向插入划槽,按需要切换写“0”或写“1”,按住“写确认”按键不放,缓慢移动磁卡,根据磁卡上的刻度区域写入。

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用【实验目的】1、了解GMR效应的原理2、测量GMR模拟传感器的磁电转换特性曲线3、测量GMR的磁阻特性曲线4、用GMR传感器测量电流5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理【实验原理】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。

称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。

电阻定律 R=?l/S中,把电阻率?视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。

当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。

;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。

在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。

施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。

电流的方向在多数应用中是平行于膜面的。

图3是图2结构的某种GMR材料的磁阻特性。

由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。

当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。

磁阻变化率ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。

注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。

有两类与自旋相关的散射对巨磁电阻效应有贡献。

其一,界面上的散射。

无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。

巨磁电阻效应及应用

巨磁电阻效应及应用

磁阻/Ω 磁感应强度/G 减小磁场 励磁电流/mA 100 90 80 70 60 磁感应强度/G 30.15929 27.14336 24.12743 21.1115 18.09557 磁阻电流/mA 2.12 2.12 2.12 2.12 2.11 磁阻/Ω 1886.79245 1886.79245 1886.79245 1886.79245 1895.7346 增大磁场 磁阻电流/mA 2.1 2.07 2.03 1.99 1.95 磁阻/Ω 1886.79245 1886.79245 1886.79245 1886.79245 1904.7619
自由层 中间导电层 被钉扎层 钉扎层
图 4 自旋阀 SV-GMR 结构图
使用硬铁磁材料, 铁磁和反铁磁材料在交换耦合作用下形成一个偏转场,此偏转 场将被钉扎层的磁化方向固定,不随外磁场改变。自由层使用软铁磁材料,它的 磁化方向易于随外磁场转动。 这样,很弱的外磁场就会改变自由层与被钉扎层磁 场的相对取向,对应于很高的灵敏度。制造时,使自由层的初始磁化方向与被钉 扎层垂直, 磁记录材料的磁化方向与被钉扎层的方向相同或相反 (对应于0或1) , 当感应到磁记录材料的磁场时, 自由层的磁化方向就向与被钉扎层磁化方向相同 (低电阻)或相反(高电阻)的方向偏转,检测出电阻的变化,就可确定记录材 料所记录的信息,硬盘所用的GMR磁头就采用这种结构。
无外磁场时顶层磁场方向 顶层铁磁膜 中间导电层 底层铁磁膜
电 阻 欧 姆
\
无外磁场时底层磁场方向
磁场强度 / 高斯
图 2 多层膜 GMR 结构图
图3
某种 GMR 材料的磁阻特性
多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作 模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度, 发展了自旋阀结构的GMR。如图4所示。 自旋阀结构的SV-GMR(Spin valve GMR)由钉扎层,被钉扎层,中间导电层和 自由层构成。其中,钉扎层使用反铁磁材料,被钉扎层

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告巨磁电阻效应(Giant Magneto-Resistance, GMR)是一种在金属中观察到的电阻变化现象,由于它的优异特性,使得它在信息技术领域有着广泛的应用。

本实验旨在通过实验观察巨磁电阻效应,并探索其在磁存储器领域的应用。

1.实验原理2.实验器材和实验步骤实验器材:-差分放大器-稳压电源-多层膜样品-外加磁场产生器-数字万用表实验步骤:1.将多层膜样品连接到差分放大器的输入端,并将输出端连接到数字万用表。

2.连接稳压电源,并将多层膜样品置于外加磁场产生器中。

3.通过调节外加磁场的大小和方向,观察并记录差分放大器输出的电压值。

4.改变外加磁场的方向,再次观察并记录差分放大器输出的电压值。

5.重复步骤3和4,直到获得一系列不同磁场方向下的电压值。

3.实验结果和分析通过实验记录的数据,我们可以绘制出不同磁场方向下的电压-磁场曲线图。

该曲线图显示了巨磁电阻效应的存在,在磁场方向变化时,电压值也随之变化。

当磁场方向与多层膜样品的磁化方向一致时,电压值较小,而反之电压值较大。

4.应用领域巨磁电阻效应在磁存储器领域有着广泛的应用。

其中一个重要的应用是硬盘驱动器。

硬盘驱动器通过在磁头上应用磁场读取和写入信息到磁性盘片上。

巨磁电阻效应可以提高磁头的读取精度和灵敏度,从而提高硬盘驱动器的性能和存储容量。

此外,巨磁电阻效应还可以用于磁场传感器、磁记忆器等领域。

总结:本实验通过实验观察和记录,成功展示了巨磁电阻效应的存在,并探索了其在磁存储器领域的应用。

巨磁电阻效应的出现为信息技术领域带来了巨大的进步和发展。

随着对巨磁电阻效应的深入研究,相信它的应用将会越来越广泛,对信息技术的发展起到重要的推动作用。

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用巨磁阻效应的原理及应用物质在一定磁场下电阻改变的现象,称为磁阻效应。

磁性金属和合金材料一般都有这种现象。

一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR)。

要说这种效应的原理,不得不说一下电子轨道及自旋。

种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。

表征其性质的量子数是主量子数n、角量子数l、自旋量子数s=1/2,和总角动量量子数j。

主量子数(n=1,2,3,4 …)会视电子与原子核间的距离(即半径座标r)而定。

平均距离会随着n增大,因此不同量子数的量子态会被说成属于不同的电子层。

角量子数(l=0,1 … n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。

在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。

有些时候,不同角量子数的轨道有不同代号,l=0的轨道叫s 轨道,l=1的叫p轨道,l=2的叫d轨道,而l=3的则叫f轨道。

磁量子数(ml= -l,-l+1 … 0 … l-1,l)代表特征值,。

这是轨道角动量沿某指定轴的射影。

从光谱学中所得的结果指出一个轨道最多可容纳两个电子。

然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。

所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数—自旋量子数。

这假设以后能被相对论性量子力学所解释。

“我们对过渡金属的电导率有了如下认识:电流由s 电子传递,其有效质量近乎于自由电子。

然而电阻则取决于电子从 s 带跃迁到 d 带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的 d 带在费米面上的态密度是很大的。

这就是过渡金属电阻率高的原因。

这种 s-d 散射率取决于 s 电子与 d 电子自旋的相对取向。

巨磁电阻效应及其应用(全)

巨磁电阻效应及其应用(全)

巨磁电阻效应及其应用本实验介绍多层膜GMR效应的原理,并通过实验让学生了解GMR传感器的结构、特性及应用。

一、实验目的1. 了解GMR效应的原理。

2. 测量GMR的磁阻特性曲线。

3. 了解GMR模拟传感器的结构、特点,采用GMR传感器测量电流。

二、实验仪器巨磁阻实验测试仪基本特性组件电流测量组件三、实验原理1 GMR效应的原理根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。

称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。

电阻定律R=ρl/S中,把电阻率ρ视为常数,与材料的几何尺度无关,这是忽略了边界效应。

当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。

电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。

早在1936年,就有理论指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。

总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。

在图1所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。

施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。

电流的方向在多数应用中是平行于膜面的。

有两类与自旋相关的散射对巨磁电阻效应有贡献。

其一,界面上的散射。

无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-70 -80 -90 -100
-21.1115 -24.12743 -27.14336 -30.15929
0.221 0.224 0.226 0.227
0.224 0.226 0.227 0.227
以B为横坐标,输出电压U为纵坐标,用original作图得:
GMR传感器磁电转换特性B-U曲线 2. GMR的磁阻特性曲线的测量 根据实验数据由公式(1)算得的磁感应强度,由R=U/I算得的电阻 如下表所示: (磁阻两端电压U=4V)
1.92 1.9 1.89 1.91 1.92 1.96 2.01 2.04 2.08 2.11 2.12 2.12 2.12 2.12 2.1 2.07 2.03 1.99
1932.36715 1970.44335 2010.05025 2051.28205 2083.33333 2105.26316 2116.40212 2094.24084 2083.33333 2040.81633 1990.04975 1960.78431 1923.07692 1895.7346 1886.79245 1886.79245 1886.79245 1886.79245
磁感应强度/G
20 -23
6.0318 6.9367
22 -21
6.6350 6.3334
用original作图得:
GMR开关(数字)传感器的磁电转换特性U-I曲线 4.用GMR传感器测量电流
待测150mV) 减小电流 增大电流 减小电流 增大电流 300 29 29 147 147 200 28 28 146 145 100 27 27 144 144 0 26 25 143 142 -100 25 24 141 141 -200 24 23 139 139 -300 22 22 138 138
四.实验数据及处理
1.GMR模拟传感器的磁电转换特性测量 实验数据及由公式(1)算得的磁感应强度如下表所示:(n=24000匝/m)
磁感应强度/G 励磁电流/mA 100 90 80 70 60 50 40 30 20 10 5 0 -5 -10 -20 -30 -40 -50 -60 磁感应强度/G 30.15929 27.14336 24.12743 21.1115 18.09557 15.07964 12.06372 9.04779 6.03186 3.01593 1.50796 0 -1.50796 -3.01593 -6.03186 -9.04779 -12.06372 -15.07964 -18.09557 减小磁场 0.228 0.227 0.227 0.226 0.221 0.198 0.162 0.123 0.083 0.047 0.028 0.012 0 0.028 0.06 0.094 0.132 0.17 0.205 输出电压/V 增大磁场 0.227 0.226 0.225 0.221 0.209 0.178 0.138 0.102 0.065 0.033 0.016 0.004 0.023 0.039 0.077 0.115 0.156 0.193 0.217
二.实验原理
根据导电的微观机理, 电子在导电时并不是沿电场直线前进,而是不断和晶格中 的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是 电场对电子的定向加速与这种无规散射运动的叠加。 称电子在两次散射之间走过 的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻 定律 R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材 料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm), 可以忽略边界效应。 当材料的几何尺度小到纳米量级, 只有几个原子的厚度时 (例 如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显 观察到厚度减小,电阻率增加的现象。 电子除携带电荷外, 还具有自旋特性,自旋磁矩有平行或反平行于外磁场两 种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过 渡金属中, 自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁 矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类 自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反 铁磁) 耦合的。 施加足够强的外磁场后, 两层铁磁膜的方向都与外磁场方向一致, 外磁场使两层铁磁膜从反平行耦合变成了平行耦合。 电流的方向在多数应用中是
以B为横坐标,磁阻R为纵坐标,用original作图得:
磁阻特性B-R曲线 3. GMR开关(数字)传感器的磁电转换特性曲线测量
实验数据及由公式(1)算得的磁感应强度如下表所示: 高电平:1V, 低电平:-1V
减小磁场 增大磁场 磁感应强度/G
开关动作 关 开
励磁电流/mA
开关动作 关 开
励磁电流/mA
平行于膜面的。图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁 场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行 耦合后, 继续加大磁场, 电阻不再减小, 进入磁饱和区域。 磁阻变化率 ΔR/R 达 百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分 别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 有两类与自旋相关的散射对巨磁电阻效应有贡献。 其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论 电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变 (平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高 电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射 几率很小,对应于低电阻状态。 其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也 有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场 方向相反, 无论电子的初始自旋状态如何, 在穿行过程中都会经历散射几率小 (平 行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等 阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方 向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋 电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。
2.09 2.05 2.01 1.97 1.93 1.92 1.9 1.89 1.91 1.95 1.98 2.02 2.06 2.1 2.11 2.12 2.12 2.12
1913.8756 1951.21951 1990.04975 2030.45685 2072.53886 2083.33333 2105.26316 2116.40212 2094.24084 2051.28205 2020.20202 1980.19802 1941.74757 1904.7619 1895.7346 1886.79245 1886.79245 1886.79245
三.实验仪器实验仪及实验内容
基本特性组件 基本特性组件由GMR模拟传感器,螺线 管线圈及比较电路, 输入输出插孔组成。 用 以对GMR的磁电转换特性,磁阻特性进行测 量。 GMR传感器置于螺线管的中央。
图6 基本特性组件
螺线管用于在实验过程中产生大小可计算的磁场,由理论分析可知,无限长 直螺线管内部轴线上任一点的磁感应强度为: B = μ0nI 式中 n 为线圈密度, I 为流经线圈的电流强度, (1)
巨磁电阻效应及应用
一. 实验目的
1.了解GMR效应的原理 2.测量GMR模拟传感器的磁电转换特性曲线 3.测量GMR的磁阻特性曲线 4.测量GMR开关(数字)传感器的磁电转换特性曲线 5.用GMR传感器测量电流 6.用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 7.通过实验了解磁记录与读出的原理
0 4 10 7 H / m 为真空中的磁导率。采用国际单位制
时,由上式计算出的磁感应强度单位为特斯拉(1 特斯拉 =10000 高斯) 。 电流测量组件 电流测量组件将导线置于GMR模拟传感器近旁, 用GMR传感器测量导线通过不 同大小电流时导线周围的磁场变化,就可确定电流大小。与一般测量电流需将电 流表接入电路相比,这种非接触测量不干扰原电路的工作,具有特殊的优点。 角位移测量组件
磁阻/Ω 磁感应强度/G 减小磁场 励磁电流/mA 100 90 80 70 60 磁感应强度/G 30.15929 27.14336 24.12743 21.1115 18.09557 磁阻电流/mA 2.12 2.12 2.12 2.12 2.11 磁阻/Ω 1886.79245 1886.79245 1886.79245 1886.79245 1895.7346 增大磁场 磁阻电流/mA 2.1 2.07 2.03 1.99 1.95 磁阻/Ω 1886.79245 1886.79245 1886.79245 1886.79245 1904.7619
无外磁场时顶层磁场方向 顶层铁磁膜 中间导电层 底层铁磁膜
电 阻 欧 姆
\
无外磁场时底层磁场方向
磁场强度 / 高斯
图 2 多层膜 GMR 结构图
图3
某种 GMR 材料的磁阻特性
多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作 模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度, 发展了自旋阀结构的GMR。如图4所示。 自旋阀结构的SV-GMR(Spin valve GMR)由钉扎层,被钉扎层,中间导电层和 自由层构成。其中,钉扎层使用反铁磁材料,被钉扎层
用original作图可得:
用GMR传感器测量电流U-I曲线(低磁偏置)
用GMR传感器测量电流U-I曲线(适当磁偏置) 5.GMR梯度传感器的特性及应用
实验数据如下表所示: ( 0 =7.0 )
转动角度 输出电压/mV 0 0 3 -22 6 -27 9 -14 12 1 15 15 18 24 21 22 24 3 27 -21 30 -27 33 -14 36 0 39 13 42 24 45 23
相关文档
最新文档