化学反应工程知识点复习 ppt课件
合集下载
反应工程ppt课件
h)
试求乙酸转化率xA分别为0.5、0.9、0.99所需的反应时间。 已知乙酸与正丁醇的密度分别为960kg/m3和740kg/m3
解: CH 3COOH C4H9OH CH 3COOC 4H9 H2O
对1kmol A而言,投料情况是:
乙酸(A) 1kmol
60kg
60/960=0.0625m3
化学反应工程
1
第3章 理想反应器
反应工程研究的内容:
反应
反应器:反应器的设计和开发
反应器开发的任务:
(1)根据化学反应的动力学特征来选择合适的反应器型式
(2)结合动力学和反应器两方面特性来确定操作方式和优 化设计
反应器的结构和尺寸有关
反应器内的传热性能
(3)根据给定的产量对反应器进行设计计算,确定反应器 的几何尺寸
零级反应:残余浓度随t直线下降 一级反应:残余浓度随t逐渐下降 二级反应:残余浓度随t慢慢下降
10
【例3-1】以乙酸(A)和正丁醇(B)为原料在间歇反应器 中生产乙酸丁酯,操作温度为100℃,每批进料1kmol 的A和4.96kmol的B,已知反应速率
(rA )V
1.045
c
2 A
k
mol
/(m3
1 kc
1 ln
1 xAf
k 9.52109 exp( 7448.4 ) 0.92(h1) 273 50
t 1 ln 1 1.31h 0.92 1 0.7
则每批操作实际所需要的操作时间为:
t t 0 1.31 0.75 2.06h
反应终了时R的浓度为: CR 2C A0 xA 3.22kmol / m3
t cA0
xAf 0
dxA (rA )V
《化学反应工程》课件
《化学反应工程》PPT课 件
欢迎来到本次《化学反应工程》PPT课件!在本课件中,我们将探索化学反 应工程的定义、重要性、应用领域、基本步骤和关键要素。
课程介绍
在这个章节中,我们将简要介绍《化学反应工程》课程的目标和内容。
化学反应工程的定义
1 探索化学变化
了解化学反应工程是研究和优化化学反应的过程。
2 最大化产出
学习如何设计反应条件以获得最高产出率。
3 确保安全
了解如何在反应过程中确保操作员和环境的安全。
化学反应工程的重要性
产品开发
化学反应工程为新产品开发提 供支持。
过程优化
优化反应工程可提高生产效率 并降低成本。
环境保护
合理设计反应过程有助于减少 环境污染。
化学反应工程的应用领域
1
医药行业
化学反应工程在药物合成和制造中起着
能源领域
2
重要作用。
反应工程可应用于石油炼制和可再生能
源生产。
3
化工行业
化学反应工程可促进化学品的生产和工 艺改进。
化学反应工程的基本步骤
反应评估
评估反应的适用性和可能的反应机制。
实验验证
通过实验室测试验证反应方案。
方案设计
制定合适的反应方案和条件。
工业应用
将优化后的反应方案应用于工业生产。
化学反应工程的关键要素
反应器设计
合理设计反应器以实现高效的反 应。
催化剂选择
选择适当的催化剂以促进反应速 率。
过程制
实时监测和调控反应过程以确保 稳定性。
结论和总结
通过本课程,您将掌握化学反应工程的核心知识,并能在实际应用中应用所 学。
欢迎来到本次《化学反应工程》PPT课件!在本课件中,我们将探索化学反 应工程的定义、重要性、应用领域、基本步骤和关键要素。
课程介绍
在这个章节中,我们将简要介绍《化学反应工程》课程的目标和内容。
化学反应工程的定义
1 探索化学变化
了解化学反应工程是研究和优化化学反应的过程。
2 最大化产出
学习如何设计反应条件以获得最高产出率。
3 确保安全
了解如何在反应过程中确保操作员和环境的安全。
化学反应工程的重要性
产品开发
化学反应工程为新产品开发提 供支持。
过程优化
优化反应工程可提高生产效率 并降低成本。
环境保护
合理设计反应过程有助于减少 环境污染。
化学反应工程的应用领域
1
医药行业
化学反应工程在药物合成和制造中起着
能源领域
2
重要作用。
反应工程可应用于石油炼制和可再生能
源生产。
3
化工行业
化学反应工程可促进化学品的生产和工 艺改进。
化学反应工程的基本步骤
反应评估
评估反应的适用性和可能的反应机制。
实验验证
通过实验室测试验证反应方案。
方案设计
制定合适的反应方案和条件。
工业应用
将优化后的反应方案应用于工业生产。
化学反应工程的关键要素
反应器设计
合理设计反应器以实现高效的反 应。
催化剂选择
选择适当的催化剂以促进反应速 率。
过程制
实时监测和调控反应过程以确保 稳定性。
结论和总结
通过本课程,您将掌握化学反应工程的核心知识,并能在实际应用中应用所 学。
《化学反应工程》课件
部分模化法
将反应器的一部分进行放大或缩小, 以研究其放大效应或缩小效应。
相似放大法
通过相似理论来预测大试实验结果, 需要保证相似条件得到满足。
04
流动与混合
流动模型与流型
1 2
层流模型
适用于低雷诺数的流体,流速较低,流体呈层状 流动。
湍流模型
适用于高雷诺数的流体,流速较高,流体呈湍流 状态。
3
过渡流模型
化学反应影响流动特性
化学反应释放的热量和产生的压力变化会影响流体的流动状 态。
流动与混合实验技术
实验设备
包括管式反应器、搅拌釜式反应器、喷射式反应器等。
实验方法
通过测量流体的流速、压力、温度等参数,分析流动与混合对化学反应的影响 。
05
传递过程与反应器的热力学基础
传递过程基础
传递过程定义
物质和能量的传递是自然界和工程领域中普遍存在的现象,传递 过程是研究物质和能量传递规律的科学。
通过调节进料浓度来控制反应物浓度,保证反应的稳定性和效率。
催化剂选择与优化
选择合适的催化剂并优化其用量,提高反应效率和选择性。
反应器放大与缩小
经验放大法
根据小试实验数据和经验公式,通过 比例放大来预测大试实验结果。
数学模拟放大法
通过建立数学模型来模拟反应过程, 并利用计算机技术进行放大和缩小实 验。
管式反应器
适用于连续操作和大量生产,传热效果好, 适用于高粘度液体和悬浮液。
流化床反应器
适用于固体颗粒的反应,传热效果好,适用 于大规模生产。
反应器设计基础
反应动力学
研究反应速率和反应机理,为反应器设计提 供基础数据。
热力学
研究反应过程中的能量变化和物质平衡,为 反应器设计提供热力学依据。
化学反应工程课件-PPT
k/
k
K
1/ p
E
E
1
H
r
ln
k
ln
k
1
ln
K
p
d ln k dT
d ln k dT
1
d ln K p dT
1
H r 1R4T 2
E
E
1
H r
对于吸热反应,ΔHr>0 对于放热反应,ΔHr<0
EE
EE
●反应 速率与 温度的 关系
r k f (X A) k g(X A)
r
dk
dk
( T ) xA f ( X A ) dT g( X A ) dT
kcA0 (1 X A ) (cB0
B A
cA0 X A )
(2.48)
XA——t
● 变
AA BB PP
ci
ni V
XA
容
过 程
* rA kcAcB
1 V
dnA dt
kcA cB
30
AA BB PP
组分
A B
反应前(XA=0)
nA0
1 j A1 2 j A2 ij Ai 0 rj
1M A1 2M A2 iM Ai 0 rM
M
i ij r j (*) j 1
rj
?
i
●忽略次要反应,确定独立反应数M;
●测M个组分的 i
●对每个组分按(*)式,建立M个线 性方程;
●求解代数方程组,得 rj.
22
例:乙苯催化脱氢反应可以用下列方程式表示
不受其他反应的反应组分浓度的影响。
特殊 情况
●多相催化反应; ●变容气相反应.
化学反应工程 课件
15
化学反应工程的基本研究方法
• 化学反应工程的基本研究方法是数学模 型法。数学模型法是对复杂的难以用数 学全面描述的客观实体,人为地做某些 假定,设想出一个简化模型,并通过对 简化模型的数学求解,达到利用简单数 学方程描述复杂物理过程的目的。
16
数学模型法
• 1.建立简化物理模型 • 对复杂客观实体,在深入了解基础上,
交换,全部反应热效应使物料升温或降 温。 • 3. 非等温、非绝热反应器,与外界有热 量交换,但不等温。
10
重 油 的 催 化 裂 化 流 化 床 反 应 器
11
搅拌釜式反应器
12
邻二甲苯氧化制苯酐多管式固定床反应器
13
乙 苯 加 氢 气 液 塔 式 反 应 器
14
轻油裂解制乙烯管式非催化反应器
化学反应工程 课件
绪论
• 化学反应工程学是一门研究涉及化学反 应的工程问题的学科。
• 对于已经在实验室中实现的化学反应, 如何将其在工业规模实现是化学反应工 程学的主要任务。
2
• 为了这一目标,化学反应工程学不仅研 究化学反应速率与反应条件之间的关系, 即化学反应动力学,而且,着重研究传 递过程对化学反应速率的影响;研究不 同类型反应器的特点及其与化学反应结 果之间的关系。
t/hr
cA
cA0-cA
ln
cA cA0
0
0.2332
0
0
1
0.2168 0.01636
0.07298
2
0.2059 0.02732
0.1245
3
0.1966 0.03662
0.1707
4
0.1879 0.04525
0.2160
化学反应工程知识点复习ppt课件
可见,
A 0
等分子反应
A 0
缩体反应 膨体反应
A 0
最新版整理ppt
45
2.3 等温变容过程
速率表示式为:
(rA )
CA0
1 A yA0xA
dxA dt
2.3.2 膨胀率 膨胀率是指反应物A全部转化后系统体积的变化分率:
A
V V xA 1
xA 0
VxA 0
它既与反应的化学计量关系有关,也与系统的惰性物量有关
最新版整理ppt
15
2、速率常数k
• 化学反应速率方程体现了浓度和温度两方面 的影响,浓度的影响体现在浓度项上,反应 级数表明了反应速率对浓度变化的敏感程度。
• 温度的影响则是由速率常数k体现的。
最新版整理ppt
16
2.1反应速率常数
在一般情况下,反应速率常数 kc与绝对温度T之间的关系可以用 Arrhenius 经验方程表示,即:
rS
dC S dt
k2C P
对-rA分离变量积分得:
C A C A 0 ex k 1 p t
最新版整理ppt
42
对A作物料衡算,则有:
CA0CAC PC S
以各组分浓度对时间作图得到各组分的分布曲线,见图。
最新版整理ppt
43
从而得到对应此最高浓度的反应时间为:
topt
ln( k2 k2
最新版整理ppt
18
lnk与1/T是直线关系 -E/R为斜率 lnk0为截距
通过实验测出不同温度下的 速率常数k,作图根据截距 就可以求出指前因子k0,再 根据直线的斜率求出活化能
E
对给定的反应,反应速率与
温度的关系在低温时比高温
化学反应工程全套课件完整版ppt全册电子教案
04
动力学方程式
定量描述反应速
率与影响因素之
间的关系式。
反应速率与影响反应
速率的影响因素之
间的函数表达式
r f (T、c)
均相反应:本征动力学方程
非均相反应:宏观动力学方程
反应速率
定义:在反应系统中,某一物质在单位时间,单位反 应体系内的变化量。
变化量
反应速率
反应时间 (反应体系)
注意:
1、上述定义无论对反应物和产物均成立。
若为反应物则为消失速度 .
若为产物则为生成速度.
1 dnA
V dt
1 dni
ri
V dt
(rA )
反应速率
2、反应速率恒为正值
1 dni
ri
V dt
3、速度的表示形式和化学计量系数有关
对于 A A B B P P S S
05
工业指标
反 应 程 度
对于下列化学反应:
AA BB RR S S
初始:
某一时刻:
nA0
nA
nB0
nB
nR0
nR
ns0
ns
反应的量 nA- nA0 <0 nB- nB0 <0 nR- nR0>0 nS- nS0>0
其中 为化学计量系数。对反应物而言为“-”,对生成物而
I
言为“+”。
3. 示踪剂必须是能用简便而又精
确的方法加以确定的物质
4.示踪剂尽量选用无毒、不燃、无
腐蚀、价格便宜的物质
示
踪
物
的
选
择
03
反应器流体流动
脉冲法
过 程:
在反应器中流体达到定态流动后,在极短的时间内将示踪物注入进料中,然后立刻
化学反应工程要点解析ppt课件
K
0
X A1
XA
X A2
V Q c r 0 A 0 p
X A 2
0
dX A [ R ( X )] A A
达到相同的转化率, 管式反应器所需的反应体积小于釜式反应器
4.3.2 反常动力学
Q 0cA 0XA 2 V r M [ RA(XA)]
G
1 (R A )
M
L
P
0
X A1
N
Q c X c ( X X ) 0 A 0 A 1 Q 0 A 0 A 2 A 1 V r M [ R ( X )] [ R ( X )] A A 1 A A 2
VR tm V0
3) t m 和 t 的关系 对于等容过程,t m = t ,因此,通过实验确定 t ,就可求出 t m
tm
也可写为:
tEt ( )d t t tEt ( )d t ( )d t Et
0 0 0
(4-17)
1 d F ( t ) t t t d t t d F ( t ) m 0 0 d t
rA 显然,cA=0.5kmol/m3时,速 率达最大值。 cAf 0 0.5 cA0 1.0 cA
(2) 全混流反应器
1/rA
(3) 平推流反应器
1/rA
cAf
cA0
cA
cAf
cA0
cA f cA0
cA
VR V0
cA0 cAf (rA) f
V R V 0
dcA r A
(2)全混流反应器
0
2)物料平均停留时间tm:是整个物料在设备内的平均停留时间。 设进入反应器的物料流量为V,则在反应器中任取一微元体 积dVR,对于任何流型,均有
化学反应工程PPT课件
行分析的基本依据。
2.1.2 均相反应动力学方程
解:将Arrhenius式取对数,则有
ln
k
E RT
ln
k0
由式可见,lnk与1/T之间为线性关系。整理表2.1-1中数据可得
B
-7.2
-7.4
lnk
-7.6
-7.8
-8.0
-8.2
-8.4
2.30
2.32
2.34
2.36
2.38
2.40
2.42
2.1 基本概念及术语
2.1-4 反应速率方程
一、函数形式
r f (T , P, cA, cB......)
(1)双曲函数型 由反应机理导出,常用于反应机理分析。 (2)幂函数型 由质量作用定律得到,函数中的参数需通过实验测定, 常用于工程计算。 二、动力学方程
设一均相不可逆反应 动力学方程
aA bB pP
代入动力学方程整理得
cR0 cR0+cA0xA
dxA dt
(k1
k2
cR0 cA0
)
(k1
k2
)
xA
可逆反应的计算中常引入化学平衡数据,这里假设
(1)
(1)
表2-2-2列出其它可逆反应的速率方程的积分形式。要求能够根据 具体反应正确选择方程式进行计算。
2.2-3 均相催化反应
A+C
R+ C
(2-2-30)
-rA
特点:有一最大反应速率
cM0/2
cA
对式(2-2-30)微分,并令其导数等于零,得到最大反应速率及
对应的反应物浓度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k ∝T 0~1 0
k之所以称之为常数,是指当反应温度不变时,k是个 常数,当反应温度变化较大时它就不再是常数。 活化能E,根据过度状态理论,反应物生成产物,要 超过一个能垒,因此E的取值永远是正值。
图2-1
lnk与1/T是直线关系 -E/R为斜率 lnk0为截距
通过实验测出不同温度下的 速率常数k,作图根据截距 就可以求出指前因子k0,再 根据直线的斜率求出活化能 E
对于(恒容)气相反应,由于分压与浓度成正比,也可 用分压来表示。
( r )
1
dn A
k
P P
A V dt
pA B
问题:
化学反应速率式为,rAKCC ACB
如用浓度表示的速率常数为Kc, 用压力表 示的速率常数Kp,则Kc= Kp
化学反应工程知识点复习
(3) 基元反应 基元反应指反应物分子一步直接转化为产物分子的反应 。 凡是基元反应,其反应速率遵循质量作用定律,即根据 化学计量关系,就可以写出反应速率方程。 (4)反应级数 反应级数:指浓度函数中各组分浓度的幂数。
•答:1/3 1/2
冪数型动力学方程和双曲型动力学方程
1)幂数型动力学方程 aA+bB=rR+sS
实验研究得知,均相反应速率取决于物料的浓度
和温度,反应速率符合下述方程,称之为幂数型
动力学方( r A ) k A c A c B
k cA cB
式中k称作反应速率常数;α、β是反应级数。
对二级不可逆反应:
A + B → 产物
其反应速率方程为:
rA
dCA dt
CA0
dxA dt
k CACB
k CA01 xACB0 CA0xA
k CA 20 1 xA xA
CB0/CA0
当CA0=CB0时,积分结果为:
1 1 CA CA0
C1A01xx AAkt
工程
知识 •点复在计量0℃方时程纯反气应相:组A分→A2.在5P一,恒实容验间测歇得反如应下器数依据以:下
rA
1 V
dnA dt
由(于单反位应体而积消) A物 耗(质 的 间 单)的位量时
我们选中哪个组分求反应速率,就称做是着眼组分
rA V 1d dA n , trB V 1d dBn ,trR V 1d dRn t
式中r A取负值表示反应物消失的速率
-r - A
dcA dt
恒容过程
对于反应:aA+bB=rR+sS,若无副反应,则反应物与 产物的浓度变化应符合化学计量式的计量系数关系,可 写成:
在一般情况下,反应速率常数 kc与绝对温度T之间的关系可以用 Arrhenius 经验方程表示,即:
k k0eE / RT
k0 指前因子,其单位与反应速率常数相同 Ec 化学反应的活化能,J/mol Rg 气体常数,8.314J/(mol.K)
对于恒温反应因为影响不大 k0指前因子或频率因子,看做与温度无关的常数
(rA)b a(rB)a r(rr)a s(rS)
或可说,我们用不同的着眼组分来描述化学反应速 率,那么反应速率与计量系数之比是相等的。
rA rB rr rs a b rs
若以浓度表示则为:
1dcA1dBc1dRc1dSc a dt b dt r dt s dt
化学反应工程知识点复习
• 答:(A) •答:(A)
反应的反应级数或总反应级数:指浓度函数中各组分 浓度的幂数之和。
对可逆反应,有正反应的反应级数和逆反应的反应级数 。
分子数:
对于基元反应:aA+bB=rR+sS
(rA ) k AcA cB
• 分子数:基元反应中反应物分子或离子的个数。 对于基元反应来讲α,β必须是正整数,α+β是基
元反应的分子数,不能大于3(根据碰撞理论, α+β的取值不能大于3,必须是一个小于等于3 的正整数)。
习
化学反应工程知识点复习
• 解:
• 当t→∞时,pAe=0.02,故为可逆反应,设 此反应为一级可逆反应,则
dpA dt
k1 pA
k2 pP
化学反应工程
化学反应工程知识点复习
动量传递 热量传递 质量传递 反应工程
化学反应工程知识点复习
• 均相反应--在均一液相或气相中进行的反应 • 均相反应动力学是解决均相反应器的选型、操
作与设计计算所需的重要理论基础 • 公式:P15
1、化学反应速率及其表示
对于均相反应aA+bB=rR+sS反应速率定义为:
反应级数――指动力学方程中浓度项的幂数,如式中的
α和β,
α和β分别称作组分A和组分B的反应级数α+β=n,n是
基元反应的总反应级数。
, ( mm3ols )
(rA ) k AcA cB
A
R与2A 2R意义不同,前者 –rA=kACA
后者 –rA=kACA2
非基元反应:
aA+bB=rR+Ss
(rA ) k AcA cB
反应级数的大小反映了该物料浓度对反应速率影响的程 度。级数愈高,则该物料浓度的变化对反应速率的影响 愈显著。
化学反应工程知识点复习
• 化学反应速率方程体现了浓度和温度两方面 的影响,浓度的影响体现在浓度项上,反应 级数表明了反应速率对浓度变化的敏感程度。
• 温度的影响则是由速率常数k体现的。
2.1反应速率常数
对给定的反应,反应速率与 温度的关系在低温时比高温 时更加敏感 。
化学反应工程知识点复习
选择几组不同的反应温度,在等温、恒 容下得到均相反应的实验数据,并据此求 出相应的k值,进而就可以求得活化能E的 值。
k1 k0eE/ RT1 k2 k0eE/ RT2
lnk2lnk1R ET12 T11
• 一气相分解反应在常压间歇反应器中 进行,在400K和500K温度下,其反应 速率均可表达为−rA=23pA2 mol·m-3s-1, 式中pA 的单位为kPa。求该反应的活化 能。
α+β=n,n为非基元反应的总反应级数,取值可以是小于或
等于3的任何数,α和β的值与计量系数a和b的值无关。 取值是通过实验测定的。
注意:区分反应级数和反应的分子数。
相同点:非基元反应中的反应级数与基元反应中的分子数 ,取值n≤3;α、β仍称做反应物A或B的反应级数。 不同点:非基元反应n的取值还可以是负数、0、小数; 分子数是专对基元反应而言的,非基元过程因为不反映直 接碰撞的情况,故不能称作单分子或双分子反应。
k之所以称之为常数,是指当反应温度不变时,k是个 常数,当反应温度变化较大时它就不再是常数。 活化能E,根据过度状态理论,反应物生成产物,要 超过一个能垒,因此E的取值永远是正值。
图2-1
lnk与1/T是直线关系 -E/R为斜率 lnk0为截距
通过实验测出不同温度下的 速率常数k,作图根据截距 就可以求出指前因子k0,再 根据直线的斜率求出活化能 E
对于(恒容)气相反应,由于分压与浓度成正比,也可 用分压来表示。
( r )
1
dn A
k
P P
A V dt
pA B
问题:
化学反应速率式为,rAKCC ACB
如用浓度表示的速率常数为Kc, 用压力表 示的速率常数Kp,则Kc= Kp
化学反应工程知识点复习
(3) 基元反应 基元反应指反应物分子一步直接转化为产物分子的反应 。 凡是基元反应,其反应速率遵循质量作用定律,即根据 化学计量关系,就可以写出反应速率方程。 (4)反应级数 反应级数:指浓度函数中各组分浓度的幂数。
•答:1/3 1/2
冪数型动力学方程和双曲型动力学方程
1)幂数型动力学方程 aA+bB=rR+sS
实验研究得知,均相反应速率取决于物料的浓度
和温度,反应速率符合下述方程,称之为幂数型
动力学方( r A ) k A c A c B
k cA cB
式中k称作反应速率常数;α、β是反应级数。
对二级不可逆反应:
A + B → 产物
其反应速率方程为:
rA
dCA dt
CA0
dxA dt
k CACB
k CA01 xACB0 CA0xA
k CA 20 1 xA xA
CB0/CA0
当CA0=CB0时,积分结果为:
1 1 CA CA0
C1A01xx AAkt
工程
知识 •点复在计量0℃方时程纯反气应相:组A分→A2.在5P一,恒实容验间测歇得反如应下器数依据以:下
rA
1 V
dnA dt
由(于单反位应体而积消) A物 耗(质 的 间 单)的位量时
我们选中哪个组分求反应速率,就称做是着眼组分
rA V 1d dA n , trB V 1d dBn ,trR V 1d dRn t
式中r A取负值表示反应物消失的速率
-r - A
dcA dt
恒容过程
对于反应:aA+bB=rR+sS,若无副反应,则反应物与 产物的浓度变化应符合化学计量式的计量系数关系,可 写成:
在一般情况下,反应速率常数 kc与绝对温度T之间的关系可以用 Arrhenius 经验方程表示,即:
k k0eE / RT
k0 指前因子,其单位与反应速率常数相同 Ec 化学反应的活化能,J/mol Rg 气体常数,8.314J/(mol.K)
对于恒温反应因为影响不大 k0指前因子或频率因子,看做与温度无关的常数
(rA)b a(rB)a r(rr)a s(rS)
或可说,我们用不同的着眼组分来描述化学反应速 率,那么反应速率与计量系数之比是相等的。
rA rB rr rs a b rs
若以浓度表示则为:
1dcA1dBc1dRc1dSc a dt b dt r dt s dt
化学反应工程知识点复习
• 答:(A) •答:(A)
反应的反应级数或总反应级数:指浓度函数中各组分 浓度的幂数之和。
对可逆反应,有正反应的反应级数和逆反应的反应级数 。
分子数:
对于基元反应:aA+bB=rR+sS
(rA ) k AcA cB
• 分子数:基元反应中反应物分子或离子的个数。 对于基元反应来讲α,β必须是正整数,α+β是基
元反应的分子数,不能大于3(根据碰撞理论, α+β的取值不能大于3,必须是一个小于等于3 的正整数)。
习
化学反应工程知识点复习
• 解:
• 当t→∞时,pAe=0.02,故为可逆反应,设 此反应为一级可逆反应,则
dpA dt
k1 pA
k2 pP
化学反应工程
化学反应工程知识点复习
动量传递 热量传递 质量传递 反应工程
化学反应工程知识点复习
• 均相反应--在均一液相或气相中进行的反应 • 均相反应动力学是解决均相反应器的选型、操
作与设计计算所需的重要理论基础 • 公式:P15
1、化学反应速率及其表示
对于均相反应aA+bB=rR+sS反应速率定义为:
反应级数――指动力学方程中浓度项的幂数,如式中的
α和β,
α和β分别称作组分A和组分B的反应级数α+β=n,n是
基元反应的总反应级数。
, ( mm3ols )
(rA ) k AcA cB
A
R与2A 2R意义不同,前者 –rA=kACA
后者 –rA=kACA2
非基元反应:
aA+bB=rR+Ss
(rA ) k AcA cB
反应级数的大小反映了该物料浓度对反应速率影响的程 度。级数愈高,则该物料浓度的变化对反应速率的影响 愈显著。
化学反应工程知识点复习
• 化学反应速率方程体现了浓度和温度两方面 的影响,浓度的影响体现在浓度项上,反应 级数表明了反应速率对浓度变化的敏感程度。
• 温度的影响则是由速率常数k体现的。
2.1反应速率常数
对给定的反应,反应速率与 温度的关系在低温时比高温 时更加敏感 。
化学反应工程知识点复习
选择几组不同的反应温度,在等温、恒 容下得到均相反应的实验数据,并据此求 出相应的k值,进而就可以求得活化能E的 值。
k1 k0eE/ RT1 k2 k0eE/ RT2
lnk2lnk1R ET12 T11
• 一气相分解反应在常压间歇反应器中 进行,在400K和500K温度下,其反应 速率均可表达为−rA=23pA2 mol·m-3s-1, 式中pA 的单位为kPa。求该反应的活化 能。
α+β=n,n为非基元反应的总反应级数,取值可以是小于或
等于3的任何数,α和β的值与计量系数a和b的值无关。 取值是通过实验测定的。
注意:区分反应级数和反应的分子数。
相同点:非基元反应中的反应级数与基元反应中的分子数 ,取值n≤3;α、β仍称做反应物A或B的反应级数。 不同点:非基元反应n的取值还可以是负数、0、小数; 分子数是专对基元反应而言的,非基元过程因为不反映直 接碰撞的情况,故不能称作单分子或双分子反应。