人教版八年级上册数学 分式的乘除 教学设计

合集下载

人教版数学八年级上册15.2.1分式的乘除法教案

人教版数学八年级上册15.2.1分式的乘除法教案

《分式的乘除》【教材】人教版数学八年级上册15.2.1【教材分析】本节教材是八年级数学第十五章第二节第一课时的内容,是初中数学的重要内容之一。

一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。

因此,我认为,本节课起着承前启后的作用。

【学情分析】学生在前面学习了分数的乘除法,分式基本性质,因式分解,现在所学的乘除法是分式基本性质的一个应用,一个实践。

学生在观察讨论交流的过程中,能主动探索,勇于发现,培养学生知识的迁移和联系能力以及转化的数学思想。

【教学目标】知识与技能:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

过程与方法:经历从分数的乘除法运算到分式的乘除法运算的过程,归纳分式乘除法则,培养学生类比的探究能力,使学生感知数学知识具有普遍的联系性。

情感态度与价值观:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

【教学重点】分式乘除法的法则及应用.【教学难点】分子分母是多项式的分式的乘除法运算。

【教学方法】引导探究、讨论交流、验证归纳【教学过程设计】教教学环节问题情境教师活动学生活动设计意图复复习回固引入新知1、计算下列运算:2、思考:类比分数的乘除法法则,你能说出分式的乘除法法则吗?教师引导学生回顾分数的乘除法运算法则学生独立思考,回忆分数的乘除法则开始动笔猜想,与同伴交流。

复习旧知识以便本节类比猜想。

探探索新知用类比方法得到分式的乘除法则:分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

adbcdcabcdab=⨯=÷用字母表示为: 教师引导学生总结出分式的乘除法法则。

最后对学生的说明做补充。

最新人教版初中八年级数学上册《分式的乘除》精品教案

最新人教版初中八年级数学上册《分式的乘除》精品教案

15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力.(重点)2.熟练地进行分式的乘除运算,并能利用它解决实际问题.(难点)一、情境导入观察下列运算: 23×45=2×43×5 57×29=5×27×9, 23÷45=23×54=2×53×457÷29=57×92=5×97×2. 以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么?今天我们仿照分数的乘除来研究分式的乘除.二、合作探究探究点一:分式的乘法计算:(1)ab 22c 2·4cd -3a 2b2; (2)x 2+3x x 2-9·3-x x +2. 解析:找出公因式,然后进行约分,约分时能分解因式的先分解因式.解:(1)ab 22c 2·4cd -3a 2b 2=-ab 2·4cd 2c 2·3a 2b 2=-4ab 2cd 6a 2b 2c 2=-2d 3ac ; (2)x 2+3x x 2-9·3-x x +2=x (x +3)(x +3)(x -3)·3-x x +2=x x -3·-(x -3)x +2=-x x +2. 方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算;(3)各分式中的分子、分母都是多项式时,先因式分解,再约分.探究点二:分式的除法【类型一】 利用分式的除法法则进行计算计算:(1)-3xy ÷2y 23x ; (2)(xy -x 2)÷x -y xy. 解析:先将除法变为乘法,再利用分式的乘法法则进行运算,做乘法运算时要注意先把分子、分母能因式分解的先分解,再约分.解:(1)-3xy ÷2y 23x =-3xy ·3x 2y 2=-9x 22y; (2)(xy -x 2)÷x -y xy =(xy -x 2)·xy x -y =-x (x -y )·xy x -y=-x 2y . 方法总结:确定商的符号,再把除式的分子、分母的位置颠倒与被除式相乘.【类型二】 分式的化简求值先化简,再求值:(1)3x +3y 2x 2y ·4xy 2x 2-y 2,其中x =12,y =13; (2)x 2-x x +1÷x x +1,其中x =3+1. 解析:(1)利用分式的乘法法则进行计算化简.(2)将除法转化为乘法后约分化简,然后代入求值.解:(1)原式=3(x +y )2xy ·x ·2xy ·2y (x +y )(x -y )=6y x (x -y ),当x =12,y =13时,原式=24; (2)原式=x 2-x x +1·x +1x =x (x -1)x +1·x +1x=x -1,当x =3+1时,原式= 3. 方法总结:根据分式乘除法法则将代数式进行计算化简,再代入求值.【类型三】 根据分式的除法,判断分式中字母的取值范围若式子x +1x +2÷x +3x +4有意义,则x 的取值范围是( ) A .x ≠-2,x ≠-4B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-3解析:∵x +3x +4≠0,x +2≠0,∴x +3≠0且x +4≠0,解得x ≠-2,x ≠-3,x ≠-4,故选C. 方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为0,同时还要使除式的分子、分母不为0.【类型四】 分式乘除法的应用老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?解析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab =2ab a 2+b 2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2ab a 2+b 2倍. 方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可.三、板书设计分式的乘除1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.作者留言:非常感谢!您浏览到此文档。

人教版八年级数学上册15.2.1分式的乘除(教案)

人教版八年级数学上册15.2.1分式的乘除(教案)
人教版八年级数学上册15.2.1分式的乘除(教案)
一、教学内容
人教版八年级数学上册15.2.1分式的乘除:
1.分式乘法法则:同分母分式相乘,分母不变,分子相乘;异分母分式相乘,先通分,然后分子相乘,分母相乘。
2.分式除法法则:同分母分式相除,分母不变,分子相除;异分母分式相除,先通分,然后分子相除,分母相乘。
2.教学难点
-通分的技巧:学生在进行分式乘除时,通分是一个难点,需要掌握如何找到最简公分母,并能够正确地将分式转换为具有相同分母的形式。
-分子分母的乘除运算:在分式乘除过程中,学生可能会混淆分子与分母的乘除操作,尤其是在涉及到多个分式相乘或相除时。
-在实际问题中的应用:将分式乘除法则应用于实际问题中,学生可能会在选择合适的运算方法上遇到困难,以及如何将实际问题转化为分式运算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式乘除在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.培养学生的数学建模素养:通过分式乘除在实际问题中的应用,让学生体会数学与现实生活的联系,培养数学建模意识和能力。
4.培养学生的合作交流意识:在课堂讨论和练习过程中,鼓励学生积极参与,与他人分享解题思路,提高合作交流能力。
三、教学难点与重点
1.教学重点
-分式乘法法则:理解并掌握同分母分式相乘和异分母分式相乘的法则,特别是通分的过程和分子相乘、分母相乘的操作。
-分式除法法则:理解并掌握同分母分式相除和异分母分式相除的法则,尤其是通分的必要性以及分子相除、分母相乘的方法。

人教版数学八年级上册15.2.1分式的乘除法教案

人教版数学八年级上册15.2.1分式的乘除法教案

教学设计15.2.1分式的乘除(一)教学目标:1.理解并掌握分式的乘除法则,运用法则进行简单的分式乘除运算;2.经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性。

3培养学生的观察、类比、归纳能力和与同伴合作交流的情感。

教学重点:掌握分式的乘除运算。

教学难点:正确运用分式的基本性质约分。

教学方法:合作探究 讲练结合 类比法 教学过程:一、 知识回顾与理解: 小测试:1、不改变分式的值,使下列分式的分子与分母都不含“—”号: (1)n m 2-= 、(2)—2ba-= 。

2、填空:(1))1(1m ab m --= (2)2)2(422-=+-a a a 、(3)abb ab ab =++3323、若把分式yx xy-中的x 、y 都扩大3倍,那么分式的值是 。

4、不改变分式的值,使下列分式的分子与分母的最高次项的系数化为正数。

(1)121--+x x = (2)322+--x x=5、约分:(1)db a bca 10235621- (2)1681622++-a a a6、求分式b a -1、22ba a -、b a b+的最简公分母是 。

7、通分:(1)bc a y ab x 229,6、 (2)16,12122-++-a a a a 二、新知学习与理解:1阅读课本P 135—137(完成填空) 与同伴交流,猜一猜 ab×c d =ab ÷cd = a 、c 不为观察上面运算,可知:分数的乘法法则:________________________________________ 分数的除法法则: 你能用类比的方法的出分式的乘除法法则吗?分式的乘法法则:__________________________________ 分式的除法法则:___________________________________(归纳总结分式乘除法则:乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

人教版数学八年级上册《分式的乘除法的应用》教学设计

人教版数学八年级上册《分式的乘除法的应用》教学设计

人教版数学八年级上册《分式的乘除法的应用》教学设计一. 教材分析人教版数学八年级上册《分式的乘除法的应用》是分式部分的一个重要内容。

这部分内容主要让学生掌握分式的乘除法运算,并能应用于实际问题中。

教材通过丰富的例题和练习题,引导学生掌握分式乘除法的运算规则,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经学习了分式的基本概念、分式的加减法运算。

他们对于分式的运算规则有一定的了解,但可能在实际应用中遇到困难。

因此,在教学过程中,需要关注学生的学习困难,并通过实例引导学生将分式的乘除法应用于实际问题中。

三. 教学目标1.理解分式的乘除法运算规则,并能熟练进行计算。

2.能够将分式的乘除法应用于实际问题中,解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.分式的乘除法运算规则的理解和应用。

2.将分式的乘除法应用于实际问题中,解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等教学方法。

通过设置问题情境,引导学生主动探究分式的乘除法运算规则,并通过案例教学,让学生将所学知识应用于实际问题中。

同时,采用小组合作学习法,鼓励学生相互讨论、交流,提高学生的合作能力和解决问题的能力。

六. 教学准备1.教学PPT:制作详细的PPT,包括教材内容、例题、练习题等。

2.教学案例:准备一些实际问题,用于引导学生将分式的乘除法应用于实际问题中。

3.练习题:准备一些练习题,用于巩固学生对分式的乘除法运算的理解和应用。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何利用分式的乘除法来解决这些问题。

2.呈现(10分钟)通过PPT呈现分式的乘除法运算规则,并解释规则的含义。

同时,给出一些例题,让学生跟随讲解,理解并掌握分式的乘除法运算方法。

3.操练(10分钟)让学生独立完成一些练习题,巩固对分式的乘除法运算的理解。

教师在过程中进行巡视指导,解答学生的疑问。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

新人教版八年级数学上册15.2.1分式的乘除 精品教案

新人教版八年级数学上册15.2.1分式的乘除 精品教案

15.2.1分式的乘除(二)一、教学目标:1.熟练地进行分式乘除法的混合运算.2.理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算和分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、教学过程:(一)板书标题,呈现教学目标:熟练地进行分式乘除法的混合运算(二)引导学生自学:阅读P13-15练习,并思考下列问题:1. 分式的乘除混合运算的运算顺序是什么?2. 分数的乘方的法则是什么?分式的乘方法则又是什么?6分钟后,检查自学效果(三)学生自学,教师巡视:学生认真自学,并完成P15练习(四)检查自学效果:1.学生回答老师所提出的问题2.学生回答P15练习(五)引导学生更正,归纳:1.更正学生错误;2.P13例4.是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.3.P14例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.(六)课堂练习1.计算 (1) 23322)()(z x zy x -÷- (2) )()()(422xy x y y x -÷-⋅-(3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷- 2.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249ab - (3)3)32(x y -=3398x y (4)2)3(b x x -=2229bx x - 作业:1.习题15.2第3,10题(B 本)2.《感悟》P6-7分式的乘除(二)3.预习P15-16。

人教初中数学八上《分式的乘除》教案 (公开课获奖)

人教初中数学八上《分式的乘除》教案 (公开课获奖)

分式的乘除.课时第1课课型新授课教具多媒体课件教学目标知识与能力理解分式的乘除法法那么,会进行分式乘除运算过程与方法通过教学使学生掌握类比的数学思想方法能较好地实现新知识的转化.从而充分发挥学生的主体性,使学生主动获取知识。

态度与情感体验自己通过实例运算总结法那么的过程,在主动学习中形成自信重点熟练地进行分式乘除法的运算难点熟练地进行分式乘除法的运算教学手段方法多媒体教学教学过程教师活动学生活动说明或设计意图一、导入新课二、自学指导1、分数乘除法计算法那么内容你还清楚吗?2、P135问题1,abV的由来依据是______________,水面的高nmabv⋅的由来依据是_____________3、问题2中的ma、nb表示___________________意思;⎪⎭⎫⎝⎛÷nbma表示_________________________________意思。

4、猜一猜,可以用分数乘除法的法那么来推广分式的乘除法法那么吗?乘法法那么:分数乘分数,用分子的积作为积的分子,分母的积作为积的分母.除法法那么:分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘abV表示长方体容器的高nmabv⋅水是容器内容积的nm,所以水面的高为nmabv⋅ma表示打拖拉机的工作效率;nb表示小拖拉机的工作效率打拖拉机的工作效率是小拖拉机工作效激发学生学习兴趣,培养学生想象感知能力多媒体展示三、教师点拨及法那么归纳乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.除法法那么:分式除以分式,把除数式的分子、分母颠倒位置后,与被除式相乘.1、P136例1.[分析]这道例题就是直接应用分式的乘除法法那么进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.2、P136例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.3、P136例3.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号〞、“丰收2号〞小麦试验田的面积,再分别求出“丰收1号〞、“丰收2号〞小麦试验田的单位面积产量,分别是15002-a、()21500-a,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1<a2-2+1,即率的⎪⎭⎫⎝⎛÷nbma倍乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.除法法那么:分式除以分式,把除数式的分子、分母颠倒位置后,与被除式相乘.例1 计算:例2 计算:P136例3.如图—1,“丰收1号〞小麦的试验田是边长为a米〔a>1〕的正方形去掉一个边长为1米的正方形蓄水池后余下的局部,“丰收2号〞小麦的试验田是边长为〔a-1〕米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?培养学生归纳能力用式子表示为:1d bc adcba⋅⋅=⨯c bd acdbadcba⋅⋅=⨯=÷3234xyyx⋅cdbacab4522223-÷411244222--⋅+-+-aaaaaammm7149122-÷-四、检测点拨五、巩固与练习(a-1)2<a2-1,可得出“丰收2号〞单位面积产量高.课堂练习1、课本137页练习第2、3题;课后作业课本146页习题15.2第1、2〔1〕〔2〕题培养学生分析问题、讨论问题的能力板书设计分式的乘除法乘法法那么:分式的乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

人教版数学八年级(上册)15.2.1《分式乘除》教案设计

人教版数学八年级(上册)15.2.1《分式乘除》教案设计




1.计算:
(1) ; (2)
2.计算:
(1) (2)
3.计算




对于a÷b× ,是这样计算的:a÷b× =a÷1=a,他的计算过程正确吗?为什么?
总结
反思
1.本节课你有哪些收获?
2.预习时的疑难解决了吗?你还有哪些疑惑?
3.你认为老师上课过程中还有哪些须要注意或改进的地方
分式乘除
教学
目标
1.分式的乘除运算法则
2.会进行简单的分式的乘除法运算
教学
重点
掌握分 式的乘除运算法则
教学
ห้องสมุดไป่ตู้难点
分子、分母为多项式的分式运算
教学过程
教学内容
补充调整




计算,并说出分数的乘除法的法则:
(1) (2) ;




一、阅读课本,回答下列问题:
分式乘除法的法则是什么?
尝试用数学符号语言表示分式的乘除法法则。
完成教材中的“做一做”,谈谈你的感想。
二、计算(1) (2)
(3) (4)
合作完成:(1)尝试给上面的4小题分类?
(2)说一说计算过程中每一步的依据是什么?
(3)在第(3)小题中2xy2是如何参与计算的?
(4)在第(2)(4)小题中分子分母中出现了多项式,一般情况下,我们先,以便约分。
(5)在第(2)小题中是分式的混合运算,此类题要特别注意还要注意最后结果为

八年级上册数学教案《分式的乘除》

八年级上册数学教案《分式的乘除》

八年级上册数学教案《分式的乘除》学情分析本节课是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法,为学习分式加减法和分式方程等知识打下了基础。

本节课起着承前启后的作用,在教材中处于重要的位置。

教学目的1、理解并掌握分式的乘除法法则,会进行分式乘除法运算。

2、在探索分式乘除法法则的过程中,体会类比的数学思想,实现新知识的转化。

3、在自主探究、合作交流中渗透类比转化的思想,感受探索的乐趣和成功的体验。

教学重难点灵活运用分式乘除的法则进行运算。

教学方法讲授法、讨论法、练习法教学过程一、知识回顾约分。

(1)5x/25x2= 5x÷x / 25x2 ÷x= 5 / 25x(2)9ab2 + 6abc / 3a2b=(9ab2 + 6abc)÷ 3ab / 3a2b ÷ 3ab= 3b + 2c / 3a(3)x2-36 / 2x+12= (x+6)(x-6)/ 2(x+6)= x-6 / 2二、学习新知1、一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m/n时,水面的高度为多少?长方体容器的高为V/ab,水面的高度为V/ab·m/n2、大拖拉机m天耕地a hm2,小拖拉机n天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率是a/m hm2/天。

小拖拉机的工作效率是b/b hm2/天。

大拖拉机的工作效率是小拖拉机的工作效率的a/m ÷ b/n倍。

3、计算(1)2/3 × 4/5= 2×4 / 3×5= 8/15(2)2/3 ÷ 4/5= 2/3 × 5/4= 2×5 / 3×4= 10/12= 5/64、思考如果一个分式为a/b,一个分式为c/d,计算:(1)a/b · c/d= a·c / b·d= ac / bd(2)a/b ÷ c/d= a/b × d/c= a·d / b·c= ad / bc5、分式的乘法法则分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

人教版八年级上册数学教案15.2 分式的运算(5课时)

人教版八年级上册数学教案15.2 分式的运算(5课时)

15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。

八年级数学 (分式)教案 人教新课标版 教案

八年级数学 (分式)教案 人教新课标版 教案

2.分式的乘除法一、教学目标:1、知识与技能目标:1、分式的乘除运算法则2、会进行简单的分式的乘除法运算2、过程与方法目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。

2、能解决一些与分式有关的简单的实际问题。

3、情感态度与价值观目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。

2、培养学生的创新意识和应用意识。

二、教学重点:分式乘除法的法则三、教学难点:分式乘除法的法则四、课时安排1课时五、教具学具准备小黑板一块六、教学方法类比方法七、教学过程活动一:黑板展示1442225599⎧⎪⎨⨯÷⨯÷⎪⎩、复习小学分数乘除法法则;2255、计算下列各题:,,,3377活动二:联想猜测:黑板背面展示:a d a db c b c?,a d a cb c b d−−→÷⨯←−−?阅读课本74p至例1——例2结束(除“做一做”外),仔细观察各步运算,通过小组讨论交流,并与分数的乘除法的法则类比,总结出分式的乘除法的法则。

(分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.)活动三:当堂训练1、根据题意,列出分式,完成“做一做”2、76p随堂练习,习题3.3知识技能第1题八、课堂小结:1.分式的乘除法的法则2.分式运算的结果通常要化成最简分式或整式.3. 学会类比的数学方法九、巩固练习课本P77习题3.3第2、4题3.分式的加减法 一、教学目标:1、知识与技能目标:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;2、过程与方法目标:根据学生已有的经验,通过一些问题的提出。

诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结出规律。

3、情感态度与价值观目标:1、经历从现实情境中提出问题,提出“用数学”的意识。

2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。

人教版数学八年级上册15.2.1分式的乘除法教案

人教版数学八年级上册15.2.1分式的乘除法教案

分式的乘除教学目标:1、知识技能:理解并掌握分式的乘除法法则,并会运用它们进行分式的乘除运算。

2、过程方法:通过类比的方法,经历探索分式乘除运算法则的过程,理解其算理,丰富学生从事数学活动的经验,发展学生的实践能力及创新能力。

3、解决问题:会进行简单分式的乘除运算,具有一定的代数化归能力,培养学生有条理地表达的能力。

4、情感态度与价值观:在活动中培养学生乐于探索,合作学习的习惯,培养学生把数学知识运用到生活,生产中的意识与能力。

教学重点:分式的乘除法法则教学难点:对分子或分母是多项式的分式进行乘除运算及符号变化。

教学过程安排:活动1、提出问题,引入课题(从实际问题出发,让学生感知学习新知识的必要性) 活动2、类比联想,探索新知(由分数乘除运算,类比得分式乘除法法则) 活动3、例题分析,应用新知(例题剖析,应用分式乘除法法则)活动4、练习巩固,培养能力(独立练习,培养和提高学生的运算能力)活动5、课堂小结,布置作业(归纳小结本节的知识和方法)教学过程设计:活动1、问题(1)一个长方体容器为V ,底面的长为a ,宽为b ,当容器内的水占容积的nm 时,水高为多少?(2)大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1、教师提出问题,学生思考、交流,回答问题。

2、在活动中教师要关注:①学生能否读懂具有实际背景的问题并分析出其中的数量关系;②基础较差的学生对于列式是否有困难,如何适当加以个别引导;③学生是否感受到解决实际问题时,经常遇到需要进行分式的乘除运算。

)(设计意图:提出现实生活中的问题,使学生自然地体会到学习分式乘除运算的必要性,了解数学于现实生活的联系,从而调动学生的学习积极性。

)活动2、问题(1)观察下列运算,你能写出分数乘除法法则吗? 2910452515321553==⨯⨯=⨯ 252756155231525321553==⨯⨯⨯=÷ (2)类比分数乘除法,你能猜想出分式的乘除法法则吗?怎样用语言和式子表示分式的乘除法法则?师板书分式的乘法法则:分式乘分式,用分式的积作为积的分子,分母的积作为积的分母.用符号语言表达为:db c a d c b a ⨯⨯=⨯ 师板书分式的除法法则:分式除以分式,把除式的分子和分母颠倒位置后再与被除式相乘.用符号语言表达为:=⨯=÷c d b a d c b a cb d a ⨯⨯ (1、教师提出问题,学生观察运算回答问题,并类比分数的乘除运算法则猜想出分式的乘除法法则;2、在活动中教师要关注:①学生对已学知识的掌握情况;②学生能否通过类比得出新知识;③学生能否用数学语言表述分式的乘除法法则。

人教版数学八年级上册15.2.1.1《分式的乘除法》教学设计

人教版数学八年级上册15.2.1.1《分式的乘除法》教学设计

人教版数学八年级上册15.2.1.1《分式的乘除法》教学设计一. 教材分析《分式的乘除法》是人教版数学八年级上册第15章的一部分,主要内容包括分式的乘法和除法。

这部分内容在数学知识体系中占据重要地位,是学生进一步学习函数、不等式等数学知识的基础。

通过学习分式的乘除法,学生能够理解和掌握分式的运算规律,提高解决问题的能力。

二. 学情分析八年级的学生已经掌握了分式的基本概念和性质,具备了一定的数学运算能力。

但学生在解决实际问题时,往往对分式的乘除法运用不够熟练,对分式运算规律的理解不够深入。

因此,在教学过程中,需要注重引导学生理解分式乘除法的运算规律,提高学生的运算能力和解决问题的能力。

三. 教学目标1.知识与技能:使学生理解和掌握分式的乘法和除法运算规律,能够熟练地进行分式的乘除运算。

2.过程与方法:通过自主学习、合作交流等方法,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:分式的乘法和除法运算规律。

2.难点:分式乘除法在实际问题中的应用。

五. 教学方法1.采用自主学习、合作交流的教学方法,鼓励学生主动探索,提高学生的问题解决能力。

2.运用实例讲解,引导学生理解分式乘除法的运算规律。

3.注重练习,巩固所学知识,提高学生的运算能力。

六. 教学准备1.准备相关的教学材料,如PPT、例题、练习题等。

2.准备教学工具,如黑板、粉笔等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的乘除法,激发学生的学习兴趣。

2.呈现(10分钟)呈现分式的乘法和除法运算规律,引导学生理解分式乘除法的运算规律。

3.操练(10分钟)让学生进行分式的乘除运算练习,及时反馈,指导学生纠正错误。

4.巩固(10分钟)通过一些典型例题,让学生进一步理解和掌握分式的乘除法运算规律。

5.拓展(10分钟)引导学生运用分式的乘除法解决实际问题,提高学生的问题解决能力。

最新人教版初中八年级上册数学《分式的乘除》精品教案

最新人教版初中八年级上册数学《分式的乘除》精品教案

15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除【知识与技能】掌握分式的乘除法运算法则,能进行分式的乘除法运算.【过程与方法】在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.【情感态度】在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.作者留言:非常感谢!您浏览到此文档。

人教版数学八年级上册15.2.1:分式的乘除法(教案)

人教版数学八年级上册15.2.1:分式的乘除法(教案)
-例子:计算(4x/(x-3)) / ((2x)/(x+1)),并简化结果。
3.分式乘除混合运算:熟练进行分式的乘除混合运算,能够解决实际应用问题。
-练习:给出实际情境题,让学生运用分式乘除法解决问题。
4.应用练习:结合实际,设计一些综合性的练习题,巩固学生对分式乘除法的理解和运用。
二、核心素养目标
-举例:强调(a/b) ÷ (c/d) = (a/b) * (d/c),并演示如何将除法转化为乘法。
-分式乘除混合运算:能够将多个分式进行连续的乘除运算,并简化结果。
-举例:讲解如何解决类似(a/b) * (c/d) ÷ (e/f)的问题,并展示运算顺序和简化过程。
-实际应用问题:培养学生将分式乘除法应用于解决实际问题中,理解其数学模型和实际意义。
1.掌握分式乘除法的基本法则,培养学生逻辑推理与数学运算的核心素养,提高学生分析问题和解决问题的能力。
-通过分析分式乘除法则,让学生感悟数学的严谨性和逻辑性。
2.培养学生在解决分式乘除混合运算问题时,能够运用数学思维进行合理分析,提高数学建模和数学抽象的核心素养。
-设计相关习题,引导学生运用所学知识解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式乘除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式乘除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天的课程结束后,我对整个教学过程进行了深入的思考。在教授分式乘除法这一章节时,我发现了一些亮点,也遇到了一些挑战。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学
分式的乘除 教学设计
教学目标:
1、 让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。

2、 使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算。

3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。

重点难点
重点:分式的乘除法、乘方运算
难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。

教学过程
一、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?
(2)下列各式是否正确?为什么?
二、 探索分式的乘除法的法则
1.回忆: 计算:4365÷; 10
965⨯ . 2.例1计算:
(1)222222x
b yz a z b xy a ÷; (2)x b ay by x a 2222⋅. 由学生先试着做,教师巡视。

3.概括:分式的乘除法用式子表示即是:
4. 例2计算:4
93222--⋅+-x x x x . 分析:①本题是几个分式在进行什么运算?
②每个分式的分子和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?
④怎样应用分式乘法法则得到积的分式?
解 原式=)2)(2()3)(3(32-+-
+⋅+-x x x x x
x =2
3+-x x . 5.练习: ①课本第8页练习1。

②计算:2()x y xy x xy --÷ 三、 探索分式的乘方的法则
1.思考
我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?
先做下面的乘法:
(1)=••=⎪⎭⎫ ⎝⎛b a b a b a b a 3=••••b b b a a a 33b a ; (2)=•••=⎪⎭
⎫ ⎝⎛b a b a b a b a n n n b a . 2.仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空: (m
n )(k ) =___________(k 是正整数)
3
4.练习:(1)判断下列各式正确与否:
(2)计算下列各题:
学生小结:
1. 怎样进行分式的乘除法? 2.怎样进行分式的乘方?
22212(1)441x x x x x x x
-+÷+⨯++-。

相关文档
最新文档