组态设计水塔供水系统组态设计(自动化专业)

合集下载

基于MCGS组态自动供水系统设计

基于MCGS组态自动供水系统设计

MCGS组态软件课程设计题目:自动供水系统姓名:学号:学院:专业班级:指导教师:同组人:西北民族大学2011 年 6 月21 日目录摘要 (3)1.绪论 (5)1.1课题背景 (5)1.2设计目的 (5)1.3设计思路 (6)2.基于MCGS组态软件的系统设计 (8)2.1建立主窗口文件 (8)2.1.1建立用户窗口 (8)2.1.2确定实时数据库 (8)2.1.3系统界面设计 (9)2.2运行策略 (12)2.2.1循环策略 (12)2.2.2泵关时状态 (13)2.2.3加减泵状态 (13)2.2.4加压时泵的输出 (14)2.2.5用户用水情况 (14)2.2.6注水 (15)2.3水泵工作情况 (15)2.4水箱水位 (17)2.5历史记录 (18)3.结论 (20)参考文献 (21)附录Ⅰ (22)组态图 (22)主窗口 (22)运行情况 (22)附录Ⅱ (23)运行程序 (23)注水 (23)用水 (25)致谢 (27)自动供水系统专业: 08电气1班姓名:刘炜彬指导教师:王彩霞老师摘要随着社会的飞速发展和城市建筑规模的扩大,人口的增加以及人们的生活水平的提高,对城市供水质量、数量、稳定性等问题提出来越来越高的要求,我国中小城市供水的自动化配置相对落后,水泵控制主要依靠人员的手动操作,控制过程繁琐,而且手动控制不能很好地对水位变化做出恰当的反应。

本文针对这个问题,运用MCGS 设计了一套恒压供水系统[5]。

MCGS页面直观,可直观显示系统运行的情况。

本设计可广泛应用于生活供水、高层建筑供水等日常供水系统。

关键词城市供水,MCGS,恒压供水系统ABSTRACTWith the rapid development of society and the expansion of urban construction, population growth and the improvement of people's living standards, the city's water quality, quantity, stability and other issues raised higher and higher demands, Chinese small and medium urban water supply automatic configuration is relatively backward, pump control mainly relies on officers' manual operation, tedious control process, and manual control is not well to respond appropriately to changes in water level. This article focus on this issue, designed a set ofwater supply system by MCGS. The MCGS has intuitive page visual display system running. This design can be widely used in domestic water supply, high-rise buildings water supply and other daily water supply system.Key Words: Urban Water Supply, MCGS, Constant Pressure Water Supply1.绪论1.1课题背景随着社会的飞速发展和城市建筑规模的扩大,人口的增加以及人们的生活水平的提高,对城市供水质量、数量、稳定性等问题提出来越来越高的要求。

组态技术在水塔水位控制系统中的应用

组态技术在水塔水位控制系统中的应用
面 ;在MO S L 串行通讯的基础上 , G 和P C 通过计算机控制P O L ,实现 了对水塔水位的控制 。
关键词 : MO S G 组态软件 ;P O;水塔水位 L
中图分类号 :T 7 P2 1 文献标 识码 :B 文章编号 :1 0 — 14 2 1 ) 2下 ) 0 2 0 9 0 ( 0 1 ( 一 1 — 3 0 3 1 2
输 入 元 件 入 端 子 号 输 S 1 S 2 S 3 S 4 X0 X1 X2 X3
功 能
输 出 元 件 出 端 子 号 输 Y 0 Y1 Y 2
MI 电动 机 驱 动 K l M M2 电动 机 驱 动 KM2 报 警灯 HL
传 感 器 输 出 信 号 为 1( S 即 l为 ON) ,控 制
6 结束语
根 据 水 塔 水 位 控 制 系统 的 要 求 ,利 用 组 态 技
液位2 下 数值型 用来在运行环境下设定水塔的下限报警值 液位组 组对象 用于历 史数据 、历 史曲线 、报表输 出等功 能 构件
术 及 P C构 成 了 简 单 可 靠 的水 塔 水 位 控 制 系 统 。 L
图4 水塔 水位 系统 监控 界面
第3 卷 3
第1 期 2
2 1 - 2 下) 01 1 (
|2 1 1 3
务I . 似 8
变 量 和 监 控 画 面 中相 对 应 的 按钮 、指 示 灯 等 相连 接 , 以便 能 使 动 画 按 照 要 求 动起 来 。水 塔 水 位 系 统 变量 定义 如表 2所 示 。
设 计 的软 件 实 现 了下 述功 能 :可 在计 算 机 上 对 系
统 进 行 自动 或 手 动 控 制 ; 系统 控 制 过程 进 行动 画

电气控制与PLC课程设计(水塔水位PLC自动控制系统)

电气控制与PLC课程设计(水塔水位PLC自动控制系统)

辽宁工程技术大学电气控制技术与PLC 课程设计设计题目水塔水位PLC自动控制系统指导教师院(系、部)电气与控制工程学院专业班级学号姓名日期电气控制技术与PLC课程设计任务书摘要随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工业控制装置——可编程控制器。

随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位进行测量和控制。

水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。

而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。

本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。

利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台应用MCGS 组态软件对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置关键词:PLC(Programmable Logic Controller)、自动化、水塔水位目录1概论 .................................. 错误!未定义书签。

1.1 可编程序控制器简介............... 错误!未定义书签。

1.2 PLC的工作原理.................... 错误!未定义书签。

1.3 PLC的特点 ....................... 错误!未定义书签。

1.4 PLC的选择 ....................... 错误!未定义书签。

2 水塔水位自动控制系统方案设计.......... 错误!未定义书签。

3 水塔水位自动控制系统硬件设计.......... 错误!未定义书签。

3.1水塔水位控制系统设计要求.......... 错误!未定义书签。

课程设计-用组态软件实现自动供水系统演示工程设计

课程设计-用组态软件实现自动供水系统演示工程设计

MCGS组态课程设计题目用组态软件实现自动供水系统演示工程设计学号姓名同组人专业班级学院电气工程学院指导教师成绩用组态软件实现自动供水系统演示工程设计专业:电气工程及其自动化姓名: 指导老师:摘要MCGS嵌入版组态软件的硬件需求分为组态环境需求和运行环境需求两部分。

MCGS(Monitor and Control Generated System,监视与控制通用系统)是北京昆仑通态自动化软件科技有限公司研发的一套基于Windows平台的,用于快速构造和生成上位机监控系统的组态软件系统,主要完成现场数据的采集与监测、前端数据的处理与控制,可运行于Microsoft Windows 95/98/Me/NT/2000/xp等操作系统。

MCGS嵌入版组态软件的硬件需求分为组态环境需求和运行环境需求两部分。

用MCGS组态软件设计了远程监控程序;实现了供水系统的远程和本地的手自动切换控制。

目前,供水系统是国民生产生活中不可缺少的重要一环,传统供水方式占地面积大,水质易污染,基建投资多,而且主要缺点是水压不能保持恒定,导致部分设备不能正常工作。

关键词MCGS,恒压供水ABSTRACTEmbedded MCGS configuration software version of the hardware requirements into configuration environmental needs and running environment needs two parts. MCGS(Monitor and Control Generated System, Monitoring and control general system). is developed by Beijing kunlun automated software technology Co. which Windows-based Used for fast structure and the generation of PC monitoring system configuration of the software system. Main accomplish the field data acquisition and monitoring data processing and control the front.Can run on Microsoft Windows 95/98 / Me/NT / 2000 / xp operating system, etc. Embedded MCGS configuration software version of the hardware requirements into configuration environmental needs and running environment needs two parts. MCGS configuration software design with a remote monitoring program; to achieve a water supply system for remote and automatic switching control of local hands. Currently, the national production and living water supply system is an important and indispensable part of the traditional area of water supply, water quality easily contaminated, and more investment in infrastructure, but the main disadvantage is that pressure is not constant, resulting in some of the equipment does not work.Key words:MCGS,Constant Pressure Water Supply Control System目录前言.......................................................................................................... - 1 - 1.设计内容与要求 ................................................................................. - 2 -1、1 MCGS设计内容 .................................................................... - 2 -1、2 设计要求 ............................................................................. - 2 -2、设计思路 ........................................................................................... - 3 -3 、组态画面的设计 ............................................................................. -4 -a、建立窗口 ................................................................................... - 5 -b、定义数据对象 ........................................................................... - 6 -C、界面编辑 ................................................................................... - 7 -d、编辑运行策略 ......................................................................... - 10 -e、主控窗口的编辑 ..................................................................... - 12 -f、图画动起来 ............................................................................. - 13 -g、监控界面 ................................................................................. - 14 - 结论........................................................................................................ - 14 - 参考文献................................................................................................ - 14 - 致谢................................................................................................ . ……- 4 -附录……………………………………………………………………- 4 - 附录1…………………………………………………………………- 4 - 附录2………………………………………………………………....- 4 -前言水是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能源短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度较低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。

PLC水塔水位控制及应用系统设计

PLC水塔水位控制及应用系统设计

PLC水塔水位控制及应用系统设计一、引言随着工业自动化技术的不断发展和完善,PLC技术被广泛应用于自动化控制系统中。

在工业生产中,水是必不可少的生产资源之一,因此水的控制和管理也变得越来越重要。

水塔是常见的水控制设备之一,在水塔的水位控制方面,PLC技术也可以起到重要作用。

本文将介绍PLC水塔水位控制及应用系统的设计,以期提高工业生产效率和水资源的利用效率。

二、PLC水塔水位控制原理水塔是存放水的设备,水位高低直接影响着水压和水量。

水位控制便是管理水塔水位的重要手段。

传统的水塔水位控制方法是使用浮球开关控制水泵开关,但是这种方法不仅容易损坏浮球开关,而且无法进行准确控制。

而PLC水塔水位控制则是使用PLC控制器接收水位变化信号,通过程序逻辑控制水泵的开关,实现精确控制水位高低。

在PLC水塔水位控制方案中,首先需要设置两个探测水位的传感器,一个位于最低水位处,另一个位于最高水位处。

当水位低于最低水位传感器时,PLC控制器就会控制水泵开启,控制水塔往里面注水,直到水位达到最高水位传感器的位置停止。

当水位超过最高水位传感器时,PLC控制器也会控制水泵关闭,以免水库溢出。

三、PLC水塔水位控制及应用系统设计流程1.确定水塔的高度和水位传感器的位置PLC水塔水位控制方案的第一步就是衡量水塔的高度,然后计算出所需的水位传感器位置。

传感器应该放置在两个不同位置,一个位置在低水位线下,并且另一个位置在高水位线上。

2.使用传感器读取水位数据第二个步骤是将两个水位传感器连接到PLC控制器上。

PLC控制器可以轻松地读取传感器数据并使用该数据来管理塔内的水位。

3.使PLC控制器完成水位控制逻辑最后一步是为PLC控制器创建程序逻辑以控制水泵的开关。

该逻辑必须能够读取传感器数据,检测水位是否过高或过低,然后在需要时打开或关闭水泵。

四、PLC水塔水位控制及应用系统的优点PLC水塔水位控制系统与传统控制系统的比较如下:1. 精确性和可靠性与传统开关相比,PLC水塔水位控制系统更加精确,能够做到滴水不漏。

组态王-水塔供水设计

组态王-水塔供水设计

自动化应用软件实训1 绪论生产生活中的用水量常随时间而变化,季节、昼夜相差很大。

用水和供水的不平衡集中体现在水压上,用水多而供水少则水压低,用水步而供水多则水压高。

人口的增加以及人们的生活水平的提高,对城市供水质量、数量、稳定性等问题提出来越来越高的要求。

而用户用水的多少是时常变动的,因此供水不足或供水过剩的事情时常会发生。

而供水与用水的不平衡主要集中在供水的压力上,供水压力又表现为供水量的多少。

若供水多于用水,则水压低,反之,水压高。

保持供水压力的恒定,可以使用水和供水之间保持平衡,即用水多时,供水也多,用水少时,供水也少,为了能更好地做到这点,本论文采用了三个水泵供水以提供足够的压力,从而提高供水的质量。

2 系统需求分析自动供水系统的工作原理:首先,水泵抽水向蓄水箱中注满水,保证蓄水箱内的液位能保持在一定的范围内。

这里设定两个报警器,当水箱液位低于水箱液位下限时,报警器2报警,供水管道向水箱注入水,当水箱液位高于水箱液位上限时,报警器1报警,供水管道停止向蓄水箱供水。

当水箱液位在水箱液位上限与水箱液位下限之间时,报警器1和报警器2都不报警。

然后再由蓄水箱引出三根水管,通过三个水泵向用户供水。

当用水量为高峰期时,三个泵同时供水;当用水量为正常期时,两个水泵同时供水;当用水量为低峰期时,一个泵供水。

如此以保证用户用水水压的恒定,实现自动供水。

3 系统方案论证根据常识可知,供水与用水的不平衡主要集中在供水的压力上,供水压力又表现为供水量的多少。

若供水多于用水,则水压低,反之,水压高。

保持供水压力的恒定,可以使用水和供水之间保持平衡,即用水多时,供水也多,用水少时,供水也少,为了能更好地做到这点,本论文采用了三个水泵以提供足够的压力,从而提高供水的质量。

同时,为了保证三个水泵随时都有水可抽,前面设计了蓄水箱,蓄水箱自带有液位自测系统,能随时保证一定的水量供求。

为了实现人机界面的友好,在系统画面上还设置了多个仪表,用以随时观测系统的运行情况,便于系统的分析。

水塔供水自动控制系统的设计

水塔供水自动控制系统的设计

水塔水位的PLC控制的设计PLC课程设计说明书姓名班级学号专业机电一体化技术教师组别日期 2012.1.10成绩目录一概述 (1)二水塔供水自动控制系统方案设计 (2)设计方案 (2)三水塔水位自动控制系统设计 (2)1水泵电动机控制电路的设计 (2)2水位传感器的选择 (4)四水位自动控制系统的组成 (6)1、系统构成及其控制要求 (6)2系统框图 (7)五 PLC的设计 (8)1可编程序控制器(PLC)简介 (8)2PLC工作原理 (8)3PLC的编程语言--梯形图 (9)4SYSMAC-C系列P型机概述 (11)5水塔水位自动控制系统的软件设计 (12)六结束语(系统总结分析) (17)1系统的优点 ............................................................................ 错误!未定义书签。

2结束语 .................................................................................... 错误!未定义书签。

参考文献 (19)致谢 (20)水塔供水自动控制系统的设计一概述水塔水位控制系统采用交流电压检测水位,在控制系统启动后,若水槽水位低于水槽最低水位S2时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位S4时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位S2时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位S1时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。

二水塔供水自动控制系统方案设计设计方案PLC和传感器构成的水塔水位恒定的控制系统原理。

在控制系统启动后,若水槽水位低于水槽最低水位时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。

水塔水位winccplc课程设计

水塔水位winccplc课程设计

水塔水位winccplc课程设计一、课程目标知识目标:1. 学生能理解WINCC与PLC在水塔水位监控系统中的应用和交互原理;2. 学生能掌握WINCC组态软件的基本操作,包括创建项目、配置变量、设计监控界面;3. 学生能了解PLC编程中与水塔水位控制相关的基本逻辑和指令。

技能目标:1. 学生能通过实践操作,完成WINCC与PLC的连接和通信设置;2. 学生能运用PLC编程实现对水塔水位的自动控制,包括启停水泵、报警等;3. 学生能运用WINCC设计出直观、易操作的水塔水位监控界面。

情感态度价值观目标:1. 学生在课程学习过程中,培养对自动化控制技术的兴趣和热情;2. 学生通过小组合作,提高团队协作能力和解决问题的能力;3. 学生能认识到自动化技术在工业生产和日常生活中的重要性,增强社会责任感和创新意识。

课程性质:本课程为实践性较强的课程,结合理论知识与实际操作,培养学生的动手能力和实际应用能力。

学生特点:学生具备一定的计算机操作基础,对PLC和WINCC有一定了解,但对实际应用中的复杂系统控制尚缺乏经验。

教学要求:教师需引导学生结合理论知识,注重实践操作,关注学生在操作过程中遇到的问题,及时给予指导和解答,以提高学生的实际应用能力。

同时,注重培养学生的团队协作能力和创新思维。

通过本课程的学习,使学生能够将所学知识应用于实际工程案例中,提高解决实际问题的能力。

二、教学内容1. 理论知识:- PLC基础知识:PLC的结构、工作原理、编程语言及指令系统;- WINCC基础知识:WINCC软件功能、组态过程、变量管理及监控界面设计。

2. 实践操作:- 水塔水位控制系统设计:根据水塔水位要求,设计PLC控制程序;- WINCC与PLC连接:配置WINCC与PLC通信参数,实现数据交换;- 监控界面设计:利用WINCC设计水塔水位监控界面,实现实时监控和报警功能。

3. 教学大纲:- 第一周:PLC基础知识学习,理解PLC在水塔水位控制系统中的作用;- 第二周:学习WINCC基础知识,掌握组态软件的基本操作;- 第三周:实践操作,分组进行水塔水位控制系统的设计与编程;- 第四周:调试与优化,完善水塔水位监控系统,进行成果展示。

基于plc和组态王的水塔水位控制系统

基于plc和组态王的水塔水位控制系统

基于plc和组态王的水塔水位控制系统摘要本文采用的是西门子型PLC可编程控制器作为水塔水位自动控制系统的核心,对水塔水位自动控制系统的功能性进行了需求分析。

主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。

另外在PLC的基础上,运用组态王Kingview工业监控软件,它将PLC过程控制设计、现场操作及资源管理于一体,将水箱控制系统的应用以及信息交流汇集在一起,实现最优化管理。

关键词:水位自动控制、西门子、组态王、水泵、传感器1.设计背景及意义1.1设计背景在工业生产和日常生活中,水位控制越来越重要。

在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。

一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。

因此给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。

任何时候都能提供足够的水量、平稳的水压、合格的水质是对给水系统提出的基本要求。

就目前而言,多数工业、生活供水系统都采用水塔、层顶水塔等作为基本储水设备,由一级或二级水泵从地下市政水管补给。

传统的控制方式存在控制精度低、能耗大、可靠性差等缺点。

可编程控制器(PLC)是根据顺序逻辑控制的需要而发展起来的,是专门为工业环境应用而设计的数字运算操作的电子装置。

鉴于其种种优点,目前水位控制的方式被PLC控制取代。

同时,又有PID控制技术的发展,因此,如何建立一个可靠安全、又易于维护的给水系统是值得我们研究的课题。

1.2设计意义在工农业生产以及日常生活应用中,常常会需要对容器中的液位进行自动控制。

比如自动控制水塔、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水控制、自动电热水器、电开水机的自动进水控制等。

虽然各种水位控制的技术要求不同,精度不同。

基于组态王的水塔自动供水系统课设

基于组态王的水塔自动供水系统课设

1引言组态王Kingview是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现了最优化管理。

它适用于从单一设备的生产运营管理和故障诊断,到网络结构分布式大型集中监控管理系统的开发。

在生活及生产供水中, 通常是通过建造水塔以维持水压。

但是, 建造水塔费用高, 还会造成水的二次污染。

因此, 通常采用的方法是: 当用水量增大时, 增加水泵数量或提高水泵的运转速度以保持供水管网中的水压不变; 用水量减小时, 做出相反的调节。

这就是恒压供水的基本思路。

本文介绍了基于组态王的水塔供水系统的设计,在设计过程中通过模块化编程,完成了水塔的自动供水和水塔的液位保持,基本达到实际工程要求。

2界面设计本章从控制系统的总体构成及原理框图对系统进行了总体分析说明。

2.1 总体方案设计根据软件监控的需要,要对水塔储水箱以及站点水箱的液位实行监控,但由于是模拟设计,没有真正的对象,于是构造一个虚拟对象,即设计一个基于组态王的水塔液位的模拟控制,通过对模拟水箱液位的控制来模拟现场真正的运行情况,一边进行监控。

2.2内存变量定义系统主要有液位测量模块、显示模块、管道模块、阀门模块、及按键模块。

其原理框图如图1所示。

图1 内存变量定义截图2.3登录界面设计新建一画面,命名为:登录界面,绘制两按钮,分别为进入系统和退出系统如图2所示。

图2 登录界面设计截图2.4 水塔自动供水系统主界面的设计水塔自动供水系统主界面包括画面间切换和返回按钮的设计、供水管道及水塔、报警的设计等几方面内容,总体运行效果如图3所示。

图3主界面截图2.5实时曲线与历史曲线实时趋势曲线的创建过程:新建一画面,名称为实时曲线,选择工具中的工具,在画面中绘制一实时曲线窗口,如图4所示。

图4 实时曲线界面截图历史趋势曲线的创建为:新建一画面,命名为:历史曲线,在画面中插入通用控件窗口中的“历史趋势曲线”控件,如图5所示。

毕业论文:水塔自动上水系统的设计

毕业论文:水塔自动上水系统的设计

毕业设计课题水塔自动上水系统的设计学生姓名学号业电子信息工程班级院(系)指导教师职称第一章绪论1.1 题目研究背景今社会电子技术、计算机技术息信处理技术等正在发展,许多工业、农业也在逐步的智能化发展,在用水方面,它们不在是靠人工一天不停的检测来进行控制抽水供用,这样容易耗费大量的人力和物力,使用智化的水塔自动上水,它能在缺水时自动开使抽水补给所需的用水,节省了大量的时间、劳力和物力,也给人们在用水带来了更大的方便。

水塔的自动上水经历了继电式自动上水装置,晶体管自动上水装置,集成式自动上水装置,微处理器自动上水装置。

电继式采用了三个探测电极来检测水位的高低,使继电器开启或闭合来控制电机开停来达到控制水位的目地;晶体管自动上学装置用两只三极管的导通、管断,从而控制继电器达到控制水位的目的。

;集成式自动上水在以前的基础上晶体更加先进、灵敏可靠和耐用;微处理器采用了先进的高新技术来控制现代的水塔水位自动控制系统应包括一切以计算机(单片机、PC机、工控机、系统机)为信息处理核心的检测设备。

因此,水塔水位自动控制系统包括了信息获取、信息传送、信息处理和信息输出等多个硬、软件环节。

从某种程度上来说,水塔水位自动控制系统的发展水平表现了一个国家的科技和设计水平。

1.2毕业设计题目研究意义对于当今社会的发展,高楼越来越多,工厂也越来越多水塔自动上水的应用也越来越广泛,水塔自动上水系统的设计符合当今社会的需求,它的成本较低,多半在人的接受范围,使用起来也非常方便,没水时它能自动补充水,不需人长时间的监控着它。

它解决了高楼用水难的问题,有很大的实用性,同时也体现了它的社会价值。

第二章设计系统框图与工作原理水塔自动水控制控制在日常生活及工业领域中应用相当广泛,比如水塔、地下水、水电站等情况下的水位控制。

自动检测水位的检测系统能根据水位变化的情况自动调节。

水塔自动上水控制采用单片机进行主控制,利用水的导电性测量水位的变化,把测量到的水位变化转换成相应的电信号,用单片机对接收到的信号进行数据处理,完成水位的检测、控制及故障报警等功能。

恒压供水系统控制及组态监控系统设计

恒压供水系统控制及组态监控系统设计

恒压供水系统控制及组态监控系统设计一、本文概述在现代工业和城市供水系统中,恒压供水系统扮演着至关重要的角色。

它不仅确保了供水的稳定性和可靠性,还提高了供水系统的运行效率和水资源的利用率。

随着科技的不断进步和自动化水平的不断提高,恒压供水系统的控制及组态监控系统设计成为了供水行业关注的焦点。

本文旨在探讨恒压供水系统控制的基本原理、关键技术和组态监控系统的设计方法。

本文将介绍恒压供水系统的工作原理及其重要性,阐述系统在供水过程中如何保持恒定的压力,以及这一过程对保障供水质量和满足用户需求的重要意义。

接着,本文将深入分析恒压供水系统的控制策略,包括常用的控制算法、控制器的选择与参数调整,以及这些控制策略如何实现系统的精确控制和优化运行。

本文还将探讨组态监控系统的设计要点,如数据采集、处理与显示,故障诊断与处理,以及系统的安全性和可靠性。

本文将结合实际案例,展示恒压供水系统控制及组态监控系统设计的成功应用,以及这些设计在提高供水效率、降低能耗和保障供水安全方面的实际效果。

通过本文的阐述,期望为相关领域的工程技术人员和研究人员提供有益的参考和启示,推动恒压供水系统控制及组态监控技术的发展和创新。

二、恒压供水系统基本原理闭环控制系统:恒压供水系统采用闭环控制系统,通过传感器实时监测供水管网的压力,将监测到的压力值与预设的目标压力值进行比较,根据偏差来调节水泵的运行状态,以保证供水压力的稳定。

变频调速技术:在恒压供水系统中,通常会使用变频器对水泵电机进行调速控制。

当系统检测到供水压力低于设定值时,变频器会增加电机转速,提升供水量反之,当供水压力高于设定值时,变频器会降低电机转速,减少供水量,以此来维持恒定的供水压力。

多泵联动控制:为了保证供水系统的高效运行和供水压力的稳定,恒压供水系统通常会配置多台水泵,并根据用水量的变化自动调整水泵的启停和运行状态。

这种多泵联动控制方式可以有效地平衡供水能力和需求,提高系统的稳定性和可靠性。

PLC 水塔水位 控制系统

PLC 水塔水位  控制系统

信息工程学院实训报告水塔水位自动控制及报警系统模拟实训学生姓名:杨尚文学号:0967106427专业:自动化班级:自2009-4指导教师:田海目录摘要 (III)1. 可编程序控制器(PLC)简介 (5)2 PLC工作原理 (5)3 PLC的工作工程 (5)4水塔水位系统设计 (6)4.1水塔水位系统PLC硬件设计与调试 (6)4.2水塔水位系统控制电路与输入/输出设备 (7)4.3水塔水位控制系统PLC的输入/输出接口分配表 (7)5 水塔水位控制系统PLC软件设计 (7)5.1水塔水位控制系统的PLC控制流程图 (7)5.2水塔水位控制系统梯形图 (9)结论 (10)参考文献 (11)摘要随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工业控制装置——可编程控制器。

随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位进行测量和控制。

水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。

而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。

关键词:水位控制、PLC 、故障报警AbstractWith the development of modern social production and technological progress,the level of modern industrial automation increasingly rapid development of microelectronics technology machine, the relay control system based on a new generation of industrial control devices - programmable logic controller . With the development of technology and the reality of some of the problems exposed in order to be more efficient and more convenient to complete some tasks in the industrial and agricultural production process, often need to measure and control the water level. Water level control applications in everyday life are very wide, such as water towers, groundwater, hydropower and other water level control case. The water level detection can have a variety of implementation methods, Such as mechanical control, logic control, electrical and mechanical control.Key words: Water level control, PLC, Fault alarm水塔水位自动控制及报警系统实训1 可编程序控制器(PLC)简介可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。

工业自动化专业毕业设计论文基于PLC的供水控制系统设计

工业自动化专业毕业设计论文基于PLC的供水控制系统设计

基于PLC的供水控制系统设计DESIGN OF WATER TOWER LEVELCONTROLLING SYSTEM BASED ON PLC摘要在恒压无塔供水系统取得较大发展的今天,传统的水塔供水系统以其低廉的价格和操作的简便在工农业生产和日常生活中仍然具有广泛的应用,在对水压要求不高以及水位现场高度较低的情况下,以用水塔进行供水为主。

本系统采用西门子公司生产的S7-200系列可编程控制器作为控制核心,用液位传感器采集水塔现场的水位信号,通过文本显示器设定或显示相关参数,利用可编程控制器的继电器输出控制水泵对水塔供水或停水,使水塔水位保持在相对稳定的范围,保证工农业生产的顺利进行和日常生活中对用水的需求。

关键词过程控制PLC 水塔水位ABSTRACTIn the time of constant pressure without tower water systems have achieved a greater development, the traditional water tower water supply system for its low price and simplicity of operation in industrial and agricultural production and daily life is still widely used,in water pressure less demanding and water level in the scene at low altitudes, the main supply of water with a water tower. This system use Siemens S7-200 series programmable controller as its control unit,and use the signal level sensor to collect the water level of the water tower site, then through the text display to setting or display the parameters, the relay output of programmable controller to control pump the water tower water supply start or stop, make the water tower water level maintained at a relatively stable range, to makesure the smooth progress of the industrial and agricultural production and daily life in the demand for water.KEY WORDS process control PLC water level of tower目录中文摘要 .......................................................................................... 错误!未定义书签。

工控机对水塔水位的组态控制

工控机对水塔水位的组态控制

4、水塔水位控制系统的I/0设备
1、程序流程图
2、水塔水位控 制系统的梯形图
1、组态王测试连接及其控制
心得小结
总结
认真
执着
坚持
THANKS
工控机对水塔水位的组态控制
目录
01 水塔水位控制系统PLC硬件设计
02 水塔水位控制系统PLC软件设计 03 组态软件设计 04 设计总结
1、 水塔水位控制装置
水上限位 开关S4
水池下限位 开关S3
水泵
水塔
水池
电磁阀
水流
水池上限位 开关S2
水池下限位 开关S1
2、水塔水位控制系统主电路
3、水塔水位控制系统PLC的I/O接口分配表
输入信号 I0.1 I0.2 I0.3 I0.4 I0.0
输入变量名 水塔上限位 水塔下限位 水池上限位 水池下限位 控制开关
输出信号 Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7
输出变量名 电磁阀 水泵 水池下限指示灯a1 水池上限指示灯a2 水塔下限指示灯a3 水塔上限指示灯a4 报警指示灯a5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动化应用软件实训设计
题目:水塔供水系统
班级:
姓名:
学号:
指导教师:
设计时间:
一、题目设计方案
本文所设计的水塔供水系统主要由七部分组成,分别是登录界面、控制主画面、实时曲线、历史曲线、实时报表、历史报表以及报警窗口。

系统实现了水塔液位的自动调节。

当水塔储水箱液位低于25dm时,采用单位时间供水量为5dm的深井泵1和单位时间供水量为10dm的深井泵2同时向水塔储水箱供水。

当水塔液位达到60dm时,关闭深井泵1,深井泵2单独供水;当水塔液位达到80dm时,用深井泵1单独供水,当水塔液位高于96dm时,向水塔停止供水。

当水塔储水箱中有水时,通过供水阀向两个站点水箱分别供水,一旦站点水箱液位达到85dm时,停止供水,而当其液位低于一定值时,继续供水,这样保证了用户用水的水压不会过高或者过低。

“组态王”是完全基于网络的概念,是一个完全意义上的工业级软件平台,现已广泛应用于化工、电力、国属粮库、邮电通讯、环保等行业。

它也适合于污水处理行业的设计工作。

组态王开发监控系统软件是新型的工业自动控制系统正以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统,它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。

可以把这样的系统划分为控制层、监控层、管理层三个层次结构。

监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。

二、界面设计
根据软件监控的需要,要对水塔储水箱以及站点水箱的液位实行监控,但由于是模拟设计,没有真正的对象,于是构造一个虚拟对象,即设计一个基于组态王的水塔液位的模拟控制,通过对模拟水箱液位的控制来模拟现场真正的运行情况,一边进行监控。

1.内存变量的定义
首先打开组态王软件的工程浏览器,在数据词典中双击新建,会弹出如图1的对话框,键入变量名,设置变量类型。

图1 变量的定义
如此对设计过程中需要的变量进行逐一定义,直至完成所有变量的定义为止,图2显示了所有定义过的变量。

图2 已定义的所有变量
2.水塔液位控制主界面的设计
具体水塔液位控制包括画面间切换按和返回钮的设计、供水管道的设计等几方面
内容,总体运行效果如图3示。

图3 系统控制主画面
3.实时曲线与历史曲线
“组态王”对趋势分析提供了强有力的支持和简单的控制方法。

趋势曲线有实时趋势曲线和历史趋势曲线两种。

曲线外形类似于坐标纸,X 轴代表时间,Y 轴代表变量值。

对于实时趋势曲线最多可显示四条曲线;而历史趋势曲线最多可显示十六条曲线,而一个画面中可定义数量不限的趋势曲线(实时趋势曲线或历史趋势曲线)。

画面程序运行时,实时趋势曲线可以自动卷动,以快速反应变量随时间的变化;历史趋势曲线不能自动卷动,它一般与功能按钮一起工作,共同完成历史数据的查看工作。

实时曲线的主要功能就是以曲线的形式将实时动态变化的数据很直观的反映出来,便于观测和监控。

历史曲线则是将以前某一时间段内的数据变化情况静态的显示出来。

实时趋势曲线的创建过程:新建一画面,名称为实时趋势曲线,选择工具中的
工具,在画面中绘制一实时曲线窗口,在生成实时趋势曲线对象后,双击此对象,弹出“曲线定义”对话框,单击对话框上端两个按钮在“曲线定义”和“标识定义”之间切换。

如图4所示。

图4 实时趋势曲线
历史趋势曲线的创建为:新建一画面,命名为:历史趋势曲线,选择工具中的工具,在画面中插入通用控件窗口中的“历史趋势曲线”控件,如图5所示。

图5 历史趋势曲线
4.报表打印
实时数据报表的打印过程为:在“实时数据报表画面”中添加一按钮,按钮文本为:实时数据报表自动打印。

在按钮中弹起事件中输入以下命令语言,如图6所示。

图6 报表打印命令语言
5.报警窗口设计
新建一画面,命名为:报警窗口,选择工具箱中的工具,在画面中绘制一报警窗口,如图7所示。

图7 报警窗口
6.登录界面设计
新建一画面,命名为:登录界面,绘制两按钮,分别为进入系统和退出系统,如图8所示。

图8 登录界面
三、命令语言设计
1.按钮的设计
画面连接按钮的命令语言为:ShowPicture("PictureName"),画面退出按钮的命令语言为:Exit( 0 )。

2.管道流动条件的设计
主控画面中管道的流动条件部分命令语言为:
\\本站点\阀门1==1&&\\本站点\供水泵1==1;
\\本站点\阀门1==1;
\\本站点\深井泵2==1
3.历史报表命令语言
生成本系统历史报表需要如下命令语言:
long row;
row=\\本站点\$秒+4;
ReportSetCellString("Report6", 2, 2,\\本站点\$日期);
ReportSetCellString("Report6", row, 1,\\本站点\$时间);
ReportSetCellValue("Report6", row, 2,\\本站点\蓄水池液位);
ReportSetCellValue("Report6", row, 3,\\本站点\水压);
ReportSetCellValue("Report6", row, 4,\\本站点\站点水箱1);
ReportSetCellValue("Report6", row, 5,\\本站点\站点水箱2);
if(row==3)
ReportSetCellString2("Report6", 4, 1,63,4,"" );
4.系统运行命令语言
系统运行的所有程序如下:
if(\\本站点\深井泵1号==1)
{\\本站点\蓄水池液位=\\本站点\蓄水池液位+9;
\\本站点\流动条件=-10;}
if(\\本站点\深井泵1号==0)
{\\本站点\流动条件=-255;}
if(\\本站点\深井泵2号==1)
{\\本站点\蓄水池液位=\\本站点\蓄水池液位+8;}
if(\\本站点\深井泵2号==0)
{\\本站点\流动条件=-255;}
if(\\本站点\供水阀门3==1)
{\\本站点\蓄水池液位=\\本站点\蓄水池液位-4;}
if(\\本站点\供水阀门4==1)
{\\本站点\蓄水池液位=\\本站点\蓄水池液位-4;}
if(\\本站点\自动运行==1)
{if(\\本站点\蓄水池液位>=90)
{\\本站点\深井泵1号=0;\\本站点\深井泵2号=0;}
if(\\本站点\蓄水池液位<=35 )
{\\本站点\深井泵1号=1;\\本站点\深井泵2号=1;}
if(\\本站点\蓄水池液位<=75 && \\本站点\蓄水池液位>35)
{\\本站点\深井泵1号=1;\\本站点\深井泵2号=0;}
if(\\本站点\站点水箱1<=35)
{\\本站点\供水阀门1=1;\\本站点\供水泵1号=1;\\本站点\供水阀门3=1;} if(\\本站点\站点水箱2<=35)
{\\本站点\供水阀门2=1;\\本站点\供水泵2号=1;\\本站点\供水阀门4=1;} if(\\本站点\站点水箱1>=75)
{\\本站点\供水阀门3=0;}
if(\\本站点\站点水箱2>=75)
{\\本站点\供水阀门4=0;}
if(\\本站点\站点水箱1>=75 &&\\本站点\站点水箱2>=75)
{\\本站点\供水阀门1=0;\\本站点\供水泵1号=0;\\本站点\供水阀门3=0;\\本站点\供水阀门2=0;\\本站点\供水泵2号=0;\\本站点\供水阀门4=0;} if(\\本站点\供水阀门3==1)
{\\本站点\站点水箱1=\\本站点\站点水箱1+4;}
if(\\本站点\供水阀门4==1)
{\\本站点\站点水箱2=\\本站点\站点水箱1+4;}
if(\\本站点\用水阀1==1)
{\\本站点\站点水箱1=\\本站点\站点水箱1-3;}
if(\\本站点\用水阀2==1)
{\\本站点\站点水箱2=\\本站点\站点水箱2-3;}}
if(\\本站点\用水阀1==1)
{\\本站点\站点水箱1=\\本站点\站点水箱1-3;}
if(\\本站点\用水阀2==1)
{\\本站点\站点水箱2=\\本站点\站点水箱2-3;}
总结
在这次的组态王软件的实训中,通过自己不断的摸索,感觉到收获很多。

此次课程设计,我们按照设计的要求首先对组态王的指导教材进行了仔细的阅读和研究,力争每个步骤都不出现不应有的错误,然后才进行画图的设计。

因为我们懂得做任何程序都要认真细心,任何一个小小的失误都会造成整个设计的失败,更懂得了没有足够的耐力和信心就很难坚持对课程设计每一步的顺利进行。

当遇到错误时,我们要仔细寻找错误的根源,从根本上明白自己犯错误的原因,从而真正的解决问题,真正明白自己的不足之处。

对编程环节中出现的错误解决的同时,加深了我们对程序的深层理解,清楚程序中每一步的功能,在程序的运行中是十分重要的,一个好的结构在运行中能够充分的发挥程序的功能。

结构设计的合理性决定了这个程序的价值。

相关文档
最新文档