模式识别课程作业proj03-01

合集下载

北邮模式识别课堂作业答案(参考)

北邮模式识别课堂作业答案(参考)

第一次课堂作业⏹ 1.人在识别事物时是否可以避免错识?⏹ 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底是真是的,还是虚假的?⏹ 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。

⏹ 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类器性能。

如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率?1.知觉的特性为选择性、整体性、理解性、恒常性。

错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。

认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误2.不是3.辨别事物的最基本方法是计算. 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。

另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。

4.风险第二次课堂作业⏹作为学生,你需要判断今天的课是否点名。

结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明:⏹先验概率、后验概率和类条件概率?⏹按照最小错误率如何决策?⏹按照最小风险如何决策?ωi为老师点名的事件,x为判断老师点名的概率1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi )后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。

在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x)类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi )2.如果P(ω1|X)>P(ω2|X),则X归为ω1类别如果P(ω1|X)≤P(ω2|X),则X归为ω2类别3.1)计算出后验概率已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X根据贝叶斯公式计算j=1,…,x2)计算条件风险已知: 后验概率和决策表计算出每个决策的条件风险3) 找出使条件风险最小的决策αk,则αk就是最小风险贝叶斯决策。

模式识别作业

模式识别作业

(1)先用C-均值聚类算法程序,并用下列数据进行聚类分析。

在确认编程正确后,采用蔡云龙书的附录B中表1的Iris数据进行聚类。

然后使用近邻法的快速算法找出待分样本X (设X样本的4个分量x1=x2=x3=x4=6;子集数l=3)的最近邻节点和3-近邻节点及X与它们之间的距离。

并建议适当对书中所述算法进行改进。

并分别画出流程图、写出算法及程序。

x1=(0,0) x2=(1,0) x3=(0,1) x4=(1,1) x5=(2,1) x6=(1,2) x7=(2,2) x8=(3,2) x9=(6,6) x10=(7,6) x11=(8,6) x12=(6,7) x13=(7,7) x14=(8,7) x15=(9,7) x16=(7,8) x17=(8,8) x18=(9,8) x19=(8,9) x20=(9,9)
(2)写一篇论文。

内容可以包含下面四个方面中的一个:
①新技术(如数据挖掘等)在模式识别中的应用;
②模式识别最新的研究方向;
③一个相关系统的分析;
④一个算法的优化;
(3)书142页,描述近邻法的快速算法,写个报告。

模式识别作业

模式识别作业

模式识别作业图像处理与模式识别作业二题目一:计算特征矢量之间的距离:任意构造10个人在程序设计、离散数学、数据结构、计算机组成原理4门课的成绩表。

计算两两之间的欧式距离、绝对值距离,设计合适的阈值,能否进行分类?答:题目中每个人共有四门课,也就是每个人有4个特征,每门课的成绩也就是这4个特征的量化。

例如某人的成绩就可以表示为(95,68,78,85)这样的一个四维向量。

在这样一个四维空间里,每个个体的相似程度也就可以用欧式距离或者绝对值距离表示。

根据这个相似度,我们就可以将相似度近的分为几类,使其类间距离和最大,类内距离和最小。

或者规定产生几类,具体进行分类。

可用的分类方法有很多,例如最大最小距离法、谱系聚类法、C-均值。

题目二:关于类的定义:如何定义类内各个样本的平均距离?如何定义类之间的距离?答:(1)根据不同的要求类内各个样本的平均距离可以有不同的定义方式。

一般而言,采用先求取类的类心,通过求各个样本与类心距离的平均值.但有时对于样本的聚簇要求格外看中,可以求样本两两距离的和的平均值。

(2)类间距离的方法有很多,例如欧式距离、马氏距离、明氏距离、汉明距离、角度相似性函数。

其中欧式距离较为常用。

设x=(x1, x2, …, xn)T, y=(y1, y2, …, yn)T 欧式距离(Euclidean)d(x, y) = ||x-y|| = [?i=1 n(xi-yi)2]1/2 d(x, y) = ?i=1 n|xi-yi|d(x, y) = maxi |xi-yi| d(x, y) = [?i=1 n(xi-yi)m]1/mm=2,1,?时分别是欧式距离、绝对值距离和切氏距离。

设n维矢量xi和xj是矢量集{x1, x2, …, xn}中的两个矢量,其马氏距离d d2(xi, xj) = (xi-xj)T V-1 (xi-xj)n1TV?(xi?x)(xi?x)?n11i?1x?m??xi绝对值距离(Manhattan距离)切氏距离(Chebyahev)闵科夫斯基距离(Minkowski)马氏距离(Mahalanohis)是:mi?1题目三:你如何理解准则函数?图像处理与模式识别作业二答:准则函数-用具体函数评价系统所采取策略优劣的准则时,称为准则函数。

模式识别4次作业汇总

模式识别4次作业汇总

北京工商大学模式识别作业汇总(2014年秋季学期)课程名称:模式识别专业班级:计研141班学生姓名:董文菲刘倩指导教师:于重重成绩:2015年1月20日第一次课的作业1.在Matlab 环境下,利用第一题中给了matlab程序,尝试声音识别过程,并把程序流程图画出。

解:程序实现了识别“kiss”与“love”两个声音的界面图。

程序流程图如下:2.运行网址http://www.wcl.ece.upatras.gr/en/ai/resources/demo-emotion -recognition-from-speech上的java applet ,了解声音识别的过程。

解:智能对话系统的测试点如下图所示,该智能对话系统可以通过语音交互获取信息,控制娱乐设备等智能应用。

情感识别的构成如下图:情感识别依赖于先进的音频参数化技术,利用高斯混合模型训练情绪识别模型。

目前负面情绪的识别得到了很好的结果。

3. 选择鸢尾花数据集(iris,网上下载),并尽可能多地使用《数据挖掘导论第三章》介绍的不同的可视化技术完成数据预处理(可参看第三章资料中的辅助ppt),形成报告。

文献注释和该书网站提供了可视化软件的线索。

解:(1)分类选择朴素贝叶斯分类器算法,训练选项选择交叉验证,即把数据集分成若干份,1份作为验证集,其余部分作为训练集合。

这样的方法保证了数据集的所有元素都被验证过。

这里把数据集分为10份来进行训练。

分类器运行的信息,分类器训练的结果,分类器验证验证的结果、准确性计算等信息如下:Visualize信息图,3种类别用不同颜色表示出来。

可以从图中看出哪些属性的组合具有较好的区分度。

(2)离散化(discretize):类weka.filters.supervised.attribute.Discretize和weka.filters.unsupervised.attribute.Discretize。

分别进行监督和无监督的数值属性的离散化,用来离散数据集中的一些数值属性到分类属性。

模式识别与机器学习第三章作业

模式识别与机器学习第三章作业

模式识别与机器学习第三章作业在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。

问该模式识别问题所需判别函数的最少数目是多少?解:一个三类问题,其判别函数如下:d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1(1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。

(2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。

绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。

解:两类模式,每类包括5个3维不同的模式,且良好分布。

如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。

)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T}ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T}编写求解上述问题的感知器算法程序。

感知器算法程序源代码:X1=[0 0 0 1;1 0 0 1;1 0 1 1;1 1 0 1]; X2=[0 0 1 1;0 1 1 1;0 1 0 1;1 1 1 1]; X2=X2*(-1);A=[X1;X2];w=[0 0 0 0]; %设置初始权向量flag=0; %设置标志while flag==0m=[0 0 0 0 0 0 0 0];for i=1:8y=w*A(i,:)';if y<=0w=A(i,:)+w;m(i)=1;end;end;w %输出迭代过程中权向量if m==[0 0 0 0 0 0 0 0]flag=1;end;end;运行结果为:用多类感知器算法求下列模式的判别函数:ω1: (-1 -1)Tω2: (0 0)Tω3: (1 1)T采用梯度法和准则函数式中实数b>0,试导出两类模式的分类算法。

模式识别(三)课后上机作业参考解答

模式识别(三)课后上机作业参考解答

“模式识别(三).PDF”课件课后上机选做作业参考解答(武大计算机学院袁志勇, Email: yuanzywhu@) 上机题目:两类问题,已知四个训练样本ω1={(0,0)T,(0,1)T};ω2={(1,0)T,(1,1)T}使用感知器固定增量法求判别函数。

设w1=(1,1,1)Tρk=1试编写程序上机运行(使用MATLAB、 C/C++、C#、JA V A、DELPHI等语言中任意一种编写均可),写出判别函数,并给出程序运行的相关运行图表。

这里采用MATLAB编写感知器固定增量算法程序。

一、感知器固定增量法的MATLAB函数编写感知器固定增量法的具体内容请参考“模式识别(三).PDF”课件中的算法描述,可将该算法编写一个可以调用的自定义MATLAB函数:% perceptronclassify.m%% Caculate the optimal W by Perceptron%% W1-3x1 vector, initial weight vector% Pk-scalar, learning rate% W -3x1 vector, optimal weight vector% iters - scalar, the number of iterations%% Created: May 17, 2010function [W iters] = perceptronclassify(W1,Pk)x1 = [0 0 1]';x2 = [0 1 1]';x3 = [1 0 1]';x4 = [1 1 1]';% the training sampleWk = W1;FLAG = 0;% iteration flagesiters = 0;if Wk'*x1 <= 0Wk =Wk + x1;FLAG = 1;endif Wk'*x2 <= 0Wk =Wk + x2;FLAG = 1;endif Wk'*x3 >= 0Wk=Wk-x3;FLAG = 1; endif Wk'*x4 >= 0Wk =Wk -x4; FLAG = 1; enditers = iters + 1; while (FLAG) FLAG = 0; if Wk'*x1 <= 0Wk = Wk + x1; FLAG = 1; endif Wk'*x2 <= 0Wk = Wk + x2; FLAG = 1; endif Wk'*x3 >= 0 Wk = Wk - x3; FLAG = 1; endif Wk'*x4 >= 0 Wk = Wk - x4; FLAG = 1; enditers = iters + 1; endW = Wk;二、程序运行程序输入:初始权向量1W , 固定增量大小k ρ 程序输出:权向量最优解W , 程序迭代次数iters 在MATLAB 7.X 命令行窗口中的运行情况: 1、初始化1[111]T W = 初始化W 1窗口界面截图如下:2、初始化1kρ=初始化Pk 窗口界面截图如下:3、在MATLAB 窗口中调用自定义的perceptronclassify 函数由于perceptronclassify.m 下自定义的函数文件,在调用该函数前需要事先[Set path…]设置该函数文件所在的路径,然后才能在命令行窗口中调用。

模式识别大作业1

模式识别大作业1

模式识别大作业--fisher线性判别和近邻法学号:021151**姓名:**任课教师:张**I. Fisher线性判别A. fisher线性判别简述在应用统计方法解决模式识别的问题时,一再碰到的问题之一是维数问题.在低维空间里解析上或计算上行得通的方法,在高维里往往行不通.因此,降低维数就成为处理实际问题的关键.我们考虑把维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维.这样,必须找一个最好的,易于区分的投影线.这个投影变换就是我们求解的解向量.B.fisher线性判别的降维和判别1.线性投影与Fisher准则函数各类在维特征空间里的样本均值向量:,(1)通过变换映射到一维特征空间后,各类的平均值为:,(2)映射后,各类样本“类内离散度”定义为:,(3)显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离散度越小越好。

因此,定义Fisher准则函数:(4)使最大的解就是最佳解向量,也就是Fisher的线性判别式。

2.求解从的表达式可知,它并非的显函数,必须进一步变换。

已知:,, 依次代入上两式,有:,(5)所以:(6)其中:(7)是原维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大小,因此,越大越容易区分。

将(4.5-6)和(4.5-2)代入(4.5-4)式中:(8)其中:,(9)因此:(10)显然:(11)称为原维特征空间里,样本“类内离散度”矩阵。

是样本“类内总离散度”矩阵。

为了便于分类,显然越小越好,也就是越小越好。

将上述的所有推导结果代入表达式:可以得到:其中,是一个比例因子,不影响的方向,可以删除,从而得到最后解:(12)就使取得最大值,可使样本由维空间向一维空间映射,其投影方向最好。

是一个Fisher线性判断式.这个向量指出了相对于Fisher准则函数最好的投影线方向。

C.算法流程图左图为算法的流程设计图。

II.近邻法A. 近邻法线简述K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

模式识别大作业

模式识别大作业

模式识别大作业(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--作业1 用身高和/或体重数据进行性别分类(一)基本要求:用和的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。

调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。

具体做法:1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。

在分类器设计时可以考察采用不同先验概率(如对, 对, 对等)进行实验,考察对决策规则和错误率的影响。

图1-先验概率:分布曲线图2-先验概率:分布曲线图3--先验概率:分布曲线图4不同先验概率的曲线有图可以看出先验概率对决策规则和错误率有很大的影响。

程序:和2.应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。

比较相关假设和不相关假设下结果的差异。

在分类器设计时可以考察采用不同先验概率(如 vs. , vs. , vs. 等)进行实验,考察对决策和错误率的影响。

训练样本female来测试图1先验概率 vs. 图2先验概率 vs.图3先验概率 vs. 图4不同先验概率对测试样本1进行试验得图对测试样本2进行试验有图可以看出先验概率对决策规则和错误率有很大的影响。

程序和3.自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。

W1W2W10W20close all;clear all;X=120::200; %设置采样范围及精度pw1=;pw2=; %设置先验概率sample1=textread('') %读入样本samplew1=zeros(1,length(sample1(:,1)));u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布figure(1);subplot(2,1,1);plot(X,y1);title('F身高类条件概率分布曲线');sample2=textread('') %读入样本samplew2=zeros(1,length(sample2(:,1)));u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布subplot(2,1,2);plot(X,y2);title('M身高类条件概率分布曲线');P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);figure(2);subplot(2,1,1);plot(X,P1);title('F身高后验概率分布曲线');subplot(2,1,2);plot(X,P2);title('M身高后验概率分布曲线');P11=pw1*y1;P22=pw2*y2;figure(3);subplot(3,1,1);plot(X,P11);subplot(3,1,2);plot(X,P22);subplot(3,1,3);plot(X,P11,X,P22);sample=textread('all ') %读入样本[result]=bayes(sample1(:,1),sample2(:,1),pw1,pw2);%bayes分类器function [result] =bayes(sample1(:,1),sample2(:,1),pw1,pw2); error1=0;error2=0;u1=mean(sample1(:,1));m1=std(sample1(:,1));y1=normpdf(X,u1,m1); %类条件概率分布u2=mean(sample2(:,1));m2=std(sample2(:,1));y2=normpdf(X,u2,m2); %类条件概率分布P1=pw1*y1./(pw1*y1+pw2*y2);P2=pw2*y2./(pw1*y1+pw2*y2);for i = 1:50if P1(i)>P2(i)result(i)=0;pe(i)=P2(i);elseresult(i)=1;pe(i)=P1(i);endendfor i=1:50if result(k)==0error1=error1+1;else result(k)=1error2=error2+1;endendratio = error1+error2/length(sample); %识别率,百分比形式sprintf('正确识别率为%.2f%%.',ratio)作业2 用身高/体重数据进行性别分类(二)基本要求:试验直接设计线性分类器的方法,与基于概率密度估计的贝叶斯分离器进行比较。

模式识别实验【范本模板】

模式识别实验【范本模板】

《模式识别》实验报告班级:电子信息科学与技术13级02 班姓名:学号:指导老师:成绩:通信与信息工程学院二〇一六年实验一 最大最小距离算法一、实验内容1. 熟悉最大最小距离算法,并能够用程序写出。

2. 利用最大最小距离算法寻找到聚类中心,并将模式样本划分到各聚类中心对应的类别中.二、实验原理N 个待分类的模式样本{}N X X X , 21,,分别分类到聚类中心{}N Z Z Z , 21,对应的类别之中.最大最小距离算法描述:(1)任选一个模式样本作为第一聚类中心1Z 。

(2)选择离1Z 距离最远的模式样本作为第二聚类中心2Z 。

(3)逐个计算每个模式样本与已确定的所有聚类中心之间的距离,并选出其中的最小距离.(4)在所有最小距离中选出一个最大的距离,如果该最大值达到了21Z Z -的一定分数比值以上,则将产生最大距离的那个模式样本定义为新增的聚类中心,并返回上一步.否则,聚类中心的计算步骤结束。

这里的21Z Z -的一定分数比值就是阈值T ,即有:1021<<-=θθZ Z T(5)重复步骤(3)和步骤(4),直到没有新的聚类中心出现为止。

在这个过程中,当有k 个聚类中心{}N Z Z Z , 21,时,分别计算每个模式样本与所有聚类中心距离中的最小距离值,寻找到N 个最小距离中的最大距离并进行判别,结果大于阈值T 是,1+k Z 存在,并取为产生最大值的相应模式向量;否则,停止寻找聚类中心。

(6)寻找聚类中心的运算结束后,将模式样本{}N i X i ,2,1, =按最近距离划分到相应的聚类中心所代表的类别之中。

三、实验结果及分析该实验的问题是书上课后习题2。

1,以下利用的matlab 中的元胞存储10个二维模式样本X {1}=[0;0];X{2}=[1;1];X {3}=[2;2];X{4}=[3;7];X{5}=[3;6]; X{6}=[4;6];X{7}=[5;7];X{8}=[6;3];X{9}=[7;3];X{10}=[7;4];利用最大最小距离算法,matlab 运行可以求得从matlab 运行结果可以看出,聚类中心为971,,X X X ,以1X 为聚类中心的点有321,,X X X ,以7X 为聚类中心的点有7654,,,X X X X ,以9X 为聚类中心的有1098,,X X X 。

模式识别实验指导书2015

模式识别实验指导书2015

6
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)
(c) 用(b)中设计的分类器对测试点进行分类: (1, 2,1) , (5,3, 2) , (0, 0, 0) , (1, 0, 0) , 并且利用式(45)求出各个测试点与各个类别均值之间的 Mahalanobis 距离。 (d) 如果 P ( w1 ) 0.8, P ( w2 ) P ( w3 ) 0.1 ,再进行(b)和(c)实验。 (e) 分析实验结果。 表格 1
深圳大学研究生课程:模式识别理论与方法
课程作业实验指导
(4th Edition) (分数:5%10=50%) (共 10 题)
实验参考教材:
a) 《Pattern Classification》by Richard O.Duda, Peter E.Hart, David G.Stork, 2nd Edition Wiley-Interscience, 2000. (机械工业出版社,2004 年, 影印版)。 b) 《模式分类》Richard O.Duda, Peter E.Hart, David G.Stork 著;李宏东, 姚天翔等译;机械工业出版社和中信出版社出版,2003 年。(上面 a 的 中文翻译版) c) 《模式识别(英文第四版)》Sergios Theodoridis, Konstantinos Koutroumbas 著;机械工业出版社,2009 年,影印版。 d) 《神经网络与机器学习(原书第三版)》Simon Haykin 著;申富 饶等译,机械工业出版社,2013 年。
裴继红 编
2015 年 2 月 深圳大学 信息工程学院
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)

模式识别习题及答案-精品资料

模式识别习题及答案-精品资料

第一章绪论1 •什么是模式?具体事物所具有的信息。

模式所指的不是事物本身,而是我们从事物中获得的—信息__。

2. 模式识别的定义? 让计算机来判断事物。

3. 模式识别系统主要由哪些部分组成? 数据获取一预处理一特征提取与选择一分类器设计/分类决策。

第二章贝叶斯决策理论P ( W 2 ) / p ( w 1 ) _,贝V X1. 最小错误率贝叶斯决策过程?答:已知先验概率,类条件概率。

利用贝叶斯公式 得到后验概率。

根据后验概率大小进行决策分析。

2 .最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率P ( W i ), i类条件概率分布p ( x | W i ), i 1 , 2 利用贝叶斯公式得到后验概率P (W i | x)P(X | W j )P(W j )j 1如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。

3. 最小错误率贝叶斯决策规则有哪几种常用的表示形式?决策规则的不同形式(董点)C1^ 如vr, | JV ) = max 戶(vr ] WJ A * U vtvEQ 如杲尹a H ; )2^(ir, ) = max |沪0輕』),则x e HpCx |=尸4 "J"匕< 4) 如!4i= — 1IL | /( JV )] = — 111 戸(兀 | w”. ) -+- 11111r a4. 贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了 (平均)错误率最小。

Bayes 决策是最优决策:即,能使决策错误率最小。

5 .贝叶斯决策是 由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这 个概率进行决策。

6.利用乘法法则和全概率公式证明贝叶斯公式p(AB) p(A|B)p(B) p(B|A)p(A)P (A」B )答:m所以推出贝叶斯公式p(B) p(B|Aj)p(Aj)j 17. 朴素贝叶斯方法的条件独立D (1P (x | W i ) P(W i )i i入)2P(x | W j ) P (w j )j 11 ,2P (x | W i )P(W i )如果 I (x)P(B |A i )P(AJ P ( B ) P ( B | A i ) P ( A i ) 7MP ( B | A j ) P ( A j )2假设是( P(x| 3 i) =P(x1, x2, …,xn | co i)19.=P(x1|3 i) P(x2| 3 i)…P(xn| 3 i))8•怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn |3 i) = P(x1| 3 i) P(x2| 3 i)P(xn| 3 i)后验概率:P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方 差,最后得到类条件概率分布。

模式识别练习题及答案.docx

模式识别练习题及答案.docx

1=填空题1、模式识别系统的基本构成单元包括:模式采集、特征选择与提取和模式分类。

2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。

3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离门限、预定的类别数目。

4、线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

5、感知器算法丄。

(1 )只适用于线性可分的情况;(2)线性可分、不可分都适用。

6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重愛情况;最小最大判别准则主要用于先验概率未知的情况。

7、“特征个数越多越有利于分类”这种说法正确吗?错误。

特征选择的主要目的是从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数。

一般在可分性判据对特征个数具有单调性和(C n m»n )的条件下,可以使用分支定界法以减少计算量。

& 散度Jij越大,说明。

类模式与3j类模式的分布差别越大;当3类模式与(Oj类模式的分布相同时,Jij=_O_.选择题1、影响聚类算法结果的主要因素有(BCD ).A.已知类别的样本质量B.分类准则C.特征选取D.模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是(CD )。

A.平移不变性B.旋转不变性C.尺度不变性D.考虑了模式的分布3、影响基本K-均值算法的主要因素有(DAB )。

A.样本输入顺序B.模式相似性测度C.聚类准则D.初始类中心的选取4、在统计模式分类问题中,当先验概率未知时,可以使用(BD )。

A.最小损失准则B.最小最大损失准则C.最小误判概率准则D.N-P判决5、散度环是根据(C )构造的可分性判据。

A.先验概率B.后验概率C.类概率密度D.信息燔E.几何距离6、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(B C )。

模式识别_作业3

模式识别_作业3

作业一:设以下模式类别具有正态概率密度函数: ω1:{(0 0)T , (2 0)T , (2 2)T , (0 2)T }ω2:{(4 4)T , (6 4)T , (6 6)T , (4 6)T }(1)设P(ω1)= P(ω2)=1/2,求这两类模式之间的贝叶斯判别界面的方程式。

(2)绘出判别界面。

答案:(1)模式的均值向量m i 和协方差矩阵C i 可用下式估计:2,111==∑=i x N m i N j ij i i2,1))((11=--=∑=i m x m x N C i N j Ti ij i ij i i 其中N i 为类别ωi 中模式的数目,x ij 代表在第i 个类别中的第j 个模式。

由上式可求出:T m )11(1= T m )55(2= ⎪⎪⎭⎫ ⎝⎛===1 00 121C C C ,⎪⎪⎭⎫⎝⎛=-1 00 11C 设P(ω1)=P(ω2)=1/2,因C 1=C 2,则判别界面为:24442121)()()(2121211112121=+--=+--=----x x m C m m C m x C m m x d x d T T T(2)作业二:编写两类正态分布模式的贝叶斯分类程序。

程序代码:#include<iostream>usingnamespace std;void inverse_matrix(int T,double b[5][5]){double a[5][5];for(int i=0;i<T;i++)for(int j=0;j<(2*T);j++){ if (j<T)a[i][j]=b[i][j];elseif (j==T+i)a[i][j]=1.0;elsea[i][j]=0.0;}for(int i=0;i<T;i++){for(int k=0;k<T;k++){if(k!=i){double t=a[k][i]/a[i][i];for(int j=0;j<(2*T);j++){double x=a[i][j]*t;a[k][j]=a[k][j]-x;}}}}for(int i=0;i<T;i++){double t=a[i][i];for(int j=0;j<(2*T);j++)a[i][j]=a[i][j]/t;}for(int i=0;i<T;i++)for(int j=0;j<T;j++)b[i][j]=a[i][j+T];}void get_matrix(int T,double result[5][5],double a[5]) {for(int i=0;i<T;i++){for(int j=0;j<T;j++){result[i][j]=a[i]*a[j];}}}void matrix_min(int T,double a[5][5],int bb){for(int i=0;i<T;i++){for(int j=0;j<T;j++)a[i][j]=a[i][j]/bb;}}void getX(int T,double res[5],double a[5],double C[5][5]) {for(int i=0;i<T;i++)double sum=0.0;for(int j=0;j<T;j++)sum+=a[j]*C[j][i];res[i]=sum;}}int main(){int T;int w1_num,w2_num;double w1[10][5],w2[10][5],m1[5]={0},m2[5]={0},C1[5][5]={0},C2[5][5]={0};cin>>T>>w1_num>>w2_num;for(int i=0;i<w1_num;i++){for(int j=0;j<T;j++){cin>>w1[i][j];m1[j]+=w1[i][j];}}for(int i=0;i<w2_num;i++){for(int j=0;j<T;j++){cin>>w2[i][j];m2[j]+=w2[i][j];}}for(int i=0;i<w1_num;i++)m1[i]=m1[i]/w1_num;for(int i=0;i<w2_num;i++)m2[i]=m2[i]/w2_num;for(int i=0;i<w1_num;i++){double res[5][5],a[5];for(int j=0;j<T;j++)a[j]=w1[i][j]-m1[j];get_matrix(T,res,a);for(int j=0;j<T;j++){for(int k=0;k<T;k++)C1[j][k]+=res[j][k];}matrix_min(T,C1,w1_num);for(int i=0;i<w2_num;i++){double res[5][5],a[5];for(int j=0;j<T;j++)a[j]=w2[i][j]-m2[j];get_matrix(T,res,a);for(int j=0;j<T;j++){for(int k=0;k<T;k++)C2[j][k]+=res[j][k];}}matrix_min(T,C2,w2_num);inverse_matrix(T,C1);inverse_matrix(T,C2);double XX[5]={0},C_C1[5]={0},C_C2[5]={0};double m1_m2[5];for(int i=0;i<T;i++){m1_m2[i]=m1[i]-m2[i];}getX(T,XX,m1_m2,C1);getX(T,C_C1,m1,C1);getX(T,C_C2,m2,C1);double resultC=0.0;for(int i=0;i<T;i++)resultC-=C_C1[i]*C_C1[i];for(int i=0;i<T;i++)resultC+=C_C2[i]*C_C2[i];resultC=resultC/2;cout<<"判别函数为:"<<endl;cout<<"d1(x)-d2(x)=";for(int i=0;i<T;i++)cout<<XX[i]<<"x"<<i+1;if(resultC>0)cout<<"+"<<resultC<<endl;elseif(resultC<0)cout<<resultC<<endl;return 0;}运行截图:。

模式识别考试

模式识别考试

简答题1. 什么是模式与模式识别模式识别: 模式识别是研究用计算机来实现人类模式识别能力的一门学科。

模式:模式是一些供模仿用的、完美无缺的标本。

2. 模式识别系统的组成信息获取,预处理,特征提取和选取,分类器设计,分类决策3. 什么是后验概率?系统在某个具体的模式样本X条件下位于某种类型的概率。

、4. 确定线性分类器的主要步骤采集训练样本,构成训练样本集。

样本应该具有典型性确定一个准则J=J(w,x),能反映分类器性能,且存在权值w*使得分类器性能最优设计求解w的最优算法,得到解向量w*5. 样本集推断总体概率分布的方法?参数估计监督参数估计:样本所属类别及类条件总体概率密度函数的形式已知,某些参数未知非监督参数估计:已知总体概率密度函数形式但未知样本类别,要推断某些参数非参数估计:已知样本类别,未知总体概率密度函数形式,要求直接推断概率密度函数本身6. 近邻法的主要思想作为一种分段线性判别函数的极端情况,将各类中全部样本都作为代表点,这样的决策方法就是近邻法的基本思想。

7. 什么是K近邻法?他是最近邻法的推广,取未知样本x的k个近邻,看这k个近邻中多数属于哪一类,就把x归为哪一类。

8.监督学习和非监督学习的区别监督学习的用途明确,就是对样本进行分类。

训练样本集给出不同类别的实例,从这些实例中找出区分不同类样本的方法,划定决策面非监督学习的用途更广泛,用来分析数据的内在规律,如聚类分析,主分量分析,数据拟合等等9. 什么是误差平法和准则对于一个给定的聚类,均值向量是最能代表聚类中所有样本的一个向量,也称其为聚类中心。

一个好的聚类方法应能使集合中的所有向量与这个均值向量的误差的长度平方和最小。

10. 分级聚类算法有两种基本思路聚合法:把所有样本各自看为一类,逐级聚合成一类。

基本思路是根据类间相似性大小逐级聚合,每级只把相似性最大的两类聚合成一类,最终把所有样本聚合为一类。

分解法:把所有样本看做一类,逐级分解为每个样本一类。

模式识别课后习题(英文)

模式识别课后习题(英文)

模式识别课后习题(英文)Pattern Recognition Theory and Its ApplicationPROBLEMS2.5 (1) 对C 类情况推广最小错误率贝叶斯决策规则;(2)指出此时使最小错误率最小等价于后验概率最大,即 (|)(|)i j P x P x ωω> 对一切1j i ω≠∈成立时,x 。

2.5 (1)Generalize the minimum error Bayes decision rule in case of class C;(2) Show that the minimum error rate is equivalent to themaximum posterior probability, namely (|)(|)i j P x P x ωω> where j i ≠ and 1ω∈x .2.6 对两类问题,证明最小风险贝叶斯决策规则可表示为若11222222111121()(),((|)()()|)p x p x p x p ωλλωωλωλωω?-∈?-?则¤ 。

2.6 In the two-category case, show that the minimum risk Bayes decisionrule may be expressed as 12x ωω?∈?? if 122222112111()()((|)(|))()p p p x p x λλωλλωωω--£ .2.7 若11220λλ==,1221λλ=,证明此时最小最大决策面是来自两类的错误率相等。

2.7 Consider minimax criterion for 11220λλ==and 1221λλ=.Prove that in this case 12()()p error p error =.2.22 似然比决策准则为若1221(|)()(|)()()p x p x p p l x ωωωω=¤ 则 12x ωω?∈??付对数似然比为[]()ln ()h x l x =-,当(|)i P x ω是均值向量为i μ 和协方差矩阵为i∑的正态分布时:(1)试推导出()h x ,并指出其决策规则;(2)当12==∑∑∑时,推导()h x 及其决策规则;(3)分析(1),(2)两种情况下的决策面类型。

模式识别小作业

模式识别小作业

(1)神经网络模式识别识别加入20%噪声的A-Z 26个字母。

程序代码clear;close all;clc;[alphabet,targets]=prprob;[R,Q]=size(alphabet);[S2,Q]=size(targets);S1=10;P=alphabet;net=newff(minmax(P),[S1,S2],{'logsig' 'logsig'},'traingdx'); net.LW{2,1}=net.LW{2,1}*0.01;net.b{2}=net.b{2}*0.01;T=targets;net.performFcn='sse';net.trainParam.goal=0.1;net.trainParam.show=20;net.trainParam.epochs=5000;net.trainParam.mc=0.95;[net,tr]=train(net,P,T);netn=net;netn.trainParam.goal=0.6;netn.trainParam.epochs=300;T=[targets targets targets targets];for pass=1:10;P=[alphabet,alphabet,...(alphabet+randn(R,Q)*0.1),...(alphabet+randn(R,Q)*0.2)];[netn,tr]=train(netn,P,T);endnetn.trainParam.goal=0.1;netn.trainParam.epochs=500;netn.trainParam.show=5;P=alphabet;T=targets;[netn,tr]=train(netn,P,T);noise_percent=0.2;for k=1:26noisyChar=alphabet(:,k)+randn(35,1)*noise_percent;subplot(6,9,k+floor(k/9.5)*9);plotchar(noisyChar);de_noisyChar=sim(net,noisyChar);de_noisyChar=compet(de_noisyChar);answer=find(de_noisyChar==1);subplot(6,9,k+floor(k/9.5)*9+9);plotchar(alphabet(:,answer));endset(gcf,'Position',[10,60,900,700], 'color','w')运行结果(2)实现最小错误率和最小风险bayes决策w1=input('input the priorp of a1\n');w2=input('input the priorp of a2\n');p1=input('input the similarp of w1\n');p2=input('input the similarp of w2\n');s=input('input the table\n');posteriorp1=w1*p1; %约去总体概率密度的w1的后验概率posteriorp2=w2*p2; %。

模式识别 清华版 课后题解

模式识别 清华版 课后题解
2
1
1
i 1
2
2
N
( xi ) C
2
i 1
18
•课后题
3.1 设总体分布密度为N ( ,1) ,
并设 { x 1, x 2 , ... x N } , 分别用最大似然估计和贝叶斯估计计算已知 的先验分布: ( ) ~ N (0,1) p
5
知识要点


4. 线性判别函数的理解及应 用,能用不同的方法处理多 类分类问题,重点掌握 Fisher线性判别的主要过程 及步骤。 5. 特征选择及特征提取的含 义、区别与联系,类别可分 离性判据满足的要求,K-L 降维过程等。
6
知识要点

6. 无监督学习与聚类的含义, 主要包括两类学习方法,理 解投影法的过程,重点掌握 动态聚类方法中的K-Means 算法。
3.1 设总体分布密度为N ( ,1) ,
并设 { x 1, x 2 , ... x N } , p 分别用最大似然估计和贝叶斯估计计算已知 的先验分布: ( ) ~ N (0,1)
1
最大似然估计
解: •对数似然函数
L ( ) ln p ( )
11
例题讲解
2.4 分别写出在以下两种情况
(1) P (x |ω 1 )= P (x |ω 2 ) (2) P (ω 1 )= P (ω 2 )
下的最小错误率贝叶斯决策规则。
12
例题讲解
贝叶斯决策规则:
如 果 P ( i | x ) m a x P (
j 1, 2
j
| x ), 则 x i
模式识别 Pattern Recognition

模式识别课后习题答案

模式识别课后习题答案

• 2.4 分别写出在以下两种情况 1. P (x|w1 ) = P (x|w2 ) 2. P (w1 ) = P (w2 ) 下的最小错误率贝叶斯决策规则。 解: 当P (x|w1 ) = P (x|w2 )时,如果P (w1 ) > P (w2 ),则x ∈ w1 ,否则x ∈ w2 。 当P (w1 ) = P (w2 )时,如果P (x|w1 ) > P (x|w2 ),则x ∈ w1 ,否则x ∈ w2 。 • 2.5 1. 对c类情况推广最小错误率率贝叶斯决策规则; 2. 指出此时使错误率最小等价于后验概率最大,即P (wi |x) > P (wj |x) 对一切j ̸= i 成立时,x ∈ wi 。 2
模式识别(第二版)习题解答
解:对于c类情况,最小错误率贝叶斯决策规则为: 如果 P (wi |x) = max P (wj |x),则x ∈ wi 。利用贝叶斯定理可以将其写成先验概率和
j =1,...,c
类条件概率相联系的形式,即 如果 p(x|wi )P (wi ) = max p(x|wj )P (wj ),则x ∈ wi 。
• 2.16 证明M ahalanobis距离r符合距离定义三定理,即 – (1) r(a, b) = r(b, a) – (2) 当且仅当a = b时,r(a, b) = 0 – (3) r(a, c) ≤ r(a, b) + r(b, c) 证明: (1) r(a, b) = (a − b)T Σ−1 (a − b) = (b − a)T Σ−1 (b − a) = r(b, a) (2) Σ为半正定矩阵所以r(a, b) = (a − b)T Σ−1 (a − b) ≥ 0,只有当a = b时,才有r(a, b) = 0。 (3) Σ−1 可对角化,Σ−1 = P ΛP T • 2.17 若将Σ−1 矩阵写为:Σ−1 h1d h2d ,证明M ahalanobis距离平方为 . . . hdd

模式识别作业模板(DOC)

模式识别作业模板(DOC)

模式识别导论大作业(2015-2016第一学期)姓名×××学号××××××任课教师×××南京航空航天大学年月日一、K均值聚类1.功能描述:2.带注释的源代码3.分类结果4.对K均值聚类算法的分析二、线性分类器设计以第一题的分类结果作为样本集,首先选取训练集与测试集(训练集大概是整体样本的2/3),请分别给出三个类别的训练集与测试集包含的样本编号:1.设定分类规则(一对多还是一对一),并利用迭代法在训练集上设计线性分类器(给出惩罚系数),给出判别函数。

同时将测试集中的数据代入判别函数,给出测试的准确率;2.设定分类规则(一对多还是一对一),并利用Fisher法在训练集上设计线性分类器,给出判别函数(给出各类的类间离散度矩阵与类内离散度矩阵等参数)。

同时将测试集中的数据代入判别函数,给出测试的准确率;3.对上述的两种算法进行分析三、贝叶斯决策保持第二题中已选择的训练集与测试集不变,将所有的样本从4维降低为两维(随机选取两维),将训练集的所有样本点在二维坐标系下标注出来,注意不同的类别用不同形状的点加以区分。

1.利用贝叶斯决策与训练集设计分类器,写出判别函数与判别规则。

2.将判别函数作用于测试集,在二维坐标系下将测试集的数据标注出来,注意不同的类别用不同形状的点加以区分,用深浅不同的灰度表示错分与正确分类的样本点,给出分类的准确率。

3.实验结果分析四、特征选择1.保持第二题中已选择的训练集与测试集不变,利用特征选择算法,将样本从4维特征空间降至2维特征空间。

给出特征选择的依据与算法过程。

并将训练集的所有样本点在二维坐标系下标注出来,注意不同的类别用不同形状的点加以区分。

2.依然利用贝叶斯决策和训练集设计分类器,写出判别函数。

3.将判别函数作用于测试集,在二维坐标系下将测试集的数据标注出来,注意不同的类别用不同形状的点加以区分,用深浅不同的灰度表示错分与正确分类的样本点,给出分类的准确率4.实验结果分析五、系统设计1.任务描述:设计一个模式识别系统,可以识别笔、直尺与橡皮。

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案模式识别非学位课考试试题考试科目:模式识别考试时间考生姓名:考生学号任课教师考试成绩一、简答题(每题6分,12题共72分):1、监督学习和非监督学习有什么区别?参考答案:当训练样本的类别信息已知时进行的分类器训练称为监督学习,或者由教师示范的学习;否则称为非监督学习或者无教师监督的学习。

2、你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。

描述样本的常见方法:矢量、矩阵、列表等。

3、什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。

例如:贝叶斯分类器、神经网络等。

4、进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。

5、聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。

距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。

相似测度有角度相似系数、相关系数、指数相似系数等。

6、你怎么理解聚类准则?参考答案:包括类内聚类准则、类间距离准则、类内类间距离准则、模式与类核的距离的准则函数等。

准则函数就是衡量聚类效果的一种准则,当这种准则满足一定要求时,就可以说聚类达到了预期目的。

不同的准则函数会有不同的聚类结果。

7、一种类的定义是:集合S 中的元素x i 和x j 间的距离d ij 满足下面公式:∑∑∈∈≤-S x S x ij i jh d k k )1(1,d ij ≤ r ,其中k 是S 中元素的个数,称S 对于阈值h ,r 组成一类。

请说明,该定义适合于解决哪一种样本分布的聚类?参考答案:即类内所有个体之间的平均距离小于h ,单个距离最大不超过r ,显然该定义适合团簇集中分布的样本类别。

8、贝叶斯决策理论中,参数估计和非参数估计有什么区别?参考答案:参数估计就是已知样本分布的概型,通过训练样本确定概型中的一些参数;非参数估计就是未知样本分布概型,利用Parzen 窗等方法确定样本的概率密度分布规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模式识别理论与方法
课程作业实验报告
实验名称:Maximum-Likelihood Parameter Estimation 实验编号:Proj03-01 姓 名:
学 号:规定提交日期:2012年3月27日 实际提交日期:2012年3月27日
摘 要:
参数估计问题是统计学中的经典问题,其中最常用的一种方法是最大似然估计法,最大似然估计是把待估计的参数看作是确定性的量,只是其取值未知。

最佳估计就是使得产生已观测到的样本的概率为最大的那个值。

本实验研究的训练样本服从多元正态分布,比较了单变量和多维变量的最大似然估计情况,对样本的均值、方差、协方差做了最大似然估计。

实验结果对不同方式计算出的估计值做了比较分析,得出结论:对均值的最大似然估计
就是对全体样本取平均;协方差的最大似然估计则是N 个)'ˆx )(ˆx (u u
k k --矩阵的算术平均,对方差2
σ的最大似然估计是有偏估计。

一、 技术论述
(1)高斯情况:∑和u 均未知
实际应用中,多元正态分布更典型的情况是:均值u 和协方差矩阵∑都未知。

这样,参数向量θ就由这两个成分组成。

先考虑单变量的情况,其中参数向量θ的组成成分是:221,σθθ==u 。

这样,对于单个训练样本的对数似然函数为:
2
12
2
)(212ln 21)(ln θθπθ
θ--
-
=k k x x p (1)
对上式关于变量θ对导:
⎥⎥⎥⎥

⎤⎢⎢⎢⎢⎣⎡-+--=∇=∇2
2
2
12
12
2)(21
)(1
)(ln θθθθθθθθk k k x x x p l (2) 运用式l θ∇=0,我们得到对于全体样本的对数似然函数的极值条件
0)ˆ(ˆ1
n
112=-∑=k k x θθ
(3)
0ˆ)
(ˆ11
2
2
2
112
=-+
-∑
∑==n
k k n k x θθθ
(4)
其中1ˆθ,2ˆθ分别是对于1θ,2θ的最大似然估计。

把1ˆθ,2ˆθ用u
ˆ,2ˆσ代替,并进行简单的整理,我们得到下述的对于均值和方差的最大似然估计结果
∑==n
k k
x n
u
1
1
ˆ (5)
2
1
2
)ˆ(1
ˆ∑=-=
n
k k
u
x n
σ
(6)
当高斯函数为多元时,最大似然估计的过程也是非常类似的。

对于多元高斯分布的均值u 和协方差矩阵∑的最大似然估计结果为:
∑=1
1
ˆn
k
x n
u
(7)
t k n
k k
u x u
x
)ˆ()ˆ(n
1
ˆ1
--=∑
∑= (8) 二、 实验结果
(a )类w1中的3个特征向量,各含10个样本
w1_x1=[0.42 -0.2 1.3 0.39 -1.6 -0.029 -0.23 0.27 -1.9 0.87]'; w1_x2=[-0.087 -3.3 -0.32 0.71 -5.3 0.89 1.9 -0.3 0.76 -1.0]'; w1_x3=[0.58 -3.4 1.7 0.23 -0.15 -4.7 2.2 -0.87 -2.1 -2.6]'; 利用式子(5)、(6)对均值和方差进行最大似然估计,分别得到结果为: u1=-0.0709 s1=0.9062 u2=-0.6047 s2=4.2007
u3=-0.9110 s3=4.5419
将任意两个特征组合,处理二维数据的情形:
利用式子(7)、(8)对均值和协方差矩阵进行最大似然估计,分别得到结果为: u12 =-0.0709 -0.6047 E12 = 0.9062 0.5678 0.5678 4.2007
u13 = -0.0709 -0.9110 E13 =0.9062 0.3941 0.3941 4.5419
u23 =-0.6047 -0.9110 E23 =4.2007 0.7337 0.7337 4.5419
(b )将W1类中三个特征组合,处理三维数据情形
利用式子(7)、(8)对均值和协方差矩阵进行最大似然估计,分别得到结果为: u123 =-0.0709 -0.6047 -0.9110 E123 =0.9062 0.5678 0.3941 0.5678 4.2007 0.7337 0.3941 0.7337 4.5419
(c )假设W2类中三维高斯模型是可分离的,则各个特征之间是相互独立的,可以参照(a )中对单个特征的最大似然估计的方法,可以得到:
u_c =-0.1126 0.4299 0.0037 e_c =0.0539 0 0 0 0.0460 0
0 0 0.0073
(d )由于(c )中是选用的w2类中的数据,所以不便与前3种方式的结果进行比较。

对于w1类的数据,可以看出同一个特征的均值在不同的方式下,似然估计是相等的。

从(5)和(7)两个式子中,可以找到原因,表明:对均值的最大似然估计就是对全体样本取平均。

(e )与上同理,只对w1类数据的结果进行分析。

由结果可以看出,同一个特征的方差在不同的方式下,似然估计是相等的。

可以从(6)和(8)中找到原因。

当然,对方差的最大似然估计是有偏的估计,也就是说,对所有可能的大小为n 的样本集进行方差估计,其数学期望并不等于实际的方差。

因为:
ε2
2
1
21)(n
1σσ
≠-=⎥⎦

⎢⎣⎡-∑=n n x x
n
i i
附录:实验程序
function [u s]=sd_mle(x)
%单维样本的最大似然估计
len=length(x');
u=sum(x)/len;
s=sum((x-u).^2)/len;
end
function [u e]=md_mle(x)
%多维样本的最大似然估计
%x为多维样本
[m n]=size(x);
u=sum(x)/m;
temp=zeros(n,n);
for i=1:m
s=(x(i,:)-u)'*(x(i,:)-u);
temp=s+temp;
end
e=temp/m;
end
% proj03_01
clc,clear
w1_x1=[0.42 -0.2 1.3 0.39 -1.6 -0.029 -0.23 0.27 -1.9 0.87]';
w1_x2=[-0.087 -3.3 -0.32 0.71 -5.3 0.89 1.9 -0.3 0.76 -1.0]';
w1_x3=[0.58 -3.4 1.7 0.23 -0.15 -4.7 2.2 -0.87 -2.1 -2.6]';
w2_x1=[-0.4 -0.31 0.38 -0.15 -0.35 0.17 -0.011 -0.27 -0.065 -0.12]';
w2_x2=[0.58 0.27 0.055 0.53 0.47 0.69 0.55 0.61 0.49 0.054]';
w2_x3=[0.089 -0.04 -0.035 0.011 0.034 0.1 -0.18 0.12 0.0012 -0.063]'; %--------问题a---------
%类别w1中特征1的最大似然估计
[u1 s1]=sd_mle(w1_x1)
%类别w1中特征2的最大似然估计
[u2 s2]=sd_mle(w1_x2)
%类别w1中特征3的最大似然估计
[u3 s3]=sd_mle(w1_x3)
%类别w1中特征1、2的最大似然估计
x=[w1_x1,w1_x2];
[u12 e12]=md_mle(x)
%类别w1中特征1、3的最大似然估计
x=[w1_x1,w1_x3];
[u13 e13]=md_mle(x)
%类别w1中特征2、3的最大似然估计
x=[w1_x2,w1_x3];
[u23 e23]=md_mle(x)
%--------问题b---------
%类别w1中特征1、2、3的最大似然估计x=[w1_x1,w1_x2,w1_x3];
[u123 e123]=md_mle(x)
%--------问题c---------
%求w2类中单个特征的均值、方差
[u1 s1]=sd_mle(w2_x1);
[u2 s2]=sd_mle(w2_x2);
[u3 s3]=sd_mle(w2_x3);
u_c=[u1,u2,u3]
e_c=[s1 0 0;0 s2 0;0 0 s3]。

相关文档
最新文档