2020年江苏常州市数学中考试题及答案
2020学年江苏省常州市中考数学试题(含答案)
2020年中考数学试题(江苏常州卷)(本试题满分120分,考试时间120分钟)一.选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.(2020年江苏常州2分)在下列实数中,无理数是【 】A .2B .3.14C .12- D .3【答案】D 。
2.(2020年江苏常州2分)如图所示圆柱的左视图是【 】A .B .C .D .【答案】C 。
3.(2020年江苏常州2分)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是【 】 A .1y x =- B .1y x = C .2y x = D .2y x=- 【答案】A 。
4.(2020年江苏常州2分)下列计算中,正确的是【 】A .(a 3b )2=a 6b 2B .a•a 4=a 4C .a 6÷a 2=a 3D .3a+2b=5ab 【答案】A 。
5.(2020年江苏常州2分)已知:甲乙两组数据的平均数都是5,甲组数据的方差21S 12=甲,乙组数据的方差21S 10=乙,下列结论中正确的是【 】 A .甲组数据比乙组数据的波动大 B .乙组数据的比甲组数据的波动大C .甲组数据与乙组数据的波动一样大D .甲组数据与乙组数据的波动不能比较【答案】B 。
6.(2020年江苏常州2分)已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是【 】A .相离B .相切C .相交D .无法判断 【答案】C 。
7.(2020年江苏常州2分)二次函数2y ax bx c =++(a 、b 、c 为常数且a≠0)中的x 与y 的部分对应值如下表:x﹣3﹣2﹣112345y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数2y ax bx c =++有最小值,最小值为﹣3;(2)当1<x<22-时,y <0;(3)二次函数2y ax bx c =++的图象与x 轴有两个交点,且它们分别在y 轴两侧. 则其中正确结论的个数是【 】A .3B .2C .1D .0 【答案】B 。
江苏省常州市2020年中考数学试题(Word版,含答案与解析)
江苏省常州市2020年中考数学试卷一、选择题(共8题;共16分)1.2的相反数是( )A. −12B. 12C. 2D. -2 【答案】 D【考点】相反数及有理数的相反数【解析】【解答】2的相反数是-2,故答案为:D.【分析】根据相反数的定义“只有符号不同的两个数互为相反数”即可求解.2.计算 m 6÷m 2 的结果是( )A. m 3B. m 4C. m 8D. m 12【答案】 B【考点】同底数幂的除法【解析】【解答】解: m 6÷m 2=m 6−2=m 4 .故答案为:B.【分析】直接利用同底数幂除法的运算法则:底数不变,指数相减解答即可.3.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 三棱柱C. 四棱柱D. 四棱锥【答案】 C【考点】由三视图判断几何体【解析】【解答】解:由图可知:该几何体是四棱柱.故答案为:C.【分析】通过俯视图为矩形得到几何体为柱体,然后通过主视图和左视图可判断几何体为四棱柱.4.8的立方根是( )A. 2√2B. ±2C. ±2√2D. 2【答案】 D【考点】立方根及开立方【解析】【解答】解:∵23=8,∴8的立方根是2,故选:D.【分析】根据立方根的定义,即可解答.5.如果x<y,那么下列不等式正确的是()A. 2x<2yB. −2x<−2yC. x−1>y−1D. x+1>y+1【答案】A【考点】不等式及其性质【解析】【解答】解:A、由x<y可得:2x<2y,故此选项成立;B、由x<y可得:−2x>−2y,故此选项不成立;C、由x<y可得:x−1<y−1,故此选项不成立;D、由x<y可得:x+1<y+1,故此选项不成立.故答案为:A.【分析】根据不等式的性质:在不等式的两边都乘以同一个正数不等号的方向不变;在不等式的两边都乘以同一个负数不等号的方向改变;在不等式的两边都加上或减去同一个数,不等号的方向不变,对各选项分析判断后利用排除法求解.6.如图,直线a、b被直线c所截,a//b,∠1=140°,则∠2的度数是()A. 30°B. 40°C. 50°D. 60°【答案】B【考点】平行线的性质,邻补角【解析】【解答】解:如图,∵∠1+∠3=180°,∠1=140°∴∠3=180°-∠1=180°-140°=40°∵a//b∴∠2=∠3=40°.故答案为:B.【分析】先根据邻补角相等求得∠3,然后再根据两直线平行、内错角相等即可解答.7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A. 3B. 4C. 5D. 6【答案】A【考点】圆的认识,三角形的中位线定理【解析】【解答】解:∵CH⊥AB∴∠BHC=90°∵在Rt△BHC中,点M是BC的中点∴MH= 1BC2∵BC为⊙O的弦∴当BC为直径时,MH最大∵⊙O的半径是3∴MH最大为3.故答案为:A.BC,当BC为直径时长度最大,即可求【分析】根据直角三角形斜边上的中线等于斜边的一半可知MH= 12解.8.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=√2,∠ADB=135°(x>0)的图像经过A、D两点,则k的值是(),S△ABD=2.若反比例函数y=kxA. 2√2B. 4C. 3√2D. 6【答案】 D【考点】三角形全等及其性质,平行四边形的性质,反比例函数图象上点的坐标特征,三角形全等的判定(AAS)【解析】【解答】解:作AE⊥BD交BD的延长线于点E,作AF⊥x轴于点F∵∠ADB=135°∴∠ADE=45°∴△ADE为等腰直角三角形∵BD=√2,SABD=2△∴S△ABD=1BD⋅AE=2,即AE=2√22∴DE=AE= 2√2∵BC=AO,且BC//AO,CD//OF∴∠BCD=∠AOF∴△BCD≅△AOF∴AF=BD=√2∴y=3√2D设点A (m,√2),D(m−2√2,3√2)∴√2m=(m−2√2)⋅3√2解得:m=3√2∴k=3√2×√2=6故答案为:D.【分析】作AE⊥BD交BD的延长线于点E,作AF⊥x轴于点F,计算出AE长度,证明△BCD≌△AOF ,得出AF长度,设出点A的坐标,表示出点D的坐标,使用x D y D=x A y A,可计算出k值.二、填空题(共10题;共10分)9.计算:|-2|+(π-1)0=________.【答案】3【考点】绝对值及有理数的绝对值,0指数幂的运算性质【解析】【解答】解:原式=2+1=3.故答案为:3.【分析】根据绝对值和0次幂的性质求解即可.10.若代数式1有意义,则实数x的取值范围是________.x−1【答案】x≠1【考点】分式有意义的条件【解析】【解答】解:依题意得:x-1≠0,解得x≠1,故答案为:x≠1.【分析】分式有意义时,分母不能为0,据此求得x的取值范围.11.地球半径大约是6400km,将6400用科学记数法表示为________.【答案】6.4×103【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:6400= 6.4×103.故答案为:6.4×103.【分析】对于一个绝对值较大的数,用科学记数法写成a×10n的形式,其中1≤|a|<10,n是比原整数位数少1的数.12.分解因式:x3-x=________.【答案】x(x-1)(x+1)【考点】提公因式法因式分解,因式分解﹣运用公式法【解析】【解答】本题可先提公因式x,分解成x(x2-1),而x2-1可利用平方差公式分解.x3-x,=x(x2-1),=x(x+1)(x-1).【分析】由题意可知,先提公因式x,分解成x(x2-1),而x2-1可利用平方差公式分解.13.若一次函数y=kx+2 的函数值y随自变量x增大而增大,则实数k的取值范围是________.【答案】k>0【考点】一次函数的性质【解析】【解答】解:∵一次函数y=kx+2的函数值y随自变量x增大而增大∴k>0.故答案为:k>0.【分析】直角利用一次函数增减性与系数的关系解答即可.14.若关于x的方程x2+ax−2=0有一个根是1,则a=________.【答案】1【考点】一元二次方程的根【解析】【解答】解:把x=1代入方程x2+ax−2=0得1+a-2=0,解得a=1.故答案是:1.【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a的一次方程,然后解此一次方程即可.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=________°.【答案】30【考点】三角形的外角性质,线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.【分析】根据垂直平分线的性质得出BF=CF,进而根据等边对等角得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是________.【答案】(2,√3)【考点】坐标与图形性质,菱形的性质,解直角三角形【解析】【解答】解:∵四边形ABCD为菱形,AB=2∴AD=AB=CD=2,AB//CD∵∠DAB=120°∴∠DAO=60°在Rt△DOA中,sin60°=ODAD =√32∴OD= √3∴点C的坐标是(2,√3).故答案为:(2,√3).【分析】根据菱形的性质可知AD=AB=CD=2,∠OAD=60°,由三角函数即可求出线段OD的长度,即可得到答案.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=________.【答案】12【考点】解直角三角形【解析】【解答】解:如图,设BC=a,则AC=2a∵正方形ACDE∴EC= √(2a)2+(2a)2=2√2a,∠ECD= 12∠ACD=45∘同理:CG= √2a,∠GCD= 12∠BCD=45∘∴tan∠CEG=CGCE =√2a2√2a=12.故答案为:12.【分析】设BC=a,则AC=2a,然后利用正方形的性质求得CE、CG的长、∠GCD=ECD=45°,进而说明△ECG 为直角三角形,最后运用正切的定义即可解答.18.如图,在△ABC中,∠B=45°,AB=6√2,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为________.【答案】4或2【考点】勾股定理,平行四边形的判定与性质,解直角三角形【解析】【解答】解:如图,当点F在点D右侧时,过点F作FM∥DG,交直线BC于点M,过点B作BN⊥DE,交直线DE于点N,∵D,E分别是AB和AC中点,AB= 6√2,∴DE∥BC,BD=AD= 3√2,∠FBM=∠BFD,∴四边形DGMF为平行四边形,则DG=FM,∵DG⊥BF,BF=3DG,∴∠BFM=90°,∴tan∠FBM= FMBF =13=tan∠BFD,∴BNFN =13,∵∠ABC=45°=∠BDN,∴△BDN为等腰直角三角形,∴BN=DN=√2=3,∴FN=3BN=9,DF=GM=6,∵BF= √BN2+NF2= 3√10,∴FM= 13BF= √10,∴BM= √BF2+FM2=10,∴BG=10-6=4;当点F在点D左侧时,过点B作BN⊥DE,交直线DE于N,过点B作BM∥DG,交直线DE于M,延长FB 和DG,交点为H,可知:∠H=∠FBM=90°,四边形BMDG为平行四边形,∴BG=MD,BM=DG,∵BF=3DG,∴tan∠BFD= BMBF =DHFH=BNFN=13,同理可得:△BDN为等腰直角三角形,BN=DN=3,∴FN=3BN=9,∴BF= √92+32=3√10,设MN=x,则MD=3-x,FM=9+x,在Rt△BFM和Rt△BMN中,有FM2−BF2=MN2+BN2,即(9+x)2−(3√10)=x2+32,解得:x=1,即MN=1,∴BG=MD=ND-MN=2.综上:BG的值为4或2.故答案为:4或2.【分析】分当点F在点D右侧时,当点F在点D左侧时,两种情况,分别画出图形,结合三角函数,勾股定理以及平行四边形的性质求解即可.三、解答题(共10题;共85分)19.先化简,再求值:(x+1)2−x(x+1),其中x=2.【答案】解:(x+1)2−x(x+1)= x2+1+2x−x2−x= x+1将x=2代入,原式=3.【考点】利用整式的混合运算化简求值【解析】【分析】先利用完全平方公式和单项式乘多项式法则去括号,再合并同类项化简,最后代入x的值计算即可.20.解方程和不等式组:(1)xx−1+21−x=2;(2){2x −6<0,−3x ⩽6.【答案】 (1)解: x x−1+21−x =2去分母得: x -2=2x -2解得x=0,经检验x=0是分式方程的解;(2)解: {2x −6<0,①−3x ⩽6,②由①得:x <3由②得:x≥﹣2则不等式组的解集为﹣2≤x <3.【考点】解分式方程,解一元一次不等式组【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,根据“大小小大取中间”找出两解集的公共部分即可. 21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如下统计图.(1)本次抽样调查的样本容量是________;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【答案】 (1)100(2)解:打乒乓球的人数为100×35%=35人,踢足球的人数为100-25-35-15=25人;补全条形统计图如图所示:=300人;(3)解:2000×15100答:估计该校最喜爱“打篮球”的学生有300人.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【解答】解:(1)本次抽样调查的样本容量是25÷25%=100;故答案为:100;【分析】(1)用条形统计图中最喜爱打排球的人数除以扇形统计图中最喜爱打排球的人数所占百分比即可求出本次抽样调查的样本容量;(2)用总人数乘以最喜爱打乒乓球的人数所占百分比即可求出最喜爱打乒乓球的人数,用总人数减去最喜爱其它三项运动的人数即得最喜爱踢足球的人数,进而可补全条形统计图;(3)用最喜爱打篮球的人数除以总人数再乘以2000即可求出结果.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是________;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【答案】(1)13(2)解: 画树状图如下:所有等可能的情况有6种,其中抽到的2支签上签号的和为奇数的有4种,∴抽到的2支签上签号的和为奇数的概率为:46= 23.【考点】列表法与树状图法【解析】【解答】解:(1)∵共有3个号码,∴抽到1号签的概率是13,故答案为:13;【分析】(1)由概率公式即可得出答案;(2)画出树状图,由图可知:所有等可能的情况有6种,其中抽到的2支签上签号的和为奇数的有4种,从而再利用概率公式求解即可.23.已知:如图,点A、B、C、D在一条直线上,EA//FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.【答案】(1)证明: ∵AE∥BF,∴∠A=∠DBF,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,又∵AE=BF,∴△ACE≌△BDF(SAS),∴∠E=∠F;(2)解: ∵△ACE≌△BDF,∴∠D=∠ACE=80°,∵∠A=40°,∴∠E=180°-∠A-∠ACE=60°.【考点】三角形全等及其性质,三角形全等的判定(SAS)【解析】【分析】(1)根据已知条件证明△ACE≌△BDF,即可得到结论;(2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【答案】(1)解:设每千克苹果售价x元,每千克梨y千克,由题意,得: {x +3y =262x +y =22 , 解得: {x =8y =6, 答:每千克苹果售价8元,每千克梨6千克,(2)解:设购买苹果a 千克,则购买梨(15-a )千克,由题意, 得:8a+6(15-a)≤100, 解得:a≤5, ∴a 最大值为5, 答:最多购买5千克苹果.【考点】一元一次不等式的应用,二元一次方程组的应用-和差倍分问题【解析】【分析】(1)设每千克苹果售价x 元,每千克梨y 千克,根据“ 购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元. ”列出方程组,解之即可;(2)设购买苹果a 千克,则购买梨(15-a )千克,由购买两种水果的总价不超过100元列出a 的不等式,解之即可解答.25.如图,正比例函数 y =kx 的图像与反比例函数 y =8x (x >0) 的图像交于点 A(a,4) .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D.(1)求a 的值及正比例函数 y =kx 的表达式; (2)若 BD =10 ,求 △ACD 的面积.【答案】 (1)解:已知反比例函数解析式为y= 8x ,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x. 故a=2;y=2x.(2)解:根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5, 85 ),则在△ACD 中, S △ACD =12×(10−85)×(5−2) = 635.故△ACD 的面积为635.【考点】反比例函数与一次函数的交点问题【解析】【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求; (2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.26.如图1,点B 在线段 CE 上,Rt △ ABC ≌Rt △ CEF , ∠ABC =∠CEF =90° , ∠BAC =30° , BC =1 .(1)点F 到直线 CA 的距离是________;(2)固定△ ABC ,将△ CEF 绕点C 按顺时针方向旋转30°,使得 CF 与 CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段 EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为________;②如图2,在旋转过程中,线段 CF 与 AB 交于点O ,当 OE =OB 时,求 OF 的长. 【答案】 (1)1(2)π12 解:作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F=60°,EF=1, ∴ FH =12,EH =√32, ∴CH= 2−12=32 , 设OH=x ,则 OC =32−x , OE 2=EH 2+OH 2=(√32)2+x 2=34+x 2 , ∵OB=OE ,∴ OB 2=34+x 2 , 在Rt △BOC 中,∵ OB 2+BC 2=OC 2 ,∴ 34+x 2+1=(32−x)2 , 解得: x =16 , ∴ OF =12+16=23 . 【考点】三角形全等及其性质,勾股定理,扇形面积的计算【解析】【解答】解:(1)∵∠BAC=30°,∠ABC=90°,∴∠ACB=60°,∵Rt△ABC≌Rt△CEF,∴∠ECF=∠BAC=30°,EF=BC=1,∴∠ACF=30°,∴∠ACF=∠ECF=30°,∴CF是∠ACB的平分线,∴点F到直线CA的距离=EF=1;故答案为:1;( 2 )①线段EF经旋转运动所形成的平面图形如图3中的阴影所示:在Rt△CEF中,∵∠ECF=30°,EF=1,∴CF=2,CE= √3,由旋转的性质可得:CF=CA=2,CE=CG= √3,∠ACG=∠ECF=30°,∴S阴影=(S△CEF+S扇形ACF)-(S△ACG+S扇形CEG)=S扇形ACF-S扇形CEG= 30π×22360−30π×(√3)2360=π12;故答案为:π12;【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF=∠ECF=30°,即CF是∠ACB的平分线,然后根据角平分线的性质可得点F到直线CA的距离即为EF的长,于是可得答案;(2)①易知E点和F点的运动轨迹是分别以CF和CE为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt△CEF求出CF和CE的长,然后根据S阴影=(S△CEF+S扇形ACF)-(S△ACG+S扇形CEG)即可求出阴影面积;②作EH⊥CF于点H,如图4,先解Rt△EFH求出FH和EH的长,进而可得CH 的长,设OH=x,则CO和OE2都可以用含x的代数式表示,然后在Rt△BOC中根据勾股定理即可得出关于x的方程,解方程即可求出x的值,进一步即可求出结果.27.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ⋅PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点_▲__(填“A”、“B”、“C”或“D”),⊙O 关于直线m的“特征数”为_▲__;②若直线n的函数表达式为y=√3x+4,求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√2为半径作⊙F.若⊙F与直线l相离,点N(−1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是4√5,求直线l的函数表达式.【答案】(1)①D;10;②解:如下图,过圆心O作OH⊥直线n,垂足为点H,交⊙O于点P、Q,∵直线n的函数表达式为y=√3x+4,当x=0时,y=4;当y=0时,x= −4√33,∴直线n经过点E(0,4),点F(−4√33,0),在Rt△EOF中,∵tan∠FEO= FOEO = 4√334= √33,∴∠FEO=30°,∴∠EFO=60°,在Rt △HOF 中,∵sin ∠HFO= HO FO,∴HO= sin ∠HFO·FO=2, ∴PH=HO+OP=3, ∴PQ·PH=2×3=6,∴⊙O 关于直线n 的“特征数”为6;(2)解:如下图,∵点F 是圆心,点 N(−1,0) 是“远点”,∴连接NF 并延长,则直线NF ⊥直线l ,设NF 与直线l 的交点为点A (m ,n ),设直线l 的解析式为y=kx+b 1(k≠0), 将点 M(1,4) 与A (m ,n )代入y=kx+b 1中, {4=k +b 1 ①n =mk +b 1 ② ②-①得:n-4=mk-k ,③ 又∵直线NF ⊥直线l ,∴设直线NF 的解析式为y= −1k x+b 2(k≠0), 将点 N(−1,0) 与A (m ,n )代入y= −1k x+b 2中, {0=1k +b 2 ④n =−mk +b 2 ⑤ ④-⑤得:-n= 1k + mk ,⑥ 联立方程③与方程⑥,得: {n −4=mk −k −n =1k +m k解得: {m =k 2−4k−1k 2+1n =4−2kk 2+1, ∴点A 的坐标为(k 2−4k−1k 2+1, 4−2kk 2+1 );又∵⊙F 关于直线l 的“特征数”是 4√5 ,⊙F 的半径为 √2 , ∴NB·NA= 4√5 , 即2 √2 ·NA= 4√5 , 解得:NA= √10 ,∴[m-(-1)]2+(n-0)2=( √10 )2 , 即(m+1)2+n 2=10,把 {m =k 2−4k−1k 2+1n =4−2k k 2+1 代入,解得k=-3或k= 13; 当k=-3时,m=2,n=1, ∴点A 的坐标为(2,1),把点A (2,1)与点 M(1,4) 代入y=kx+b 1中,解得直线l 的解析式为y=-3x+7; 当k= 13 时,m=-2,n=3, ∴点A 的坐标为(-2,3),把点A (-2,3)与点 M(1,4) 代入y=kx+b 1中,解得直线l 的解析式为y= 13 x+ 113.∴直线l 的解析式为y=-3x+7或y= 13 x+ 113.【考点】圆的综合题【解析】【解答】解:(1)①⊙O 关于直线m 的“远点”是点D , ⊙O 关于直线m 的“特征数”为DB·DE=2×5=10; 故答案为:D ,10;【分析】(1)①根据题干中“远点”及“特征数”的定义直接作答即可;②过圆心O 作OH ⊥直线n ,垂足为点H ,交⊙O 于点P 、Q ,首先判断直线n 也经过点E (0,4),在Rt △EOF 中,利用三角函数求出∠EFO=60°,进而求出PH 的长,再根据“特征数”的定义计算即可;(2)连接NF 并延长,设直线l 的解析式为y=kx+b 1,用待定系数法得到 {4=k +b 1 ①n =mk +b 1 ② ,再根据两条直线互相垂直,两个一次函数解析式的系数k 互为负倒数的关系可设直线NF 的解析式为y= −1k x+b 2,用待定系数法同理可得 {0=1k +b 2 ④n =−m k +b 2 ⑤ ,消去b 1和b 2 , 得到关于m 、n 的方程组 {n −4=mk −k−n =1k +m k ;根据⊙F 关于直线l 的“特征数”是 4√5 ,得出NA= √10 ,再利用两点之间的距离公式列出方程(m+1)2+n 2=10,把 {m =k 2−4k−1k 2+1n =4−2kk 2+1代入,求出k 的值,便得到m 、n 的值即点A 的坐标,再根据待定系数法求直线l 的函数表达式.注意有两种情况,不要遗漏.28.如图,二次函数 y =x 2+bx +3 的图像与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B ,抛物线过点 C(1,0) ,且顶点为D ,连接 AC 、 BC 、 BD 、 CD .(1)填空: b = ________;(2)点P 是抛物线上一点,点P 的横坐标大于1,直线 PC 交直线 BD 于点Q.若 ∠CQD =∠ACB ,求点P 的坐标;(3)点E 在直线 AC 上,点E 关于直线 BD 对称的点为F ,点F 关于直线 BC 对称的点为G ,连接 AG .当点F 在x 轴上时,直接写出 AG 的长. 【答案】 (1)-4(2)解:由(1)可得抛物线解析式为: y =x 2−4x +3 , 当x=0时,y=3, ∴A 的坐标为(0,3), 当y=3时得 3=x 2−4x +3 , 解得x 1=0,x 2=4,∴点B 的坐标为(4,3),∵ y =x 2−4x +3=(x −2)2−1 , ∴顶点D 的坐标为(2,-1),设BD 与x 轴的交点为M ,作CH ⊥AB 于H ,DG ⊥CM 于G ,∴tan∠ACH= tan∠OAC= 1,3根据勾股定理可得BC= 3√2,CD= √2,BD= 2√5,∴BD= √BC2+CD2,∴∠BCD=90°,∴tan∠CBD= 1,3∴∠ACH=∠CBM,∵∠HCB=∠BCM=45°,∴∠ACH+∠HCB=∠CBM+∠MCB,即∠ACB=∠CMD,Q在CD上方时:若∠CQD=∠ACB,则Q与M点重合,∵y=x2−4x+3中,令y=0,解得:x=1或3,∴抛物线与x轴的另一个交点坐标为(3,0),即此时P的坐标为(3,0);Q在CD下方时:过点Q作QK⊥x轴,过点C作CL⊥QM于点L,过点A作AN⊥BC于点N,可得:AB=4,BC= 3√2,AC= √10,设CN=x,则BN= 3√2-x,在△ABC中,AC2−CN2=AB2−BN2,即(√10)2−x2=42−(3√2−x)2,解得:x= √2,∴cos∠ACN= CNAC = √55,设直线BD的表达式为:y=mx+n,将B,D代入得:{3=4m+n−1=2m+n,解得:{m=2n=−5,∴直线BD的表达式为y=2m-5,令y=0,则x= 52,即点M(52,0),设点Q坐标为(a,2a-5),则QK=5-2a,CM= 32,QM= √(a−52)2+(2a−5)2,∵∠ACB=∠CMD,∠ACB=∠CQD,∴∠CMD=∠CQD,即CQ=CM= 32,∴cos∠CQD=cos∠ACB= QLCQ =√55,∴QL= 3√510,QM= 3√55,CL= 3√55,在△CQM中,12CM⋅KQ=12QM⋅CL,即32⋅KQ=3√55⋅3√55,解得:KQ= 65,∴CK= √CQ2−KQ2=910,∴Q(1910,−65),设直线CQ表达式为:y=sx+t,将点C和点Q代入,{0=s+t−65=1910s+t,解得:{s=−43t=43,则CQ表达式为:y=−43x+43,联立:{y=−43x+43y=x2−4x+3,解得{x=53y=−89,即点P坐标为(53,89),综上:点P的坐标为(3,0)或(53,89);(3)解:设点C关于BD的对称点为C′,BD中点为点R,直线AC与直线BD交于N′,∴R(3,1),设C′(p,q),由题意可求得:直线AC 表达式为:y=-3x+3,直线BD 表达式为:y=2x-5,直线BC 的表达式为:y=x-1,令-3x+3=2x-5,解得:x= 85 ,则y= −95 ,∴点N′( 85 , −95 ),∵点C 和C′关于直线BD 对称,∴CR=C′R= 12 BD= √5 ,CN′=C′N′= √(1−85)2+(−95)2=3√105, 则有 (p −3)2+(q −1)2=(√5)2 , (p −85)2+(q +95)2=(3√105)2 , 即 {p 2−6p +q 2−2q +5=0①p 2−165p +q 2+185q +115=0②, ①-②得: p =1−2q ③,代入①,解得: q =−65 或0(舍),代入③中,得: p =175 , 解得: {p =175q =−65 ,即点C′( 175 , −65 ), ∵N′( 85 , −95 ),求得直线C′N′的表达式为: y =13x −73 , ∵点F 在x 轴上,令y=0,则x=7,∴点F (7,0),又∵点F 和点G 关于直线BC 对称,BC :y=x-1,连接CG ,可得∠BCF=45°=∠BCG ,∴∠FCG=90°,∴CG=CF=6,∴点G的坐标为(1,6),又A(0,3),∴AG的长为√32+12=√10.【考点】关于坐标轴对称的点的坐标特征,二次函数的实际应用-几何问题【解析】【解答】解:(1)∵抛物线过点C(1,0),∴将C(1,0)代入y=x2+bx+3得0=1+b+3,解得b=-4,故答案为:-4;【分析】(1)根据待定系数法求解即可;(2)分点Q在CD上方和点Q在CD下方时,两种情况,结合三角函数,勾股定理等知识求解;(3)设点C关于BD的对称点为C′,BD中点为点R,直线AC与直线BD交于N′,设C′(p,q),利用点R到点C和点C′的距离相等以及点N′到点C和点C′的距离相等,求出点C′的坐标,从而得到C′N′直线的解析式,从而求出点F坐标,再利用点F和点G关于直线BC对称,结合BC的表达式可求出点G坐标,最后得到AG的长.。
2020年江苏省常州市中考数学试卷-含详细解析
2020年江苏省常州市中考数学试卷一、选择题(本大题共8小题,共16.0分)1.2的相反数是()A. −2B. −12C. 12D. 22.计算m6÷m2的结果是()A. m3B. m4C. m8D. m123.如图是某几何体的三视图,该几何体是()A. 圆柱B. 三棱柱C. 四棱柱D. 四棱锥4.8的立方根为()A. 2√2B. ±2√2C. 2D. ±25.如果x<y,那么下列不等式正确的是()A. 2x<2yB. −2x<−2yC. x−1>y−1D. x+1>y+16.如图,直线a、b被直线c所截,a//b,∠1=140°,则∠2的度数是()A. 30°B. 40°C. 50°D. 60°7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A. 3B. 4C. 5D. 68.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=√2,∠ADB=135°,S△ABD=2.若反比例函数y=kx(x>0)的图象经过A、D两点,则k的值是()A. 2√2B. 4C. 3√2D. 6二、填空题(本大题共10小题,共20.0分)9.计算:|−2|+(π−1)0=______.10.若代数式1x−1有意义,则实数x的取值范围是______.11.地球的半径大约为6400km.数据6400用科学记数法表示为______.12.分解因式:x3−x=_________13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是______.14.若关于x的方程x2+ax−2=0有一个根是1,则a=______.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=______°.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是______.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=______.18.如图,在△ABC中,∠B=45°,AB=6√2,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为______.三、计算题(本大题共1小题,共8.0分)19.解方程和不等式组:(1)xx−1+21−x=2;(2){2x−6<0−3x≤6.四、解答题(本大题共9小题,共76.0分)20.先化简,再求值:(x+1)2−x(x+1),其中x=2.21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是______;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是______;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.已知:如图,点A、B、C、D在一条直线上,EA//FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.如图,正比例函数y=kx的图象与反比例函数y=8(x>0)的图象交于点A(a,4).点B为x轴正半轴上x一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是______;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为______;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ⋅PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点______(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为______;②若直线n的函数表达式为y=√3x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√2为半径作⊙F.若⊙F与直线1相离,点N(−1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4√5,求直线l的函数表达式.28.如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=______;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.答案和解析1.【答案】A【解析】解:2的相反数是−2.故选:A .利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 此题主要考查了相反数的概念,正确把握定义是解题关键.2.【答案】B【解析】解:m 6÷m 2=m 6−2=m 4.故选:B .利用同底数幂的除法运算法则计算得出答案.此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.3.【答案】C【解析】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形, 则可得出该几何体是四棱柱.故选:C .该几何体的主视图与左视图均为矩形,俯视图为三角形,易得出该几何体的形状. 主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.4.【答案】C【解析】解:8的立方根是√83=√233=2,故选:C .根据立方根的定义求出√83的值,即可得出答案.本题考查了对立方根的定义的理解和运用,注意:a 的立方根是√a 3.5.【答案】A【解析】解:∵x <y ,∴2x <2y ,故本选项符合题意;B 、∵x <y ,∴−2x >−2y ,故本选项不符合题意;C 、∵x <y ,∴x −1<y −1,故本选项不符合题意;D 、∵x <y ,∴x +1<y +1,故本选项不符合题意;故选:A .根据不等式的性质逐个判断即可.本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.6.【答案】B【解析】解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°−∠1=180°−140°=40°∵a//b ,∴∠2=∠3=40°.故选:B.先根据邻补角相等求得∠3,然后再根据两直线平行、内错角相等即可解答.本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.7.【答案】A【解析】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.BC,∴MH=12∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.本题考查了直角三角形斜边直线的性质,明确BC的最大值为⊙O的直径的长是解题的关键.8.【答案】D【解析】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA//BC,OA=BC,∴∠AOM=∠CNM,∵BD//y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,BD⋅AE=2,BD=√2,∵S△ABD=12∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m−2√2,3√2),(x>0)的图象经过A、D两点,∵反比例函数y=kx∴k=√2m=(m−2√2)×3√2,解得m=3√2,∴k=√2m=6.故选:D.根据三角形面积公式求得AE=2√2,易证得△AOM≌△CBD(AAS),得出OM=BD=√2,根据题意得出△ADE是等腰直角三角形,得出DE=AE=2√2,设A(m,√2),则D(m−2√2,3√2),根据反比例函数系数k的几何意义得出关于m的方程,解方程求得m=3√2,进一步求得k=6.本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,平行四边形的性质,等腰直角三角形的判定和性质,三角形的面积等,表示出A、D的坐标是解题的关键.9.【答案】3【解析】解:|−2|+(π−1)0=2+1=3,故答案为:3.首先计算乘方和绝对值,然后计算加法,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.10.【答案】x≠1【解析】解:依题意得:x−1≠0,解得x≠1,故答案为:x≠1.分式有意义时,分母x−1≠0,据此求得x的取值范围.本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.【答案】6.4×103【解析】解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x(x+1)(x−1)【解析】解:x3−x,=x(x2−1),=x(x+1)(x−1).故答案为:x(x+1)(x−1).本题可先提公因式x,分解成x(x2−1),而x2−1可利用平方差公式分解.本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.13.【答案】k>0【解析】解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.根据一次函数的性质,如果y随x的增大而增大,则一次项的系数大于0,据此求出k 的取值范围.本题考查的是一次函数的性质,解答本题要注意:在一次函数y=kx+b(k≠0)中,当k>0时y随x的增大而增大.14.【答案】1【解析】解:∵关于x的方程x2+ax−2=0有一个根是1,∴把x=1代入方程得:1+a−2=0,解得:a=1,故答案为:1.把x=1代入方程得出1+a−2=0,求出方程的解即可.本题考查了一元二次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.15.【答案】30【解析】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B.本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.16.【答案】(2,√3)【解析】解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=12AD=12×2=1,OD=√22−12=√3,∴C(2,√3),故答案为:(2,√3).根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.此题主要考查了含30度角的直角三角形的性质,菱形的性质,坐标与图形的性质等知识,解题的关键是确定OD的长.17.【答案】12【解析】解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2√2,CG=√2,∴tan∠GEC=CGEC =12,故答案为:12.根据正方形的性质以及锐角三角函数的定义即可求出答案.本题考查正方形,解题的关键是熟练运用正方形的性质以及锐角三角函数的定义,本题属于基础题型.18.【答案】4【解析】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG//BT,∵AD=DB,AE=EC,∴DE//BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3√2,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH=BTBF =DGBF=13,∴THBH =13,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.故答案为4.如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT 是平行四边形,求出DH,TH即可解决问题.本题考查相似三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.19.【答案】解:(1)方程两边都乘以x −1得:x −2=2(x −1),解得:x =0,检验:把x =0代入x −1得:x −1≠0,所以x =0是原方程的解,即原方程的解是:x =0;(2){2x −6<0 ①−3x ≤6 ②, ∵解不等式①得:x <3,解不等式②得:x ≥−2,∴不等式组的解集是:−2≤x <3.【解析】(1)方程两边都乘以x −1得出方程x −2=2(x −1),求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解分式方程和解一元一次不等式组,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.20.【答案】解:(x +1)2−x(x +1)=x 2+2x +1−x 2−x=x +1,当x =2时,原式=2+1=3.【解析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.21.【答案】100【解析】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100−25−35−15=25(人),补全统计图如下:(3)根据题意得:2000×15100=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.(1)根据打排球的人数和所占的百分比即可求出样本容量;(2)用总人数乘以打乒乓球的人数所占的百分比求出打乒乓球的人数,再用总人数减去其他项目的人数求出踢足球的人数,从而补全统计图;(3)用该校的总人数乘以“打篮球”的人数所占的百分比即可.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】13【解析】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为13,故答案为:13;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)=46=23.(1)共有3种可能出现的结果,其中“抽到1号”的有1种,可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.本题考查列表法和树状图求随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.23.【答案】证明:(1)∵EA//FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,{EA=FB∠A=∠FBD AC=BD,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°−40°−80°=60°,答:∠E 的度数为60°.【解析】(1)首先利用平行线的性质得出,∠A =∠FBD ,根据AB =CD 即可得出AC =BD ,进而得出△EAC≌△FBD 解答即可;(2)根据全等三角形的性质和三角形内角和解答即可.此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△EAC≌△FBD 是解题关键.24.【答案】解:(1)设每千克苹果的售价为x 元,每千克梨的售价为y 元,依题意,得:{x +3y =262x +y =22, 解得:{x =8y =6. 答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m 千克苹果,则购买(15−m)千克梨,依题意,得:8m +6(15−m)≤100,解得:m ≤5.答:最多购买5千克苹果.【解析】(1)设每千克苹果的售价为x 元,每千克梨的售价为y 元,根据“购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 千克苹果,则购买(15−m)千克梨,根据总价=单价×数量结合总价不超过100元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.【答案】解:(1)把点A(a,4)代入反比例函数y =8x (x >0)得,a =84=2,∴点A(2,4),代入y =kx 得,k =2,∴正比例函数的关系式为y =2x ,答:a =2,正比例函数的关系式为y =2x ;(2)当BD =10=y 时,代入y =2x 得,x =5,∴OB =5,当x =5代入y =8x 得,y =85,即BC =85,∴CD =BD −BC =10−85=425, ∴S △ACD =12×425×(5−2)=12.6,【解析】(1)把把点A(a,4)代入反比例函数关系式可求出a 的值,确定点A 的坐标,进而求出正比例函数的关系式;(2)根据BD =10,求出点B 的横坐标,求出OB ,代入求出BC ,根据三角形的面积公式进行计算即可.本题考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用方法.26.【答案】1 π12【解析】解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,{∠BAC=∠FCD ∠ABC=∠CDF AC=CF,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S 阴=S△EFC+S扇形ACF−S扇形CEH−S△AHC=S扇形ACF−S扇形ECH=30⋅π⋅22360−30⋅π⋅(√3)2360=π12.故答案为π12.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF ,∴EC =√3EF =√3,EH =√32,CH =√3EH =32, 在Rt △BOC 中,OC =√OB 2+BC 2=√1+x 2,∴OH =CH =OC =32−√1+x 2, 在Rt △EOH 中,则有x 2=(√32)2+(32−√1+x 2)2, 解得x =√73或−√73(不合题意舍弃), ∴OC =(√73)=43, ∵CF =2EF =2, ∴OF =CF −OC =2−43=23.(1)如图1中,作FD ⊥AC 于D.证明△ABC≌△CDF(AAS)可得结论.(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.根据S 阴=S △EFC +S 扇形ACF −S 扇形CEH −S △AHC =S 扇形ACF 计算即可.(3)如图2中,过点E 作EH ⊥CF 于H.设OB =OE =x.在Rt △EOH 中,利用勾股定理构建方程求解即可.本题考查作图−旋转变换,解直角三角形,全等三角形的性质,扇形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27.【答案】D 20【解析】解:(1)①由题意,点D 是⊙O 关于直线m 的“远点”,⊙O 关于直线m 的特征数=DB ⋅DE =2×5=20,故答案为D ,20.②如图1−1中,过点O 作OH ⊥直线n 于H ,交⊙O 于Q ,P .设直线y =√3x +4交x 轴于F(−4√33,0),交y 轴于E(0,4), ∴OE =4,OF =4√33 ∴tan∠FEO =OFOE =√33, ∴∠FEO =30°,∴OH =12OE =2,∴PH =OH +OP =3, ∴⊙O 关于直线n 的“特征数”=PQ ⋅PH =2×3=6.(2)如图2−1中,设直线l 的解析式为y =kx +b .当k >0时,过点F 作FH ⊥直线l 于H ,交⊙F 于E ,N .由题意,EN =2√2,EN ⋅NH =4√5,∴NH =√10,∵N(−1,0),M(1,4),∴MN =√22+42=2√5,∴HM =√MN 2−NH 2=√20−10=√10,∴△MNH 是等腰直角三角形,∵MN 的中点K(0,2),∴KN =HK =KM =√5,∴H(−2,3),把H(−2,3),M(1,4)代入y =kx +b ,则有{k +b =4−2k +b =3,解得{k =13b =113, ∴直线l 的解析式为y =13x +113,当k <0时,同法可知直线i 经过H′(2,1),可得直线l 的解析式为y =−3x +7. 综上所述,满足条件的直线l 的解析式为y =13x +113或y =−3x +7.(1)①根据远点,特征数的定义判断即可.②如图1−1中,过点O 作OH ⊥直线n 于H ,交⊙O 于Q ,P.解直角三角形求出PH ,PQ 的长即可解决问题.(2)如图2−1中,设直线l 的解析式为y =kx +b.分两种情形k >0或k <0,分别求解即可解决问题.本题属于圆综合题,考查了一次函数的性质,解直角三角形,远点,特征数的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题. 28.【答案】−4【解析】解:(1)∵抛物线y =x 2+bx +3的图象过点C(1,0),∴0=1+b +3,∴b =−4,故答案为:−4;(2)∵b =4,∴抛物线解析式为y =x 2−4x +3∵抛物线y =x 2−4x +3的图象与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B ,∴点A(0,3),3=x 2−4x ,∴x 1=0(舍去),x 2=4,∴点B(4,3),∵y =x 2−4x +3=(x −2)2−1,∴顶点D 坐标(2,−1),如图1,当点Q 在点D 上方时,过点C 作CE ⊥AB 于E ,设BD 与x 轴交于点F ,∵点A(0,3),点B(4,3),点C(1,0),CE ⊥AB ,∴点E(1,3),CE =BE =3,AE =1,∴∠EBC =∠ECB =45°,tan∠ACE =AE EC =13,∴∠BCF =45°,∵点B(4,3),点C(1,0),点D(2,−1),∴BC =√9+9=3√2,CD =√1+1=√2,BD =√(4−2)2+(3+1)2=2√5, ∵BC 2+CD 2=20=BD 2,∴∠BCD =90°,∴tan∠DBC =CD BC =√23√2=13=tan∠ACE , ∴∠ACE =∠DBC ,∴∠ACE +∠ECB =∠DBC +∠BCF ,∴∠ACB =∠CFD ,又∵∠CQD =∠ACB ,∴点F 与点Q 重合,∴点P 是直线CF 与抛物线的交点, ∴0=x 2−4x +3,∴x 1=1,x 2=3,∴点P(3,0);当点Q 在点D 下方上,过点C 作CH ⊥DB 于H ,在线段BH 的延长线上截取HF =QH ,连接CQ 交抛物线于点P ,∵CH ⊥DB ,HF =QH ,∴CF =CQ ,∴∠CFD =∠CQD ,∴∠CQD =∠ACB , ∵CH ⊥BD ,∵点B(4,3),点D(2,−1),∴直线BD 解析式为:y =2x −5,∴点F(52,0),∴直线CH 解析式为:y =−12x +12,∴{y =−12x +12y =2x −5, 解得{x =115y =−35, ∴点H 坐标为(115,−35),∵FH =QH ,∴点Q(1910,−65),∴直线CQ 解析式为:y =−43x +43,联立方程组{y =−43x +43y =x 2−4x +3, 解得:{x 1=1y 1=0或{x 2=53y 2=−89, ∴点P(53,−89);综上所述:点P 的坐标为(3,0)或(53,−89);(3)如图,设直线AC 与BD 的交点为N ,作CH ⊥BD 于H ,过点N 作MN ⊥x 轴,过点E 作EM ⊥MN ,连接CG ,GF ,∵点A(0,3),点C(1,0),∴直线AC 解析式为:y =−3x +3,∴{y =−3x +3y =2x −5, ∴{x =85y =−95, ∴点N 坐标为(85,−95),∵点H 坐标为(115,−35),∴CH 2=(115−1)2+(35)2=95,HN 2=(115−85)2+(−35+95)2=95, ∴CH =HN ,∴∠CNH =45°,∵点E 关于直线BD 对称的点为F ,∴EN =NF ,∠ENB =∠FNB =45°,∴∠ENF =90°,∴∠ENM +∠FNM =90°,又∵∠ENM +∠MEN =90°,∴∠MEN =∠FNM ,∴△EMN≌△NKF(AAS)∴EM =NK =95,MN =KF ,∴点E的横坐标为−15,∴点E(−15,185),∴MN=275=KF,∴CF=85+275−1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG=√12+(6−3)2=√10.(1)将点C坐标代入解析式可求解;(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE=AE EC =13,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q 坐标,求出CQ解析式,联立方程组,可求点P坐标;(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB=∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=95,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定和性质,轴对称性质,等腰三角形的性质,锐角三角函数等知识,综合性强,求出∠CNH=45°是本题的关键.第21页,共21页。
2020年江苏常州市数学中考试题及答案
初中毕业、升学统一考试数学注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、 答卷前将密封线内的项目填写淸楚,并将座位号填写在试卷规泄的位置上。
3、 用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、 考生在答题过程中,可以使用CZ1206. HY82型函数计算器,若试题汁算结 果没有要求取近似值,则汁算结果取精确值(保留根号和兀)。
题号一二三四五六七得分一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上)1. 3的相反数是 ______ , 一5的绝对值是 ______ , 9的平方根是 _______ 。
2. 在函数y =中,自变量X 的取值范屈是 ____________ :若分式丄三的值为零,则X-1X = a3. 若Za 的补角是 120° ,则乙a= ________ , costz = _______4. 某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8, 6, 10,7, 9,则这五次射击的平均成绩是 ________ 环,中位数 ________ 环,方差是 _______ 环- 5. 已知扇形的圆心角为120° ,半径为2cm ,则扇形的弧长是 ____________ cm ,扇形的而积是 ___________ cm 2ob6. _________________________________________________________________ 已知反比例函数『=—(&H0)的图像经过点(1, —2),则这个函数的表达式是 ___________x当XY0时,y 的值随自变呈兀值的增大而 _________ (填“增大”或“减小”)7、如图,在AABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE于点G, CF = 1,则 _________ BC=, A ADE 与ZkABC 的周长之比为 _________ , ACFG 与ABFD 的面积之比为—8. 如图,小亮从A 点出发,沿直线前进10米后向左转30° ,再沿直线前进10米,又向左转30° ,……照这样走下去,他第一次回到岀发地A 点时,一共走了 ________ 米。
2020年江苏省常州中考数学试卷及答案解析
12.分解因式: __________.
13.若一次函数 的函数值 随自变量 增大而增大,则实数 的取值范围是__________.
14.若关于 的方程 有一个根是1,则 _________.
15.如图,在 中, 的垂直平分线分别交 、 于点 、 .若 是等边三角形,则 _________°.
【考点】直角三角形斜边中线定理
8.【答案】D
【解析】作 交 的延长线于点 ,作 轴于点 ,计算出 长度,证明 ,得出 长度,设出点 的坐标,表示出点 的坐标,使用 ,可计算出 值.
作 交 的延长线于点 ,作 轴于点 . , , 为等腰直角三角形. , , ,即 , . ,且 , , , , , .设点 , , ,解得: ,
(2)画出树状图,得到所有等可能的情况,再利用概率公式求解即可.
【考点】列表法与树状图法
23.【答案】(1) , , , ,即 ,又 , , .
【考点】不等式的性质
6.【答案】B
【解析】先根据邻补角相等求得 ,然后再根据两直线平行、内错角相等即可解答.解: , , . , .故答案为.【考点】平行线的性质
7.【答案】A
【解析】根据直角三角形斜边中线定理,斜边上的中线等于斜边的一半可知 ,当 为直径时长度最大,即可求解.
解: , . 在 中,点 是 的中点, . 为 的弦, 当 为直径时, 最大, 的半径是3, 最大为3.故选:A.
综上: 的值为4或2.故答案为:4或2.
【考点】等腰直角三角形的判定和性质,三角函数,平行四边形的判定和性质,勾股定理
三、
19.【答案】解:
将 代入,原式
【解析】完全平方公式和单项式乘多项式,具体解题过程参照答案.
2020年江苏省常州市中考数学试卷
2020年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2的相反数是()A.2-B.12-C.12D.22.(2分)计算62m m÷的结果是()A.3m B.4m C.8m D.12m3.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.(2分)8的立方根为()A.22B.22±C.2D.2±5.(2分)如果x y<,那么下列不等式正确的是()A.22x y<B.22x y-<-C.11x y->-D.11x y+>+ 6.(2分)如图,直线a、b被直线c所截,//a b,1140∠=︒,则2∠的度数是()A.30︒B.40︒C.50︒D.60︒7.(2分)如图,AB是O的弦,点C是优弧AB上的动点(C不与A、B重合),CH AB⊥,垂足为H,点M是BC的中点.若O的半径是3,则MH长的最大值是()A .3B .4C .5D .68.(2分)如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,2BD =,135ADB ∠=︒,2ABD S ∆=.若反比例函数(0)k y x x =>的图象经过A 、D 两点,则k 的值是( )A .22B .4C .32D .6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.(2分)计算:0|2|(1)π-+-= .10.(2分)若代数式11x -有意义,则实数x 的取值范围是 . 11.(2分)地球的半径大约为6400km .数据6400用科学记数法表示为 .12.(2分)分解因式:3x x -= .13.(2分)若一次函数2y kx =+的函数值y 随自变量x 增大而增大,则实数k 的取值范围是 .14.(2分)若关于x 的方程220x ax +-=有一个根是1,则a = .15.(2分)如图,在ABC ∆中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC ∆是等边三角形,则B ∠= ︒.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD 中,2AB =,120DAB ∠=︒.如图,建立平面直角坐标系xOy ,使得边AB 在x 轴正半轴上,点D 在y 轴正半轴上,则点C 的坐标是 .17.(2分)如图,点C 在线段AB 上,且2AC BC =,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 、BCFG ,连接EC 、EG ,则tan CEG ∠= .18.(2分)如图,在ABC ∆中,45B ∠=︒,62AB =,D 、E 分别是AB 、AC 的中点,连接DE ,在直线DE 和直线BC 上分别取点F 、G ,连接BF 、DG .若3BF DG =,且直线BF 与直线DG 互相垂直,则BG 的长为 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:2(1)(1)x x x +-+,其中2x =.20.(8分)解方程和不等式组:(1)2211x x x+=--; (2)26036x x -<⎧⎨-⎩. 21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是 ;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.(8分)已知:如图,点A 、B 、C 、D 在一条直线上,//EA FB ,EA FB =,AB CD =.(1)求证:E F ∠=∠;(2)若40A ∠=︒,80D ∠=︒,求E ∠的度数.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.(8分)如图,正比例函数y kx=的图象与反比例函数8(0)y xx=>的图象交于点(,4)A a.点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y kx=的表达式;(2)若10BD=,求ACD∆的面积.26.(10分)如图1,点B在线段CE上,Rt ABC Rt CEF∆≅∆,90ABC CEF∠=∠=︒,30BAC∠=︒,1BC=.(1)点F到直线CA的距离是;(2)固定ABC∆,将CEF∆绕点C按顺时针方向旋转30︒,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE OB=时,求OF的长.27.(10分)如图1,I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交I于P、Q两点(Q在P、H之间).我们把点P称为I关于直线a的“远点“,把PQ PH的值称为I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4).半径为1的O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则O 关于直线m 的“远点”是点 (填“A ”.“ B ”、“ C ”或“D ” ),O 关于直线m 的“特征数”为 ;②若直线n 的函数表达式为34y x =+.求O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点(1,4)M ,点F 是坐标平面内一点,以F 为圆心,2为半径作F .若F 与直线1相离,点(1,0)N -是F 关于直线1的“远点”.且F 关于直线l 的“特征数”是45,求直线l 的函数表达式.28.(10分)如图,二次函数23y x bx =++的图象与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B ,抛物线过点(1,0)C ,且顶点为D ,连接AC 、BC 、BD 、CD .(1)填空:b = ;(2)点P 是抛物线上一点,点P 的横坐标大于1,直线PC 交直线BD 于点Q .若CQD ACB ∠=∠,求点P 的坐标;(3)点E 在直线AC 上,点E 关于直线BD 对称的点为F ,点F 关于直线BC 对称的点为G ,连接AG .当点F 在x 轴上时,直接写出AG 的长.2020年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2的相反数是( )A .2-B .12-C .12D .2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是2-.故选:A .2.(2分)计算62m m ÷的结果是( )A .3mB .4mC .8mD .12m【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:62624m m m m -÷==.故选:B .3.(2分)如图是某几何体的三视图,该几何体是( )A .圆柱B .三棱柱C .四棱柱D .四棱锥【分析】该几何体的主视图与左视图均为矩形,俯视图为正方形,易得出该几何体的形状.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C .4.(2分)8的立方根为( )A .22B .22±C .2D .2±【分析】根据立方根的定义求出38的值,即可得出答案.【解答】解:8的立方根是333822==,故选:C .5.(2分)如果x y <,那么下列不等式正确的是( )A .22x y <B .22x y -<-C .11x y ->-D .11x y +>+【分析】根据不等式的性质逐个判断即可.【解答】解:x y <,22x y ∴<,故本选项符合题意;B 、x y <,22x y ∴->-,故本选项不符合题意;C 、x y <,11x y ∴-<-,故本选项不符合题意;D 、x y <,11x y ∴+<+,故本选项不符合题意;故选:A .6.(2分)如图,直线a 、b 被直线c 所截,//a b ,1140∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒【分析】先根据邻补角互补求得3∠,然后再根据两直线平行、内错角相等即可解答.【解答】解:13180∠+∠=︒,140∠=︒,3180118014040∴∠=︒-∠=︒-︒=︒//a b ,2340∴∠=∠=︒.故选:B .7.(2分)如图,AB 是O 的弦,点C 是优弧AB 上的动点(C 不与A 、B 重合),CH AB ⊥,垂足为H ,点M 是BC 的中点.若O 的半径是3,则MH 长的最大值是( )A .3B .4C .5D .6【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH 的最大值是3.【解答】解:CH AB ⊥,垂足为H ,90CHB ∴∠=︒,点M 是BC 的中点.12MH BC ∴=, BC 的最大值是直径的长,O 的半径是3,MH ∴的最大值为3,故选:A .8.(2分)如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,2BD =,135ADB ∠=︒,2ABD S ∆=.若反比例函数(0)k y x x=>的图象经过A 、D 两点,则k 的值是( )A .22B .4C .32D .6【分析】根据三角形面积公式求得22AE =,易证得()AOM CBD AAS ∆≅∆,得出2OM BD =,根据题意得出ADE ∆是等腰直角三角形,得出22DE AE ==,设(2)A m ,则(2D m -32),根据反比例函数系数k 的几何意义得出关于m 的方程,解方程求得32m =6k =.【解答】解:作AM y ⊥轴于M ,延长BD ,交AM 于E ,设BC 与y 轴的交点为N , 四边形OABC 是平行四边形,//OA BC ∴,OA BC =,AOM CNM ∴∠=∠,//BD y 轴,CBD CNM ∴∠=∠,AOM CBD ∴∠=∠, CD 与x 轴平行,BD 与y 轴平行,90CDB ∴∠=︒,BE AM ⊥,CDB AMO ∴∠=∠,()AOM CBD AAS ∴∆≅∆,2OM BD ∴==, 122ABD S BD AE ∆==,2BD = 22AE ∴=,135ADB ∠=︒,45ADE ∴∠=︒,ADE ∴∆是等腰直角三角形, 22DE AE ∴==, D ∴的纵坐标为32,设(,2)A m ,则(22D m -,32),反比例函数(0)k y x x=>的图象经过A 、D 两点, 2(22)32k m m ∴==-⨯,解得32m =,26k m ∴==.故选:D .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.(2分)计算:0|2|(1)π-+-= 3 .【分析】首先计算乘方和绝对值,然后计算加法,求出算式的值是多少即可.【解答】解:0|2|(1)π-+-21=+3=,故答案为:3.10.(2分)若代数式11x -有意义,则实数x 的取值范围是 1x ≠ . 【分析】分式有意义时,分母10x -≠,据此求得x 的取值范围.【解答】解:依题意得:10x -≠,解得1x ≠,故答案为:1x ≠.11.(2分)地球的半径大约为6400km .数据6400用科学记数法表示为 36.410⨯ .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将6400用科学记数法表示为36.410⨯.故答案为:36.410⨯.12.(2分)分解因式:3x x -= (1)(1)x x x +- .【分析】本题可先提公因式x ,分解成2(1)x x -,而21x -可利用平方差公式分解.【解答】解:3x x -,2(1)x x =-,(1)(1)x x x =+-.故答案为:(1)(1)x x x +-.13.(2分)若一次函数2y kx =+的函数值y 随自变量x 增大而增大,则实数k 的取值范围是 0k > .【分析】根据一次函数的性质,如果y 随x 的增大而增大,则一次项的系数大于0,据此求出k 的取值范围.【解答】解:一次函数2y kx =+,函数值y 随x 的值增大而增大,0k ∴>.故答案为:0k >.14.(2分)若关于x 的方程220x ax +-=有一个根是1,则a = 1 .【分析】把1x =代入方程得出120a +-=,求出方程的解即可.【解答】解:关于x 的方程220x ax +-=有一个根是1,∴把1x =代入方程得:120a +-=,解得:1a =,故答案为:1.15.(2分)如图,在ABC∆是∆中,BC的垂直平分线分别交BC、AB于点E、F.若AFC等边三角形,则B∠=30︒.【分析】根据垂直平分线的性质得到B BCF∠=∠,再利用等边三角形的性质得到∠.60∠=︒,从而可得BAFC【解答】解:EF垂直平分BC,BF CF∴=,∴∠=∠,B BCFACF∆为等边三角形,∴∠=︒,60AFC∴∠=∠=︒.B BCF30故答案为:30.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,2AB=,120∠=︒.如图,建立平面DAB直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是(2,3).【分析】根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.【解答】解:四边形ABCD是菱形,且2AB=,∴===,2CD AD AB∠=︒,120DAB∴∠=︒,60OADRt AOD ∆中,30ADO ∠=︒, 112122OA AD ∴==⨯=,22213OD =-=, (2,3)C ∴,故答案为:(2,3).17.(2分)如图,点C 在线段AB 上,且2AC BC =,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 、BCFG ,连接EC 、EG ,则tan CEG ∠= 12.【分析】根据正方形的性质以及锐角三角函数的定义即可求出答案.【解答】解:连接CG ,在正方形ACDE 、BCFG 中,45ECA GCB ∠=∠=︒,90ECG ∴∠=︒,设2AC =,1BC =,22CE ∴=,2CG =,1tan 2CG GEC EC ∴∠==, 故答案为:12.18.(2分)如图,在ABC ∆中,45B ∠=︒,62AB =,D 、E 分别是AB 、AC 的中点,连接DE ,在直线DE 和直线BC 上分别取点F 、G ,连接BF 、DG .若3BF DG =,且直线BF 与直线DG 互相垂直,则BG 的长为 4或2 .【分析】如图,过点B 作BT BF ⊥交ED 的延长线于T ,过点B 作BH DT ⊥于H ,证明四边形DGBT 是平行四边形,求出DH ,TH 即可解决问题.【解答】解:如图,过点B 作BT BF ⊥交ED 的延长线于T ,过点B 作BH DT ⊥于H .DG BF ⊥,BT BF ⊥,//DG BT ∴,AD DB =,AE EC =,//DE BC ∴,∴四边形DGBT 是平行四边形,BG DT ∴=,DG BT =,45BDH ABC ∠=∠=︒,32AD DB ==,3BH DH ∴==,90TBF BHF ∠=∠=︒,90TBH FBH ∴∠+∠=︒,90FBH F ∠+∠=︒,TBH F ∴∠=∠,1tan tan 3BT DG F TBH BF BF ∴∠=∠===, ∴13TH BH =, 1TH ∴=,134DT TH DH ∴=+=+=,4BG ∴=.当点F 在ED 的延长线上时,同法可得312DT BG ==-=.故答案为4或2.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:2(1)(1)x x x +-+,其中2x =.【分析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.【解答】解:2(1)(1)x x x +-+2221x x x x =++--1x =+,当2x =时,原式213=+=.20.(8分)解方程和不等式组:(1)2211x x x+=--; (2)26036x x -<⎧⎨-⎩. 【分析】(1)方程两边都乘以1x -得出方程22(1)x x -=-,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)方程两边都乘以1x -得:22(1)x x -=-,解得:0x =,检验:把0x =代入1x -得:10x -≠,所以0x =是原方程的解,即原方程的解是:0x =;(2)26036x x -<⎧⎨-⎩①②, 解不等式①得:3x <,解不等式②得:2x -,∴不等式组的解集是:23x -<.21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是 100 ;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【分析】(1)根据打排球的人数和所占的百分比即可求出样本容量;(2)用总人数乘以打乒乓球的人数所占的百分比求出打乒乓球的人数,再用总人数减去其他项目的人数求出踢足球的人数,从而补全统计图;(3)用该校的总人数乘以“打篮球”的人数所占的百分比即可.【解答】解:(1)本次抽样调查的总人数是:2525%100÷=(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:10035%35⨯=(人),踢足球的人数有:10025351525---=(人),补全统计图如下:(3)根据题意得:152000300100⨯=(人),答:估计该校最喜爱“打篮球”的学生人数有300人.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是13;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【分析】(1)共有3种可能出现的结果,其中“抽到1号”的有1种,可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【解答】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为13,故答案为:13;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,()4263P ∴==和为奇数. 23.(8分)已知:如图,点A 、B 、C 、D 在一条直线上,//EA FB ,EA FB =,AB CD =.(1)求证:E F ∠=∠;(2)若40A ∠=︒,80D ∠=︒,求E ∠的度数.【分析】(1)首先利用平行线的性质得出,A FBD ∠=∠,根据AB CD =即可得出AC BD =,进而得出EAC FBD ∆≅∆解答即可;(2)根据全等三角形的性质和三角形内角和解答即可.【解答】证明:(1)//EA FB ,A FBD ∴∠=∠,AB CD =,AB BC CD BC ∴+=+,即AC BD =,在EAC ∆与FBD ∆中,EA FB A FBD AC BD =⎧⎪∠=∠⎨⎪=⎩,()EAC FBD SAS ∴∆≅∆,E F ∴∠=∠;(2)EAC FBD ∆≅∆,80ECA D ∴∠=∠=︒,40A ∠=︒,180408060E ∴∠=︒-︒-︒=︒,答:E ∠的度数为60︒.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【分析】(1)设每千克苹果的售价为x元,每千克梨的售价为y元,根据“购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m千克苹果,则购买(15)m-千克梨,根据总价=单价⨯数量结合总价不超过100元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:326 222x yx y+=⎧⎨+=⎩,解得:86xy=⎧⎨=⎩.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15)m-千克梨,依题意,得:86(15)100m m+-,解得:5m.答:最多购买5千克苹果.25.(8分)如图,正比例函数y kx=的图象与反比例函数8(0)y xx=>的图象交于点(,4)A a.点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y kx=的表达式;(2)若10BD=,求ACD∆的面积.【分析】(1)把把点(,4)A a代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;(2)根据10BD =,求出点B 的横坐标,求出OB ,代入求出BC ,根据三角形的面积公式进行计算即可.【解答】解:(1)把点(,4)A a 代入反比例函数8(0)y x x =>得, 824a ==, ∴点(2,4)A ,代入y kx =得,2k =,∴正比例函数的关系式为2y x =,答:2a =,正比例函数的关系式为2y x =;(2)当10BD y ==时,代入2y x =得,5x =,5OB ∴=,当5x =代入8y x =得,85y =,即85BC =, 8421055CD BD BC ∴=-=-=, 142(52)12.625ACD S ∆∴=⨯⨯-=, 26.(10分)如图1,点B 在线段CE 上,Rt ABC Rt CEF ∆≅∆,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是 1 ;(2)固定ABC ∆,将CEF ∆绕点C 按顺时针方向旋转30︒,使得CF 与CA 重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【分析】(1)如图1中,作FD AC ⊥于D .证明()ABC CDF AAS ∆≅∆可得结论.(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.根据EFC AHC ACF CEH ACF S S S S S S ∆∆=+--=阴扇形扇形扇形计算即可.(3)如图2中,过点E 作EH CF ⊥于H .设OB OE x ==.在Rt EOH ∆中,利用勾股定理构建方程求解即可.【解答】解:(1)如图1中,作FD AC ⊥于D ,Rt ABC Rt CEF ∆≅∆,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.60ACB ∴∠=︒,30FCE BAC ∠=∠=︒,AC CF =,30ACF ∴∠=︒,BAC FCD ∴∠=∠,在ABC ∆和CDF ∆中,BAC FCD ABC CDF AC CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC CDF AAS ∴∆≅∆,1FD BC ∴==,故答案为1;(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.2230(3)30236012EFC AHC ACF CEH ACF ECHS S S S S S S πππ∆∆⋅⋅⋅⋅=+--=-=-=阴扇形扇形扇形扇形. 故答案为12π.(3)如图2中,过点E 作EH CF ⊥于H .设OB OE x ==.在Rt ECF ∆中,1EF =,30ECF ∠=︒,EH CF ⊥,33EC EF ∴==3EH =332CH EH ==, 在Rt BOC ∆中,2221OC OB BC x =++2312OH CH OC x ∴=-=-+ 在Rt EOH ∆中,则有222233((1)2x x =++, 解得7x =或7(不合题意舍弃), 2741()33OC ∴=+=, 22CF EF ==,42233OF CF OC ∴=-=-=. 27.(10分)如图1,I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交I 于P 、Q 两点(Q 在P 、H 之间).我们把点P 称为I 关于直线a 的“远点“,把PQ PH 的值称为I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4).半径为1的O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则O 关于直线m 的“远点”是点 D (填“A ”.“ B ”、“ C ”或“D ” ),O 关于直线m 的“特征数”为 ;②若直线n 的函数表达式为34y x =+.求O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点(1,4)M ,点F 是坐标平面内一点,以F 为圆心,2为半径作F .若F 与直线1相离,点(1,0)N -是F 关于直线1的“远点”.且F 关于直线l 的“特征数”是45,求直线l 的函数表达式.【分析】(1)①根据远点,特征数的定义判断即可. ②如图11-中,过点O 作OH ⊥直线n 于H ,交O 于Q ,P .解直角三角形求出PH ,PQ 的长即可解决问题.(2)如图21-中,设直线l 的解析式为y kx b =+.分两种情形0k >或0k <,分别求解即可解决问题.【解答】解:(1)①由题意,点D 是O 关于直线m 的“远点”,O 关于直线m 的特征数2520DB DE ==⨯=,故答案为D ,20.②如图11-中,过点O 作OH ⊥直线n 于H ,交O 于Q ,P .设直线34y x =+交x 轴于43(F -,0),交y 轴于(0,4)E , 4OE ∴=,43OF = 3tan OF FEO OE ∴∠==, 30FEO ∴∠=︒,122OH OE ∴==, 3PH OH OP ∴=+=,O ∴关于直线n 的“特征数” 236PQ PH ==⨯=.(2)如图21-中,设直线l 的解析式为y kx b =+.当0k >时,过点F 作FH ⊥直线l 于H ,交F 于E ,N .由题意,22EN =,45EN NH =10NH ∴=, (1,0)N -,(1,4)M ,222425MN ∴=+22201010HM MN NH ∴=--=MNH ∴∆是等腰直角三角形,MN 的中点(0,2)K ,5KN HK KM ∴===(2,3)H ∴-,把(2,3)H -,(1,4)M 代入y kx b =+,则有423k b k b +=⎧⎨-+=⎩, 解得13113k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线l 的解析式为11133y x =+, 当0k <时,同法可知直线i 经过(2,1)H ',可得直线l 的解析式为37y x =-+.综上所述,满足条件的直线l 的解析式为11133y x =+或37y x =-+. 28.(10分)如图,二次函数23y x bx =++的图象与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B ,抛物线过点(1,0)C ,且顶点为D ,连接AC 、BC 、BD 、CD .(1)填空:b = 4- ;(2)点P 是抛物线上一点,点P 的横坐标大于1,直线PC 交直线BD 于点Q .若CQD ACB ∠=∠,求点P 的坐标;(3)点E 在直线AC 上,点E 关于直线BD 对称的点为F ,点F 关于直线BC 对称的点为G ,连接AG .当点F 在x 轴上时,直接写出AG 的长.【分析】(1)将点C 坐标代入解析式可求解;(2)分两种情况讨论,当点Q 在点D 上方时,过点C 作CE AB ⊥于E ,设BD 与x 轴交于点F ,可得点(1,3)E ,3CE BE ==,1AE =,可得45EBC ECB ∠=∠=︒,1tan 3AE ACE EC ∠==,45BCF ∠=︒,由勾股定理逆定理可得90BCD ∠=︒,可求ACE DBC ∠=∠,可得ACB CFD ∠=∠,可得点F 与点Q 重合,即可求点P 坐标;当点Q 在点D 下方上,过点C 作CH DB ⊥于H ,在线段BH 的延长线上截取HF QH =,连接CQ 交抛物线于点P ,先求直线BD 解析式,点F 坐标,由中点坐标公式可求点Q 坐标,求出CQ 解析式,联立方程组,可求点P 坐标;(3)设直线AC 与BD 的交点为N ,作CH BD ⊥于H ,过点N 作MN x ⊥轴,过点E 作EM MN ⊥,连接CG ,GF ,先求出45CNH ∠=︒,由轴对称的性质可得EN NF =,45ENB FNB ∠=∠=︒,由“AAS ”可证EMN NKF ∆≅∆,可得95EM NK ==,MN KF =,可求6CF =,由轴对称的性质可得点G 坐标,即可求解.【解答】解:(1)抛物线23y x bx =++的图象过点(1,0)C ,013b ∴=++,4b ∴=-,故答案为:4-;(2)4b =,∴抛物线解析式为243y x x =-+抛物线243y x x =-+的图象与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B ,∴点(0,3)A ,234x x =-,10x ∴=(舍去),24x =, ∴点(4,3)B ,2243(2)1y x x x =-+=--,∴顶点D 坐标(2,1)-,如图1,当点Q 在点D 上方时,过点C 作CE AB ⊥于E ,设BD 与x 轴交于点F ,点(0,3)A ,点(4,3)B ,点(1,0)C ,CE AB ⊥,∴点(1,3)E ,3CE BE ==,1AE =,45EBC ECB ∴∠=∠=︒,1tan 3AE ACE EC ∠==, 45BCF ∴∠=︒, 点(4,3)B ,点(1,0)C ,点(2,1)D -,9932BC ∴=+=,112CD =+=,22(42)(31)25BD =-++=, 22220BC CD BD +==,90BCD ∴∠=︒,21tan tan 332CD DBC ACE BC ∴∠====∠, ACE DBC ∴∠=∠,ACE ECB DBC BCF ∴∠+∠=∠+∠,ACB CFD ∴∠=∠,又CQD ACB ∠=∠,∴点F 与点Q 重合,∴点P 是直线CF 与抛物线的交点,2043x x ∴=-+,11x ∴=,23x =,∴点(3,0)P ;当点Q 在点D 下方上,过点C 作CH DB ⊥于H ,在线段BH 的延长线上截取HF QH =,连接CQ 交抛物线于点P ,CH DB ⊥,HF QH =,CF CQ ∴=,CFD CQD ∴∠=∠,CQD ACB ∴∠=∠,CH BD ⊥,点(4,3)B ,点(2,1)D -,∴直线BD 解析式为:25y x =-,∴点5(2F ,0),∴直线CH 解析式为:1122y x =-+, ∴112225y x y x ⎧=-+⎪⎨⎪=-⎩, 解得11535x y ⎧=⎪⎪⎨⎪=-⎪⎩, ∴点H 坐标为11(5,3)5-, FH QH =,∴点19(10Q ,6)5-, ∴直线CQ 解析式为:4433y x =-+, 联立方程组2443343y x y x x ⎧=-+⎪⎨⎪=-+⎩,解得:1110x y =⎧⎨=⎩或225389x y ⎧=⎪⎪⎨⎪=-⎪⎩, ∴点5(3P ,8)9-; 综上所述:点P 的坐标为(3,0)或5(3,8)9-; (3)如图,设直线AC 与BD 的交点为N ,作CH BD ⊥于H ,过点N 作MN x ⊥轴,过点E 作EM MN ⊥,连接CG ,GF ,第31页(共32页)点(0,3)A ,点(1,0)C ,∴直线AC 解析式为:33y x =-+,∴3325y x y x =-+⎧⎨=-⎩, ∴8595x y ⎧=⎪⎪⎨⎪=-⎪⎩, ∴点N 坐标为8(5,9)5-, 点H 坐标为11(5,3)5-, 2221139(1)()555CH ∴=-+=,222118399()()55555HN =-+-+=, CH HN ∴=,45CNH ∴∠=︒,点E 关于直线BD 对称的点为F ,EN NF ∴=,45ENB FNB ∠=∠=︒,90ENF ∴∠=︒,90ENM FNM ∴∠+∠=︒,又90ENM MEN ∠+∠=︒,MEN FNM ∴∠=∠,()EMN NKF AAS ∴∆≅∆95EM NK ∴==,MN KF =, ∴点E 的横坐标为15-,第32页(共32页) ∴点1(5E -,18)5, 275MN KF ∴==, 8271655CF ∴=+-=, 点F 关于直线BC 对称的点为G , 6FC CG ∴==,45BCF GCB ∠=∠=︒, 90GCF ∴∠=︒,∴点(1,6)G ,AG ∴=。
江苏省常州市2020年中考数学试题(解析版)
常州市二○二○年初中学业水平考试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2.答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填写好答题卡上的考生信息. 3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1. 2的相反数是( ) A. 12- B. 12 C. 2 D. 2-【答案】D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D .2.计算62m m ÷结果是( ) A. 3mB. 4mC. 8mD. 12m【答案】B【解析】【分析】直接利用同底数幂除法的运算法则解答即可.【详解】解:62624m m m m -÷==.故选:B .【点睛】本题考查了同底数幂除法,掌握公式m m n m m m m -=÷是解答本题的关键.3.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 三棱柱C. 四棱柱D. 四棱锥【答案】C【解析】【分析】 通过俯视图为圆得到几何体为柱体,然后通过主视图和左视图可判断几何体为四棱柱.【详解】解:由图可知:该几何体是四棱柱.故选:C .【点睛】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.4.8的立方根是( ) 2 B. ±2 C. ±2 D. 2【答案】D【解析】【详解】解:根据立方根的定义,由23=8,可得8的立方根是2故选:D .【点睛】本题考查立方根.5.如果x y <,那么下列不等式正确的是( )A. 22x y <B. 22x y -<-C. 11x y ->-D. 11x y +>+ 【答案】A【解析】【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【详解】解:A 、由x <y 可得:22x y <,故选项成立;B 、由x <y 可得:22x y ->-,故选项不成立;C 、由x <y 可得:11x y -<-,故选项不成立;D 、由x <y 可得:11x y +<+,故选项不成立;故选A.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.如图,直线a 、b 被直线c 所截,//a b ,1140∠=︒,则2∠的度数是()A. 30°B. 40°C. 50°D. 60° 【答案】B【解析】【分析】先根据邻补角相等求得∠3,然后再根据两直线平行、内错角相等即可解答.【详解】解:∵∠1+∠3=180°,1140∠=︒∴∠3=180°-∠1=180°-140°=40°∵//a b∴∠2=∠3=40°.故答案为B .【点睛】本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.7.如图,AB是O的弦,点C是优弧AB上的动点(C不与A、B重合),CH AB⊥,垂足为H,点M 是BC的中点.若O的半径是3,则MH长的最大值是()A. 3B. 4C. 5D. 6【答案】A【解析】【分析】根据直角三角形斜边中线定理,斜边上的中线等于斜边的一半可知MH=12BC,当BC为直径时长度最大,即可求解.【详解】解:∵CH AB⊥∴∠BHC=90°∵在Rt△BHC中,点M是BC的中点∴MH=12BC∵BC为O的弦∴当BC为直径时,MH最大∵O的半径是3∴MH最大为3.故选:A.【点睛】本题考查了直角三角形斜边中线定理,数形结合是结题关键.8.如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,2,135,2ABD BD ADB S =∠=︒=.若反比例函数()0k y x x =>的图像经过A 、D 两点,则k 的值是( )A. 22B. 4C. 32D. 6【答案】D【解析】【分析】 作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F ,计算出AE 长度,证明BCD AOF ≅△△,得出AF 长度,设出点A 的坐标,表示出点D 的坐标,使用D D A A x y x y =,可计算出k 值.【详解】作AE BD ⊥交BD 的延长线于点E ,作AF x ⊥轴于点F∵135ADB ︒∠=∴45ADE ︒∠=∴ADE 为等腰直角三角形∵2,2BD S ABD =△∴122ABD S BD AE =⋅=△,即22AE =∴DE=AE=22∵BC=AO ,且//BC AO ,//CD OF∴BCD AOF ∠=∠ ∴BCD AOF ≅△△ ∴2AF BD ==∴32D y =设点A (2)m ,(22,32)D m -∴2(22)32m m =-⋅解得:32m =∴3226k =⨯=故选:D .【点睛】本题考查了反比例函数与几何图形的综合,利用点A和点D表示出k的计算是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:|-2|+(π-1)0=____.【答案】3【解析】【分析】根据绝对值和0次幂的性质求解即可.【详解】原式=2+1=3.故答案为:3.【点睛】本题考查了绝对值和0次幂的性质.10.若代数式11x -有意义,则实数x 的取值范围是________. 【答案】x≠1【解析】【分析】分式有意义时,分母x-1≠0,据此求得x 的取值范围.【详解】解:依题意得:x-1≠0,解得x≠1,故答案为:x≠1.【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.地球半径大约是6400km ,将6400用科学记数法表示为________.【答案】36.410⨯【解析】【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】6400=36.410⨯.故答案为:36.410⨯.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.分解因式:3x -x=__________.【答案】x (x+1)(x -1)【解析】解:原式13.若一次函数2y kx =+的函数值y 随自变量x 增大而增大,则实数k 的取值范围是__________.【答案】k >0【解析】分析】直角利用一次函数增减性与系数的关系解答即可.【详解】解:∵一次函数2y kx =+的函数值y 随自变量x 增大而增大∴k >0.故答案为k >0.【点睛】本题主要考查了一次函数增减性与系数的关系,当一次函数的一次项系数大于零时,一次函数的函数值随着自变量x 的增大而增大.14.若关于x 的方程220x ax +-=有一个根是1,则a =_________.【答案】1【解析】【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.【答案】30【解析】【分析】根据垂直平分线的性质得到∠B=∠BCF ,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B.【详解】解:∵EF 垂直平分BC ,∴BF=CF ,∴∠B=∠BCF ,∵△ACF 为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.【点睛】本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD 中,2,120AB DAB =∠=︒.如图,建立平面直角坐标系xOy ,使得边AB 在x 轴正半轴上,点D 在y 轴正半轴上,则点C 的坐标是_________.【答案】(2,3) 【解析】 【分析】 根据菱形的性质可知AD=AB=CD=2,∠OAD=60°,由三角函数即可求出线段OD 的长度,即可得到答案.【详解】解:∵四边形ABCD 为菱形,2AB =∴AD=AB=CD=2,AB//CD∵120DAB ∠=︒∴60DAO ∠=︒在Rt △DOA 中,3sin 60=2OD AD ︒= ∴OD=3∴点C 的坐标是(2,3).故答案为:(2,3).【点睛】本题考查了平面直接坐标系中直角三角形的计算问题,以及菱形的性质,熟练掌握特殊三角函数值是解题关键.17.如图,点C 在线段AB 上,且2AC BC =,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 、BCFG ,连接EC 、EG ,则tan CEG ∠=_________.【答案】12【解析】【分析】设BC=a ,则AC=2a ,然后利用正方形的性质求得CE 、CG 的长、∠GCD=ECD=45°,进而说明△ECG 为直角三角形,最后运用正切的定义即可解答.【详解】解:设BC=a ,则AC=2a∵正方形ACDE∴EC=()()222222a a a +=,∠ECD=1452ACD ∠= 同理:CG=2a ,∠GCD=1452BCD ∠= ∴21tan 222CG a CEG CE a ∠===. 故答案为12.【点睛】本题考查了正方形的性质和正切的定义,根据正方形的性质说明△ECG 是直角三角形是解答本题的关键.18.如图,在ABC 中,45,62B AB ∠=︒=,D 、E 分别是AB 、AC 的中点,连接DE ,在直线DE 和直线BC 上分别取点F 、G ,连接BF 、DG .若3BF DG =,且直线BF 与直线DG 互相垂直,则BG 的长为_______.【答案】4或2【解析】【分析】分当点F 在点D 右侧时,当点F 在点D 左侧时,两种情况,分别画出图形,结合三角函数,勾股定理以及平行四边形的性质求解即可.【详解】解:如图,当点F 在点D 右侧时,过点F 作FM ∥DG ,交直线BC 于点M ,过点B 作BN ⊥DE ,交直线DE 于点N ,∵D,E 分别是AB 和AC 中点,AB=∴DE ∥BC ,BD=AD=∠FBM=∠BFD ,∴四边形DGMF 为平行四边形,则DG=FM ,∵DG ⊥BF ,BF=3DG ,∴∠BFM=90°,∴tan ∠FBM=13FM BF ==tan ∠BFD , ∴13BN FN =, ∵∠ABC=45°=∠BDN ,∴△BDN 为等腰直角三角形,∴3=, ∴FN=3BN=9,DF=GM=6,∵BF=∴FM=13BF ,∴10=,∴BG=10-6=4;当点F 在点D 左侧时,过点B 作BN ⊥DE ,交直线DE 于N ,过点B 作BM ∥DG ,交直线DE 于M ,延长FB 和DG ,交点为H ,可知:∠H=∠FBM=90°,四边形BMDG 为平行四边形,∴BG=MD ,BM=DG ,∵BF=3DG ,∴tan ∠BFD=13BM DH BN BF FH FN ===, 同理可得:△BDN 为等腰直角三角形,BN=DN=3,∴FN=3BN=9,∴BF=2293310+=,设MN=x ,则MD=3-x ,FM=9+x ,在Rt △BFM 和Rt △BMN 中,有2222FM BF MN BN -=+,即()()22293103x x +-=+, 解得:x=1,即MN=1,∴BG=MD=ND-MN=2.综上:BG 的值为4或2.故答案为:4或2.【点睛】本题考查了等腰直角三角形的判定和性质,三角函数,平行四边形的判定和性质,勾股定理,难度较大,解题的关键是根据题意画出图形,分清情况.三、解答题(本大题共10小题,共84分,请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.先化简,再求值:2(1)(1)x x x +-+,其中2x =.【答案】1x +;3【解析】【分析】先利用完全平方公式和单项式乘多项式化简,再代入求值即可.【详解】解:2(1)(1)x x x +-+=2212x x x x ++--=1x +将x=2代入,原式=3.【点睛】本题主要考查了整式的混合运算,解题的关键是正确的化简.20.解方程和不等式组:(1)2211x x x+=--; (2)260,3 6.x x -<⎧⎨-⎩ 【答案】(1)x=0;(2)﹣2≤x <3【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解; (2)分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【详解】解:(1)2211x x x+=-- 去分母得:x 2=2x 2--解得x=0,经检验x=0是分式方程的解;(2)26036xx-<⎧⎨-⎩,①,②由①得:x<3由②得:x≥﹣2则不等式组的解集为﹣2≤x<3.【点睛】本题考查了解分式方程与解不等式组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解一元一次不等式组要注意不等号的变化.21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如下统计图.(1)本次抽样调查的样本容量是_________;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【答案】(1)100;(2)见解析;(3)300人.【解析】【分析】(1)用条形统计图中最喜爱打排球的人数除以扇形统计图中最喜爱打排球的人数所占百分比即可求出本次抽样调查的样本容量;(2)用总人数乘以最喜爱打乒乓球的人数所占百分比即可求出最喜爱打乒乓球的人数,用总人数减去最喜爱其它三项运动的人数即得最喜爱踢足球的人数,进而可补全条形统计图;(3)用最喜爱打篮球的人数除以总人数再乘以2000即可求出结果.【详解】解:(1)本次抽样调查的样本容量是25÷25%=100;故答案为:100;(2)打乒乓球的人数为100×35%=35人,踢足球的人数为100-25-35-15=25人;补全条形统计图如图所示:(3)152000300100⨯=人;答:估计该校最喜爱“打篮球”的学生有300人.【点睛】本题考查了条形统计图、扇形统计图、样本容量以及利用样本估计总体等知识,属于基本题型,熟练掌握上述基本知识是解题关键.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是_________;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【答案】(1)13;(2)23【解析】【分析】(1)由概率公式即可得出答案;(2)画出树状图,得到所有等可能的情况,再利用概率公式求解即可.【详解】解:(1)∵共有3个号码,∴抽到1号签的概率是13,故答案为:13;(2)画树状图如下:所有等可能的情况有6种,其中抽到的2支签上签号的和为奇数的有4种,∴抽到的2支签上签号的和为奇数的概率为:46=23. 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 23.已知:如图,点A 、B 、C 、D 在一条直线上,//,,EA FB EA FB AB CD ==.(1)求证:E F ∠=∠;(2)若40,80A D ∠=︒∠=︒,求E ∠的度数.【答案】(1)见解析;(2)60°【解析】【分析】(1)根据已知条件证明△ACE ≌△BDF ,即可得到结论;(2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.【详解】解:(1)∵AE ∥BF ,∴∠A=∠DBF ,∵AB=CD ,∴AB+BC=CD+BC ,即AC=BD ,又∵AE=BF ,∴△ACE ≌△BDF (SAS ),∴∠E=∠F ;(2)∵△ACE ≌△BDF ,∴∠D=∠ACE=80°,∵∠A=40°,∴∠E=180°-∠A-∠ACE=60°.【点睛】本题考查了全等三角形的判定和性质和三角形内角和,解题的关键是找出三角形全等的条件. 24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元. (1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果【解析】【分析】(1)设每千克苹果售价x 元,每千克梨y 千克,由题意列出x 、y 的方程组,解之即可;(2)设购买苹果a 千克,则购买梨(15-a )千克,由题意列出a 的不等式,解之即可解答.【详解】(1)设每千克苹果售价x 元,每千克梨y 千克,由题意,得:326222x y x y +=⎧⎨+=⎩, 解得:86x y =⎧⎨=⎩, 答:每千克苹果售价8元,每千克梨6千克,(2)设购买苹果a 千克,则购买梨(15-a )千克,由题意,得:8a+6(15-a)≤100,解得:a ≤5,∴a 最大值为5,答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.25.如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.【答案】(1)a=2;y=2x ;(2)635 【解析】【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.【详解】(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b )、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635. 故△ACD 的面积为635. 【点睛】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.26.如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF = 【解析】【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF =∠ECF =30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【详解】解:(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB =60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF =∠BAC =30°,EF =BC =1,∴∠ACF =30°,∴∠ACF =∠ECF =30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF =1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF =30°,EF =1,∴CF =2,CE 3由旋转的性质可得:CF=CA =2,CE=CG 3∠ACG =∠ECF =30°, ∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =(2230330236036012πππ⨯⨯-=; 故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F =60°,EF =1, ∴13,2FH EH == ∴CH =13222-=, 设OH=x ,则32OC x =-,2222223324OE EH OH x x ⎛=+=+=+ ⎝⎭, ∵OB=OE ,∴2234OB x =+, 在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭, 解得:16x =,∴112263OF =+=.【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.27.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ PH ⋅的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为()0,4,半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点_________(填“A ”、“B ”、“C ”或“D ”),⊙O 关于直线m 的“特征数”为_________;②若直线n 的函数表达式为34y x +,求O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点()1,4M ,点F 是坐标平面内一点,以F 2径作⊙F .若⊙F 与直线l 相离,点()1,0N -是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是求直线l 的函数表达式.【答案】(1)①D ;10;②⊙O 关于直线n 的“特征数”为6;(2)直线l 的解析式为y=-3x+7或y=13x+113【解析】【分析】(1)①根据题干中“远点”及“特征数”的定义直接作答即可;②过圆心O 作OH ⊥直线n ,垂足为点H ,交⊙O 于点P 、Q ,首先判断直线n 也经过点E (0,4),在Rt △EOF 中,利用三角函数求出∠EFO=60°,进而求出PH 的长,再根据“特征数”的定义计算即可; (2)连接NF 并延长,设直线l 的解析式为y=kx+b 1,用待定系数法得到114=k b n mk b +⎧⎨=+⎩①②,再根据两条直线互相垂直,两个一次函数解析式的系数k 互为负倒数的关系可设直线NF 的解析式为y=1k-x+b 2,用待定系数法同理可得2210=b k m n b k ⎧+⎪⎪⎨⎪=-+⎪⎩④⑤,消去b 1和b 2,得到关于m 、n 的方程组41n mk k m n k k -=-⎧⎪⎨-=+⎪⎩;根据⊙F 关于直线l 的“特征数”是,再利用两点之间的距离公式列出方程(m+1)2+n 2=10,把222411421k k m k k n k ⎧--=⎪⎪+⎨-⎪=⎪+⎩代入,求出k 的值,便得到m 、n 的值即点A 的坐标,再根据待定系数法求直线l 的函数表达式.注意有两种情况,不要遗漏.【详解】解:(1)①⊙O 关于直线m 的“远点”是点D ,⊙O 关于直线m 的“特征数”为DB·DE=2×5=10;②如下图:过圆心O 作OH ⊥直线n ,垂足为点H ,交⊙O 于点P 、Q ,∵直线n 的函数表达式为34y x +,当x=0时,y=4;当y=0时,x=433-, ∴直线n 经过点E (0,4),点F (43,0), 在Rt △EOF 中,∵tan ∠FEO=FO EO =4334=3 ∴∠FEO=30°,∴∠EFO=60°,Rt △HOF 中,∵sin ∠HFO=HO FO, ∴HO= sin ∠HFO·FO=2,∴PH=HO+OP=3,∴PQ·PH=2×3=6,∴⊙O 关于直线n 的“特征数”为6;(2)如下图,∵点F 是圆心,点()1,0N -是“远点”,∴连接NF 并延长,则直线NF ⊥直线l ,设NF 与直线l 的交点为点A (m ,n ),设直线l 的解析式为y=kx+b 1(k ≠0),将点()1,4M 与A (m ,n )代入y=kx+b 1中,114=k b n mk b +⎧⎨=+⎩①②②-①得:n-4=mk-k ,③又∵直线NF ⊥直线l ,∴设直线NF 的解析式为y=1k-x+b 2(k ≠0), 将点()1,0N -与A (m ,n )代入y=1k -x+b 2中, 2210=b k m n b k ⎧+⎪⎪⎨⎪=-+⎪⎩④⑤ ④-⑤得:-n=1k +m k,⑥ 联立方程③与方程⑥,得:41n mk k m n k k -=-⎧⎪⎨-=+⎪⎩解得:222411421k k m k k n k ⎧--=⎪⎪+⎨-⎪=⎪+⎩,∴点A 的坐标为(22411k k k --+,2421k k -+); 又∵⊙F 关于直线l 的“特征数”是⊙F∴NB·NA=即NA= 解得:∴[m-(-1)]2+(n-0)2)2,即(m+1)2+n 2=10, 把222411421k k m k kn k ⎧--=⎪⎪+⎨-⎪=⎪+⎩代入,解得k=-3或k=13; 当k=-3时,m=2,n=1,∴点A 的坐标为(2,1),把点A (2,1)与点()1,4M 代入y=kx+b 1中,解得直线l 的解析式为y=-3x+7;当k=13时,m=-2,n=3, ∴点A 的坐标为(-2,3), 把点A (-2,3)与点()1,4M 代入y=kx+b 1中,解得直线l 的解析式为y=13x+113. ∴直线l 的解析式为y=-3x+7或y=13x+113. 【点睛】本题是一次函数与圆的综合题,考查了直线与圆的位置关系、一次函数的图象和性质、解直角三角形等,理解“远点”和“特征数”的意义,熟练掌握一次函数的图象和性质、两点之间距离公式、两条直线互相垂直的两个一次函数解析式中系数k 互为负倒数的关系是解题的关键.28.如图,二次函数23y x bx =++的图像与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B ,抛物线过点()1,0C ,且顶点为D ,连接AC 、BC 、BD 、CD .(1)填空:b =________;(2)点P 是抛物线上一点,点P 的横坐标大于1,直线PC 交直线BD 于点Q .若CQD ACB ∠=∠,求点P 的坐标;(3)点E 在直线AC 上,点E 关于直线BD 对称的点为F ,点F 关于直线BC 对称的点为G ,连接AG .当点F 在x 轴上时,直接写出AG 的长.【答案】(1)-4;(2)(3,0)或(53,89);(310 【解析】【分析】(1)根据待定系数法求解即可;(2)分点Q 在CD 上方和点Q 在CD 下方时,两种情况,结合三角函数,勾股定理等知识求解;(3)设点C 关于BD 的对称点为C′,BD 中点为点R ,直线AC 与直线BD 交于N′,设C′(p ,q ),利用点R 到点C 和点C′的距离相等以及点N′到点C 和点C′的距离相等,求出点C′的坐标,从而得到C′N′直线的解析式,从而求出点F 坐标,再利用点F 和点G 关于直线BC 对称,结合BC 的表达式可求出点G 坐标,最后得到AG 的长.【详解】解:(1)∵抛物线过点C (1,0),∴将C (1,0)代入23y x bx =++得0=1+b+3,解得b=-4,故答案为:-4;(2)由(1)可得抛物线解析式为:243y xx =-+,当x=0时,y=3,∴A 的坐标为(0,3),当y=3时得2343x x =-+,解得x 1=0,x 2=4,∴点B 的坐标为(4,3),∵()224321y x x x =-+=--,∴顶点D 的坐标为(2,-1),设BD 与x 轴的交点为M ,作CH ⊥AB 于H ,DG ⊥CM 于G ,∴tan ∠ACH= tan ∠OAC=13, 根据勾股定理可得BC=322BD=25∴22BC CD +∴∠BCD=90°,∴tan ∠CBD=13, ∴∠ACH=∠CBM ,∵∠HCB=∠BCM=45°,∴∠ACH+∠HCB=∠CBM+∠MCB ,即∠ACB=∠CMD ,Q 在CD 上方时:若CQD ACB ∠=∠,则Q 与M 点重合,∵243y x x =-+中,令y=0,解得:x=1或3,∴抛物线与x 轴的另一个交点坐标为(3,0),即此时P 的坐标为(3,0);Q 在CD 下方时:过点Q 作QK ⊥x 轴,过点C 作CL ⊥QM 于点L ,过点A 作AN ⊥BC 于点N ,可得:AB=4,BC=,设CN=x ,则BN=,在△ABC 中,2222AC CN AB BN -=-,即()22224x x -=-,解得:x=∴cos ∠ACN=CN AC 设直线BD 的表达式为:y=mx+n ,将B ,D 代入得:3412m n m n =+⎧⎨-=+⎩,解得:25m n =⎧⎨=-⎩, ∴直线BD 的表达式为y=2m-5,令y=0,则x=52,即点M (52,0), 设点Q 坐标为(a ,2a-5),则QK=5-2a ,CM=32, ∵∠ACB=∠CMD ,∠ACB=∠CQD ,∴∠CMD=∠CQD ,即CQ=CM=32,∴cos ∠CQD=cos ∠ACB=QL CQ =,∴QL=10,QM=5,CL=5, 在△CQM 中,1122CM KQ QM CL ⋅=⋅,即32KQ ⋅=KQ=65,∴910=, ∴Q (1910,65-), 设直线CQ 表达式为:y=sx+t ,将点C 和点Q 代入,0619510s t s t =+⎧⎪⎨-=+⎪⎩,解得:4343s t ⎧=-⎪⎪⎨⎪=⎪⎩, 则CQ 表达式:4433y x =-+,联立: 2443343y x y x x ⎧=-+⎪⎨⎪=-+⎩,解得5389x y ⎧=⎪⎪⎨⎪=-⎪⎩, 即点P 坐标为(53,89), 综上:点P 的坐标为(3,0)或(53,89);(3)设点C 关于BD 的对称点为C′,BD 中点为点R ,直线AC 与直线BD 交于N′, ∴R (3,1),设C′(p ,q ),由题意可求得:直线AC 表达式为:y=-3x+3,直线BD 表达式为:y=2x-5,直线BC 的表达式为:y=x-1,令-3x+3=2x-5,解得:x=85,则y=95-, ∴点N′(85,95-),∵点C 和C′关于直线BD 对称,∴CR=C′R=12CN′=C′N′=5=, 则有()()22231p q -+-=,22289555p q ⎛⎫⎛⎫⎛⎫-++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即222262501618110555p p q q p p q q ⎧-+-+=⎪⎨-+++=⎪⎩①②, ①-②得:12p q =-③,代入①, 解得:65q =-或0(舍),代入③中,得:175p =, 解得:17565p q ⎧=⎪⎪⎨⎪=-⎪⎩,即点C′(175,65-), ∵N′(85,95-), 求得直线C′N′的表达式为:1733y x =-, ∵点F 在x 轴上,令y=0,则x=7,∴点F (7,0),又∵点F 和点G 关于直线BC 对称,BC :y=x-1,连接CG ,可得∠BCF=45°=∠BCG , ∴∠FCG=90°,∴CG=CF=6,∴点G 的坐标为(1,6),又A (0,3),∴AG=【点睛】本题是二次函数综合题,考查了二次函数解析式,一次函数,三角函数,面积法,对称的性质,知识点较多,难度较大,解题时要注意分类讨论,画图相应图形,利用数形结合思想解答.。
2020年江苏省常州市中考数学试题(word版及答案)
初中毕业、升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。
考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。
2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯B. 61410⨯C.71.410⨯D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2- 3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是 235= B. 236= 623= D.2(2)2=6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。
2020年江苏省常州中考数学试卷附答案解析版
数学试卷 第 1 页(共 6 页)数学试卷 第 2 页(共 6 页)2 △ABD 绝密★启用前2020 年江苏省常州市初中学业水平考试数 学注意事项:1. 本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2. 答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填写好答题卡上的考生信息.3. 作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共 8 小题,每小题 2 分,共 16 分.在每小题所给出的四个选项中,只有一项是正确的)1.2 的相反数是()7.如图, AB 是 O 的弦,点C 是优弧 AB 上的动点( C 不与 A 、B 重合),CH ⊥ AB ,垂足为 H ,点 M 是 BC 的中点.若 O 的半径是 3,则 MH 长的最大值是 ( )A .3B .4C .5D .68. 如图,点 D 是OABC 内一点, CD 与 x 轴平行, BD 与 y 轴平行, BD =,∠ADB = 135︒ , S = 2 .若反比例函数 y = k ( x >0) 的图像经过 A 、 D 两点,则kx的值是 ()A . 2B .4C . 3D .6A . - 1 2B .1 C . 2D . -22 二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题.卡.相.应.位.置.上.)2.计算m 6 ÷ m 2 的结果是 ()9.计算: | -2 | +(π -1)0 = .A. m 3B. m 4C. m 8D. m 1210.若代数式 1有意义,则实数 x 的取值范围是.3. 右图是某几何体的三视图,该几何体是 ()A. 圆柱B .三棱柱C .四棱柱D .四棱锥 4.8 的立方根是() x -111. 地球半径大约是6 400 km ,将6 400 用科学记数法表示为 .12.分解因式: x 3- x =.13. 若一次函数 y = kx + 2 的函数值 y 随自变量 x 增大而增大,则实数 k 的取值范围是. 14. 若关于 x 的方程 x 2 + ax - 2 = 0 有一个根是 1,则a = .A .2 B. ±2 C. ±2 D .215.如图,在△ABC 中, BC 的垂直平分线分别交 BC 、 AB 于点 E 、 F .若△AFC 是5. 如果 x <y ,那么下列不等式正确的是()等边三角形,则∠B =°.A . 2x <2 y C . x -1>y -1B . -2x <- 2 y D . x + 1>y + 16. 如图,直线a 、b 被直线c 所截, a ∥b , ∠1 = 140︒ ,则∠2 的度数是 ()A . 30︒B . 40︒C . 50︒D . 60︒16. 数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形 ABCD 中, AB = 2 ,∠DAB = 120︒ .如图,建立平面直角坐标系 xOy ,使222 2 在此卷上答题无效毕业学校姓名考生号⎩ 得边 AB 在 x 轴正半轴上,点 D 在 y 轴正半轴上,则点C 的坐标是.17. 如图,点 C 在线段 AB 上,且 AC = 2BC ,分别以 AC 、BC 为 边在线段 AB 的同侧作正方形 ACDE 、BCFG ,连接 EC 、EG , 则tan ∠CEG =.(2)搅匀后先从中随机抽出 1 支签(不放回),再从余下的 2 支签中随机抽出 1 支签,求抽到的 2 支签上签号的和为奇数的概率.23.(本小题满分 8 分)已知:如图,点 A 、B 、C 、D 在一条直线上,EA //FB ,EA = FB ,AB = CD .(1)求证: ∠E = ∠F ;18.如图,在△ABC 中, ∠B = 45︒, AB = 6 , D 、 E 分别是 AB 、(2)若∠A = 40︒ , ∠D = 80︒ ,求∠E 的度数.AC 的中点,连接 DE ,在直线 DE 和直线 BC 上分别取点 F 、G , 连接 BF 、DG .若 BF = 3DG ,且直线 BF 与直线 DG 互相垂直, 则 BG 的长为.三、解答题(本大题共 10 小题,共 84 分,请在答.题.卡.指.定.区.域.内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(本小题满分 6 分)先化简,再求值: (x + 1)2 - x (x + 1) ,其中 x = 2 . 20.(本小题满分 8 分)解方程和不等式组: (1) x + 2= 2 ;x -1 1 - x ⎧2x - 6 < 0, (2) ⎨-3x 6.21.(本小题满分 8 分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如下统计图.(1) 本次抽样调查的样本容量是 ;(2) 补全条形统计图;(3) 该校共有2 000 名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(本小题满分 8 分)在 3 张相同的小纸条上分别标上 1、2、3 这 3 个号码,做成 3 支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出 1 支签,抽到 1 号签的概率是;数学试卷 第 3 页(共 6 页)24.(本小题满分 8 分)某水果店销售苹果和梨,购买 1 千克苹果和 3 千克梨共需 26 元,购买 2 千克苹果和 1 千克梨共需 22 元.(1) 求每千克苹果和每千克梨的售价;(2) 如果购买苹果和梨共 15 千克,且总价不超过 100 元,那么最多购买多少千克 苹果?25.(本小题满分 8 分)如图,正比例函数 y = kx 的图像与反比例函数 y =8( x >0) 的图x像交于点 A (a , 4) .点 B 为 x 轴正半轴上一点,过 B 作 x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点 D .(1) 求a 的值及正比例函数 y = kx 的表达式; (2) 若 BD = 10 ,求△ACD 的面积.26. ( 本小题满分 10 分) 如图 1 , 点 B 在线段 CE 上, Rt △ABC ≌Rt △CEF ,∠ABC = ∠CEF = 90︒ , ∠BAC = 30︒ , BC = 1 .(1) 点 F 到直线CA 的距离是;(2) 固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30︒ ,使得CF 与CA 重合,并停止旋转.数学试卷 第 4 页(共 6 页)2数学试卷 第 5 页(共 6 页)数学试卷 第 6 页(共 6 页)①请你在图 1 中用直尺和圆规画出线段 EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为 ;②如图 2,在旋转过程中,线段CF 与 AB 交于点O ,当OE = OB 时,求OF 的长.27.(本小题满分 10 分)如图 1, I 与直线a 相离,过圆心 I 作直线a 的垂线,垂足为H ,且交 I 于 P 、Q 两点( Q 在 P 、H 之间).我们把点 P 称为 I 关于直线a 的“远点”,把 PQ ⋅ PH 的值称为 I 关于直线a 的“特征数”.(1) 如图 2,在平面直角坐标系 xOy 中,点 E 的坐标为(0, 4),半径为 1 的 O 与两坐标轴交于点 A 、 B 、C 、 D .① 过点 E 画垂直于 y 轴的直线 m , 则 O 关于直线 m 的“ 远点” 是点(填“ A ”、“ B ”、“ C ”或“ D ”), O 关于直线m 的“特征数”为;28.(本小题满分 10 分)如图,二次函数 y = x 2 + bx + 3 的图像与 y 轴交于点 A ,过点 A 作 x 轴的平行线交抛物线于另一点 B ,抛物线过点C (1, 0) ,且顶点为 D ,连接 AC 、 BC 、 BD 、CD . (1)填空: b =;(2) 点 P 是抛物线上一点,点 P 的横坐标大于 1,直线 PC 交直线 BD 于点Q .若∠CQD = ∠ACB ,求点 P 的坐标;(3) 点 E 在直线 AC 上,点 E 关于直线 BD 对称的点为 F ,点 F 关于直线 BC 对称的点为G ,连接 AG .当点 F 在 x 轴上时,直接写出 AG 的长.②若直线n 的函数表达式为 y = 3x + 4 ,求 O 关于直线n 的“特征数”;(2)在平面直角坐标系 xOy 中,直线l 经过点 M (1, 4) ,点 F 是坐标平面内一点,以F 为圆心, 为半径作 F .若 F 与直线l 相离,点 N (-1, 0) 是 F 关于直 线l 的“远点”,且 F 关于直线l 的“特征数”是4 式.,求直线l 的函数表达2 5 在此卷上答题无效毕业学校姓名考生号2020 年江苏省常州市初中学业水平考试数学答案解析一、1.【答案】D【解析】根据相反数的概念解答即可.2 的相反数是-2 ,故选D.2.【答案】B【解析】直接利用同底数幂除法的运算法则解答即可.解:m6 ÷m2 =m6-2 =m4 .故选:B.【考点】同底数幂除法3.【答案】C【解析】通过俯视图为圆得到几何体为柱体,然后通过主视图和左视图可判断几何体为四棱柱.解:由图可知:该几何体是四棱柱.故选:C.【考点】由三视图判断几何体4.【答案】D【解析】解:根据立方根的定义,由23 = 8 ,可得8 的立方根是2 故选:D.【考点】立方根.5.【答案】A【解析】根据不等式的性质对各选项分析判断后利用排除法求解.解:A、由x<y 可得:2x<2 y ,故选项成立;B、由x<y 可得:-2x>- 2 y ,故选项不成立;C、由x<y 可得:x -1<y -1 ,故选项不成立;D、由x<y 可得:x + 1<y + 1,故选项不成立;故选A.【考点】不等式的性质6.【答案】B2 2 2 【解析】先根据邻补角相等求得∠3 ,然后再根据两直线平行、内错角相等即可解答.解: ∠1 + ∠3 = 180︒ , ∠1 = 140︒ ,∴∠3 = 180︒ - ∠1 = 180︒ -140︒ = 40︒ . a ∥b ,∴∠2 = ∠3 = 40︒ .故答案为B .【考点】平行线的性质7. 【答案】A【解析】根据直角三角形斜边中线定理,斜边上的中线等于斜边的一半可知 MH = 1BC ,当 BC 为直径时长2度最大,即可求解.解:∵CH ⊥ AB ,∴∠BHC = 90︒ . 在 Rt △BHC 中,点 M 是 BC 的中点,∴ MH = 1BC . BC 为 O 的2弦,∴当 BC 为直径时, MH 最大, O 的半径是 3,∴ MH 最大为 3.故选:A .【考点】直角三角形斜边中线定理8. 【答案】D【解析】作 AE ⊥ BD 交 BD 的延长线于点 E ,作AF ⊥ x 轴于点 F ,计算出 AE 长度,证明△BCD ≌△AOF , 得出 AF 长度,设出点 A 的坐标,表示出点 D 的坐标,使用 x D y D = x A y A ,可计算出k 值.作 AE ⊥ BD 交 BD 的延长线于点 E ,作 AF ⊥ x 轴于点 F . ∠ADB = 135︒ ,∴∠ADE = 45︒ ,∴△ADE 为等腰直角三角形. BD =, S ABD = 2 ,∴ S= 1BD ⋅ AE = 2 ,即 AE = 2 ,∴ DE = AE = 2 .△△ ABD 2BC = AO ,且 BC //AO ,CD //OF ,∴∠BCD = ∠AOF ,∴△BCD ≌△AOF ,∴ AF = BD =,∴ y D = 3 . 222m = (m - 2 2 ) ⋅ 3 ,解得:m = 3,∴k = 3 2 ⨯= 62 2设点A(m, 2 ) ,D(m - 2 2,3 2 ) ,∴2故选:D.【考点】反比例函数与几何图形的综合二、9.【答案】3【解析】根据绝对值和0 次幂的性质求解即可.原式= 2 1 = 3 .故答案为:3.【考点】绝对值和0 次幂的性质.10.【答案】x ≠ 1【解析】分式有意义时,分母x -1 ≠ 0 ,据此求得x 的取值范围.解:依题意得:x -1 ≠ 0 ,解得x ≠ 1 ,故答案为:x ≠ 1 .【考点】分式有意义的条件11.【答案】6.4 ⨯103【解析】对于一个绝对值较大的数,用科学记数法写成a ⨯10n 的形式,其中1≤a <10 ,n 是比原整数位数少1 的数. 6 400=6.4 ⨯103.故答案为:6.4 ⨯103.【考点】科学记数法的表示方法12.【答案】x(x + 1)(x -1)【解析】解:原式=x(x2-1) =x(x + 1)(x -1)3) 13. 【答案】k >0【解析】直角利用一次函数增减性与系数的关系解答即可.解: 一次函数 y = kx + 2 的函数值 y 随自变量 x 增大而增大,∴ k >0 .故答案为k >0 .【考点】一次函数增减性与系数的关系14. 【答案】1【解析】根据一元二次方程的解的定义,把 x = 1 代入方程得到关于a 的一次方程,然后解此一次方程即可. 解:把 x = 1 代入方程 x 2 + ax - 2 = 0 得1 + a - 2 = 0 ,解得a = 1 .故答案是:1. 【考点】一元二次方程的解15. 【答案】30【解析】根据垂直平分线的性质得到∠B = ∠BCF ,再利用等边三角形的性质得到∠AFC = 60︒ ,从而可得∠B . 解: EF 垂直平分 BC , ∴ BF = CF , ∴∠B = ∠BCF , △ACF 为等边三角形, ∴∠AFC = 60︒ ,∴∠B = ∠BCF = 30︒ .故答案为:30.【考点】垂直平分线的性质,等边三角形的性质,外角的性质16. 【答案】(2,【解析】根据菱形的性质可知 AD = AB = CD = 2 , ∠OAD = 60︒ 由三角函数即可求出线段OD 的长度,即可得到答案.解: 四边形 ABCD 为菱形,AB = 2 ,∴ AD = AB = CD = 2 ,AB//CD , ∠DAB = 120︒ ,∴∠DAO = 60︒ .在 Rt △DOA 中, sin 60︒= OD = AD 3 ,∴OD = 23 ,∴点C 的坐标是(2, .故答案为: (2, .【考点】平面直接坐标系中直角三角形的计算问题,以及菱形的性质17. 【答案】 12【解析】设 BC = a ,则 AC = 2a ,然后利用正方形的性质求得CE 、CG 的长、∠GCD = ECD = 45︒ ,进而说3)3)2a 2 2a 2 明△ECG 为直角三角形,最后运用正切的定义即可解答.解:设 BC = a ,则 AC = 2a . 正方形 ACDE ,∴ EC == 2 2a ,∠ECD = 1 ∠ACD = 45 , 2同理: CG = 2a ,∠GCD = 1 ∠BCD = 45 ∴tan ∠CEG = CG = = 1 .故答案为 1. 2 CE 22【考点】正方形的性质和正切的定义18. 【答案】4 或 2【解析】分当点 F 在点 D 右侧时,当点 F 在点 D 左侧时,两种情况,分别画出图形,结合三角函数,勾股定理以及平行四边形的性质求解即可.解:如图,当点 F 在点 D 右侧时,过点 F 作 FM //DG ,交直线 BC 于点 M ,过点 B 作 BN ⊥ DE ,交直线DE 于点 N , D , E 分别是 AB 和 AC 中点,AB = 6 ,∴ DE ∥BC ,BD = AD = 3 2 ,∠FBM = ∠BFD ,∴ 四 边 形 DGMF 为 平 行 四 边 形 , 则 DG = FM , DG ⊥ BF , BF = 3DG , ∴∠BFM = 90︒ ,∴tan ∠FBM=FM = 1 =tan ∠BFD ,∴ BN = 1, ∠ABC = 45︒ = ∠BDN ,∴△BDN 为等腰直角三角形, BF 3 FN 3∴ BN = DN = BD = 3 ,∴ FN = 3BN = 9 ,FB = GM = 6 , BF = BN 2 + NF 2 =3 ,∴ FM = 1BF = 10 , 3∴ BM = = 10 ,∴ BG = 10 - 6 = 4 ;(2a )2 + (2a )2 2 10 BF 2 + FM 292 + 32 10当点 F 在点 D 左侧时,过点 B 作 BN ⊥ DE ,交直线 DE 于 N ,过点 B 作 BM //DG ,交直线 DE 于 M , 延长 FB 和 DG ,交点为 H ,可知: ∠H = ∠FBM = 90︒ ,四边形 BMDG 为平行四边形,∴ BG = MD ,BM = DG , BF = 3DG ,∴tan ∠BFD =BM = DH = BN = 1,同理可得: △BDN 为等腰直角三角 BF FH FN 3形,BN = DN = 3 ,∴ FN = 3BN = 9 ,∴ BF = = 3 ,设 MN = x ,则 MD = 3 - x ,FM = 9 + x ,在 Rt △BFM 和 Rt △BMN 中,有 FM 2 - BF 2 = MN 2 + BN 2 ,即(9 + x )2- (3 10 )= x 2 + 32 ,解得: x = 1 ,即 MN = 1 ,∴ BG = MD = ND - MN = 2综上: BG 的值为 4 或 2.故答案为:4 或 2.【考点】等腰直角三角形的判定和性质,三角函数,平行四边形的判定和性质,勾股定理三、19.【答案】解: (x + 1)2 - x (x + 1)= x 2 + 1 + 2x- x 2 - x⎩= x + 1 将 x = 2 代入,原式= 3【解析】完全平方公式和单项式乘多项式,具体解题过程参照答案.【考点】整式的混合运算20.【答案】(1) x + 2= 2 ,去分母得: x -2=2x -2 ,解得x = 0 .经检验 x = 0 是分式方程的解. x -1 1 - x⎧2x - 6<0,① (2) ⎨-3x ≤6,② 由①得: x <3 ,由②得: x ≥- 2 ,则不等式组的解集为-2≤x <3 . 【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解.(2)分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【考点】分式方程与解不等式组21.【答案】(1)100(2)打乒乓球的人数为100 ⨯ 35% = 35 人,踢足球的人数为100 - 25 - 35 -15 = 25 人;补全条形统计图如图所示:(3)2000 ⨯ 15100= 300 人.【解析】(1)用条形统计图中最喜爱打排球的人数除以扇形统计图中最喜爱打排球的人数所占百分比即可求出本次抽样调查的样本容量.(2)用总人数乘以最喜爱打乒乓球的人数所占百分比即可求出最喜爱打乒乓球的人数,用总人数减去最喜爱其它三项运动的人数即得最喜爱踢足球的人数,进而可补全条形统计图.(3)用最喜爱打篮球的人数除以总人数再乘以2000 即可求出结果.【考点】条形统计图,扇形统计图,样本容量,利用样本估计总体22.【答案】(1)1 3(2)画树状图如下:所有等可能的情况有6 种,其中抽到的 2 支签上签号的和为奇数的有4种,∴抽到的2 支签上签号的和为奇数的概率为:4=2.6 3【解析】(1)由概率公式即可得出答案. 共有3 个号码,∴抽到1 号签的概率是1,故答案为:1.3 3 (2)画出树状图,得到所有等可能的情况,再利用概率公式求解即可.【考点】列表法与树状图法23.【答案】(1) AE//BF ,∴∠A =∠DBF , AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,又 AE =BF ,∴△ACE≌△BDF(SAS),∴∠E =∠F .(2)∴△ACE≌△BDF ,∴∠D =∠ACE = 80︒, ∠A = 40︒,∴∠E = 180︒-∠A -∠ACE = 60︒. 【解析】(1)根据已知条件证明△ACE≌△BDF ,即可得到结论.(2)根据全等三角形的性质得到∠D =∠ACE = 80︒,再利用三角形内角和定理求出结果.【考点】全等三角形的判定和性质,三角形内角和⎩ ⎩ S 24. 【答案】(1)设每千克苹果售价 x 元,每千克梨 y 千克,由题意,得:⎧x + 3y = 26 ,解得: ⎧x = 8,⎨2x + y = 22 ⎨ y = 6答:每千克苹果售价 8 元,每千克梨 6 千克.(2)设购买苹果a 千克,则购买梨(15 - a ) 千克,由题意,得: 8a + 6(15 - a )≤100 ,解得: a ≤5 ,∴a 最大值为 5,答:最多购买 5 千克苹果.【解析】(1)设每千克苹果售价 x 元,每千克梨 y 千克,由题意列出 x 、 y 的方程组,解之即可.(2)设购买苹果a 千克,则购买梨(15 - a ) 千克,由题意列出a 的不等式,解之即可解答.【考点】二元一次方程组的应用,一元一次不等式的应用25. 【答案】(1)已知反比例函数解析式为 y =8,点 A (a , 4) 在反比例函数图象上,将点 A 坐标代入,解得xa = 2 ,故 A 点坐标为(2, 4) ,又 A 点也在正比例函数图象上,设正比例函数解析为 y = kx ,将点 A (2, 4) 代入正比例函数解析式中,解得k = 2 ,则正比例函数解析式为 y = 2x .故a = 2 ; y = 2x .2 x (b , 0) C 8 ( )根据第一问的求解结果,以及 BD 垂直 轴,我们可以设 B 点坐标为,则 点坐标为(b , ) 、D 点 b坐标为(b , 2b ) ,根据 BD = 10 ,则2b = 10 ,解得b = 5 ,故点 B 的坐标为(5, 0) ,D 点坐标为(5,10) ,C 点坐8 标为(5, ) ,则在△ACD 中,= 1 ⨯ ⎛10 - 8 ⎫ ⨯ (5 - 2) = 63 .故△ACD 的面积为 63 .5 △ACD 2 5 ⎪ 5 5 ⎝ ⎭【解析】(1)已知反比例函数解析式,点 A 在反比例函数图象上,故a 可求;求出点 A 的坐标后,点 A 同时在正比例函数图象上,将点 A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设 B 点坐标为(b , 0) ,则 D 点坐标为(b , 2b ) ,根据 BD = 10 ,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.【考点】解正比例函数及反比例函数解析式,待定系数法26. 【答案】(1)1(2)①线段 EF 经旋转运动所形成的平面图形如图 3 中的阴影所示:3 3⎛ 3 ⎫2在 Rt △CEF 中, ∠ECF = 30︒,EF = 1,∴CF = 2 , CE = ,由旋转的性质可得: CF = CA = 2 ,CE = CG = , ∠ACG = ∠ECF = 30︒ ,230π ⨯(3 )2∴ S=(S+ S )-(S+ S )= S -S= 30π ⨯ 2 -= π;故答 阴影π 案为: 12CEF.扇形ACF ACG扇形CEG 扇形ACF扇形CEG36036012②作 EH ⊥ CF 于点 H ,如图 4,在 Rt △EFH 中, ∠F = 60︒,EF = 1,∴ FH = 1 , EH =3, 2 21 3 3 3 ∴CH =2 - = ,设OH = x ,则OC = - x , OE 2 = EH 2 + OH 2= ⎪ + x 2 = + x 2 ,2 2 23⎝ 2 ⎭34⎛ 3⎫2OB = OE ,∴OB 2 = + x 2 ,在 Rt △BOC 中, OB 2 + BC 2 = OC 2 ,∴ + x 2 + 1 = - x ⎪,解得:4 x = 1 ,∴OF = 1 + 1 = 2.4 ⎝ 2 ⎭6 2 6 3【解析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF = ∠ECF = 30︒ ,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点 F 到直线CA 的距离即为 EF 的长,于是可得答案.∠BAC = 30︒,∠ABC = 90︒,∴∠ACB = 60︒, Rt△ABC≌Rt△CEF ,∴∠ECF =∠BAC = 30︒,EF =BC = 1 ,∴∠ACF = 30︒,∴∠ACF =∠ECF = 30︒,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF = 1;故答案为:1.(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30︒的圆弧,据此即可画出旋转后的平面图形;在图 3 中,先解Rt△CEF 求出CF 和CE 的长,然后根据S阴影=(SCEF+S扇形ACF)-(SACG+S扇形CEG)即可求出阴影面积.②作EH ⊥ CF 于点H ,如图4,先解Rt△EFH 求出FH 和EH 的长,进而可得CH 的长,设OH =x ,则CO 和OE2 都可以用含x 的代数式表示,然后在Rt△BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【考点】旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识27.【答案】(1) O 关于直线m 的“远点”是点D , O 关于直线m 的“特征数”为DB·DE = 2 ⨯ 5 =10 .②如下图:过圆心O 作OH ⊥直线n ,垂足为点H ,交 O 于点P、Q ,直线n 的函数表达式为y = 3x + 4 ,当x = 0 时,y = 4 ;当y = 0 时,x =-4 3,∴直线n 经过点335 2E (0,4),点F (-4 3 ,在 Rt △EOF 中, 4 FO ,∴∠FEO = 30︒ ,,0) 3tan ∠FEO = = 3 =EO43∴∠EFO = 60︒ ,在 Rt △HOF 中, sin ∠HFO = HO ,∴ H O = FOsin ∠HFO ⋅ FO = 2 ,∴ PH = HO + OP = 3 ,∴ PQ ·PH = 2 ⨯ 3 = 6 ,∴ O 关于直线n 的“特征数”为 6; (2)如下图, 点 F 是圆心,点 N (-1, 0) 是“远点”,∴连接 NF 并延长,则直线 NF ⊥ 直线l ,设 NF 与直线l 的交点为点 A (m ,n ),设直线l 的解析式为 y = kx + b (k ≠ 0),将点 M (1, 4) 与 A (m ,n )代入 y = kx + b 中, ⎧⎪4=k + b 1① ②-① 1⎨n = mk + b ②⎩⎪ 1得: n - 4 = mk - k ,③又 直线 NF ⊥ 直线l ,∴设直线 NF 的解析式为 y = - 1x + b (k ≠ 0),将点1 k 2⎧0= 1+ b ④1 ⎪ k2 1 mN (-1, 0) 与 A (m ,n )代入 y = - x + b 中, ⎨ k m ④-⑤得: -n = + k k ,⑥联立方程③与方 ⎪n = - + b 2 ⑤⎧n - 4 = mk - k ⎪⎩k⎧ k 2 - 4k -1 m =⎪ ⎪ k 2 + 1 ∴ k 2 - 4k -1 4 - 2kF 程⑥,得: ⎨-n = 1 + m 解得: ⎨ 4 - 2k , 点 A 的坐标为( k 2 + 1 , 2 + 1 ) ;又 关于 ⎩⎪ k k ⎪n = ⎩ k k 2 + 1直线l 的“特征数”是4 , F 的半径为 ,∴ NB ·NA = 4 ,即2 24 ⋅ NA = ,解得: NA = 10 ,35 2 5 ⎪5 10 ⎨⎧⎪m = k 2- 4k -12∴⎡⎣m-(-1)⎤⎦2+(n-0)2=(10)2,即(m +1)2 +n2=10 ,把⎪⎪n =⎩k +1代入,解得k =-3 或k = 1 ;4 - 2k 3k 2+ 1当k=-3时,m=2,n=1,∴点A 的坐标为(2,1),把点A(2,1)与点M (1, 4)代入y=kx+b1中,解得直线l的解析式为y =-3x + 7 ;当k =1时,m=-2,n=3,∴点A 的坐标为(-2,3),把点A(-2,3)与点3M (1, 4)代入y =kx +b 中,解得直线l 的解析式为y =1 x +11 .∴直线l 的解析式为y =-3x + 7 或1 3 3y =1x +11.3 3【解析】(1)①根据题干中“远点”及“特征数”的定义直接作答即可;②过圆心O 作OH ⊥直线n ,垂足为点H ,交 O于点P、Q ,首先判断直线n也经过点E(0,4),在Rt△EOF中,利用三角函数求出∠EFO = 60︒,进而求出PH 的长,再根据“特征数”的定义计算即可.(2)连接NF并延长,设直线l的解析式为y=kx+b,用待定系数法得到⎧⎪4=k +b1①,再根据两条直1⎨n =mk +b ②⎩⎪ 1线互相垂直,两个一次函数解析式的系数k 互为负倒数的关系可设直线NF 的解析式为y =-1x +b ,用⎧0= 1+b ④k 2⎧n - 4 =mk -k⎪k 2待定系数法同理可得⎨m,消去b1和b2,得到关于m、n ⎪的方程组⎨-n =1+m;根据⎪n =-+b2 ⑤⎩⎪k k⎩⎪kF 关于直线l 的“特征数”是4 ,得出NA =,再利用两点之间的距离公式列出方程(m +1)2⎧⎪m =+n2= 10 ,把⎨k 2- 4k -1k 2+ 1 代入,求出k 的值,便得到m、n 的值即点A 的坐标,再根据待定⎪n =4 - 2k⎩⎪k2+1系数法求直线l 的函数表达式.注意有两种情况,不要遗漏.【考点】一次函数与圆的综合28.【答案】(1)-42 5 2 ⎛ 5 ⎫2 ⎝ a - + 2a - 5 2 ⎪⎭ ( ) 2 ⎩ ⎩ 1 2 (2)由(1)可得抛物线解析式为: y = x 2 - 4x + 3 ,当 x = 0 时, y = 3 ,∴ A 的坐标为(0,3),当y = 3 时得3 = x 2 - 4x + 3 ,解得 x = 0 , x = 4 ,∴点 B 的坐标为(4,3), y = x 2 - 4x + 3 = ( x - 2)2-1 ,∴顶点 D 的坐标为(2,-1),设 BD 与 x 轴的交点为 M ,作CH ⊥ AB 于 H ,DG ⊥ CM 于G ,∴tan ∠ACH = tan ∠OAC = 1,根据勾股定理可得 BC = 3 3, CD = ,BD = 2 ,∴ BD = ,∴∠BCD = 90︒ ,∴tan ∠CBD = 1,∴∠ACH = ∠CBM , 3∠HCB = ∠BCM = 45︒ ,∴∠ACH + ∠HCB = ∠CBM + ∠MCB ,即∠ACB = ∠CMD , Q 在CD 上方时:若∠CQD = ∠ACB ,则Q 与 M 点重合, y = x 2 - 4x + 3 中,令 y = 0 ,解得: x = 1 或 3,∴抛物线与 x 轴的另一个交点坐标为(3,0),即此时 P 的坐标为(3,0);Q 在CD 下方时:过点Q 作QK ⊥ x 轴,过点C 作CL ⊥ QM 于点 L ,过点 A 作 AN ⊥ BC 于点 N ,可得: AB = 4,BC = 3 2, AC =,设CN = x ,则BN = 3 - x ,在△ABC 中, AC 2 - CN 2 = AB 2 - BN 2 ,即( 10 )2- x 2 = 42 - (3 - x )2,解得:x = ,∴cos ∠ACN =CN= AC 5 ,设直线 BD 的表达式为: y = mx + n ,将 B , D 代入得:5⎧ 3 = 4m + n ,解得: ⎧ m = 2 ,∴直线 BD 的表达式为 y = 2m - 5 ,令 y = 0 ,则 x = 5 ,即点 M50),⎨-1 = 2m + n Q⎨n = -5QK = 5 - 2a ( ,2 2 CM = 3设点 坐标为(a ,2a - 5),则 , 2, QM = , 2 BC 2+ CD 210 2 2CQ 2 - KQ 2 5 ⎛ 8 ⎫2 ⎛ 9 ⎫21 - 5 ⎪ + - 5 ⎪ ⎝ ⎭ ⎝ ⎭( , ∠ACB = ∠CMD ,∠ACB = ∠CQD ,∴∠CMD = ∠CQD ,即CQ = CM = 3,2∴cos ∠CQD = cos ∠ACB = QL =5 ,∴QL = 3 5 , QM = 3 5 , CL = 3 5 在△CQM 中, CQ 5 10 10 101 CM ⋅ KQ = 1 QM ⋅ CL ,即 3 ⋅ KQ = 3 5 ⋅ 3 5,解得: KQ = 6 ,∴CK = = 9 , 2 2 2 5 55⎧ 0 = s + t 10 ⎧s = - 4 ∴Q 19 , - 6) ,设直线CQ 表达式为: y = sx + t ,将点C 和点Q 代入, ⎪ ⎪ 3,解得: , ( 5⎨- 6 = 19 s + t ⎨ 410 ⎧ 4 4⎪⎩ ⎧ x = 5 5 10⎪ t = ⎩ 3 则CQ 表达式为: y = - 4 x + 4 ,联立: ⎪ y = - x + 3 3 ⎪ ,解得 3 5 8 ,即点 P 坐标为( , ),综上: 3 35 8点 P 的坐标为(3,0)或( , ) .3 9⎨ ⎪⎩ y = x 2 - 4x + 3⎨ ⎪ y = - 8 3 9 ⎩ 9(3) 设点C 关于 BD 的对称点为C ' , BD 中点为点 R ,直线 AC 与直线 BD 交于 N ' ,∴ R (3,1),设C (' p ,q ),由题意可求得:直线 AC 表达式为: y = -3x + 3 ,直线 BD 表达式为:y = 2x - 5 ,直线 BC 的表达式为: y = x -1 ,令-3x + 3 = 2x - 5 ,解得: x = 8 ,则 y= - 9 ,∴点 N ' 8 - 9) , 点C 和C ' 关于5 5 5 513 10直线 BC 对称,∴CR = C 'R = 2BD = , CN ' = C 'N ' = = ,则有 5 ⎪32 + 12 10 + + ⎪ 2 ( p - 3)2+ (q -1)2=( 5 )2, ⎛ p - 8 ⎫ 2⎛ 9 ⎫2 q ⎧ = ⎛ 3 10 ⎫ ,即⎪ p 2 - 6 p + q 2 - 2q + 5 = 0① 16 18 11 ,①-② 5 ⎪ 5 ⎪ 5 ⎪ ⎨ p 2 - p + q 2 + q + = 0② ⎝⎭ ⎝ ⎭ ⎝ ⎭ ⎩⎪5 5 5⎧ p = 17 得: p = 1 - 2q ③,代入①,解得: q = - 6 或 0(舍),代入③中,得: p = 17 ,解得: ⎪ 5 ,即点⎨5 5 ⎪q = - 6⎩ 5C17 6 8 91 7 x y = 0 (' , - 5 ) , N (' 5 , - ) ,求得直线C 'N ' 的表达式为: y = 5 5 x - , 3 3点 F 在 轴上,令 ,则x = 7 ,∴点 F (7,0),又 点 F 和点G 关于直线BC 对称, BC :y = x -1 ,连接CG ,可得∠BCF = 45︒ = ∠BCG ,∴∠FCG = 90︒ ,∴CG = CF = 6 ,∴点G 的坐标为(1, 6),又 A (0,3),∴ AG 的长为 = .【解析】(1)根据待定系数法求解即可.解: 抛物线过点C (1,0),∴将C (1,0)代入 y = x 2 + bx + 3 得0 = 1 + b + 3 ,解得b = -4 ,故答案为: -4 .(2) 分点Q 在CD 上方和点Q 在CD 下方时,两种情况,结合三角函数,勾股定理等知识求解.(3) 设点C 关于 BD 的对称点为C ' , BD 中点为点 R ,直线 AC 与直线 BD 交于 N ' ,设C (' p ,q ),利用点 R 到点C 和点C ' 的距离相等以及点 N ' 到点C 和点C ' 的距离相等,求出点C ' 的坐标,从而得到C 'N ' 直线的解析式,从而求出点 F 坐标,再利用点 F 和点G 关于直线 BC 对称,结合 BC 的表达式可求出点G 坐标, 最后得到 AG 的长.【考点】二次函数解析式,一次函数,三角函数,面积法,对称的性质。
2020年江苏省常州中考数学试卷附答案解析版
数学试卷 第 1 页(共 6 页)数学试卷 第 2 页(共 6 页)2 △ABD 绝密★启用前2020 年江苏省常州市初中学业水平考试数 学注意事项:1. 本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2. 答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填写好答题卡上的考生信息.3. 作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共 8 小题,每小题 2 分,共 16 分.在每小题所给出的四个选项中,只有一项是正确的)1.2 的相反数是()7.如图, AB 是 O 的弦,点C 是优弧 AB 上的动点( C 不与 A 、B 重合),CH ⊥ AB ,垂足为 H ,点 M 是 BC 的中点.若 O 的半径是 3,则 MH 长的最大值是 ( )A .3B .4C .5D .68. 如图,点 D 是OABC 内一点, CD 与 x 轴平行, BD 与 y 轴平行, BD =,∠ADB = 135︒ , S = 2 .若反比例函数 y = k ( x >0) 的图像经过 A 、 D 两点,则kx的值是 ()A . 2B .4C . 3D .6A . - 1 2B .1 C . 2D . -22 二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题.卡.相.应.位.置.上.)2.计算m 6 ÷ m 2 的结果是 ()9.计算: | -2 | +(π -1)0 = .A. m 3B. m 4C. m 8D. m 1210.若代数式 1有意义,则实数 x 的取值范围是.3. 右图是某几何体的三视图,该几何体是 ()A. 圆柱B .三棱柱C .四棱柱D .四棱锥 4.8 的立方根是() x -111. 地球半径大约是6 400 km ,将6 400 用科学记数法表示为 .12.分解因式: x 3- x =.13. 若一次函数 y = kx + 2 的函数值 y 随自变量 x 增大而增大,则实数 k 的取值范围是. 14. 若关于 x 的方程 x 2 + ax - 2 = 0 有一个根是 1,则a = .A .2 B. ±2 C. ±2 D .215.如图,在△ABC 中, BC 的垂直平分线分别交 BC 、 AB 于点 E 、 F .若△AFC 是5. 如果 x <y ,那么下列不等式正确的是()等边三角形,则∠B =°.A . 2x <2 y C . x -1>y -1B . -2x <- 2 y D . x + 1>y + 16. 如图,直线a 、b 被直线c 所截, a ∥b , ∠1 = 140︒ ,则∠2 的度数是 ()A . 30︒B . 40︒C . 50︒D . 60︒16. 数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形 ABCD 中, AB = 2 ,∠DAB = 120︒ .如图,建立平面直角坐标系 xOy ,使222 2 在此卷上答题无效毕业学校姓名考生号⎩ 得边 AB 在 x 轴正半轴上,点 D 在 y 轴正半轴上,则点C 的坐标是.17. 如图,点 C 在线段 AB 上,且 AC = 2BC ,分别以 AC 、BC 为 边在线段 AB 的同侧作正方形 ACDE 、BCFG ,连接 EC 、EG , 则tan ∠CEG =.(2)搅匀后先从中随机抽出 1 支签(不放回),再从余下的 2 支签中随机抽出 1 支签,求抽到的 2 支签上签号的和为奇数的概率.23.(本小题满分 8 分)已知:如图,点 A 、B 、C 、D 在一条直线上,EA //FB ,EA = FB ,AB = CD .(1)求证: ∠E = ∠F ;18.如图,在△ABC 中, ∠B = 45︒, AB = 6 , D 、 E 分别是 AB 、(2)若∠A = 40︒ , ∠D = 80︒ ,求∠E 的度数.AC 的中点,连接 DE ,在直线 DE 和直线 BC 上分别取点 F 、G , 连接 BF 、DG .若 BF = 3DG ,且直线 BF 与直线 DG 互相垂直, 则 BG 的长为.三、解答题(本大题共 10 小题,共 84 分,请在答.题.卡.指.定.区.域.内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(本小题满分 6 分)先化简,再求值: (x + 1)2 - x (x + 1) ,其中 x = 2 . 20.(本小题满分 8 分)解方程和不等式组: (1) x + 2= 2 ;x -1 1 - x ⎧2x - 6 < 0, (2) ⎨-3x 6.21.(本小题满分 8 分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如下统计图.(1) 本次抽样调查的样本容量是 ;(2) 补全条形统计图;(3) 该校共有2 000 名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(本小题满分 8 分)在 3 张相同的小纸条上分别标上 1、2、3 这 3 个号码,做成 3 支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出 1 支签,抽到 1 号签的概率是;数学试卷 第 3 页(共 6 页)24.(本小题满分 8 分)某水果店销售苹果和梨,购买 1 千克苹果和 3 千克梨共需 26 元,购买 2 千克苹果和 1 千克梨共需 22 元.(1) 求每千克苹果和每千克梨的售价;(2) 如果购买苹果和梨共 15 千克,且总价不超过 100 元,那么最多购买多少千克 苹果?25.(本小题满分 8 分)如图,正比例函数 y = kx 的图像与反比例函数 y =8( x >0) 的图x像交于点 A (a , 4) .点 B 为 x 轴正半轴上一点,过 B 作 x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点 D .(1) 求a 的值及正比例函数 y = kx 的表达式; (2) 若 BD = 10 ,求△ACD 的面积.26. ( 本小题满分 10 分) 如图 1 , 点 B 在线段 CE 上, Rt △ABC ≌Rt △CEF ,∠ABC = ∠CEF = 90︒ , ∠BAC = 30︒ , BC = 1 .(1) 点 F 到直线CA 的距离是;(2) 固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30︒ ,使得CF 与CA 重合,并停止旋转.数学试卷 第 4 页(共 6 页)2数学试卷 第 5 页(共 6 页)数学试卷 第 6 页(共 6 页)①请你在图 1 中用直尺和圆规画出线段 EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为 ;②如图 2,在旋转过程中,线段CF 与 AB 交于点O ,当OE = OB 时,求OF 的长.27.(本小题满分 10 分)如图 1, I 与直线a 相离,过圆心 I 作直线a 的垂线,垂足为H ,且交 I 于 P 、Q 两点( Q 在 P 、H 之间).我们把点 P 称为 I 关于直线a 的“远点”,把 PQ ⋅ PH 的值称为 I 关于直线a 的“特征数”.(1) 如图 2,在平面直角坐标系 xOy 中,点 E 的坐标为(0, 4),半径为 1 的 O 与两坐标轴交于点 A 、 B 、C 、 D .① 过点 E 画垂直于 y 轴的直线 m , 则 O 关于直线 m 的“ 远点” 是点(填“ A ”、“ B ”、“ C ”或“ D ”), O 关于直线m 的“特征数”为;28.(本小题满分 10 分)如图,二次函数 y = x 2 + bx + 3 的图像与 y 轴交于点 A ,过点 A 作 x 轴的平行线交抛物线于另一点 B ,抛物线过点C (1, 0) ,且顶点为 D ,连接 AC 、 BC 、 BD 、CD . (1)填空: b =;(2) 点 P 是抛物线上一点,点 P 的横坐标大于 1,直线 PC 交直线 BD 于点Q .若∠CQD = ∠ACB ,求点 P 的坐标;(3) 点 E 在直线 AC 上,点 E 关于直线 BD 对称的点为 F ,点 F 关于直线 BC 对称的点为G ,连接 AG .当点 F 在 x 轴上时,直接写出 AG 的长.②若直线n 的函数表达式为 y = 3x + 4 ,求 O 关于直线n 的“特征数”;(2)在平面直角坐标系 xOy 中,直线l 经过点 M (1, 4) ,点 F 是坐标平面内一点,以F 为圆心, 为半径作 F .若 F 与直线l 相离,点 N (-1, 0) 是 F 关于直 线l 的“远点”,且 F 关于直线l 的“特征数”是4 式.,求直线l 的函数表达2 5 在此卷上答题无效毕业学校姓名考生号2020 年江苏省常州市初中学业水平考试数学答案解析一、1.【答案】D【解析】根据相反数的概念解答即可.2 的相反数是-2 ,故选D.2.【答案】B【解析】直接利用同底数幂除法的运算法则解答即可.解:m6 ÷m2 =m6-2 =m4 .故选:B.【考点】同底数幂除法3.【答案】C【解析】通过俯视图为圆得到几何体为柱体,然后通过主视图和左视图可判断几何体为四棱柱.解:由图可知:该几何体是四棱柱.故选:C.【考点】由三视图判断几何体4.【答案】D【解析】解:根据立方根的定义,由23 = 8 ,可得8 的立方根是2 故选:D.【考点】立方根.5.【答案】A【解析】根据不等式的性质对各选项分析判断后利用排除法求解.解:A、由x<y 可得:2x<2 y ,故选项成立;B、由x<y 可得:-2x>- 2 y ,故选项不成立;C、由x<y 可得:x -1<y -1 ,故选项不成立;D、由x<y 可得:x + 1<y + 1,故选项不成立;故选A.【考点】不等式的性质6.【答案】B2 2 2 【解析】先根据邻补角相等求得∠3 ,然后再根据两直线平行、内错角相等即可解答.解: ∠1 + ∠3 = 180︒ , ∠1 = 140︒ ,∴∠3 = 180︒ - ∠1 = 180︒ -140︒ = 40︒ . a ∥b ,∴∠2 = ∠3 = 40︒ .故答案为B .【考点】平行线的性质7. 【答案】A【解析】根据直角三角形斜边中线定理,斜边上的中线等于斜边的一半可知 MH = 1BC ,当 BC 为直径时长2度最大,即可求解.解:∵CH ⊥ AB ,∴∠BHC = 90︒ . 在 Rt △BHC 中,点 M 是 BC 的中点,∴ MH = 1BC . BC 为 O 的2弦,∴当 BC 为直径时, MH 最大, O 的半径是 3,∴ MH 最大为 3.故选:A .【考点】直角三角形斜边中线定理8. 【答案】D【解析】作 AE ⊥ BD 交 BD 的延长线于点 E ,作AF ⊥ x 轴于点 F ,计算出 AE 长度,证明△BCD ≌△AOF , 得出 AF 长度,设出点 A 的坐标,表示出点 D 的坐标,使用 x D y D = x A y A ,可计算出k 值.作 AE ⊥ BD 交 BD 的延长线于点 E ,作 AF ⊥ x 轴于点 F . ∠ADB = 135︒ ,∴∠ADE = 45︒ ,∴△ADE 为等腰直角三角形. BD =, S ABD = 2 ,∴ S= 1BD ⋅ AE = 2 ,即 AE = 2 ,∴ DE = AE = 2 .△△ ABD 2BC = AO ,且 BC //AO ,CD //OF ,∴∠BCD = ∠AOF ,∴△BCD ≌△AOF ,∴ AF = BD =,∴ y D = 3 . 222m = (m - 2 2 ) ⋅ 3 ,解得:m = 3,∴k = 3 2 ⨯= 62 2设点A(m, 2 ) ,D(m - 2 2,3 2 ) ,∴2故选:D.【考点】反比例函数与几何图形的综合二、9.【答案】3【解析】根据绝对值和0 次幂的性质求解即可.原式= 2 1 = 3 .故答案为:3.【考点】绝对值和0 次幂的性质.10.【答案】x ≠ 1【解析】分式有意义时,分母x -1 ≠ 0 ,据此求得x 的取值范围.解:依题意得:x -1 ≠ 0 ,解得x ≠ 1 ,故答案为:x ≠ 1 .【考点】分式有意义的条件11.【答案】6.4 ⨯103【解析】对于一个绝对值较大的数,用科学记数法写成a ⨯10n 的形式,其中1≤a <10 ,n 是比原整数位数少1 的数. 6 400=6.4 ⨯103.故答案为:6.4 ⨯103.【考点】科学记数法的表示方法12.【答案】x(x + 1)(x -1)【解析】解:原式=x(x2-1) =x(x + 1)(x -1)3) 13. 【答案】k >0【解析】直角利用一次函数增减性与系数的关系解答即可.解: 一次函数 y = kx + 2 的函数值 y 随自变量 x 增大而增大,∴ k >0 .故答案为k >0 .【考点】一次函数增减性与系数的关系14. 【答案】1【解析】根据一元二次方程的解的定义,把 x = 1 代入方程得到关于a 的一次方程,然后解此一次方程即可. 解:把 x = 1 代入方程 x 2 + ax - 2 = 0 得1 + a - 2 = 0 ,解得a = 1 .故答案是:1. 【考点】一元二次方程的解15. 【答案】30【解析】根据垂直平分线的性质得到∠B = ∠BCF ,再利用等边三角形的性质得到∠AFC = 60︒ ,从而可得∠B . 解: EF 垂直平分 BC , ∴ BF = CF , ∴∠B = ∠BCF , △ACF 为等边三角形, ∴∠AFC = 60︒ ,∴∠B = ∠BCF = 30︒ .故答案为:30.【考点】垂直平分线的性质,等边三角形的性质,外角的性质16. 【答案】(2,【解析】根据菱形的性质可知 AD = AB = CD = 2 , ∠OAD = 60︒ 由三角函数即可求出线段OD 的长度,即可得到答案.解: 四边形 ABCD 为菱形,AB = 2 ,∴ AD = AB = CD = 2 ,AB//CD , ∠DAB = 120︒ ,∴∠DAO = 60︒ .在 Rt △DOA 中, sin 60︒= OD = AD 3 ,∴OD = 23 ,∴点C 的坐标是(2, .故答案为: (2, .【考点】平面直接坐标系中直角三角形的计算问题,以及菱形的性质17. 【答案】 12【解析】设 BC = a ,则 AC = 2a ,然后利用正方形的性质求得CE 、CG 的长、∠GCD = ECD = 45︒ ,进而说3)3)2a 2 2a 2 明△ECG 为直角三角形,最后运用正切的定义即可解答.解:设 BC = a ,则 AC = 2a . 正方形 ACDE ,∴ EC == 2 2a ,∠ECD = 1 ∠ACD = 45 , 2同理: CG = 2a ,∠GCD = 1 ∠BCD = 45 ∴tan ∠CEG = CG = = 1 .故答案为 1. 2 CE 22【考点】正方形的性质和正切的定义18. 【答案】4 或 2【解析】分当点 F 在点 D 右侧时,当点 F 在点 D 左侧时,两种情况,分别画出图形,结合三角函数,勾股定理以及平行四边形的性质求解即可.解:如图,当点 F 在点 D 右侧时,过点 F 作 FM //DG ,交直线 BC 于点 M ,过点 B 作 BN ⊥ DE ,交直线DE 于点 N , D , E 分别是 AB 和 AC 中点,AB = 6 ,∴ DE ∥BC ,BD = AD = 3 2 ,∠FBM = ∠BFD ,∴ 四 边 形 DGMF 为 平 行 四 边 形 , 则 DG = FM , DG ⊥ BF , BF = 3DG , ∴∠BFM = 90︒ ,∴tan ∠FBM=FM = 1 =tan ∠BFD ,∴ BN = 1, ∠ABC = 45︒ = ∠BDN ,∴△BDN 为等腰直角三角形, BF 3 FN 3∴ BN = DN = BD = 3 ,∴ FN = 3BN = 9 ,FB = GM = 6 , BF = BN 2 + NF 2 =3 ,∴ FM = 1BF = 10 , 3∴ BM = = 10 ,∴ BG = 10 - 6 = 4 ;(2a )2 + (2a )2 2 10 BF 2 + FM 292 + 32 10当点 F 在点 D 左侧时,过点 B 作 BN ⊥ DE ,交直线 DE 于 N ,过点 B 作 BM //DG ,交直线 DE 于 M , 延长 FB 和 DG ,交点为 H ,可知: ∠H = ∠FBM = 90︒ ,四边形 BMDG 为平行四边形,∴ BG = MD ,BM = DG , BF = 3DG ,∴tan ∠BFD =BM = DH = BN = 1,同理可得: △BDN 为等腰直角三角 BF FH FN 3形,BN = DN = 3 ,∴ FN = 3BN = 9 ,∴ BF = = 3 ,设 MN = x ,则 MD = 3 - x ,FM = 9 + x ,在 Rt △BFM 和 Rt △BMN 中,有 FM 2 - BF 2 = MN 2 + BN 2 ,即(9 + x )2- (3 10 )= x 2 + 32 ,解得: x = 1 ,即 MN = 1 ,∴ BG = MD = ND - MN = 2综上: BG 的值为 4 或 2.故答案为:4 或 2.【考点】等腰直角三角形的判定和性质,三角函数,平行四边形的判定和性质,勾股定理三、19.【答案】解: (x + 1)2 - x (x + 1)= x 2 + 1 + 2x- x 2 - x⎩= x + 1 将 x = 2 代入,原式= 3【解析】完全平方公式和单项式乘多项式,具体解题过程参照答案.【考点】整式的混合运算20.【答案】(1) x + 2= 2 ,去分母得: x -2=2x -2 ,解得x = 0 .经检验 x = 0 是分式方程的解. x -1 1 - x⎧2x - 6<0,① (2) ⎨-3x ≤6,② 由①得: x <3 ,由②得: x ≥- 2 ,则不等式组的解集为-2≤x <3 . 【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解.(2)分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【考点】分式方程与解不等式组21.【答案】(1)100(2)打乒乓球的人数为100 ⨯ 35% = 35 人,踢足球的人数为100 - 25 - 35 -15 = 25 人;补全条形统计图如图所示:(3)2000 ⨯ 15100= 300 人.【解析】(1)用条形统计图中最喜爱打排球的人数除以扇形统计图中最喜爱打排球的人数所占百分比即可求出本次抽样调查的样本容量.(2)用总人数乘以最喜爱打乒乓球的人数所占百分比即可求出最喜爱打乒乓球的人数,用总人数减去最喜爱其它三项运动的人数即得最喜爱踢足球的人数,进而可补全条形统计图.(3)用最喜爱打篮球的人数除以总人数再乘以2000 即可求出结果.【考点】条形统计图,扇形统计图,样本容量,利用样本估计总体22.【答案】(1)1 3(2)画树状图如下:所有等可能的情况有6 种,其中抽到的 2 支签上签号的和为奇数的有4种,∴抽到的2 支签上签号的和为奇数的概率为:4=2.6 3【解析】(1)由概率公式即可得出答案. 共有3 个号码,∴抽到1 号签的概率是1,故答案为:1.3 3 (2)画出树状图,得到所有等可能的情况,再利用概率公式求解即可.【考点】列表法与树状图法23.【答案】(1) AE//BF ,∴∠A =∠DBF , AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,又 AE =BF ,∴△ACE≌△BDF(SAS),∴∠E =∠F .(2)∴△ACE≌△BDF ,∴∠D =∠ACE = 80︒, ∠A = 40︒,∴∠E = 180︒-∠A -∠ACE = 60︒. 【解析】(1)根据已知条件证明△ACE≌△BDF ,即可得到结论.(2)根据全等三角形的性质得到∠D =∠ACE = 80︒,再利用三角形内角和定理求出结果.【考点】全等三角形的判定和性质,三角形内角和⎩ ⎩ S 24. 【答案】(1)设每千克苹果售价 x 元,每千克梨 y 千克,由题意,得:⎧x + 3y = 26 ,解得: ⎧x = 8,⎨2x + y = 22 ⎨ y = 6答:每千克苹果售价 8 元,每千克梨 6 千克.(2)设购买苹果a 千克,则购买梨(15 - a ) 千克,由题意,得: 8a + 6(15 - a )≤100 ,解得: a ≤5 ,∴a 最大值为 5,答:最多购买 5 千克苹果.【解析】(1)设每千克苹果售价 x 元,每千克梨 y 千克,由题意列出 x 、 y 的方程组,解之即可.(2)设购买苹果a 千克,则购买梨(15 - a ) 千克,由题意列出a 的不等式,解之即可解答.【考点】二元一次方程组的应用,一元一次不等式的应用25. 【答案】(1)已知反比例函数解析式为 y =8,点 A (a , 4) 在反比例函数图象上,将点 A 坐标代入,解得xa = 2 ,故 A 点坐标为(2, 4) ,又 A 点也在正比例函数图象上,设正比例函数解析为 y = kx ,将点 A (2, 4) 代入正比例函数解析式中,解得k = 2 ,则正比例函数解析式为 y = 2x .故a = 2 ; y = 2x .2 x (b , 0) C 8 ( )根据第一问的求解结果,以及 BD 垂直 轴,我们可以设 B 点坐标为,则 点坐标为(b , ) 、D 点 b坐标为(b , 2b ) ,根据 BD = 10 ,则2b = 10 ,解得b = 5 ,故点 B 的坐标为(5, 0) ,D 点坐标为(5,10) ,C 点坐8 标为(5, ) ,则在△ACD 中,= 1 ⨯ ⎛10 - 8 ⎫ ⨯ (5 - 2) = 63 .故△ACD 的面积为 63 .5 △ACD 2 5 ⎪ 5 5 ⎝ ⎭【解析】(1)已知反比例函数解析式,点 A 在反比例函数图象上,故a 可求;求出点 A 的坐标后,点 A 同时在正比例函数图象上,将点 A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设 B 点坐标为(b , 0) ,则 D 点坐标为(b , 2b ) ,根据 BD = 10 ,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.【考点】解正比例函数及反比例函数解析式,待定系数法26. 【答案】(1)1(2)①线段 EF 经旋转运动所形成的平面图形如图 3 中的阴影所示:3 3⎛ 3 ⎫2在 Rt △CEF 中, ∠ECF = 30︒,EF = 1,∴CF = 2 , CE = ,由旋转的性质可得: CF = CA = 2 ,CE = CG = , ∠ACG = ∠ECF = 30︒ ,230π ⨯(3 )2∴ S=(S+ S )-(S+ S )= S -S= 30π ⨯ 2 -= π;故答 阴影π 案为: 12CEF.扇形ACF ACG扇形CEG 扇形ACF扇形CEG36036012②作 EH ⊥ CF 于点 H ,如图 4,在 Rt △EFH 中, ∠F = 60︒,EF = 1,∴ FH = 1 , EH =3, 2 21 3 3 3 ∴CH =2 - = ,设OH = x ,则OC = - x , OE 2 = EH 2 + OH 2= ⎪ + x 2 = + x 2 ,2 2 23⎝ 2 ⎭34⎛ 3⎫2OB = OE ,∴OB 2 = + x 2 ,在 Rt △BOC 中, OB 2 + BC 2 = OC 2 ,∴ + x 2 + 1 = - x ⎪,解得:4 x = 1 ,∴OF = 1 + 1 = 2.4 ⎝ 2 ⎭6 2 6 3【解析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF = ∠ECF = 30︒ ,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点 F 到直线CA 的距离即为 EF 的长,于是可得答案.∠BAC = 30︒,∠ABC = 90︒,∴∠ACB = 60︒, Rt△ABC≌Rt△CEF ,∴∠ECF =∠BAC = 30︒,EF =BC = 1 ,∴∠ACF = 30︒,∴∠ACF =∠ECF = 30︒,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF = 1;故答案为:1.(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30︒的圆弧,据此即可画出旋转后的平面图形;在图 3 中,先解Rt△CEF 求出CF 和CE 的长,然后根据S阴影=(SCEF+S扇形ACF)-(SACG+S扇形CEG)即可求出阴影面积.②作EH ⊥ CF 于点H ,如图4,先解Rt△EFH 求出FH 和EH 的长,进而可得CH 的长,设OH =x ,则CO 和OE2 都可以用含x 的代数式表示,然后在Rt△BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【考点】旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识27.【答案】(1) O 关于直线m 的“远点”是点D , O 关于直线m 的“特征数”为DB·DE = 2 ⨯ 5 =10 .②如下图:过圆心O 作OH ⊥直线n ,垂足为点H ,交 O 于点P、Q ,直线n 的函数表达式为y = 3x + 4 ,当x = 0 时,y = 4 ;当y = 0 时,x =-4 3,∴直线n 经过点335 2E (0,4),点F (-4 3 ,在 Rt △EOF 中, 4 FO ,∴∠FEO = 30︒ ,,0) 3tan ∠FEO = = 3 =EO43∴∠EFO = 60︒ ,在 Rt △HOF 中, sin ∠HFO = HO ,∴ H O = FOsin ∠HFO ⋅ FO = 2 ,∴ PH = HO + OP = 3 ,∴ PQ ·PH = 2 ⨯ 3 = 6 ,∴ O 关于直线n 的“特征数”为 6; (2)如下图, 点 F 是圆心,点 N (-1, 0) 是“远点”,∴连接 NF 并延长,则直线 NF ⊥ 直线l ,设 NF 与直线l 的交点为点 A (m ,n ),设直线l 的解析式为 y = kx + b (k ≠ 0),将点 M (1, 4) 与 A (m ,n )代入 y = kx + b 中, ⎧⎪4=k + b 1① ②-① 1⎨n = mk + b ②⎩⎪ 1得: n - 4 = mk - k ,③又 直线 NF ⊥ 直线l ,∴设直线 NF 的解析式为 y = - 1x + b (k ≠ 0),将点1 k 2⎧0= 1+ b ④1 ⎪ k2 1 mN (-1, 0) 与 A (m ,n )代入 y = - x + b 中, ⎨ k m ④-⑤得: -n = + k k ,⑥联立方程③与方 ⎪n = - + b 2 ⑤⎧n - 4 = mk - k ⎪⎩k⎧ k 2 - 4k -1 m =⎪ ⎪ k 2 + 1 ∴ k 2 - 4k -1 4 - 2kF 程⑥,得: ⎨-n = 1 + m 解得: ⎨ 4 - 2k , 点 A 的坐标为( k 2 + 1 , 2 + 1 ) ;又 关于 ⎩⎪ k k ⎪n = ⎩ k k 2 + 1直线l 的“特征数”是4 , F 的半径为 ,∴ NB ·NA = 4 ,即2 24 ⋅ NA = ,解得: NA = 10 ,35 2 5 ⎪5 10 ⎨⎧⎪m = k 2- 4k -12∴⎡⎣m-(-1)⎤⎦2+(n-0)2=(10)2,即(m +1)2 +n2=10 ,把⎪⎪n =⎩k +1代入,解得k =-3 或k = 1 ;4 - 2k 3k 2+ 1当k=-3时,m=2,n=1,∴点A 的坐标为(2,1),把点A(2,1)与点M (1, 4)代入y=kx+b1中,解得直线l的解析式为y =-3x + 7 ;当k =1时,m=-2,n=3,∴点A 的坐标为(-2,3),把点A(-2,3)与点3M (1, 4)代入y =kx +b 中,解得直线l 的解析式为y =1 x +11 .∴直线l 的解析式为y =-3x + 7 或1 3 3y =1x +11.3 3【解析】(1)①根据题干中“远点”及“特征数”的定义直接作答即可;②过圆心O 作OH ⊥直线n ,垂足为点H ,交 O于点P、Q ,首先判断直线n也经过点E(0,4),在Rt△EOF中,利用三角函数求出∠EFO = 60︒,进而求出PH 的长,再根据“特征数”的定义计算即可.(2)连接NF并延长,设直线l的解析式为y=kx+b,用待定系数法得到⎧⎪4=k +b1①,再根据两条直1⎨n =mk +b ②⎩⎪ 1线互相垂直,两个一次函数解析式的系数k 互为负倒数的关系可设直线NF 的解析式为y =-1x +b ,用⎧0= 1+b ④k 2⎧n - 4 =mk -k⎪k 2待定系数法同理可得⎨m,消去b1和b2,得到关于m、n ⎪的方程组⎨-n =1+m;根据⎪n =-+b2 ⑤⎩⎪k k⎩⎪kF 关于直线l 的“特征数”是4 ,得出NA =,再利用两点之间的距离公式列出方程(m +1)2⎧⎪m =+n2= 10 ,把⎨k 2- 4k -1k 2+ 1 代入,求出k 的值,便得到m、n 的值即点A 的坐标,再根据待定⎪n =4 - 2k⎩⎪k2+1系数法求直线l 的函数表达式.注意有两种情况,不要遗漏.【考点】一次函数与圆的综合28.【答案】(1)-42 5 2 ⎛ 5 ⎫2 ⎝ a - + 2a - 5 2 ⎪⎭ ( ) 2 ⎩ ⎩ 1 2 (2)由(1)可得抛物线解析式为: y = x 2 - 4x + 3 ,当 x = 0 时, y = 3 ,∴ A 的坐标为(0,3),当y = 3 时得3 = x 2 - 4x + 3 ,解得 x = 0 , x = 4 ,∴点 B 的坐标为(4,3), y = x 2 - 4x + 3 = ( x - 2)2-1 ,∴顶点 D 的坐标为(2,-1),设 BD 与 x 轴的交点为 M ,作CH ⊥ AB 于 H ,DG ⊥ CM 于G ,∴tan ∠ACH = tan ∠OAC = 1,根据勾股定理可得 BC = 3 3, CD = ,BD = 2 ,∴ BD = ,∴∠BCD = 90︒ ,∴tan ∠CBD = 1,∴∠ACH = ∠CBM , 3∠HCB = ∠BCM = 45︒ ,∴∠ACH + ∠HCB = ∠CBM + ∠MCB ,即∠ACB = ∠CMD , Q 在CD 上方时:若∠CQD = ∠ACB ,则Q 与 M 点重合, y = x 2 - 4x + 3 中,令 y = 0 ,解得: x = 1 或 3,∴抛物线与 x 轴的另一个交点坐标为(3,0),即此时 P 的坐标为(3,0);Q 在CD 下方时:过点Q 作QK ⊥ x 轴,过点C 作CL ⊥ QM 于点 L ,过点 A 作 AN ⊥ BC 于点 N ,可得: AB = 4,BC = 3 2, AC =,设CN = x ,则BN = 3 - x ,在△ABC 中, AC 2 - CN 2 = AB 2 - BN 2 ,即( 10 )2- x 2 = 42 - (3 - x )2,解得:x = ,∴cos ∠ACN =CN= AC 5 ,设直线 BD 的表达式为: y = mx + n ,将 B , D 代入得:5⎧ 3 = 4m + n ,解得: ⎧ m = 2 ,∴直线 BD 的表达式为 y = 2m - 5 ,令 y = 0 ,则 x = 5 ,即点 M50),⎨-1 = 2m + n Q⎨n = -5QK = 5 - 2a ( ,2 2 CM = 3设点 坐标为(a ,2a - 5),则 , 2, QM = , 2 BC 2+ CD 210 2 2CQ 2 - KQ 2 5 ⎛ 8 ⎫2 ⎛ 9 ⎫21 - 5 ⎪ + - 5 ⎪ ⎝ ⎭ ⎝ ⎭( , ∠ACB = ∠CMD ,∠ACB = ∠CQD ,∴∠CMD = ∠CQD ,即CQ = CM = 3,2∴cos ∠CQD = cos ∠ACB = QL =5 ,∴QL = 3 5 , QM = 3 5 , CL = 3 5 在△CQM 中, CQ 5 10 10 101 CM ⋅ KQ = 1 QM ⋅ CL ,即 3 ⋅ KQ = 3 5 ⋅ 3 5,解得: KQ = 6 ,∴CK = = 9 , 2 2 2 5 55⎧ 0 = s + t 10 ⎧s = - 4 ∴Q 19 , - 6) ,设直线CQ 表达式为: y = sx + t ,将点C 和点Q 代入, ⎪ ⎪ 3,解得: , ( 5⎨- 6 = 19 s + t ⎨ 410 ⎧ 4 4⎪⎩ ⎧ x = 5 5 10⎪ t = ⎩ 3 则CQ 表达式为: y = - 4 x + 4 ,联立: ⎪ y = - x + 3 3 ⎪ ,解得 3 5 8 ,即点 P 坐标为( , ),综上: 3 35 8点 P 的坐标为(3,0)或( , ) .3 9⎨ ⎪⎩ y = x 2 - 4x + 3⎨ ⎪ y = - 8 3 9 ⎩ 9(3) 设点C 关于 BD 的对称点为C ' , BD 中点为点 R ,直线 AC 与直线 BD 交于 N ' ,∴ R (3,1),设C (' p ,q ),由题意可求得:直线 AC 表达式为: y = -3x + 3 ,直线 BD 表达式为:y = 2x - 5 ,直线 BC 的表达式为: y = x -1 ,令-3x + 3 = 2x - 5 ,解得: x = 8 ,则 y= - 9 ,∴点 N ' 8 - 9) , 点C 和C ' 关于5 5 5 513 10直线 BC 对称,∴CR = C 'R = 2BD = , CN ' = C 'N ' = = ,则有 5 ⎪32 + 12 10 + + ⎪ 2 ( p - 3)2+ (q -1)2=( 5 )2, ⎛ p - 8 ⎫ 2⎛ 9 ⎫2 q ⎧ = ⎛ 3 10 ⎫ ,即⎪ p 2 - 6 p + q 2 - 2q + 5 = 0① 16 18 11 ,①-② 5 ⎪ 5 ⎪ 5 ⎪ ⎨ p 2 - p + q 2 + q + = 0② ⎝⎭ ⎝ ⎭ ⎝ ⎭ ⎩⎪5 5 5⎧ p = 17 得: p = 1 - 2q ③,代入①,解得: q = - 6 或 0(舍),代入③中,得: p = 17 ,解得: ⎪ 5 ,即点⎨5 5 ⎪q = - 6⎩ 5C17 6 8 91 7 x y = 0 (' , - 5 ) , N (' 5 , - ) ,求得直线C 'N ' 的表达式为: y = 5 5 x - , 3 3点 F 在 轴上,令 ,则x = 7 ,∴点 F (7,0),又 点 F 和点G 关于直线BC 对称, BC :y = x -1 ,连接CG ,可得∠BCF = 45︒ = ∠BCG ,∴∠FCG = 90︒ ,∴CG = CF = 6 ,∴点G 的坐标为(1, 6),又 A (0,3),∴ AG 的长为 = .【解析】(1)根据待定系数法求解即可.解: 抛物线过点C (1,0),∴将C (1,0)代入 y = x 2 + bx + 3 得0 = 1 + b + 3 ,解得b = -4 ,故答案为: -4 .(2) 分点Q 在CD 上方和点Q 在CD 下方时,两种情况,结合三角函数,勾股定理等知识求解.(3) 设点C 关于 BD 的对称点为C ' , BD 中点为点 R ,直线 AC 与直线 BD 交于 N ' ,设C (' p ,q ),利用点 R 到点C 和点C ' 的距离相等以及点 N ' 到点C 和点C ' 的距离相等,求出点C ' 的坐标,从而得到C 'N ' 直线的解析式,从而求出点 F 坐标,再利用点 F 和点G 关于直线 BC 对称,结合 BC 的表达式可求出点G 坐标, 最后得到 AG 的长.【考点】二次函数解析式,一次函数,三角函数,面积法,对称的性质。
2020年江苏省常州市中考数学试卷(有详细解析)
2020年江苏省常州市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共16.0分)1.2的相反数是()A. −2B. −12C. 12D. 22.计算m6÷m2的结果是()A. m3B. m4C. m8D. m123.如图是某几何体的三视图,该几何体是()A. 圆柱B. 三棱柱C. 四棱柱D. 四棱锥4.8的立方根为()A. 2√2B. ±2√2C. 2D. ±25.如果x<y,那么下列不等式正确的是()A. 2x<2yB. −2x<−2yC. x−1>y−1D. x+1>y+16.如图,直线a、b被直线c所截,a//b,∠1=140°,则∠2的度数是()A. 30°B. 40°C. 50°D. 60°7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A. 3B. 4C. 5D. 68.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=√2,∠ADB=135°,S△ABD=2.若反比例函数y=kx(x>0)的图象经过A、D两点,则k的值是()A. 2√2B. 4C. 3√2D. 6二、填空题(本大题共10小题,共20.0分)9.计算:|−2|+(π−1)0=______.10.若代数式1x−1有意义,则实数x的取值范围是______.11.地球的半径大约为6400km.数据6400用科学记数法表示为______.12.分解因式:x3−x=_________13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是______.14.若关于x的方程x2+ax−2=0有一个根是1,则a=______.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=______°.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是______.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=______.18.如图,在△ABC中,∠B=45°,AB=6√2,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为______.三、计算题(本大题共1小题,共8.0分)19.解方程和不等式组:(1)xx−1+21−x=2;(2){2x−6<0−3x≤6.四、解答题(本大题共9小题,共76.0分)20.先化简,再求值:(x+1)2−x(x+1),其中x=2.21.为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是______;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是______;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.已知:如图,点A、B、C、D在一条直线上,EA//FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?(x>25.如图,正比例函数y=kx的图象与反比例函数y=8x0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是______;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为______;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ⋅PH的值称为⊙I 关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点______(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为______;②若直线n的函数表达式为y=√3x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√2为半径作⊙F.若⊙F与直线1相离,点N(−1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4√5,求直线l的函数表达式.28.如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=______;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.答案和解析1. A解:2的相反数是−2.2. B解:m 6÷m 2=m 6−2=m 4.3. C解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形, 则可得出该几何体是四棱柱.4. C解:8的立方根是√83=√233=2,5. A解:∵x <y ,∴2x <2y ,故本选项符合题意;B 、∵x <y ,∴−2x >−2y ,故本选项不符合题意;C 、∵x <y ,∴x −1<y −1,故本选项不符合题意;D 、∵x <y ,∴x +1<y +1,故本选项不符合题意;6. B解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°−∠1=180°−140°=40°∵a//b ,∴∠2=∠3=40°.解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.BC,∴MH=12∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,8.D解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA//BC,OA=BC,∴∠AOM=∠CNM,∵BD//y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,BD⋅AE=2,BD=√2,∵S△ABD=12∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m−2√2,3√2),(x>0)的图象经过A、D两点,∵反比例函数y=kx∴k=√2m=(m−2√2)×3√2,解得m=3√2,∴k=√2m=6.9.3解:|−2|+(π−1)0=2+110.x≠1解:依题意得:x−1≠0,解得x≠1,11.6.4×103解:将6400用科学记数法表示为6.4×103.12.x(x+1)(x−1)解:x3−x,=x(x2−1),=x(x+1)(x−1).13.k>0解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.14.1解:∵关于x的方程x2+ax−2=0有一个根是1,∴把x=1代入方程得:1+a−2=0,解得:a=1,15.30解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.16.(2,√3)解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=12AD=12×2=1,OD=√22−12=√3,∴C(2,√3),17.12解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2√2,CG=√2,∴tan∠GEC=CGEC =12,18.4解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG//BT,∵AD=DB,AE=EC,∴DE//BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3√2,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH=BTBF =DGBF=13,∴THBH =13,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.19. 解:(1)方程两边都乘以x −1得:x −2=2(x −1),解得:x =0,检验:把x =0代入x −1得:x −1≠0,所以x =0是原方程的解,即原方程的解是:x =0;(2){2x −6<0 ①−3x ≤6 ②, ∵解不等式①得:x <3,解不等式②得:x ≥−2,∴不等式组的解集是:−2≤x <3.20. 解:(x +1)2−x(x +1)=x 2+2x +1−x 2−x=x +1,当x =2时,原式=2+1=3.21. 100解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100−25−35−15=25(人),补全统计图如下:(3)根据题意得:2000×15100=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.22. 13解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为13,故答案为:13;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P (和为奇数)=46=23.23. 证明:(1)∵EA//FB ,∴∠A =∠FBD ,∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,在△EAC 与△FBD 中,{EA =FB ∠A =∠FBD AC =BD,∴△EAC≌△FBD(SAS),∴∠E =∠F ;(2)∵△EAC≌△FBD ,∴∠ECA =∠D =80°,∵∠A =40°,∴∠E =180°−40°−80°=60°,答:∠E 的度数为60°.24. 解:(1)设每千克苹果的售价为x 元,每千克梨的售价为y 元,依题意,得:{x +3y =262x +y =22, 解得:{x =8y =6. 答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m 千克苹果,则购买(15−m)千克梨,依题意,得:8m +6(15−m)≤100,解得:m≤5.答:最多购买5千克苹果.25.解:(1)把点A(a,4)代入反比例函数y=8x(x>0)得,a=84=2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=8x 得,y=85,即BC=85,∴CD=BD−BC=10−85=425,∴S△ACD=12×425×(5−2)=12.6,26.1 π12解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,{∠BAC=∠FCD ∠ABC=∠CDF AC=CF,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S 阴=S △EFC +S 扇形ACF −S 扇形CEH −S △AHC =S 扇形ACF −S 扇形ECH =30⋅π⋅22360−30⋅π⋅(√3)2360=π12. 故答案为π12. (3)如图2中,过点E 作EH ⊥CF 于H.设OB =OE =x .在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF ,∴EC =√3EF =√3,EH =√32,CH =√3EH =32, 在Rt △BOC 中,OC =√OB 2+BC 2=√1+x 2,∴OH =CH =OC =32−√1+x 2, 在Rt △EOH 中,则有x 2=(√32)2+(32−√1+x 2)2, 解得x =√73或−√73(不合题意舍弃), ∴OC =(√73)=43, ∵CF =2EF =2,∴OF =CF −OC =2−43=23.27. D 20解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB⋅DE=2×5=20,故答案为D,20.②如图1−1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=√3x+4交x轴于F(−4√33,0),交y轴于E(0,4),∴OE=4,OF=4√33∴tan∠FEO=OFOE =√33,∴∠FEO=30°,∴OH=12OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ⋅PH=2×3=6.(2)如图2−1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2√2,EN⋅NH=4√5,∴NH=√10,∵N(−1,0),M(1,4),∴MN=√22+42=2√5,∴HM =√MN 2−NH 2=√20−10=√10,∴△MNH 是等腰直角三角形,∵MN 的中点K(0,2),∴KN =HK =KM =√5,∴H(−2,3),把H(−2,3),M(1,4)代入y =kx +b ,则有{k +b =4−2k +b =3, 解得{k =13b =113, ∴直线l 的解析式为y =13x +113,当k <0时,同法可知直线i 经过H′(2,1),可得直线l 的解析式为y =−3x +7.综上所述,满足条件的直线l 的解析式为y =13x +113或y =−3x +7.28. −4解:(1)∵抛物线y =x 2+bx +3的图象过点C(1,0),∴0=1+b +3,∴b =−4,故答案为:−4;(2)∵b =4,∴抛物线解析式为y =x 2−4x +3∵抛物线y =x 2−4x +3的图象与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于另一点B , ∴点A(0,3),3=x 2−4x ,∴x 1=0(舍去),x 2=4,∴点B(4,3),∵y =x 2−4x +3=(x −2)2−1,∴顶点D 坐标(2,−1),如图1,当点Q 在点D 上方时,过点C 作CE ⊥AB 于E ,设BD 与x 轴交于点F ,∵点A(0,3),点B(4,3),点C(1,0),CE ⊥AB ,∴点E(1,3),CE =BE =3,AE =1,∴∠EBC =∠ECB =45°,tan∠ACE =AE EC =13,∴∠BCF =45°,∵点B(4,3),点C(1,0),点D(2,−1), ∴BC =√9+9=3√2,CD =√1+1=√2,BD =√(4−2)2+(3+1)2=2√5, ∵BC 2+CD 2=20=BD 2,∴∠BCD =90°,∴tan∠DBC =CD BC =√23√2=13=tan∠ACE , ∴∠ACE =∠DBC ,∴∠ACE +∠ECB =∠DBC +∠BCF ,∴∠ACB =∠CFD ,又∵∠CQD =∠ACB ,∴点F 与点Q 重合,∴点P 是直线CF 与抛物线的交点,∴0=x 2−4x +3,∴x 1=1,x 2=3,∴点P(3,0);当点Q 在点D 下方上,过点C 作CH ⊥DB 于H ,在线段BH 的延长线上截取HF =QH ,连接CQ 交抛物线于点P ,∵CH ⊥DB ,HF =QH ,∴CF =CQ ,∴∠CFD =∠CQD ,∴∠CQD =∠ACB ,∵CH ⊥BD ,∵点B(4,3),点D(2,−1),∴直线BD 解析式为:y =2x −5,∴点F(52,0), ∴直线CH 解析式为:y =−12x +12,∴{y =−12x +12y =2x −5, 解得{x =115y =−35,∴点H 坐标为(115,−35), ∵FH =QH , ∴点Q(1910,−65),∴直线CQ 解析式为:y =−43x +43,联立方程组{y =−43x +43y =x 2−4x +3, 解得:{x 1=1y 1=0或{x 2=53y 2=−89, ∴点P(53,−89); 综上所述:点P 的坐标为(3,0)或(53,−89); (3)如图,设直线AC 与BD 的交点为N ,作CH ⊥BD 于H ,过点N 作MN ⊥x 轴,过点E 作EM ⊥MN ,连接CG ,GF ,∵点A(0,3),点C(1,0),∴直线AC 解析式为:y =−3x +3,∴{y =−3x +3y =2x −5, ∴{x =85y =−95, ∴点N 坐标为(85,−95),∵点H 坐标为(115,−35),∴CH 2=(115−1)2+(35)2=95,HN 2=(115−85)2+(−35+95)2=95,∴CH =HN ,∴∠CNH=45°,∵点E关于直线BD对称的点为F,∴EN=NF,∠ENB=∠FNB=45°,∴∠ENF=90°,∴∠ENM+∠FNM=90°,又∵∠ENM+∠MEN=90°,∴∠MEN=∠FNM,∴△EMN≌△NKF(AAS)∴EM=NK=95,MN=KF,∴点E的横坐标为−15,∴点E(−15,185),∴MN=275=KF,∴CF=85+275−1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG=√12+(6−3)2=√10.。
2020年江苏省常州市中考数学试卷(含解析)
2020年江苏省常州市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共8小题,每小题2分,共16分)1.2的相反数是()A.﹣2 B.﹣C.D.22.计算m6÷m2的结果是()A.m3B.m4C.m8D.m123.如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.8的立方根为()A.B.C.2 D.±25.如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1 D.x+1>y+16.如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3 B.4 C.5 D.68.如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4 C.3D.6二、填空题(本大题共10小题,每小题2分,共20分)9.(计算:|﹣2|+(π﹣1)0=.10.若代数式有意义,则实数x的取值范围是.11.地球的半径大约为6400km.数据6400用科学记数法表示为.12.分解因式:x3﹣x=.13.若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.14.若关于x的方程x2+ax﹣2=0有一个根是1,则a=.15.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.16.数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.17.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.18.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题(本大题共10小题,共84分)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.20.(8分)解方程和不等式组:(1)+=2;(2).21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F 在x轴上时,直接写出AG的长.参考答案与试题解析一、选择题1.【解答】解:2的相反数是﹣2.故选:A.2.【解答】解:m6÷m2=m6﹣2=m4.故选:B.3.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.4.【解答】解:8的立方根是==2,故选:C.5.【解答】解:A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.6.【解答】解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°﹣∠1=180°﹣140°=40°∵a∥b,∴∠2=∠3=40°.故选:B.7.【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.8.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,∵S△ABD==2,BD=,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.二、填空题9.【解答】解:|﹣2|+(π﹣1)0=2+1=3,故答案为:3.10.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.11.【解答】解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.12.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.【解答】解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.14.【解答】解:∵关于x的方程x2+ax﹣2=0有一个根是1,∴把x=1代入方程得:1+a﹣2=0,解得:a=1,故答案为:1.15.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.16.【解答】解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=AD==1,OD==,∴C(2,),故答案为:(2,).17.【解答】解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2,CG=,∴tan∠GEC==,故答案为:.18.【解答】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.三、解答题19.【解答】解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.20.【解答】解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.21.【解答】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.22.【解答】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.23.【解答】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.24.【解答】解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.25.【解答】解:(1)把点A(a,4)代入反比例函数y=(x>0)得,a==2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=得,y=,即BC=,∴CD=BD﹣BC=10﹣=,∴S△ACD=××(5﹣2)=12.6,26.【解答】解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH﹣OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.27.【解答】解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB•DE=2×5=20,故答案为D,20.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=x+4交x轴于F(﹣,0),交y轴于E(0,4),∴OE=4,OF=∴tan∠FEO==,∴∠FEO=30°,∴OH=OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ•PH=2×3=6.(2)如图2﹣1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2,EN•NH=4,∴NH=,∵N(﹣1,0),M(1,4),∴MN==2,∴HM===,∴△MNH是等腰直角三角形,∵MN的中点K(0,2),∴KN=HK=KM=,∴H(﹣2,3),把H(﹣2,3),M(1,4)代入y=kx+b,则有,解得,∴直线l的解析式为y=x+,当k<0时,同法可知直线i经过H′(2,1),可得直线l的解析式为y=﹣3x+7.综上所述,满足条件的直线l的解析式为y=x+或y=﹣3x+7.28.【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC==3,CD==,BD==2,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan∠DBC====tan∠ACE,∴∠ACE=∠DBC,∴∠ACE+∠ECB=∠DBC+∠BCF,∴∠ACB=∠CFD,又∵∠CQD=∠ACB,∴点F与点Q重合,∴点P是直线CF与抛物线的交点,∴0=x2﹣4x+3,∴x1=1,x2=3,∴点P(3,0);当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,∵CH⊥DB,HF=QH,∴CF=CQ,∴∠CFD=∠CQD,∴∠CQD=∠ACB,∵CH⊥BD,∵点B(4,3),点D(2,﹣1),∴直线BD解析式为:y=2x﹣5,∴点F(,0),∴直线CH解析式为:y=﹣x+,∴,解得,∴点H坐标为(,﹣),∵FH=QH,∴点Q(,﹣),∴直线CQ解析式为:y=﹣x+,联立方程组,解得:或,∴点P(,﹣);综上所述:点P的坐标为(3,0)或(,﹣);(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,∵点A(0,3),点C(1,0),∴直线AC解析式为:y=﹣3x+3,∴,∴,∴点N坐标为(,﹣),∵点H坐标为(,﹣),∴CH2=(﹣1)2+()2=,HN2=(﹣)2+(﹣+)2=,∴CH=HN,∴∠CNH=45°,∵点E关于直线BD对称的点为F,∴EN=NF,∠ENB=∠FNB=45°,∴∠ENF=90°,∴∠ENM+∠FNM=90°,又∵∠ENM+∠MEN=90°,∴∠MEN=∠FNM,∴△EMN≌△NKF(AAS)∴EM=NK=,MN=KF,∴点E的横坐标为﹣,∴点E(﹣,),∴MN==KF,∴CF=+﹣1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG==。
2020年江苏省常州市中考数学试卷解析版
11.地球的半径大约为 6400km.数据 6400 用科学记数法表示为
.
【考点】科学记数法—表示较大的数. 菁优网版 权所有
【解答】解:将 6400 用科学记数法表示为 6.4×103.故答案为:6.4×103.
12:(2020 年江苏省常州市中考)中考数学工作室
12.分解因式:x3﹣x=
.
【考点】提公因式法与公式法的综合运用. 菁优网版 权所有
故答案为:k>0.
14:(2020 年江苏省常州市中考)中考数学工作室 14.若关于 x 的方程 x2+ax﹣2=0 有一个根是 1,则 a= .
【考点】一元二次方程的解. 菁优网版 权所有
【解答】解:∵关于 x 的方程 x2+ax﹣2=0 有一个根是 1, ∴把 x=1 代入方程得:1+a﹣2=0,解得:a=1, 故答案为:1.
∵CD 与 x 轴平行,BD 与 y 轴平行,
∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,
∴△AOM≌△CBD(AAS),∴OM=BD= ,
∵S△ABD=
=2,BD= ,∴AE=2 ,
∵∠ADB=135°,∴∠ADE=45°, ∴△ADE 是等腰直角三角形, ∴DE=AE=2 ,∴D 的纵坐标为 3 , 设 A(m, ),则 D(m﹣2 ,3 ), ∵反比例函数 y= (x>0)的图象经过 A、D 两点,
重合),CH⊥AB,垂足为 H,点 M 是 BC 的中点.若⊙O 的半径
是 3,则 MH 长的最大值是( )
A.3
B.4
C.5
D.6
【考点】直角三角形斜边上的中线. 菁优网版 权所有
【解答】解:∵CH⊥AB,垂足为 H,∴∠CHB=90°,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学
注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。
3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。
五、解答题(本大题共2小题,共15分,解答应写出文字说明,画出图形或演算步骤)
22.(本小题满分7分)
小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2
请你根据图中提供的信息,解答下列问题:
(1)在图1中,将“书画”部分的图形补充完整;ห้องสมุดไป่ตู้
(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”、“其它“的人数占本班学生数的百分数;
六、画图与探究(本大题共2小题,共12分)
24.(本小题满分6分)
在平面直角坐标系中描出下列各点A(2,1),B(0,1),C( ),D(6, ),并将各点用线段一次连接构成一个四边形ABCD。
(1)四边形ABCD时什么特殊的四边形?
答:
(2)在四边形ABCD内找一点P,使得△APB、△BPC、△CPD、△APD都是等腰三角形,请写出P点的坐标。
A. B. C. D.
10.如图,已知⊙O的半径为5 ,弦 ,则圆心O到AB的距离是【】
A.1 B.2 C.3 D.4
11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为 张,2元的贺卡为 张,那么 、 所适合的一个方程组是【】
A. B. C. D.
12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【】
8.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米。
二、选择题(下列各题都给出代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【】内,每小题2分,共18分)
9.下列计算正确的是【】
20.(本小题满分5分)
证明:∵ AB∥CD
∴ …………1分
∵
∴ △ABO≌△CDO …………3分
∴ …………4分
∴ 四边形ABCD是平行四边形 …………5分
21.(本小题满分7分)
证明:(1)∵
∴
即 …………2分
∵
∴ △BCD≌△ACE …………4分
(2)∵ ,
∴ …………5分
∵ △BCD≌△ACE
(2) …………6分
25.解:(1)如图:…………2分
(2)
分割次数(n)
1
2
3
……
正六边形得面积S
……
…………5分
(3) …………6分
七、解答题(第26题7分,第27题8分,第28题10分,共25分)
26.解:设该单位这次共有 名员工去天水湾风景区旅游,
因为 ,所以员工人数一定超过25人。………1分
…………3分
…………5分
(2)原式
…………2分
…………5分
19、解:(1)去分母,得 …………1分
去括号,得
整理,得
…………3分
经检验: 是原方程得根…………4分
∴原方程得根是
(2)
解:由①,得 …………2分
由②,得 …………4分
所以原不等式得解集为 …………5分
四、解答题(本大题共2小题,共12分,解答应写出证明过程)
(1)点P在运动时,线段AB的长度页在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。
常州市二00六年初中毕业、升学统一考试
数学试题参考答案几平分标准
一、填空题(每个空格1分,共18分)
1. ,5, ;2. ,2;3.60, ;4.8,8,2;
5. , ;6. ,增大;7.2,1∶2,1∶6; 8.120
二、选择题(本大题共9小题,每小题2分,共18分)
题号
9
10
11
12
13
14
15
16
17
答案
B
C
D
B
B
C
A
D
D
三、解答题(本大题共2小题,共20分,解答应写出演算步骤)
18.解:(1)原式
又因为
所以 ,
因为PQ∥OA,
所以 轴。
设 轴于点H,
在Rt△OHQ中,根据 ,
得Q点坐标为( )
所以符合条件的点Q的坐标为( )或( )。
5.已知扇形的圆心角为120°,半径为2 ,则扇形的弧长是 ,扇形的面积是 。
6.已知反比例函数 的图像经过点(1, ),则这个函数的表达式是。
当 时, 的值随自变量 值的增大而(填“增大”或“减小”)
7、如图,在△ABC中,D、E分别是AB和AC的中点,F是BC延长线上的一点,DF平分CE于点G, ,则 ,△ADE与△ABC的周长之比为,△CFG与△BFD的面积之比为。
七、解答题(本大题共3小题,共25分,解答应写出文字说明、证明或演算步骤)
26.(本小题满分7分)
春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?
27.(本小题满分8分)
(1) (2)
四、解答题(本大题共2小题,共12分,解答应写出证明过程)
20.(本小题满分5分)
已知:如图,在四边形ABCD中,AC与BD相交与点O,AB∥CD, ,
求证:四边形ABCD是平行四边形。
21.(本小题满分7分)
已知:如图,△ABC和△ECD都是等腰直角三角形, ,D为AB边上一点,
求证:(1)△ACE≌△BCD;(2)
(3)观察图1和图2,你能得出哪些结论?(只要写出一条结论)
23.(本小题满分8分)
小颖为中考1班毕业联欢会设计了一个“配紫色“的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则”配紫色“成功,游戏者获胜,求游戏者获胜的概率。
25.(本小题满分6分)
将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余);
第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;
第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;
①图1中的BC长是8 ②图2中的M点表示第4秒时 的值为24
③图1中的CD长是4 ④图2中的N点表示第12秒时 的值为18
A.1个B.2个C.3个D.4个
三、解答题(本大题共2小题,共20分,解答应写出演算步骤)
18.(本小题满分10分)计算或化简:
(1) (2)
19.(本小题满分10分)解方程或解不等式组:
解得 ,
所以 …………2分
(2)如图②,当 时,由菱形性质知点A的坐标为(0,0),点C的坐标为(1, ),解得
所以 …………4分
同理可得:
…………8分
所以符合条件的二次函数的表达式有:
, ,
28.解:(1)线段AB长度的最小值为4
理由如下:
连接OP
因为AB切⊙O于P,所以OP⊥AB
取AB的中点C,则 …………3分
∴
∴ …………6分
∴ …………7分
五、解答题(第22题7分,第23题8分,共15分)
22.解:(1)画图正确…………3分
(2) ,所以“球类”部分锁对应得圆心角得度数为126°,音乐30%,书画25%,其它10%;…………6分
(3)只要合理就给分。…………7分
23.解:
方法一:用表格说明
转盘2
转盘1
按上述分割方法进行下去……
(1)请你在下图中画出第一次分割的示意图;
(2)若原正六边形的面积为 ,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:
分割次数(n)
1
2
3
……
正六边形的面积S
(3)观察所填表格,并结合操作,请你猜想:分割后所得的正六边形的面积S与分割次数 有何关系?(S用含 和n的代数式表示,不需要写出推理过程)。
题号
一
二
三
四
五
六
七
得分
一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上)
1.3的相反数是, 的绝对值是,9的平方根是。
2.在函数 中,自变量 的取值范围是;若分式 的值为零,则 。
3.若 的补角是120°,则 =°, 。
4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是环,中位数环,方差是环 。
当 时,OC最短,
即AB最短,此时 …………4分
(2)设存在符合条件的点Q,
如图①,设四边形APOQ为平行四边形,
因为四边形APOQ为矩形
又因为
所以四边形APOQ为正方形
所以 ,
在Rt△OQA中,根据 ,
得Q点坐标为( )。…………7分