七年级数学上册 3.2 代数式 第2课时 代数式值的变化课件 (新版)北师大版
合集下载
3.2整式的加减课件(第2课时)课件2024-2025学年北师大版七年级数学上册
=5 + 12 + 3 + 7 − 15 2 + 2
=17 + 10 − 14 2
随堂练习
1、计算:
(3)7(3 + 2 − − 1) − 2(3 + );
解: (3)7(3 + 2 − − 1) − 2(3 + )
=73 + 72 − 7 − 7 − 2
=4 2 − 2 + 7 + 3 − 1
=3 2 + 10 − 1
随堂练习
1、计算:
(2)(5 + 3 − 15 2 ) − (12 + 7 + 2 );
解: (2)(5 + 3 − 15 2 ) + (12 + 7 + 2 )
=5 + 3 − 15 2 + 12 + 7 + 2
3 2
2
+ 3 − 4 −
− + 2
+ 4 −
3 2
的差。
2
+
3 2
)
2
随堂练习
1、计算:
(1)(4 2 + 7) + (− 2 + 3 − 1);
解: (1)(4 2 + 7) + (− 2 + 3 − 1)
=4 2 + 7 − 2 + 3 − 1
解: (2) + (5 − 3) − ( − 2)
=4 − +3
= + 5 − 3 − +2
=3 + 3
=5 −
例3 化简下列各式
=17 + 10 − 14 2
随堂练习
1、计算:
(3)7(3 + 2 − − 1) − 2(3 + );
解: (3)7(3 + 2 − − 1) − 2(3 + )
=73 + 72 − 7 − 7 − 2
=4 2 − 2 + 7 + 3 − 1
=3 2 + 10 − 1
随堂练习
1、计算:
(2)(5 + 3 − 15 2 ) − (12 + 7 + 2 );
解: (2)(5 + 3 − 15 2 ) + (12 + 7 + 2 )
=5 + 3 − 15 2 + 12 + 7 + 2
3 2
2
+ 3 − 4 −
− + 2
+ 4 −
3 2
的差。
2
+
3 2
)
2
随堂练习
1、计算:
(1)(4 2 + 7) + (− 2 + 3 − 1);
解: (1)(4 2 + 7) + (− 2 + 3 − 1)
=4 2 + 7 − 2 + 3 − 1
解: (2) + (5 − 3) − ( − 2)
=4 − +3
= + 5 − 3 − +2
=3 + 3
=5 −
例3 化简下列各式
2022秋七年级数学上册第三章代数式3.2代数式2列代数式表示实际中的数量关系授课课件新版冀教版
感悟新知
知2-导
(3)求小亮要比大华提前多少分钟开始打字,就是求 小亮打c个字比大华打c个字多用的时间,也就是 求“c除以80的商与c除以(80+10)的商的差”,即 8c080c10min.
感悟新知
知2-练
例2 从A地乘火车到北京,普通票价格为40元/人,学生票价格为 20元/人. 星期日,A地育才学校组织部分师生到天安门广 场观看升旗仪式.
感悟新知
知2-练
3.甲乙两地相距n千米,李师傅驾驶摩托从甲地驶
往乙地.原计划每小时行x千米,但实际每小时
行40千米(x<40),则从甲地到乙地所需要的时间
比原来减少了( C )
n A. 4 0 小x 时
C.
n x
n 4 0小 时
n B. x 4 小0 时
D.
n 40
nx小 时
感悟新知
4.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼 知2-练
经过练习,小亮和大华的打字速度都 有了提高,小 亮的打字速度达到80个/分,大华比小 亮每分钟多打10个字. (1)小亮和大华a min分别能打多少个字? (2)b min大华比小亮多打多少个字? (3)将同为c个字的两篇文章分别交给小亮和大华打,如
果要求他们同时完成任务,那么小亮比大华要提前 多少分钟开始打字? (4)根据以上问题情境,请你自己提出一个问题并解决.
感悟新知
1.(1)如果汽车以85 km/h的速度在高速公路上匀速行驶, 知1-练
那么 x h行驶 的路程为___8_5_x_km.
(2)如果某工程队平均每天修路0.8 km,那么x天可以修路
____0_._8kxm.
(3)如果一套学生桌椅的价钱是380元,那么买x套这种学生桌椅
北师大七年级数学上册--第三单元 3.2 《代数式》 课件
2.已知ab>0,且a、b的绝对值分别为6、8,求a+b的值。
当a>0,b>0时,a=6,b=8,则a+b=14 当a<0,b<0时,a=-6,b=-8,则a+b=-14
作业:P85第1题和第3题
• 1、完成习题3.3 • 2、预习:3.3 整式 • 认真完成作业和练习是提高学习成绩的 第一步
(3)当h=20米时,比较物体在地球上和月球上自由下
落所需的时间。 地球上大约要2秒钟,月球上大约要5秒钟
思考题 1.已知x=2,y=-4,代数式ax3+by+5=189。 求当x=4,y=1/2时,代数式3ax-24by2+49的值。
把x=2,y=-4 代入得:a×23+b(-4)+5=199 即:8a-4b+5=189:得4(2a-b)=184;得(2a-b)=46 把x=4,y=1/2代入得:12a-24b(1/2)2+49 =12a-6b+49=6(2a-b)+49=6×46=276
10x+5y还能表示什么?
(1)如果用x(元/kg)表示大米的价格,用y(元/kg) 表示食油的价格,那么10x+5y就表示小强的妈妈 购买10kg大米和5kg食油所用的费用;
(2)如果用x(cm3/个)表示某种正方体的体积,用y(cm3/个) 表示某种长方体的体积,那么10x+5y就表示10个这样的正方体和5 个这样的长方体的体积和; (3)如果用x(kg)表示一张课桌的质量,用y(kg)表示一个凳 子的质量,那么10x+5y就表示10张课桌和5个凳子的质量和。
参观花展:门票:成人10元/人;学生5元/人。 (1)一个旅游团有成人x人、学生y人,请你根据上图确定该旅游 团应付多少门票费? (2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢?
当a>0,b>0时,a=6,b=8,则a+b=14 当a<0,b<0时,a=-6,b=-8,则a+b=-14
作业:P85第1题和第3题
• 1、完成习题3.3 • 2、预习:3.3 整式 • 认真完成作业和练习是提高学习成绩的 第一步
(3)当h=20米时,比较物体在地球上和月球上自由下
落所需的时间。 地球上大约要2秒钟,月球上大约要5秒钟
思考题 1.已知x=2,y=-4,代数式ax3+by+5=189。 求当x=4,y=1/2时,代数式3ax-24by2+49的值。
把x=2,y=-4 代入得:a×23+b(-4)+5=199 即:8a-4b+5=189:得4(2a-b)=184;得(2a-b)=46 把x=4,y=1/2代入得:12a-24b(1/2)2+49 =12a-6b+49=6(2a-b)+49=6×46=276
10x+5y还能表示什么?
(1)如果用x(元/kg)表示大米的价格,用y(元/kg) 表示食油的价格,那么10x+5y就表示小强的妈妈 购买10kg大米和5kg食油所用的费用;
(2)如果用x(cm3/个)表示某种正方体的体积,用y(cm3/个) 表示某种长方体的体积,那么10x+5y就表示10个这样的正方体和5 个这样的长方体的体积和; (3)如果用x(kg)表示一张课桌的质量,用y(kg)表示一个凳 子的质量,那么10x+5y就表示10张课桌和5个凳子的质量和。
参观花展:门票:成人10元/人;学生5元/人。 (1)一个旅游团有成人x人、学生y人,请你根据上图确定该旅游 团应付多少门票费? (2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢?
北师大版七年级上册数学《代数式》整式及其加减PPT课时(第2课时)
时,他应付款____________元(用含x的代数式表示);
(0.8x+50)
(2)王老师一次性购物600元,他实际付款________元;
530
(3)王老师第一次购物用了170元,第二次购物用了387元,如
果王老师将这两次的购物换作一次购买可以节省________元.
27
(3)解析:200×0.9=180,500×0.9=450,所以设第二次购
300
小时.
游程3:买票
我们有a个成人, b个学生,买门票需付
(60a 20b)
________ 元钱.
售票处
……
门票价格
成人:每人60元
学生:每人20元
游程4:参观
太和殿占地呈长方形,长m米,宽n米太和殿占地
面积有多少平方米呢?
【
mn
平方米】
游程4:参观
珍宝馆陈列厅呈正方形,边长为a米.地面积有多
(运算符号包括+、-、×、÷、乘方)
典例精析
例1 下列各式中哪些是代数式?哪些不是?
(1) m 5; (2)
a
b
b
a
;
×
√
2
(4)x 3 x 4; (5)x y >1;
√
×
(3)0;
√
1
(6) .
x
√
注意:(1)代数式中不含表示关系的符号.
(“=”,“>”,“<”,“≥”,“≤”,“≠”)
4.5
-15
-6
-3
-1.44
-1
12
24
-30
-21 -18 -16.44 -16
-3
9
(0.8x+50)
(2)王老师一次性购物600元,他实际付款________元;
530
(3)王老师第一次购物用了170元,第二次购物用了387元,如
果王老师将这两次的购物换作一次购买可以节省________元.
27
(3)解析:200×0.9=180,500×0.9=450,所以设第二次购
300
小时.
游程3:买票
我们有a个成人, b个学生,买门票需付
(60a 20b)
________ 元钱.
售票处
……
门票价格
成人:每人60元
学生:每人20元
游程4:参观
太和殿占地呈长方形,长m米,宽n米太和殿占地
面积有多少平方米呢?
【
mn
平方米】
游程4:参观
珍宝馆陈列厅呈正方形,边长为a米.地面积有多
(运算符号包括+、-、×、÷、乘方)
典例精析
例1 下列各式中哪些是代数式?哪些不是?
(1) m 5; (2)
a
b
b
a
;
×
√
2
(4)x 3 x 4; (5)x y >1;
√
×
(3)0;
√
1
(6) .
x
√
注意:(1)代数式中不含表示关系的符号.
(“=”,“>”,“<”,“≥”,“≤”,“≠”)
4.5
-15
-6
-3
-1.44
-1
12
24
-30
-21 -18 -16.44 -16
-3
9
2024年北师大七年级数学上册1 代数式第2课时 代数式求值(课件)
因此,一个15岁的未成年人每天所需的睡眠时间是 9.5 h 。
5. 根据一项科学研究,一个10~50 岁的人每天所需的睡 眠时间t(单位:h)可用公式t=11-1n0计算出来,其中n代表 这个人的年龄。根据这个公式,解答下列问题:
(2) 一个35岁的成年女性每天睡眠时间是7h,她的睡眠时
间够吗? 解:当 n=35 时, t=11-1n0 =11-3150 =7.5 。 因为7<7.5,所以她的睡眠时间不够。
1.代数式6p可以表示什么?
6的p倍
p的6倍
6个p的和
2.求代数式3a2-2ab的值,其中a=6,b=-23 。
解:当a=6,b=-23 时, 3a2-2ab=3×62-2×6×(-23)=116。
3. 华氏温度 f (单位: ℉)与摄氏度c(单位:℃)之间
存在如下的关系:
f=
9 5
c+32。小华对潇潇说:“
(1)设一个人的体重为 w kg,身高为 h m,请
w
用含w,h的代数式表示这个人的BMI。 h2
(2)张老师的身高为 1.75 m,体重是 65 kg,他
的体重是否适中?
你的身体质量
指数是多少?
当w=65,h=1.75时
w h2
65 = 1.752
21.22
张老师体重适中.
对应训练
【课本P79 随堂练习 第1题】
1.填写下表,并观察-8n+5和-n2这两个代数式的值的变化情况。
n
12345678
-8n+5 -3 -11 -19 -27 -35 -43 -51 -59 -n2 -1 -4 -9 -16 -25 -36 -49 -64
(1)随着 n 的值逐渐变大,两个代数式的值如何变化?
5. 根据一项科学研究,一个10~50 岁的人每天所需的睡 眠时间t(单位:h)可用公式t=11-1n0计算出来,其中n代表 这个人的年龄。根据这个公式,解答下列问题:
(2) 一个35岁的成年女性每天睡眠时间是7h,她的睡眠时
间够吗? 解:当 n=35 时, t=11-1n0 =11-3150 =7.5 。 因为7<7.5,所以她的睡眠时间不够。
1.代数式6p可以表示什么?
6的p倍
p的6倍
6个p的和
2.求代数式3a2-2ab的值,其中a=6,b=-23 。
解:当a=6,b=-23 时, 3a2-2ab=3×62-2×6×(-23)=116。
3. 华氏温度 f (单位: ℉)与摄氏度c(单位:℃)之间
存在如下的关系:
f=
9 5
c+32。小华对潇潇说:“
(1)设一个人的体重为 w kg,身高为 h m,请
w
用含w,h的代数式表示这个人的BMI。 h2
(2)张老师的身高为 1.75 m,体重是 65 kg,他
的体重是否适中?
你的身体质量
指数是多少?
当w=65,h=1.75时
w h2
65 = 1.752
21.22
张老师体重适中.
对应训练
【课本P79 随堂练习 第1题】
1.填写下表,并观察-8n+5和-n2这两个代数式的值的变化情况。
n
12345678
-8n+5 -3 -11 -19 -27 -35 -43 -51 -59 -n2 -1 -4 -9 -16 -25 -36 -49 -64
(1)随着 n 的值逐渐变大,两个代数式的值如何变化?
3.1 代数式 第二课时代数式的值 课件-2024-2025学年北师大版数学七年级上册
≈ .
.
18.6在18.5与24之间,体重适中
3.1 代 数 式
知识.巩固
人体血液的质量占人体体重的7%~8%。
(1)如果某人体重是akg,那么他的血液质量大约在什么范围内?
(2)小亮体重是35kg,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量。
解:(1)7%akg~8%a kg
x -
;
y
;
(3)一本数学本x元,一本语文本y元,5本数学本和3本语文本共
(4)今年面粉产量由m kg增长10%后,达到 (1+10
%)m
kg.
(5x+3y)元;
3.1 代 数 式
知识.巩固
1,代数式6a可以表示什么
1. 购物问题:一本书的价格是a元,那么买6本书的总费用就是6a元.
2. 几何问题:一个正六边形的边长是a厘米,那么其周长就是6a厘米.
解:(1)该旅游团应付的门票费是(10x+5y)元.
(2)把x=37,y=15代入代数式,得
10x+5y =10×37+5×15 =445.
因此,他们应付445元门票费.
代数式10x+5y
还可以表示那些
生活中的问题?
3.1 代 数 式
情景导入
例如:1,用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度
)
A.1
B.-1
C.-5
D.5
5. 下图是一个“数值转换机”的示意图,若输入x,y的值分别为4,-2
,则输出的结果是(D
A.15
)
B.5
C.-5
D.-15
随堂练习
6.已知a=2, b=-3,求代数式(−) +
.
18.6在18.5与24之间,体重适中
3.1 代 数 式
知识.巩固
人体血液的质量占人体体重的7%~8%。
(1)如果某人体重是akg,那么他的血液质量大约在什么范围内?
(2)小亮体重是35kg,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量。
解:(1)7%akg~8%a kg
x -
;
y
;
(3)一本数学本x元,一本语文本y元,5本数学本和3本语文本共
(4)今年面粉产量由m kg增长10%后,达到 (1+10
%)m
kg.
(5x+3y)元;
3.1 代 数 式
知识.巩固
1,代数式6a可以表示什么
1. 购物问题:一本书的价格是a元,那么买6本书的总费用就是6a元.
2. 几何问题:一个正六边形的边长是a厘米,那么其周长就是6a厘米.
解:(1)该旅游团应付的门票费是(10x+5y)元.
(2)把x=37,y=15代入代数式,得
10x+5y =10×37+5×15 =445.
因此,他们应付445元门票费.
代数式10x+5y
还可以表示那些
生活中的问题?
3.1 代 数 式
情景导入
例如:1,用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度
)
A.1
B.-1
C.-5
D.5
5. 下图是一个“数值转换机”的示意图,若输入x,y的值分别为4,-2
,则输出的结果是(D
A.15
)
B.5
C.-5
D.-15
随堂练习
6.已知a=2, b=-3,求代数式(−) +
2023-2024学年北师大版七年级数学上册3
解:∵2b-a=5,∴a-2b=-5 ∴ 5(a-2b)2-3(a-2b)-60=5×(-5)2-3×(-
5)-60 =125+15-60 =80
注意:相同的代数式可以看作一个字母——整体代换
注意事 项
求代数式的值的注意事项:
(1)代入数值前应先指明字母的取值,把“当……时”
写出来。
(2)如果字母的值是负数、分数,并且要计算它的乘
(2)你们用同一个公式计算的结果相同吗?为什么?
探究新知 例1、已知圆的半径为R,圆周率是 ,求当半径的值
分别为R 4cm, R 2.5cm, R 2 cm时的圆面积。 3
解:当R 4cm时, R2 42 16 ( cm2 )
当R 2.5cm时, R2 2.52 6.25 ( cm2 )
随堂练习
1.当m=3,n=-2时,代数式m2-2n2的值是1______
解析:
将m=3,n=-2代入m2-2n2得9-2×(-2)2=1.故填1.
2、若x2-2x+1=0,则2x2-4x=-2
.
解析: 根据已知条件目前还解不出x的值,所以把x22x+1=0进行整体思考,将x2-2x+1=0变形为x2-2x=-
当堂测试
5.如图是一种分类数值转换机,若开始输入x的值是14,
则第2021次输出的结果是 8 .
当堂测试
6.已知代数式 5x2﹣2x,请按照下列要求分别求值: (1)当 x=1 时,求代数式 5x2﹣2x 的值; (2)当 时,求 5x2﹣2x 的值.
分层作 【业基础达标作业】
1.若 x=﹣2,则﹣ x3 的值是( B )
解:(1)他的血液质量大约在6%a千克—7.5%a千克之间. (2)亮亮的血液质量大约在2.1千克—2.625千克之间. (3)体重50公斤的血液质量约在3千克—3.5千克之间.
5)-60 =125+15-60 =80
注意:相同的代数式可以看作一个字母——整体代换
注意事 项
求代数式的值的注意事项:
(1)代入数值前应先指明字母的取值,把“当……时”
写出来。
(2)如果字母的值是负数、分数,并且要计算它的乘
(2)你们用同一个公式计算的结果相同吗?为什么?
探究新知 例1、已知圆的半径为R,圆周率是 ,求当半径的值
分别为R 4cm, R 2.5cm, R 2 cm时的圆面积。 3
解:当R 4cm时, R2 42 16 ( cm2 )
当R 2.5cm时, R2 2.52 6.25 ( cm2 )
随堂练习
1.当m=3,n=-2时,代数式m2-2n2的值是1______
解析:
将m=3,n=-2代入m2-2n2得9-2×(-2)2=1.故填1.
2、若x2-2x+1=0,则2x2-4x=-2
.
解析: 根据已知条件目前还解不出x的值,所以把x22x+1=0进行整体思考,将x2-2x+1=0变形为x2-2x=-
当堂测试
5.如图是一种分类数值转换机,若开始输入x的值是14,
则第2021次输出的结果是 8 .
当堂测试
6.已知代数式 5x2﹣2x,请按照下列要求分别求值: (1)当 x=1 时,求代数式 5x2﹣2x 的值; (2)当 时,求 5x2﹣2x 的值.
分层作 【业基础达标作业】
1.若 x=﹣2,则﹣ x3 的值是( B )
解:(1)他的血液质量大约在6%a千克—7.5%a千克之间. (2)亮亮的血液质量大约在2.1千克—2.625千克之间. (3)体重50公斤的血液质量约在3千克—3.5千克之间.
2020年北师大版七年级数学上册3.2 《代数式》课件(共25张ppt)
(1)如果第一个同学报给第二个同学的数是5,第 四个同学报出的答案是35,这个结果对吗?
(2)如果已知第一个同学报给第二个同学的数,你 如何最快得出答案?
x
x+1
(x+1)2
(x+1)2-1
游戏2 看谁算的快,猜的准
(1)填表:
x 0.25 0.5 1 10 100 1000 10000 100000
给出概念
用字母表示下列数量关系:
1.长为a m , 宽为b m 的长方形的周长是_a_b _m , 面积是___2_(a_+__b_)__m2 .
2.边长为a m 的立方体的体积是__a3 _ m3. s
3.小亮用t秒走了s米,他的速度为__t _米/秒. 像4+3(x-1), x+x+(x+1), 2(a+b), ab,ts , 等式子都是代数式.它们就是用基本的运算符号把数 和字母连接而成的,单独一个数或一个字母也是代数 式. 注:运算符号包括加.减.乘.除.乘方及开方 .
t
0 2 4 6 8 10
h=4.9t2
h=0.8t2
t 02 4 6
8 10
h=4.9t2 0 19.6 78.4 176.4 313.6 490
h=0.8t2 0 3.2 12.8 28.8 51.2 80
通过表格我们可估计 t(地球)≈2秒,t(月球)≈5秒
游戏1
班级同学按4个同学一组进行分组,做一个传 数游戏.第一个同学任意报一个数给第二个同学, 第二个同学把这个数加1传给第三个同学,第三 个同学再把听到的数平方后传给第四个同学,第 四个同学把听到的数减去1报出答案.
(2)当x非常大时, 么数?
的值接近于什
思维拓展:
已知:2x-y=3, 那么4x-3-2y=?
(2)如果已知第一个同学报给第二个同学的数,你 如何最快得出答案?
x
x+1
(x+1)2
(x+1)2-1
游戏2 看谁算的快,猜的准
(1)填表:
x 0.25 0.5 1 10 100 1000 10000 100000
给出概念
用字母表示下列数量关系:
1.长为a m , 宽为b m 的长方形的周长是_a_b _m , 面积是___2_(a_+__b_)__m2 .
2.边长为a m 的立方体的体积是__a3 _ m3. s
3.小亮用t秒走了s米,他的速度为__t _米/秒. 像4+3(x-1), x+x+(x+1), 2(a+b), ab,ts , 等式子都是代数式.它们就是用基本的运算符号把数 和字母连接而成的,单独一个数或一个字母也是代数 式. 注:运算符号包括加.减.乘.除.乘方及开方 .
t
0 2 4 6 8 10
h=4.9t2
h=0.8t2
t 02 4 6
8 10
h=4.9t2 0 19.6 78.4 176.4 313.6 490
h=0.8t2 0 3.2 12.8 28.8 51.2 80
通过表格我们可估计 t(地球)≈2秒,t(月球)≈5秒
游戏1
班级同学按4个同学一组进行分组,做一个传 数游戏.第一个同学任意报一个数给第二个同学, 第二个同学把这个数加1传给第三个同学,第三 个同学再把听到的数平方后传给第四个同学,第 四个同学把听到的数减去1报出答案.
(2)当x非常大时, 么数?
的值接近于什
思维拓展:
已知:2x-y=3, 那么4x-3-2y=?
3.2代数式 第2课时 教案(北师大版七年级上)
(1)已知父亲身高是a米,母亲身高是b米,试用代数式表示儿子和女儿的身高;
(2)七年级女生小红的父亲身高是1.72米,母亲的身高是1.65米;七年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高?(3)试预测成年后你的身高。
展示教材中的“数值转换机”.要求学生:⑴写出图1.的输出结果;⑵找出图
教
学
过
程
二、例题点拨,实践探究
2.的转换步骤。
讨论“议一议”.在讨论过程中,鼓励学生根据已有的信息作估计,判断变化特征和趋势,并给出适当的说理过程。
三、随堂练习,突破难点
班级同学按4个同学一组进行分组。第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。如果第一个同学报给第二个同学的数是5,第四个同学报出的答案是35,这个结果对吗?
四、师生交流,归纳小结
教师启发学生回顾本课学习内容,总结收获,布置作业。
布置作业
练习册代数式(2)
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课时教案
第周星期第节年月日
课题
3.2代数式(第2课时)
教学
目标
知识与技能:会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;会利用代数式求值推断代数式所反映的规律;能解释代数式值的实际意义。
过程与方法:经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。
情感与态度:通过“做数学”,体会数学活动充满着探索性、创造性,发展学生的实践能力与创新精神。
教
(2)七年级女生小红的父亲身高是1.72米,母亲的身高是1.65米;七年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高?(3)试预测成年后你的身高。
展示教材中的“数值转换机”.要求学生:⑴写出图1.的输出结果;⑵找出图
教
学
过
程
二、例题点拨,实践探究
2.的转换步骤。
讨论“议一议”.在讨论过程中,鼓励学生根据已有的信息作估计,判断变化特征和趋势,并给出适当的说理过程。
三、随堂练习,突破难点
班级同学按4个同学一组进行分组。第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。如果第一个同学报给第二个同学的数是5,第四个同学报出的答案是35,这个结果对吗?
四、师生交流,归纳小结
教师启发学生回顾本课学习内容,总结收获,布置作业。
布置作业
练习册代数式(2)
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课时教案
第周星期第节年月日
课题
3.2代数式(第2课时)
教学
目标
知识与技能:会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;会利用代数式求值推断代数式所反映的规律;能解释代数式值的实际意义。
过程与方法:经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。
情感与态度:通过“做数学”,体会数学活动充满着探索性、创造性,发展学生的实践能力与创新精神。
教
七年级数学上册 第三章 整式及其加减 3.2 代数式(二)教学课件 (新版)北师大版
n2 Copyr1igh4t 20094-201161 As25pos3e6 Pty49Ltd6.4
(1)随着n的值逐渐变大,两个代数式的值如何变化? (2)估计一下,哪个代数式的值先超过100.
K12课件
5
二、新课讲解
练一练:
如右图: (1)标出未注明的边的长度;
0.5x
y 0.5x
2x
(2)阴影部分的周E长va是lu:ation only. ; x ted(w3i)th阴A影sp部os分e的.S面lid积e是s f:or .NET 3.5;Client 2Pyrofile 5.2
=6×(-2-3)
=6X(-5)
=-30
K12课件
4
二、新课讲解
议一议
填写下表,并观察下列两个代数式的值的变化情况:
n
1 2 E3valua4tion 5only.6 7 8
ted w5nit+h6Aspo1s1e.1S6lid2e1s 313.536Clie4n1 t P4r6ofile 5.2
上图是一组“数值转化机”,请写出上图中的输出
结果和运算过程.并填写下表.
K12课件
2
二、新课讲解
输入
-2 - 0 0.2 1/3 5/2 4.5
1/2
6
ted wi机 出th 结A器s果p1o的se输.SlEidveaslufaotrio.NnEoTnl3y..5 Client Profile 5.2 Copyright 2004-2011 Aspose Pty Ltd.
机器2的输 出结果
K12课件
3
二、新课讲解
解:当x=-2时,6x-3
=6×(-2)-3 注意添加运
初中数学北师大版七年级上册《第三章3.2 代数式 》课件
已知 x=12,y=3,求代数式 2x2y-4x2y+10x2y 的值.
分析:先分别将x=,y=3代入代数式中,再依照指定的运 算进行运算;也能够先求出x2y的值,然后再整体代入.
解:解法一:当 x=12,y=3 时, 原式=2×122×3-4×122×3+10×122×3=2×14×3 -4×14×3+10×14×3=32-3+125=6. 解法二:当 x=12,y=3 时,x2y=122×3=34,原式=2×34 -4×34+10×34=(2-4+10)×34=6.
3.2
代数式
数学北师大版 七年级上
自 主预 习
1.理解代数式的概念,能够判定一个式子是否为代数 式.(重点)
2.了解代数式的意义,能规范地书写代数式,并能正确 地读出一个代数式.(难点)
3.进一步掌控列代数式的基本方法,会求代数式的值. 4.能根据具体情境运用代数式进行描写表示.
1.用_运__算__符__号__把数和字母连接起来,所得到的式 子叫做代数式.单独一个 _数__或一个_字__母__也是代数
(4) 数 与 字 母 相 乘 时 常 把 数 写 到 字 母 前 面 , 并 省 略 乘 号.如 a 的 6 倍,写成 6a 的形式.另外,带分数与字母 相乘常将带分数化成假分数形式,而代数式中的除号常用
分数线来代替,如 a 除以 b 写成ab的形式,a×223写成83a.
1.下列各式是代数式的是( )
(2)列实际问题中的代数式,必须抓住一些基本的 数量关系,如:路程=速度×时间,工作量=工作效
利润 率×工作时间,利润率=进价,利息=本金×利率×
期数等.
设甲数为x,乙数为y,用代数式表示下列语句: (1)甲、乙两数和的平方; (2)甲数的 2 倍与乙数的13的和; (3)甲、乙两数平方的差; (4)甲、乙两数平方的和. 分析:依照语言叙述的顺序,用运算符号将数或表 示数的字母连接起来,从而将文字叙述翻译成符号表 示.
北师大版七年级上册数学《3-2 代数式(第2课时)》优质课PPT课件
当n=20时,代数式的值是50.
素养目标
3.2 代数式/
3.用代数式求值推断反映的规律及意义.
2.求代数式的值应注意的问题. 1.计算代数式的值的一般步骤.
探究新知
3.2 代数式/
知识点 求代数式的值
观察下面的过程,完成表格.
输入x
数值转换机 输入x
×6 6x
-3
输出 6x-3
-3 x-3 ×6
例(1)当x=-3时,求x2-3x+5的值;
(2)当a=0.5,b=-2时,求a2a−bb3的值. 解:(1)当x=-3时,x2-3x+5=(-3)2-3×(-3)+5=23.
(2)当a=0.5,b=-2时,a2a−bb3=00..552×−((−−22))3=0.−251+8=-8.25
方法点拨:用数值代替代数式的字母,按照代数式中指明 的运算,计算出的结果,叫做求代数式的值.求代数式的值, 关键是正确代入数据,遇到负数时,要合理地添加括号.
解:(1)广场空地的面积为xy-π
x 2
2
-π
x 4
2=xy-156πx2.
(2)当x=40,y=80时,
xy-156πx2=40×80-156π×402=3 200-500π. 因此广场空地的面积为(3 200-500π)m2.
课堂小结
3.2 代数式/
用数值代替代数式中的字母,按照代数式中指明的 代 运算,计算出的结果,叫做求代数式的值. 数 式 求 值
北师大版 数学 七年级 上册
3.2 代数式/
3.2 代数式(第2课时)
ቤተ መጻሕፍቲ ባይዱ
导入新知
3.2 代数式/
某学校为了开展体育活动,要添置一批排球,每班配2个,学
3.2代数式第2课时代数式求值(教案)
-代入法的应用:通过具体例题,让学生掌握如何将已知数值代入代数式中,正确求解代数式的值。
-代数式求值的步骤:明确求解过程中每一步的操作要领,如先进行括号内的运算,再进行乘除运算,最后进行加减运算。
-生活实例的引入:结合实际情境,让学生体会代数式求值在生活中的应用,如购物打折、行程计算等。
举例:在讲解代入法时,以代数式2x+3为例,当x=4时,代数式的值是多少?强调将x=4代入式子中,得到2*4+3=11。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代数式求值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对代数式求值的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式求值的基本概念。代数式求值是指将具体的数值代入含有变量的代数式中,计算出代数式的结果。它是解决生活中各种计算问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有3个苹果,每个苹果的价格是5元,我们要计算你买苹果一共花了多少钱。这个案例展示了代数式求值在实际中的应用,以及它如何帮助我们解决问题。
4.培养学生的数学应用意识,将代数式求值应用于生活实际问题,体会数学在生活中的价值;
5.培养学生的团队合作意识,通过小组讨论与合作,共同解决代数式求值问题,提高沟通与协作能力。
三、教学难点与重点
1.教学重点
-代数式求值的基本概念:强调代数式求值的意义和实际应用,使学生理解代数式的值是随着其中变量的取值而变化的。
-代数式求值的步骤:明确求解过程中每一步的操作要领,如先进行括号内的运算,再进行乘除运算,最后进行加减运算。
-生活实例的引入:结合实际情境,让学生体会代数式求值在生活中的应用,如购物打折、行程计算等。
举例:在讲解代入法时,以代数式2x+3为例,当x=4时,代数式的值是多少?强调将x=4代入式子中,得到2*4+3=11。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代数式求值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对代数式求值的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式求值的基本概念。代数式求值是指将具体的数值代入含有变量的代数式中,计算出代数式的结果。它是解决生活中各种计算问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有3个苹果,每个苹果的价格是5元,我们要计算你买苹果一共花了多少钱。这个案例展示了代数式求值在实际中的应用,以及它如何帮助我们解决问题。
4.培养学生的数学应用意识,将代数式求值应用于生活实际问题,体会数学在生活中的价值;
5.培养学生的团队合作意识,通过小组讨论与合作,共同解决代数式求值问题,提高沟通与协作能力。
三、教学难点与重点
1.教学重点
-代数式求值的基本概念:强调代数式求值的意义和实际应用,使学生理解代数式的值是随着其中变量的取值而变化的。