人教版高中数学选修2-1第一章单元复习教案(基础)
最新人教版高中数学选修2-1第一章《全称量词、存在量词复习》教学设计
教学设计本章复习教学目标知识与技能了解命题的逆命题、否命题与逆否命题,理解充分条件、必要条件与充要条件的意义,会分析四种命题间的相互关系,通过数学实例,了解逻辑联接词“或”“且”“非”的含义;理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定.过程与方法通过本章的学习,体会逻辑用语在数学表述和论证及实际生活中的运用,引导学生在使用常用逻辑用语的过程中,掌握逻辑用语的用法,纠正出现的错误,体会运用常用逻辑用语表述数学内容的准确性和简洁性,避免对逻辑用语的机械记忆和抽象表示.培养学生由具体到抽象的思维方法,发展理性思维能力.情感、态度与价值观通过本章的学习,提高学生理性分析,逻辑推理的能力;体会数学的严谨性,提高思维的深刻性和批判性,感受对立统一的思想,培养良好的思维品质.重点难点教学重点:(1)理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;(2)理解充分条件,必要条件及充要条件的意义;(3)学会用定义解题,理解数形结合、分类讨论、等价转换等思想方法.教学难点:(1)理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;(2)理解充分条件,必要条件及充要条件的意义;(3)学会用定义解题,理解数形结合、分类讨论及等价变换等思想方法.教学过程形成网络1.本章的知识结构图2.本章基本知识点(1)命题:用语言、符号或式子表达的,可以______叫做命题,其中判断为真的语句叫做______,判断为假的语句叫做______.(2)四种命题的形式及其关系:①四种命题:若原命题为“若p,则q”,则其逆命题为______;否命题是______;逆否命题是______.②四种命题之间的关系:(3)充分条件、必要条件与充要条件:①充分条件与必要条件:一般地,“若p,则q”为______,是指由p通过推理可以得出q.这时,我们就说,______,记作______,并且说______的充分条件,______的必要条件.②充要条件:一般地,如果既有______,又有______,就记作p q.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的______条件.概括地说,如果p q,那么______互为充要条件.(4)逻辑联接词①命题中的______、______、______叫做逻辑联接词.②命题“p∧q、p∨q、p(或q)”真假判断.(5)全称量词与存在量词①全称量词:短语“所有的”“任意一个”在逻辑中通常叫做______,并用符号“ ”表示.含有全称量词的命题,叫做______.②存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做______,并用符号“ ”表示.含有存在量词的命题,叫做______.(6)含有一个量词的命题的否定①全称命题p:x∈M,p(x),它的否定p:______.②存在命题p:x0∈M,p(x0),它的否定p:______.提出问题:1.请同学们独立完成知识填空.2.在完成知识填空的同时,回想一下本章有哪些基本题型,解决这些基本题型的方法和步骤是什么?活动设计:学生独立完成基本知识填空,然后让几位同学口答填空答案,教师借助多媒体投影出知识填空的答案,适当地规范学生的表述;通过回忆旧知识,并思考、讨论回答问题.学情预测:学生在前面几节学习的基础上,能够顺利地完成基本知识填空,但在准确性、规范表达上会存在着一定的差距.题型和方法的总结更是五花八门.活动结果:知识填空答案:(1)判断真假的陈述句真命题假命题(2)①若q,则p若p,则q若q,则p(3)①真命题由p可以推出q p q p是q q是p②p q q p充要p与q(4)①或且非(5)①全称量词全称命题②存在量词特称命题(6)①x0∈M,p(x0)②x∈M,p(x)设计意图:全面系统地梳理基础知识,帮助学生巩固基础,加深对概念、公式、定理的理解,虽然题型和方法总结得不到位,教师利用下一环节“典型示例”和同学们一块儿总结一下本章的重点题型和方法.典型示例类型一:命题的关系及真假的判断1写出命题“当c>0时,若a>b,则ac>bc”的逆命题、否命题与逆否命题,并分别判断它们的真假.思路分析:写成“若p,则q”的形式,再分别写出原命题的逆命题、否命题、逆否命题,然后逐一判断真假.解:逆命题:当c>0时,若ac>bc,则a>b,是真命题;否命题:当c>0时,若a≤b,则ac≤bc,是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b,是真命题.点评:对于命题真假的判定,关键是分清命题的条件和结论,只有将条件和结论分清,再结合所涉及的知识才能正确地判断命题的真假.巩固练习1.对于命题“正方形的四个内角相等”,下面判断正确的是()A.所给命题为假B.它的逆否命题为真C.它的逆命题为真D.它的否命题为真2.“若x≠a,则x2-(a+b)x+ab≠0”的否命题()A.若x≠a,则x2-(a+b)x+ab=0B.若x=a,则x2-(a+b)x+ab≠0C.若x=a,则x2-(a+b)x+ab=0D .以上都不对 答案:1.B 2.C类型二:充分条件与必要条件的判定 2指出下列各组命题中,p 是q 的什么条件?(1)p :a +b =2; q :直线x +y =0与圆(x -a)2+(y -b)2=2相切; (2)p :|x|=x ;q: x 2+x ≥0;(3)设l ,m 均为直线,α为平面,其中l α,m α ,p :l ∥α;q :l ∥m ; (4) 设α∈(-π2,π2),β∈(-π2,π2);p: α<β;q :tanα<tanβ.思路分析:利用定义,逐一判断即可. 解:(1)p 是q 的充要条件; (2)p 是q 的充分不必要条件; (3)p 是q 的必要不充分条件; (4)p 是q 的充要条件.点评:注意p 与q 之间关系的方向性,充分条件与必要条件正好相反,不要混淆.巩固练习设a ,b ∈R ,已知命题p :a =b ;命题q :(a +b 2)2≤a 2+b 22,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 答案:B类型三:充要条件的证明3求证:直线l :ax -y +b =0经过两直线l 1:2x -2y -3=0和l 2:3x -5y +1=0交点的充要条件是17a +4b =11.思路分析:从必要性着手,分充分性和必要性两方面证明.解:(必要性)由⎩⎪⎨⎪⎧2x -2y -3=0,3x -5y +1=0, 得交点P(174,114).∵直线l 过点P , ∴ a ×174-114+b =0.∴ 17a +4b =11.(充分性):设a ,b 满足17a +4b =11,∴ b =11-17a 4.代入直线l 的方程:ax -y +11-17a4=0, 整理得:a(x -174)-(y -114)=0.此方程表明,直线恒过两直线y -114=0,x -174=0的交点(174,114),而此点为l 1与l 2的交点. ∴充分性得证. ∴综上所述,命题为真.点评:关于充要条件的证明,一般有两种方式,一种是利用“ ”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性.类型四:用“或、且、非”连接简单命题,并判断真假4已知命题p : x ∈R ,使tanx =1,命题q :x 2-3x +2<0的解集是{x|1<x<2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④思路分析:首先判断每个简单命题的真假,然后依照真值表逐个判断每个复合命题的真假.解:命题p :x ∈R ,使tanx =1是真命题,命题q :x 2-3x +2<0的解集是{x|1<x<2}是真命题,由真值表可知,命题“p ∧q ”是真命题,命题“p ∧q ”是假命题,命题“p ∨q ”是真命题, 命题“p ∨q ”是假命题,即四个结论均正确,应选D.点评:本题的关键是判断每个简单命题的真假.巩固练习如果命题“(p 或q)”为假命题,则( ) A .p 、q 均为真命题 B .p 、q 均为假命题C .p 、q 中至少有一个为真命题D .p 、q 中至多有一个为真命题 答案:C类型五:全称、特称命题的真假及全称、特称命题的否定5写出下列命题的否定,判断它们否定的真假.(1)无论x为何实数,sin2x+cos2x=1;(2)不等式x2+x+1≤0有实数解.思路分析:否定量词,否定判断词,写出命题的否定,然后判断命题的真假.解:(1)存在x0 为实数,sin2x0+cos2x0≠1.是假命题.(2) x∈R,都有不等式x2+x+1>0成立.是真命题.点评:只否定全称量词和存在量词,或只否定判断词,会因为否定不全面或否定词不准确而致错.巩固练习命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R, 2x>0答案:D拓展实例1用反证法证明:已知x、y∈R,x+y≥2,则x、y中至少有一个大于1.思路分析:因原命题与逆否命题是等价命题,可以考虑证明它的逆否命题为真命题,从而达到证明原命题为真命题的目的.当然也可选用反证法.证明:(法一)若设x<1且y<1,则由不等式同向相加的性质得到:x+y<2,这表明,原命题的逆否命题为真命题,从而原命题也为真命题,∴若x、y∈R,x+y≥2, 则x、y中至少有一个大于1成立.(法二)假设x<1且y<1,由不等式同向相加的性质得到x+y<2;与已知x+y≥2矛盾,∴假设不成立.∴x、y中至少有一个大于1.点评:反证法的理论依据是:欲证“若p,则q”为真,先证“若p,则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p,则非q”为假时,“若p,则q”一定为真.2若A是B的必要而不充分条件,C是B的充要条件,D是C的充分而不必要条件,判断D是A的什么条件.思路分析:利用“”“”符号分析各命题之间的关系.解:由D C B A ,∴DA ,D 是A 的充分条件.点评:符号“”“”具有传递性,不过前者是单方向的,后者是双方向的.变练演编设集合M ={x|0<x ≤3},N ={x|x 2-(2a +1)x +a(a +1)≤0},若“x ∈M ”是“x ∈N ”成立的必要不充分条件,求a 的取值范围.思路分析:将“x ∈M ”是“x ∈N ”成立的必要不充分条件,转化为集合之间的关系即N M.解:由x 2-(2a +1)x +a(a +1)≤0,解得a ≤x ≤a +1, ∴N ={x|a ≤x ≤a +1},由于N M ,∴⎩⎪⎨⎪⎧a>0,a +1≤3.解得0<a ≤2. 所以a 的取值范围为{a|0<a ≤2}.点评:在涉及求字母参数的取值范围的充要条件问题中,常常要利用集合的包含、相等关系来考虑.提出问题:设集合M ={x|0<x ≤3},N ={x|x 2-(2a +1)x +a(a +1)≤0},若“x ∈M ”是“x ∈N ”成立的______条件,求a 的取值范围.活动设计:引导学生适当改变题目的条件和结论,进行一题多变,学生自己设计题目进行研究,将所有发现的结果一一列举,熟练充要条件的判断方法.活动结果:(1)充分不必要;a ∈ ; (2)必要;{a|0<a ≤2}; (3)充要;a ∈.设计意图:通过本题产生对充要条件一个认识上的升华,完成对充分条件、必要条件、充要条件的再认识.达标检测1.命题“方程|x|=1的解是x =±1”中,使用逻辑联结词的情况是( ) A .使用了逻辑联结词“或” B .使用了逻辑联结词“且” C .使用了逻辑联结词“非”D.没有使用逻辑联结词2.已知条件p:k=3,条件q:直线y=kx+2与圆x2+y2=1相切,则p是q的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.命题“若a>b, 则2a>2b”的否命题为______.4.命题p:x∈R,f(x)≥m.则命题p的否定p是______.答案:1.A 2.A 3.若a≤b,则2a≤2b 4. x0∈R,f(x0)<m课堂小结1.知识收获:(1)命题的概念;(2)四种命题的形式及其关系;(3)充分条件、必要条件与充要条件;(4)逻辑联结词;(5)全称量词与存在量词;(6)含有一个量词的命题的否定.2.方法收获:(1)命题的关系及真假的判断;(2)充分条件与必要条件的判定;(3)充要条件的证明;(4)用“或、且、非”连接简单命题,并判断真假;(5)全称特、称命题的真假及全称、特称命题的否定.3.思维收获:体会数学的严谨性,提高思维的深刻性和批判性,养成严谨缜密的思维习惯.布置作业课本复习参考题:A组第5题、第6题.补充练习1.在下列关于直线l、m与平面α、β的命题中,为真命题的是()A.若l β且α⊥β,则l⊥αB.若l⊥β且α∥β,则l⊥αC.若l⊥β且α⊥β,则l∥αD.若α∩β=m且l∥m,则l∥α2.下列命题中不正确的是()A.a,b∈R,a n=an+b,有{a n}是等差数列B.a,b∈R,a n=an2+bn,使{a n}是等差数列C.a,b,c∈R,S n=an2+bn+c,有{a n}是等差数列D.a,b,c∈R,S n=an2+bn+c,使{a n}是等差数列3.以下判断正确的是()A.若p是真命题,则“p且q”一定是真命题B.命题“p且q”是真命题,则命题p一定是真命题C.命题“p且q”是假命题时,命题p一定是假命题D.命题p是假命题时,命题“p且q”不一定是假命题4.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.设p:大于90°的角叫钝角,q:三角形三边的垂直平分线交于一点,则p、q的复合命题“p或q”“p且q”“非q”中,是真命题的有______.答案:1.B 2.C 3.B 4.B 5.p或q设计说明设计思想通过基础知识填空,帮助学生回顾基本概念、定理和相关结论,通过典型示例总结本章的基本题型和方法;通过练习和作业加深对概念的理解和应用概念的熟练性.设计意图由于本章概念多、理论性较强,通过基础知识填空,帮助学生准确记忆相关概念,并形成本章的知识网络;通过典型示例教学既要总结题型和方法,又要熟练相关题型的解题步骤和准确规范的表述;教学中不要急于求成,而应在后续的教学中经常借助这些概念表达、阐述和分析.设计特点从学生的认知基础出发结合具体的题型和方法,在加深概念理解的同时,熟练相关概念的应用,同时在应用新知的过程中,将所学的知识条理化,使自己的认知结构更趋合理.备课资料1已知集合A ={x|x 2-3x +2=0},B ={x|x 2-mx +2=0},若A 是B 的必要不充分条件,求实数m 的范围.思路分析:化简条件得A ={1,2},由于A 是B 的必要不充分条件,即B A ,只需根据集合B 中含有的元素个数进行分类讨论即可.解:当B = 时,Δ=m 2-8<0,∴ -22<m<2 2.当B ={1}或{2}时,⎩⎪⎨⎪⎧Δ=0,1-m +2=0或4-2m +2=0,m 无解; 综上所述,m 的取值范围是{m|-22<m<22}.点评:全面地挖掘题中隐藏条件是解题过程中需考虑的一个重要方面,如本题当B ={1}或{2}时,不能遗漏Δ=0;即对于分类讨论要做到不重不漏.2已知a>0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对 x ∈R 恒成立,若p 且q 为假,p 或q 为真,求a 的取值范围.思路分析:要判断含有逻辑联结词的复合命题的真假,首先要先确定构成复合命题的简单命题的真假,即求出此时简单命题成立的条件;其次求出含逻辑联结词的复合命题成立的条件;注意p ∧q 为假且p ∨q 为真,等价于p ,q 中一真一假.解:∵y =a x 在R 上单调递增,∴a>1.又不等式ax 2-ax +1>0对 x ∈R 恒成立, ∴Δ<0,a>0.即a 2-4a<0.解得0<a<4.而命题p 且q 为假,p 或q 为真,那么p ,q 中有且只有一个为真,一个为假.(1)若p 真q 假,则a ≥4,(2)若q 真p 假,则0<a ≤1.所以a 的取值范围是(0,1]∪[4,+∞).点评:本题也可先求出每个命题为真时,相应的a 的取值范围,再根据p ,q 之间的关系确定a 的取值范围.(设计者:赵海彬)。
最新人教版高中数学选修2-1第一章《且(and)或(or)非(not)》教材梳理
疱丁巧解牛知识·巧学1.“且”(1)定义:用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.(2)“p且q”的真假的判断方法是:知识拓展①有些命题在字面上不含有“且”,要注意把握关键词的含义.②知二求一,含义是已知其中两个命题的真假,便可求得另一个命题的真假.③同真亦真,有假亦假.2.“或”(1)定义:用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”.(1)定义:对一个命题p全盘否定,就得到一个新命题,记作⌝p,读作“非p”或“p的否定”.(2)“非p”的真假判断方法是:②有些命题在字面上不含有“非”,要注意把握关键词的含义.③已知p、q的真假时,常用下列表格判断p且q、p或q、非p的真假.问题·探究问题1 如何判断一个命题是简单命题还是复合命题?若是复合命题,应如何判断它的真假?探究:判断一个语句是否为命题的关键在于能否判断其真假,一个命题是简单命题还是复合命题,不能只从字面上看有没有“或”“且”“非”,如“等腰三角形的顶角平分线、底边上的中线、底边上的高重合”,此命题字面上无“且”,但可写成“等腰三角形的顶角平分线既是底面上的中线又是底边上的高线”,所以它是复合命题.又如“5≥5”虽字面上无“或”,但它也是复合命题.判断复合命题的真假,可按下面步骤进行:(1)确定复合命题的形式;(2)判断其中简单命题的真假;(3)根据真值表判断复合命题的真假.问题2 如何从集合中的“并集”“交集”“补集”的角度理解“或”“且”“非”的含义?探究:(1)对“或”的理解,可联想到集合中“并集”的概念.A∪B={x|x∈A,或x∈B}中的“或”,它是指x∈A或x∈B中至少有一个是成⒌模杭磝∈A且x∉B;也可以x∈B且x∉A;也可以x∈A且x∈B.逻辑联结词“或”的含义与“并集”中“或”的含义是一致的,它们都不同于生活中“或”的含义,生活中的“或”的含义表示“不兼有”,而在数学中“或”的含义则表示“可兼有但不必须兼有”.由“或”联结两个命题p、q构成的复合命题“p或q”,在“p真q假”“p假q真”“p 真q真”时,都真.(2)对“且”的理解,可联想到集合中“交集”的概念.A∩B={x|x∈A,且x∈B}中的“且”,它是指“x∈A”“x∈B”都要满足的意思:即x既属于集合A又属于集合B.由“且”联结两个命题p、q构成的复合命题“p且q”,当且仅当“p真q真”时,“p且q”真.(3)对“非”的理解,可联想到集合中“补集”的概念.“非”有否定的意思,一个命题p经过使用逻辑联结词“非”而构成一个复合命题“非p”,当p真时,则“非p”假,当p假时,则“非p”真.典题·热题例1 分别指出下列复合命题的形式及构成的简单命题:(1)李明是老师,赵山也是老师;(2)1是合数或质数;(3)他是运动员兼教练员;(4)这些文学作品不仅艺术上有缺点,而且政治上有错误.思路分析:根据上述复合命题的语句中所出现的逻辑联结词,“或”“且”“非”进行命题结构的判断.解:(1)这个命题是“p∧q”的形式,其中p:李明是老师,q:赵山是老师.(2)这个命题是“p∨q”的形式,其中p∶1是合数,q∶1是质数.(3)这个命题是“p∧q”的形式,其中p:他是运动员,q:他是教练员.(4)这个命题是“p∧q”的形式,其中p:这些文学作品艺术上有缺点,q:这些文学作品政治上有错误.方法归纳正确理解逻辑联结词“或”“且”“非”的含义是解题的关键.应根据组成上述各复合命题的语句中所出现的逻辑联结词或语句的意义确定复合命题的形式.例2 指出下列命题的真假:(1)命题:“不等式|x+2|≤0没有实数解”;(2)命题:“-1是偶数或奇数”;(3)命题:“2属于集合Q,也属于集合R”;(4)命题:“A(A∪B)”.思路分析:先确定复合命题的构成形式以及构成它的简单命题的真假,然后再根据真值表判断复合命题的真假.解:(1)此命题是“⌝p”的形式,其中p:不等式|x+2|≤0有实数解.因为x=-2是该不等式的一个解,所以命题p为真命题,即⌝p为假命题,所以原命题为假命题.(2)此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为命题p为假命题,命题q为真命题,所以“p∨q”为真命题,故原命题为真命题.(3)此命题为“p∧q”的形式,其中p:2∈Q,q:2∈R.因命题p为假命题,命题q为真命题,所以,命题“p∧q”为假命题,故原命题为假命题.(4)此命题为“⌝p”的形式,其中p:A⊆(A∪B).因为p为真命题,所以“⌝p”为假命题,故原命题为假命题.方法归纳为了正确判断复合命题的真假,首先要确定复合命题的构成形式,然后指出其中简单命题的真假,再根据真值表判断这个复合命题的真假.例3 已知p:方程x 2+mx+1=0有两个不等的负根;q:方程4x 2+4(m-2)x+1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.思路分析:该题是方程与命题的综合题,涉及到一元二次方程的判别式和根与系数的关系,一元二次不等式与不等式组,集合的补集,p 或q ,p 且q 两类复合命题的真假的判断.若p 或q 为真,p 且q 为假,说明一真一假.可列不等式组求解.解:若方程x 2+mx+1=0有两个不等的负根,则⎩⎨⎧>>-=∆.0,042m m解得m>2,即p:m>2.若方程4x 2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m 2-4m+3)<0,解得1<m<3,即q:1<m<3.因p 或q 为真,所以p 、q 至少有一个为真.又p 且q 为假,所以p 、q 至少有一个为假.因此,p 、q 两命题应一真一假,即p 为真,q 为假,或p 为假,q 为真. 所以⎩⎨⎧≥≤>3m 1m 2,m 或或⎩⎨⎧<<≤.31,2m m解得m≥3或1<m≤2.方法归纳 由简单命题的真假可根据真值表来判断复合命题的真假.反过来,由复合命题的真假也应能准确判定构成此复合命题的简单命题的真假情况,简单命题的真假也应由真值表来判断.如“p 且q”为假,应包括“p 真q 假”“p 假q 真”“p 假q 假”这三种情况.例4 已知a>0,a≠1,设P:函数y=log a (x+1)在x ∈(0,+∞)内单调递减;Q:曲线y=x 2+(2a-3)x+1与x 轴交于不同的两点.如果P 和Q 有且只有一个正确,求a 的取值范围. 思路分析:本题是函数与命题的综合题,涉及到函数的单调性和一元二次函数对应的方程的根的问题,P 和Q 有且只有一个正确,应分两种情况讨论分析. 解:当0<a<1时,函数y=log a (x+1)在(0,+∞)内单调递减;当a>1时,y=log a (x+1)在(0,+∞)内不是单调递减.曲线y=x 2+(2a-3)x+1与x 轴交于两点等价于(2a-3)2-4>0,即21<a 或25>a . (1)若P 正确,且Q 不正确,即函数y=log a (x+1)在(0,+∞)内单调递减,曲线y=x 2+(2a-3)x+1与x 轴不交于两点,因此a ∈(0,1)∩([21,1)∪(1,25]),即a ∈[21,1). (2)若P 不正确,且Q 正确,即函数y=log a (x+1)在(0,+∞)内不是单调递减,曲线y=x 2+(2a-3)x+1与x 轴交于两点,因此a ∈(1,+∞)∩((0,21)∪(25,+∞)),即a ∈(25,+∞). 综上,a 的取值范围为[21,1)∪(25,+∞). 例5 已知c>0,设P:函数y=c x 在R 上单调递减,Q:不等式x+|x-2c|>1的解集为R .如果P 和Q有且仅有一个正确,求c 的取值范围.思路分析:本题是函数与命题的综合题,涉及到函数的单调性和绝对值不等式的解法,P 和Q 有且只有一个正确,应分两种情况讨论分析. 解:函数y=c x 在R 上单调递减⇔0<c<1.不等式x+|x-2c|>1的解集为R ⇔函数y=x+|x-2c|在R 上恒大于1. 因为x+|x-2c|=⎩⎨⎧<≥-,2,2,2,22c x c c x c x所以函数y=x+|x-2c|在R 上的最小值为2c. 所以不等式x+|x-2c|>1的解集为R ⇔2c>1⇔c>21. 若P 正确,且Q 不正确,则0<c≤21;若P 不正确,且Q 正确,则c≥1.所以c 的取值范围为(0, 21]∪[1,+∞).。
2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.2.2 充 要 条 件
变 式 迁 移
解析:(1)在△ABC 中, 显然有∠A >∠B⇔BC > AC,所以 p 是 q 的充要条 件. (2)因为 x=2 且 y=6⇒ x+y=8,即﹁q⇒ ﹁ p, 但﹁p ﹁q,所以 p 是 q 的充分不必要条件. (3)因为 p:A={(1,2)},q:B={(x,y)|x=1 或 y=2}, 所以 A B,所以 p 是 q 的充分不必要条件.
栏 目 链 接
判断,对于条件或结论是不等关系(或否定式)的命题,
一般运用等价法.
变 式 迁 移 1.指出下列各题中,p是q的什么条件(在“充分不 必要条件”“必要不充分条件”“充要条件”“既不充分 又不必要条件”中选出一种作答).
栏 目 链 接
(1)在△ABC中,p:∠A>∠B,q:BC>AC.
点评:数学概念的定义具有相称性,即数学概念
的定义都可以看成是充要条件,既是概念的判断依据,
又是概念所具有的性质.
栏 目 链 接
证明命题条件的充要性时,既要证明原命题成立
(即条件的充分性),又要证明它的逆命题成立(即条件的 必要性).
变 式 训 练 2.求证:关于x的方程ax2+bx+c=0有一个根为 2的充要条件是4a+2b+c=0.
栏 目 链 接
1是x=1的必要不充分条件;α =β 是tan α =tan β 的
充分不必要条件;|a|>|b|是a2>b2的充要条件.故选B. 答案:B
自 测 自 评 3.用充分条件、必要条件、充要条件填空. 必要条件 (1)x>3是x>5的____________________ . (2)x = 3 是 x2 - 2x - 3 = 0 的 充分条件 ______________________________________________ . (3) 两 个 三 角 形 全 等 是 两 个 三 角 形 相 似 的 充分条件 __________________ .
人教版高中数学选修2-1 教案目录
学科人教版高中数学选修2-1编写组责任人序号知识模块教案标题编写人1人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 基础)小榄校区(关潮辉)2人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 提高)小榄校区(关潮辉)7人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 基础)小榄校区(温艺铭)8人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 提高)小榄校区(温艺铭)9人教版 选修2-1第一章单元复习教案(基础)小榄校区(泰龙、马俊)10人教版 选修2-1第一章单元复习教案(提高)小榄校区(泰龙、马俊)11第一章单元测试卷(基础)小榄校区(泰龙、马俊)12第一章单元测试卷(提高)小榄校区(泰龙、马俊)13人教版 选修2-1 第二章 2.1曲线与方程 同步教案(基础)石岐(基础)贺丽春起湾(提高)郑狄苗14人教版 选修2-1 第二章 2.1曲线与方程同步教案(提高)石岐(基础)贺丽春起湾(提高)郑狄苗15人教版 选修2-1 第二章 2.1椭圆同步教案(基础)石岐(基础)何善庆起湾(提高)郑狄苗16人教版 选修2-1 第二章 2.1椭圆同步教案(提高)石岐(基础)何善庆起湾(提高)郑狄苗17人教版 选修2-1 第二章 2.2双曲线同步教案(基础)石岐(基础)刘冬有起湾(提高)郑狄苗18人教版 选修2-1 第二章 2.2双曲线同步教案(提高)石岐(基础)刘冬有起湾(提高)郑狄苗19人教版 选修2-1 第二章 2.3抛物线同步教案(基础)石岐(基础)肖爱 起湾(提高)郑狄苗20人教版 选修2-1 第二章 2.3抛物线同步教案(提高)石岐(基础)肖爱 起湾(提高)郑狄苗星火教育高中标准教案目录第一章常用逻辑用语单元复习单元测试卷第二章圆锥曲线与方程刘冬有。
人教版高中数学选修2-1第一章常用逻辑语 同步复习教案1(提高)
参考答案:5、练习、深化判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.(1) 是 (2)是 (3)不是 (4)是 (5)是7、练习、深化(1)p: 整数a 能被2整除 q :a 是偶数 真(2)p :四边行是菱形 q :它的对角线互相垂直平分 真(3)p :a >0,b >0 q :a+b >0 真(4)p :a >0,b >0 q :a+b <0 假(5)p :垂直于同一条直线的两个平面 q :这两个平面平行真10、练习、深化(1)若两个三角形面积相等,则这两个三角形全等假 (2)若将一个负数立方,则立方后也为负数真 (3)若两个角是对顶角,则这两个角相等真课堂练习一答案:一、选择题C B B二、填空题4 ②④5 a ≤0三、解答题6. [解析] ∵p 假q 真,∴⎩⎪⎨⎪⎧ |x 2-x |<6x ∈Z ,即⎩⎪⎨⎪⎧ x 2-x <6x 2-x >-6x ∈Z ⇒⎩⎪⎨⎪⎧ -2<x <3x ∈Rx ∈Z故x 的取值为-1,0,1,2.7、 [解析] (1)若ac>bc ,则a>b.(2)若m>14,则mx2-x +1=0无实根(3)若abc =0,则a =0或b =0或c =0(4)若x2-2x -3=0,则x =3或x =-1.8、解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,方程有解x =-1b .当a ≠0时,方程为一元二次方程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有解.(2)∵命题当x 1<x 2<0时,a x 1>a x 2为假命题,∴应有当x 1<x 2<0时,a x 1≤a x 2.即a x 2-x 1x 1x 2≤0. ∵x 1<x 2<0,∴x 2-x 1>0,x 1x 2>0,∴a ≤0.6、例题(1)逆命题:若一个三角形两个角相等,则这个三角形的两条边相等。
人教版高中数学选修2-1第一章《常用逻辑用语》全部教案
高中数学(选修2-1)教案孔德友庐江县第三中学1.1命题及其关系第一课时1.1.1 命题一、教学目标:1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、教学重点与难点:重点:命题的概念、命题的构成;难点:分清命题的条件、结论和判断命题的真假。
三、教学方法:探析归纳,讲练结合三、教学过程(一)、复习回顾:初中已学过命题的知识,请同学们回顾:什么叫做命题?(二)、探析新课1、思考、分析:下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.2、讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
3、抽象、归纳:定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.4、练习、深化:判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
新课标人教A版高中数学选修2-1教案
新课标人教A版高中数学选修2-1教案第一章常用逻辑用语1、1命题及其关系1.1.1命题(一)教学目标1、知识与技能:理解命题得概念与命题得构成,能判断给定陈述句就是否为命题,能判断命题得真假;能把命题改写成“若p,则q”得形式;2、过程与方法:多让学生举命题得例子,培养她们得辨析能力;以及培养她们得分析问题与解决问题得能力;3、情感、态度与价值观:通过学生得参与,激发学生学习数学得兴趣。
(二)教学重点与难点重点:命题得概念、命题得构成难点:分清命题得条件、结论与判断命题得真假教具准备:与教材内容相关得资料。
教学设想:通过学生得参与,激发学生学习数学得兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题得知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句得表述形式有什么特点?您能判断她们得真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线得两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形得面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子得表述都就是陈述句得形式,每句话都判断什么事情。
其中(1)(3)(5)得判断为真,(2)(4)(6)得判断为假。
教师得引导分析:所谓判断,就就是肯定一个事物就是什么或不就是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达得,可以判断真假得陈述句叫做命题.命题得定义得要点:能判断真假得陈述句.在数学课中,只研究数学命题,请学生举几个数学命题得例子. 教师再与学生共同从命题得定义,判断学生所举例子就是否就是命题,从“判断”得角度来加深对命题这一概念得理解. 5.练习、深化判断下列语句就是否为命题?(1)空集就是任何集合得子集. (2)若整数a就是素数,则就是a奇数.(3)指数函数就是增函数吗? (4)若平面上两条直线不相交,则这两条直线平行.(5)=-2. (6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句就是不就是命题,关键瞧两点:第一就是“陈述句”,第二就是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不就是命题.解略。
人教版高中数学选修2-1第一章单元复习教案(提高)
x A x∈使得 ( ).p且q”为真假q真,则它的( B ) 必要不充分条件D )既不充分也不必要条件所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是答案:题型一:四种命题之间的关系例1 命题“20(b a b +=∈2若a 、R ),则a=b=0”的逆否命题是( D ). (A) ≠≠若 a b 0∈(a,b R),则20b +≠2a (B) ≠若 a=b 0∈(a,b R),则20b +≠2a (C) 0≠≠若 a 且b 0∈(a,b R),则20b +≠2a(D) 0≠≠若 a 或b 0∈(a,b R),则20b +≠2a【审题要津】命题结论中的a=b=0如何否定是关键.解: a=b=0是a=0且b=0,否定时“且”应变为“或”,所以逆否命题为:0≠≠若 a 或b 0∈(a,b R),则20b +≠2a ,故应选D【方法总结】一个命题结论当条件,条件作结论得到的命题为原命题的逆否命题. 题型二:充分、必要条件题型例2 “,,αβγ 成等差数列”是“等式αγβsin(+)=sin2成立”的 ( A ). (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分有不必要的条件【审题要津】,,αβγ 成等差数列,说明2αγβ+= ,问题的关键是由两个角的正弦值相等是否一定有两个角相等.解: 由,,αβγ 成等差数列,所以2αγβ+= ,所以αγβsin(+)=sin2成立,充分;反之,由αγβsin(+)=sin2成立,不见得有,,αβγ 成等差数列,故应选A.【方法总结】p q ⇒:p 是q 充分条件; q 是p 必要条件,否则:p 是q 的不充分条件; q 是p 不必要条件. 变式练习:“1a =”是“,21ax x x+≥对任意的正数”的 ( A ). (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分有不必要的条件 例3 221:212;:210(0)3x p q x x m m --≤-≤-+-≤>已知,若p ⌝是q ⌝的必要但不充分条件,求实数m 的取值范围.【审题要津】命题p ,q 可以化的更简,由p ⌝和q ⌝的关系可以得到p 与q 的关系,利用集合的理论方法将问题解决.解: 由22210x x m -+-≤得:11,(0)m x m m -≤≤+>,{}:11,0q A x x m x m m ∴⌝=>+<->或. {}112210,:2103x x p B x x x -≤-≤-≤≤∴⌝=<->由-2得或. 由p ⌝是q ⌝的必要但不充分条件知:p 是q 的充分但不必要条件,即B A ⊆于是:012110m m m >⎧⎪-≥-≤⎨⎪+≤⎩解得0<m 3为所求. 【方法总结】利用集合作为逻辑演绎的一个方法,体现了集合的应用,能把各种关系清楚地描绘出来. 题型三:复合命题真假的判断例4 已知2:10p x mx ++=方程有两个不等的负实数根;q :方程24x +()4210m x -+=无实根, p q p q 若或为真,且为假,求m 的取值范围. 【审题要津】把两个方程化简,然后根据p q p q 或及且列不等式组,方可求m 的取值范围.解:240,:2;0m p m m ⎧∆=->>⎨>⎩解得 ()()22:16216164301 3.q m m m m ∆=--=-+<<<解得p q p q 或及且,p q p q ∴为真,为假或为假,为真,2,2,3121 3.13m m m m m m m >≤⎧⎧≥<≤⎨⎨<<≤≥⎩⎩即或解得或或 【方法总结】此题是方程与命题的综合题,涉及到一元二次方程的判别式和根与系数的关系,一元二次不等式及不等式组、集合的补集、p q p q 或及且两类复合命题的真假判断.变式练习:设有两个命题, p :不等式1x x a ++>的解集为R, q :函数()f x =()73xa --在R 上是减函数,如果这两个命题中有且只有一个真命题,则a 的取值范围是12a ≤<.题型四:全称命题、特称命题例5 设,A B 为两个集合,下列四个命题:(1),A B x A x B ⊆⇔∀∈∉有 (2) A B AB ⊄⇔=∅(3) A B B A ⊄⇔⊄ (4) A B x A x B ⊄⇔∃∈∉使得其中真命题的序号为(4).【审题要津】根据子集的概念,通过举反例加以排除假命题. 解: {}{}{}1231241112A B A B A B AB ==⊄∈∈=若,,,,,,满足,但且,,,所以(1),(2)是假命题; {}{}1241A B A B B A ==⊄⊆若,,,,满足但,所以(3)是假命题,只有(4)为真命题.【方法总结】全称命题通过“举反例”来否定.变式练习:下列命题中,既是真命题又是特称命题的是 ( A ).(A) ()n 90sin ααα︒-=有一个使si (B) sin 2x x π=存在实数,使(C) (),sin 180sin ααα︒-=对一切 (D) sin15sin 60cos 45cos60sin 45︒︒︒︒︒=- 题型五:综合应用例6 已知关于x 的实系数二次方程20x ax b ++=有两个实数根,αβ.证明: 2α< 且2244b βα<<+<是且b 的充要条件.【审题要津】充要条件的证明题都必须从充分和必要两个方面加以证明,其中的充分性是由条件推出结论,从题目的叙述中可以看出,2α<且2β<是条件,244b α<+<且b 是结论,由于二次方程的根由相应的二次函数的图象与x 轴的交点直观的表示出来,因此可以其直观性帮助解题。
最新人教版高中数学选修2-1第一章《充分条件与必要条件》知识导学
1.2 充分条件与必要条件课标解读1.掌握充分条件、必要条件、充分必要条件的意义.2.充要条件是揭示命题的条件和结论因果关系的重要数学概念,因此在学习充分条件、必要条件和充要条件的同时,应注意与命题的四种形式相结合.3.会判断命题p成立与命题q成立的关系,并能用充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件来表达命题p与命题q的关系.4.证明命题p成立是命题q成立的充要条件时,要明确充分性、必要性的证明中,谁是条件谁为应推证的结论.5.会求某些简单问题成立的充要条件.学会思考1.怎样从集合的角度来看待充要条件?2.设计如下四个电路图,条件A:“开关A闭合”,条件B:“灯泡B亮”,问A是B的什么条件?3.日常生活中许多元件有着控制的功能,如,洗衣机中就存在着一些元件,使洗衣机在甩干时,如果“到达预定时间”或“机盖被打开”就会停机,即通过一些元件的控制使当两个条件至少有一个满足时,就会停机,相应的电路叫或门电路.又如,电子保险门在“钥匙插入”且“密码正确”两个条件都满足时,才会开启,相应的电路,就叫与门电路.再如,电键开则灯亮,电键关则灯灭,相应的电路,就叫非门电路.现有器材:干电池一节,小灯泡一个,电键、导线若干,请同学们自行设计“或门电路”“与门电路”“非门电路”各一个(用元件的物理符号表示,作出电路图即可),并简单说明理由.答案:1.从集合A与集合B之间的关系上看:(1)若A⊆B,则A是B的充分条件;(2)若A⊆B,则A是B的必要条件;(3)若A⊆B且B⊇A,即A=B,则A是B的充要条件;(4)若A B且B A,则A既不是B的充分条件,也不是B的必要条件;(5)若A⊆B且B A,则A是B的充分不必要条件;(6)若A⊇B且A B,则A是B的必要不充分条件.2.图①中开关A闭合则灯泡B亮,反之,灯泡B亮不一定有开关A闭合,所以A⇒B.但BA,于是A是B的充分不必要条件.图②中,A⇔B,A是B的充要条件.图③中,A B但B⇒A,A是B的必要不充分条件.图④中,条件A的有无对条件B没有影响,所以A是B的既不充分也不必要条件.3.或门电路:与门电路:非门电路:自学导引1.一般地,“若p 则q ”为真命题,即由p ⇒q 就说p 是q 的_________(sufficient condition),q 是p 的_________(necessary condition).2.若p ⇒q 且q ⇒p ,则p ⇔q 就说p 是q 的_________,简称充要条件.那么q 也是p 的_________.答案:1.充分条件 必要条件2.充分必要条件 充要条件典例启示知识点1 判定p 是q 的什么条件【例1】 在下列各题中,判断A 是B 的什么条件,并说明理由.(1)A :|p |≥2,p ∈R,B :方程x 2+px +p +3=0有实根;(2)A :圆x 2+y 2=r 2与直线ax +by +c =0相切,B :c 2=(a 2+b 2)r 2.解:(1)当|p |≥2时,例如p =3,则方程x 2+3x +6=0无实根,而方程x 2+px +p +3=0有实根,必有p ≤-2或p ≥6,可推出|p |≥2,故A 是B 的必要不充分条件.(2)若圆x 2+y 2=r 2与直线ax +by +c =0相切,圆心到直线ax +by +c =0的距离等于r ,即22||b a c r +=,所以c 2=(a 2+b 2)r 2;反过来,若c 2=(a 2+b 2)r 2,则r b a c =+22||成立,说明x 2+y 2=r 2的圆心(0,0)到直线ax +by +c =0的距离等于r ,即圆x 2+y 2=r 2与直线ax +by +c =0相切,故A 是B 的充分必要条件.启示:对于涉及充分必要条件判断的问题,必须以准确、完整地理解充分、必要条件的概念为基础,有些问题需转化为等价命题后才容易判断.【例2】 若p :A B ⊆S,q :(B )(A ),则p 是q 的什么条件?解:利用集合的图示法,由图知AB ⊆S(B )(A ),(B )(A )⇒A B ⊆S. 所以p 是q 的充要条件.启示:本题采用的是从条件直接推结论的方法,其中突出了数形结合的思想方法(图示法).【例3】 判断p :x ≠2或y ≠3是q :x +y ≠5的什么条件?解:此题直接判断比较困难,我们可看它的等价命题,其逆否命题是:⌝q :x +y =5,⌝p :x =2且y =3,则不难看出,⌝p ⇒⌝q ,即原命题的否命题成立,则与它等价的逆命题成立,即q ⇒p ,故p 是q 成立的必要不充分条件.启示:命题不易直接判断时可转换命题的形式,利用命题的等价性加以判定.知识点2充要条件的求解与证明【例4】 求关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件.解:(1)a =0时适合.(2)当a ≠0时,显然方程没有零根,若方程有两异号的实根,则a <0;若方程有两个负的实根,则必须满足⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-=∆〈-〉.044,02,01a a a 解得0<a ≤1. 综上知,若方程至少有一个负的实根,则a ≤1;反之,若a ≤1,则方程至少有一个负的实根,因此,关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件是a ≤1.启示:①a =0的情况不要忽视;②若令f (x )=ax 2+2x +1,由于f (0)=1≠0,从而排除了方程有一个负根,另一个根为零的情形.【例5】 设x 、y ∈R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.证明:充分性:若xy =0,那么,①x =0,y ≠0;②x ≠0,y =0;③x =0,y =0,于是|x +y |=|x |+|y |.如果xy >0,即x >0,y >0或x <0,y <0;当x >0,y >0时,|x +y |=x +y =|x |+|y |;当x <0,y <0时,|x +y |=-(x +y )=-x + (-y )=|x |+|y |.总之,当xy ≥0时,有|x +y |=|x |+|y |.必要性:由|x +y |=|x |+|y |及x 、y ∈R ,得(x +y )2=(|x |+|y |)2,即x 2+2xy +y 2=x 2+2|xy |+y 2.|xy |=xy .∴xy ≥0.启示:充要条件的证明关键是根据定义确定哪是已知条件,哪是结论,然后搞清楚充分性是证明哪一个命题,必要性是证明哪一个命题.【例6】 已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌝p 是⌝q 的必要不充分条件,求实数m 的取值范围.解:由p :|1-31-x |≤2-2≤x ≤10. 由q 可得(x -1)2≤m 2(m >0),所以1-m ≤x ≤1+m .所以⌝p :x >10或x <-2,⌝q :x >1+m 或x <1-m .因为⌝p 是⌝q 的必要不充分条件,所以⌝q ⇒⌝p .故只需满足⎩⎨⎧-≤-≥+.21,101m m 所以m ≥9.启示:解决这类问题时,一是直接求解;二是转化为等价命题求解,即⌝p是⌝q的必要不充分条件等价于q是p的充分不必要条件.随堂训练1.设原命题“若p则q”真而逆命题假,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A2.设x∈R,则x>2的一个必要不充分条件是…()A.x>1B.x<1C.x>3D.x<3解析:∵x>2⇒x>1,但x>1x>2.答案:A3.如果A是B的必要不充分条件,B是C的充分必要条件,D是C的充分不必要条件,那么A是D的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:A B⇔C D.答案:A4.x2+(y-2)2=0是x(y-2)=0的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:若x2+(y-2)2=0⇒x=0且y-2=0⇒x(y-2)=0,但当x(y-2)=0时x2+(y-2)2=0,如x=0,y=3.答案:B5.x≥0是x2≤x的_________条件.解析:x≥0x2≤x,而x2≤x⇒x≥x2≥0.∴x≥0是x2≤x的必要不充分条件.答案:必要不充分6.从“⇒”“”与“⇔”中选出适当的符号填空(U为全集,A、B为U的子集):(1)A=B__________A⊆B;(2)A⊆B__________ B ⊆A.答案:⇒⇔。
最新人教版高中数学选修2-1第一章四种命题间的相互关系
S 随堂练习
UITANG LIANXI
2.四种命题之间的相互关系
思考 2 解决四种命题的关键是什么? 提示:明确原命题的逆命题、 否命题、 逆否命题的条件和结论的位置关 系和否定关系是解决四种命题的关键.
-4-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
-7-
1.1 DNA重组技术的基本工具
探究三
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究一
探究二
探究四
解:(1)逆命题:若 x≥0,则 x>1; 否命题:若 x≤1,则 x<0; 逆否命题:若 x<0,则 x≤1. (2)逆命题:若 a=0 或 b=0,则 ab=0. 否命题:若 ab≠0,则 a≠0 且 b≠0. 逆否命题:若 a≠0 且 b≠0,则 ab≠0. (3)逆命题:若 x,y 全为零,则 x2+y2=0. 否命题:若 x2+y2≠0,则 x,y 不全为零. 逆否命题:若 x,y 不全为零,则 x2+y2≠0. (4)逆命题:若两个三角形全等,则这两个三角形等底等高. 否命题:若两个三角形不等底或不等高,则这两个三角形不全等. 逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.
-6-
1.1 DNA重组技术的基本工具
探究三
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
高中数学人教A版选修2-1导学案设计:第一章-常用逻辑用语(复习)(无答案)
安阳县二中分校“四步教学法”导学案
A nya ngxian erzhong fenxiao sibujiaoxuefa daoxuean
课题:第一章常用逻辑用语(复习)
设计人:审核人:
班级:________ 组名:________姓名:________ 时间:________
一、自主学习:(10分钟完成)
1 学习目标
1. 命题及其关系
(1)了解命题的逆命题、否命题与逆否命题,会分析四种命题间的相互关系;
(2)理解必要条件、充分条件与充要条件的意义.
一、课前准备
复习1:
复习2:
1.什么是命题?其常见的形式是什么?什么是真命题?什么是假命题?
2.有哪四种命题?他们之间的关系是怎样的?
3.什么是充分条件、必要条件和充要条件?
4你学过哪些逻辑联结词?四逻辑联结词联结而成的命题的真假性怎样?
5.否命题与命题的否定有什么不同?
6.什么是全称量词和存在量词?。
高中数学人教A版选修2-1《第一章 常用逻辑用语》复习教案
⑴复合命题有三种形式: 或 ( ); 且 ( );非 ( ).
⑵复合命题的真假判断
“ 或 ”形式复合命题的真假判断方法:一真必真;
“ 且 ”形式复合命题的真假判断方法:一假必假;
“非 ”形式复合命题的真假判断方法:真假相对.
5、全称量词与存在量词
⑴全称量词与全称命题
短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“ ”表示.含有全称量词的命题,叫做全称命题.
4.已知a,b是两个命题,如果a是b的充分条件,那么 是 的条件.
5.“ ”的条件是“ ”
活动三:归纳整理、提高认识(1分钟)
1.通过对本章的学习,同学对各种命题之间关系是否理解?
2.区别真命题与假命题;四种命题;四种条件;三类命题有什么区别?
活动四:作业布置、提高巩固
课后作业
1.写出命题“若 ,则 或 ”的逆命题、否命题、逆否命题,并分别判断它们的真假。
教学难点
如何判断一个命题为真?
教学方法
通过观察.类比.思考.交流和讨论等.
教学过程:
批注
活动一:师生互动、归纳知识(10分钟)
问题1:我们学习这一章,你有什么收获?说出来与大家分享一下?
一、知识归纳
(1).函数与方程单元知识网络 书本P28页
(2).知识梳理 1、命题:可以判断真假的语句叫命题;
逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;
(4)会区别一个否命题、命题的否定、含有一个命题量词的否定.
2.过程与方法
学生通过观察和类比,借助具体的例子理解各种命题的关系.
3.情感、态度与价值观
提高学生的数学文化素养,教师应引导学生通过查阅、收集、整理、分析相关材料,增强信息处理的能力,培养探究精神,提高数学素养.
高中数学选修2一1教案
高中数学选修2一1教案
教学目标:
1. 掌握数列的定义和基本性质,理解数列的概念和实质。
2. 学习并掌握等差数列和等比数列的求和公式,能够熟练应用。
3. 能够解决实际问题中的数列应用题。
教学重点:
1. 等差数列和等比数列的定义和性质。
2. 等差数列和等比数列的求和公式和应用。
3. 实际应用中的数列问题解决。
教学难点:
1. 等差数列和等比数列的应用题目解决。
2. 能够灵活运用求和公式解决问题。
教学过程:
一、导入:
通过一个生活中的例子引入数列的概念,让学生理解数列的定义和基本性质。
二、讲解:
1. 等差数列和等比数列的概念和基本性质。
2. 等差数列的通项公式和求和公式。
3. 等比数列的通项公式和求和公式。
三、练习:
1. 让学生完成一些基础的等差数列和等比数列的题目。
2. 练习应用题目,让学生灵活运用求和公式解决实际问题。
四、拓展:
引导学生思考更复杂的数列问题,如特殊数列、递归数列等,拓展数列应用的范围。
五、总结:
总结本节课的重点内容,强化学生对数列的理解和应用能力。
六、作业:
布置相关的数列练习题作为课后作业,以巩固学生对数列的掌握。
七、反馈:
下节课开始前对上节课的内容进行复习和总结,及时纠正学生的错误和提出问题。
以上为本教案的主要内容,希望老师们在教学过程中能灵活运用,使学生真正理解数列的概念和应用。
人教课标版高中数学选修2-1:《抛物线及其标准方程(第1课时)》教案-新版
2.4.1抛物线及其标准方程(第1课时)一、教学目标 (一)学习目标1.理解抛物线的定义,明确焦点、准线的概念;2.掌握抛物线的方程及标准方程的推导;3.熟练掌握抛物线的四个标准方程. (二)学习重点 1.抛物线的定义;2.选择适当坐标系探求抛物线的标准方程. (三)学习难点四种形式的抛物线的标准方程的由来和区分. 二、教学设计 (一)预习任务设计 1.预习任务 写一写:(1)定义:平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,这个定点叫做抛物线的焦点,直线叫做准线.(2)抛物线的标准方程:焦点在x 轴上:22(0)y px p =>或22(0)y px p =-> 焦点在y 轴上:22(0)x py p =>或22(0)x py p =->. 2.预习自测下列语句正确的个数( )(1)抛物线的方程都是二次函数;(2)抛物线的焦点到准线的距离是(0)p p >; (3)抛物线的开口方向由一次项确定;(4)焦点在坐标轴上的抛物线的开口方向有四种可能性. A.1 B.2 C.3D.4答案:C解析:【知识点】抛物线的定义与方程.【解题过程】抛物线的开口方向有四种,只有开口向上或向下的对应方程是二次函数,故(1)错误.点拨:利用抛物线的定义判断.(二)课堂设计探究一:结合实例,认识抛物线●活动①创设情景,引入新课展示彩虹、投篮、桥梁、隧道、太阳灶、手电筒等实例,引入新课,激发学生的学习热情.【设计意图】通过生活中的应用实例,一方面吸引学生的注意力,让学生对抛物线有一个感性上的认识,另一方面让学生意识到到研究抛物线的必要性,感受到数学来源与生活,生活离不开数学.提问:抛物线到底有什么样的几何性质?怎么样给抛物线下一个定义呢?如图,在黑板上画一条直线AB,使直尺与直线AB重合,然后取一个三角板,将一条拉链CD固定在三角板的一条直角边上,并将拉链下边一半的一端用图钉固定在F点,将三角板的另一边直角边贴在直线AB上,在拉练M处放置一只粉笔,上下沿直线拖动三角板,粉笔会画出一条曲线.●活动②归纳提炼,形成定义思考:(1)为什么是拉链,而不是任意的两根绳子?回答:拉链可保证两段线的距离相等,绳子还得测量,操作不方便. (2)为什么三角形的一条直角边要和直线AB 重合? 回答:保证是垂直距离.从而得出抛物线的图形特点,仿照椭圆与双曲线的定义,要求学生说出抛物线的定义.抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上),定点F 叫抛物线焦点,定直线l 叫做抛物线的准线.注意:定点F 不能在定直线l 上,若定点F 在定直线l 上,则动点的轨迹为过点F 且垂直于l 的直线.探究二:探究抛物线的方程 ●活动①师生互助,建立方程 (1)推导出焦点在x 轴正半轴的情形 思考提示:①作为已知条件,焦点F 到准线l 的距离可以假设为p (已知); ②从已知条件看,一般我们可以怎样取坐标系?如图所示,取过焦点F 且垂直于准线l 的直线为x 轴,x 轴与l 相交与点K ,以线段KF 的垂直平分线为y 轴,并且使焦点F 在x 轴的正半轴上,建立直角坐标系xoy .设抛物线的焦点F 到准线的距离为p ,则p FK =||,焦点F 的坐标为)0,2(p F ,准线2:p x l -=. 设抛物线上任意一点),(y x M ,则2p x =+222)2()2(px y p x +=+-⇔px y 22=⇔.我们把22(0)y px p =>叫做“顶点在原点、焦点在x 正半轴上”的抛物线的标准方程,焦点F 的坐标为:(,0)2p F ,准线l 的方程为:2px =-,开口向右,其中p为正数,它的几何意义是:焦点到准线的距离(简称“焦准距”). (2)其余三种抛物线的标准方程类似地,我们可以建立如下表所示的坐标系,从而得到抛物线方程的另外三种形式px y 22=,px y 22-=,py x 22-=()0>p .这四种方程都叫做抛物线的标准方程.●活动②比较分析,得出规律提问:抛物线的四种形式的标准方程的相同点和区别是什么?如何根据抛物线的标准方程判断焦点位置?方程的共同特点:左边都是二次式,且系数为1;右边都是一次式. 焦点位置的判断方法:在标准形式下,看一次项,(1)若一次项的变量为x (或y ),则焦点就在x (或y )轴上;(2)若一次项的系数为正(或负),则焦点在正(或负)半轴. 【设计意图】通过四种情况的观察、对比,引导学生发现抛物线的标准方程与图形之间的内在联系,从而得到跟一般的规律,在这里充分体现了解析几何中数形结合的思想.●活动③巩固基础、检查反馈例1.求下列抛物线的焦点坐标和准线方程. (1)26y x =;(2)24y x =-; 【知识点】抛物线的焦点与准线方程.【解题过程】(1)焦点坐标:3(,0)2F ,准线方程:32x =-.(2)将方程化为标准形式:214x y =-,故焦点坐标:1(0,)16F -,准线方程:116y =.【思路点拨】求抛物线的焦点坐标以及准线方程需要将方程转化为标准形式处理.【答案】(1)3(,0)2F ,32x =-;(2)1(0,)16F -,116y =.同类训练:求下列抛物线的焦点坐标与准线方程. (1)28x y =-(2)2120y x +=答案:(1)(0,2)F -,2y =;(2)(3,0)F -,3x =. 解析:【知识点】抛物线的焦点与准线方程.【解题过程】(1)焦点坐标:(0,2)F -,准线方程:2y =.(2)将方程化为标准形式:212y x =-,故焦点坐标:(3,0)F -,准线方程:3x =. 点拨:求抛物线的焦点坐标以及准线方程需要将方程转化为标准形式处理. 例2.(1)已知抛物线的焦点是(0,2)F -,求它的标准方程. (2)已知抛物线的准线是2x =-,求它的标准方程. 【知识点】抛物线的标准方程.【解题过程】(1)由题意可设抛物线方程为:22(0)x py p =->,则22p-=-,故4p =,所以抛物线标准方程为:28x y =-.(2)由题意可设抛物线方程为:22(0)y px p =>,则22p-=-,故4p =,所以抛物线标准方程为:28y x =.【思路点拨】求抛物线的标准方程的一般方法:(1)确定焦点的位置;(2)确定抛物线方程的形式;(3)确定p 值(焦准距);(4)将p 值代入. 【答案】(1)28x y =-;(2)28y x =.同类训练:根据下列条件写出抛物线的标准方程.(1)焦点是(0,3);(2)准线是3y =. 答案:(1)212x y =;(2)212x y =-. 解析:【知识点】抛物线的标准方程.【解题过程】(1)由题意可设抛物线方程为:22(0)x py p =>,则32p=,故6p =,所以抛物线标准方程为:212x y =.(2)由题意可设抛物线方程为:22(0)x py p =->,则32p-=-,故6p =,所以抛物线标准方程为:212x y =-.点拨:求抛物线方程时要通过焦点坐标或准线方程先确定开口方向“定型”,后“定量”.例3.求抛物线2(0)x ay a =≠的焦点坐标、准线方程. 【知识点】抛物线的标准方程. 【解题过程】抛物线方程转化为21(0)y x a a=≠ 当0a >,124p a =,故焦点坐标为1(,0)4a ,准线方程为14x a =-; 当0a <,124p a =-,故焦点坐标为1(,0)4a ,准线方程为14x a=-.【思路点拨】解题时首先要判断抛物线的对称轴和开口方向. 【答案】见解题过程.同类训练:已知抛物线24(0)y ax a =≠,求它的焦点坐标及p 的值. 答案:见解题过程.解析:【知识点】抛物线的标准方程.【解题过程】抛物线方程转化为214x y a=. 当0a >时,18p a =,焦点坐标为1(0,)16F a ;当0a <时,18p a =-,焦点坐标为1(0,)16F a.点拨:解题时首先要判断抛物线的对称轴和开口方向. 3.课堂总结 知识梳理1.抛物线定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上),定点F叫抛物线焦点,定直线l叫做抛物线的准线.2.抛物线的标准方程:焦点在x轴上:22(0)=->;y px p=>或22(0)y px p焦点在y轴上:22(0)x py px py p=->.=>或22(0)重难点归纳1.焦点位置的判断方法:在标准形式下,看一次项:(1)若一次项的变量为x(或y),则焦点就在x(或y)轴上;(2)若一次项的系数为正(或负),则焦点在正(或负)半轴.2.求抛物线的标准方程的一般方法:(1)确定焦点的位置;(2)确定抛物线方程的形式;(3)确定p值(焦准距);(4)将p值代入.(三)课后作业基础型自主突破1.在平面直角坐标系内,到点(1,1)和直线x+2y=3的距离相等的点的轨迹是()A.直线B.抛物线C.圆D.双曲线答案:A.解析:【知识点】抛物线的定义.【解题过程】∵点(1,1)在直线x+2y=3上,故所求点的轨迹是过点(1,1)且与直线x+2y=3垂直的直线.点拨:注意判断定点与定直线的位置关系.2.过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹方程为()A.y2=12xB.y2=-12xC.x2=12yD .x 2=-12y 答案:C.解析:【知识点】抛物线的定义.【解题过程】由题意,知动圆圆心到点F (0,3)的距离等于到定直线y =-3的距离,故动圆圆心的轨迹是以F 为焦点,直线y =-3为准线的抛物线. 点拨:焦点在y 正半轴上的抛物线.3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( ) A .2 B .3 C .4 D .5 答案:D.解析:【知识点】抛物线的定义.【解题过程】解法一:∵y =4,∴x 2=4·y =16,∴x =±4, ∴A (±4,4),焦点坐标为(0,1),5=.解法二:抛物线的准线为y =-1,∴A 到准线的距离为5,又∵A 到准线的距离与A 到焦点的距离相等. ∴距离为5.点拨:利用抛物线定义解题.4.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为( ) A .1 B .32 C .2 D .52 答案:D.解析:【知识点】抛物线的定义.【解题过程】∵点P(2,22)在抛物线上,∴(22)2=2m,∴m=4,P到抛物线准线的距离为2-(-1)=3,F到准线距离为2,∴M到抛物线准线的距离为d=3+22=52.点拨:利用抛物线定义解题.5.抛物线y=ax2的准线方程是y=2,则a的值为________.答案:1 8 -解析:【知识点】抛物线的定义.【解题过程】抛物线方程化为标准形式为x2=1a y,由题意得a<0,∴2p=-1a,∴p=-12a,∴准线方程为y=p2=-14a=2,∴a=-18.点拨:先将方程转化为标准形式再求解.6.以双曲线x216-y29=1的中心为顶点,左焦点为焦点的抛物线方程是_________________.答案:220y x=-.解析:【知识点】抛物线的定义.【解题过程】∵双曲线的左焦点为(-5,0),故设抛物线方程为y2=-2px(p>0),又p=10,∴y2=-20x.点拨:利用抛物线定义解题.能力型师生共研7.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线焦点为F,则△MPF的面积为()A.10B.8C.6D.4答案:A.解析:【知识点】抛物线的定义.【解题过程】设P (x 0,y 0),∵|PM |=5,∴x 0=4,∴y 0=±4, ∴S △MPF =12|PM |·|y 0|=10. 点拨:利用抛物线定义解题.8.(2013·江西理,14)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________. 答案:6p .解析:【知识点】抛物线的定义. 【解题过程】如图不妨设B (x 0,-p 2).F (0,p2),FD =p ,可解得B (3+p 24,-p 2).在Rt △DFB 中,tan30°=BD DF ,∴33=3+p 24p. ∴p 2=36,p =6.点拨:利用抛物线定义解题. 探究型多维突破9.求适合下列条件的抛物线的标准方程:(1)过抛物线y 2=2mx 的焦点F 作x 轴的垂线交抛物线于A 、B 两点,且|AB |=6;(2)抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6. 答案:见解题过程.解析:【知识点】抛物线的定义.【解题过程】(1)设抛物线的准线为l ,交x 轴于K 点,l 的方程为x =-m 2,如图,作AA ′⊥l 于A ′,BB ′⊥l 于B ′,则|AF |=|AA ′|=|FK |=|m |,同理|BF |=|m |.又|AB |=6,则2|m |=6.∴m =±3,故所求抛物线方程为y 2=±6x .(2)设焦点F (a,0),||6PF ==,即a 2+10a +9=0,解得a =-1或a =-9.当焦点为F (-1,0)时,p =2,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,p =18,抛物线开口方向向左,其方程为y 2=-36x . 点拨:注意求抛物线方程时首先要确定开口方向.10.一辆卡车高3m ,宽1.6m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为am ,求使卡车通过的a 的最小整数值.答案:13.解析:【知识点】抛物线的定义.【解题过程】以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则B点的坐标为(a 2,-a 4),如图所示,设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a 4),∴m =-a ,即抛物线方程为x 2=-ay .将(0.8,y )代入抛物线方程,得0.82=-ay ,即y =-0.82a .欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a >3,由于a >0,得上述不等式的解为a >12.21,∴a 应取13.点拨:利用抛物线定义解题.自助餐1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2答案:C.解析:【知识点】抛物线的定义.【解题过程】抛物线的标准方程为x 2=-4y ,准线方程为y =1.点拨:将方程转化为标准形式处理.2.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .12答案:B.解析:【知识点】抛物线的定义.【解题过程】抛物线y 2=8x 的准线方程为x =-2,点P 到准线的距离为4+2=6,故点P 到该抛物线焦点的距离为6.点拨:利用抛物线定义解题.3.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >2p ),则点M 的横坐标是( )A .a +p 2B .a -p 2C .a +pD .a -p答案:B.解析:【知识点】抛物线的定义.【解题过程】设抛物线上点M (x 0,y 0),如图所示,过M 作MN ⊥l 于N (l 是抛物线的准线x =-p 2),连MF .根据抛物线定义,|MN |=|MF |=a ,∴x 0+p 2=a ,∴x 0=a -p 2,所以选B.点拨:利用抛物线定义解题.4.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( ) A.12B .1C .2D .4答案:C.解析:【知识点】抛物线的定义.【解题过程】抛物线的准线为x =-p 2, 将圆方程化简得到(x -3)2+y 2=16,准线与圆相切,则-p 2=-1,∴p =2,故选C.点拨:利用抛物线定义解题.5.顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线方程是( )A .y 2=94x B .x 2=43yC .y 2=-94x 或x 2=-43yD .y 2=-92x 或x 2=43y答案:D.解析:【知识点】抛物线的定义.【解题过程】∵点(-2,3)在第二象限,∴设抛物线方程为y 2=-2px (p >0)或x 2=2p ′y (p ′>0),又点(-2,3)在抛物线上, ∴94p =-,p ′=23, ∴抛物线方程为y 2=-92x 或x 2=43y . 点拨:利用抛物线定义解题.6.若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.答案:当点M 的横坐标为9时,抛物线方程为y 2=4x .当点M 的横坐标为1时,抛物线方程为y 2=36x .解析:【知识点】抛物线的定义.【解题过程】∵点M 到对称轴的距离为6,∴设点M 的坐标为(x,6).又∵点M 到准线的距离为10,∴⎩⎪⎨⎪⎧ 62=2px ,x +p 2=10.解得⎩⎨⎧ x =9,p =2,或⎩⎨⎧x =1,p =18. 故当点M 的横坐标为9时,抛物线方程为y 2=4x .当点M 的横坐标为1时,抛物线方程为y 2=36x .点拨:利用抛物线定义解题.。
2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.3.2 简单的逻辑联结词——非及复合命题
(5)p:空集是任何非空集合的真子集.
解析:(1) ﹁p:不是有理数.命题p是假命题,
﹁ p是真命题;
(2) ﹁p:5是75的约数.命题p是假命题,﹁p是真命 题; (3) ﹁p:7≥8.命题p是真命题,﹁p是假命题; (4) ﹁p:5+6=11,命题p是假命题,﹁p是真命题;
栏 目 链 接
3.若命题p:x=2且y=3,则命题﹁p是( D ) A.x≠2或y=3 C.x=2或y≠3 B.x≠2且y≠3 D.x≠2或y≠3
栏 目 链 接
题型一 例1
“﹁p”命题真假性的判断
写出下列命题的否定,并判断其真假.
(1)p:是有理数; (2)p:5不是75的约数; (3)p:7<8; (4)p:5+6≠11;
第一章
常用逻辑用语
1.3 简单的逻辑联结词
1.3.2 简单的逻辑联结词——非及复合命题
栏 目 链 接
1.理解逻辑联结词“非”的含义. 2.能够判断含有逻辑联结词的命题的真假. 3.掌握逻辑连接词“且”、“或”、“非”的简单 应用.
栏 目 链 接
栏 目 链 接
否命题:若a≠b或b≠c,则a≠c.
题型三 例3
逻辑联结词的简单运用 命题p:关于x的不等式x2+2ax+4>0对一切
x∈R恒成立;q:函数f(x)=-(5-2a)x是减函数.若p或q 为真,p且q为假,求实数a的取值范围. 解析:设g(x)=x2+2ax+4.因为关于x的不等式x2+ 2ax+4>0对一切x∈R恒成立,所以函数g(x)的图象开口向 上且与x轴没有交点,故Δ =4a2-16<0,所以-2<a<2, 所以命题p:-2<a<2. 又函数f(x)=-(5-2a)x是减函数,则有5-2a>1,即 a<2.所以命题q:a<2.
人教A版选修2-1高中数学《第一章常用逻辑用语复习课》ppt课件
【自主解答】(1)选C.由题意p与q均为假命题,故p∧q为假. (2)若p为真命题,则-2-a<1<a,解得a>1. 若q为真命题,则-2-a<2<a,解得a>2. 依题意得p与q一真一假,若p真q假,则 若p假q真,则
a 1 , a 2, , a 1 即1<a≤2. a 2,
即x2+mx+1>0恒成立有Δ=m2-4<0,所以-2<m<2.
所以当r(x)为真,s(x)为假时,m<- 2 ,
同时m≤-2或m≥2,即m≤-2. 当r(x)为假,s(x)为真时,m≥- 2 且-2<m<2,即综上,实数m的取值范围是m≤-2或2≤m<2. 2 ≤m<2.
【强化训练】 1.命题“若A⊆B,则A=B”与其逆命题、否命题、逆否命题这四 个命题中,真命题的个数是( A.0 B.2 C.3 D.4 )
q是p的“必要不充分条件”; ②若“p⇔q”,则p是q的“充要条件”,同时q是p的“充要条件”; ③若p q,则p是q的“既不充分也不必要条件”,同时q是p的
“既不充分也不必要条件”.
(2)等价命题法 利用互为逆否的两个命题间的等价关系判断. (3)用集合法判断充分条件、必要条件 若p以集合A的形式出现,q以集合B的形式出现,即 A={x|p(x)},B={x|q(x)},则: ①若A=B,则p是q的充要条件; ②若A ③若B B,则p是q的充分不必要条件; A,则p是q的必要不充分条件;
【解析】选B.原命题为假命题,而逆命题“若A=B,则A⊆B”是 真命题,所以在四种命题中真命题有两个.
2.(2013·北京高考)“φ=π”是“曲线y=sin(2x+φ)过坐标 原点”的( ) B.必要不充分条件 D.既不充分也不必要条件
高中数学选修第一章教案
高中数学选修第一章教案课题:函数及其应用教学目标:1. 了解函数的概念及性质;2. 掌握函数的图像与性态;3. 能够运用函数解决实际问题。
教学重点:1. 函数的概念和性质;2. 函数图像的绘制;3. 函数的应用。
教学难点:1. 函数的性质的理解和应用;2. 函数的图像画法;3. 实际问题的函数建模。
教学过程:一、导入(5分钟)老师通过提问引入函数的概念,让学生回顾一元二次函数和直线函数的知识。
二、讲解函数的概念及性质(15分钟)1. 给出函数的定义,并解释函数的自变量和函数值的概念;2. 讲解函数的定义域、值域和奇偶性;3. 引导学生理解函数的性质,如单调性、最值等。
三、讲解函数的图像与性态(15分钟)1. 绘制简单函数的图像,如一次函数、二次函数;2. 分析函数的图像特点,引导学生理解函数的凹凸性、零点等;3. 引导学生发现函数图像与函数性质的联系。
四、讲解函数的应用(15分钟)1. 运用函数解决实际问题,如利润最大化、成本最小化问题;2. 引导学生运用函数建模,求解实际问题。
五、练习与讨论(20分钟)1. 综合练习,让学生巩固函数的基本概念和性质;2. 分组讨论函数应用题目,鼓励学生能灵活运用函数解决问题。
六、课堂总结(5分钟)对本节课内容进行总结,强调函数的重要性和应用,引导学生对函数的认识和掌握。
拓展推荐:1. 探索函数的变化规律,学习更多函数的性质和图像;2. 实际问题的函数建模练习,培养解决问题的能力。
教学反思:通过本节课的教学,学生深入理解了函数的概念和性质,能够灵活运用函数解决实际问题。
在未来的教学中,需要进一步引导学生提高函数的抽象思维能力,拓展函数的应用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x A x∈使得 ( ).有一个素数是偶数;任意正整数都是质数或合数;三角形有且仅有一个外接圆( B ) 必要不充分条件D )既不充分也不必要条件所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是答案:题型一:四种命题之间的关系例1 命题“20(b a b +=∈2若a 、R ),则a=b=0”的逆否命题是( D ). (A) ≠≠若 a b 0∈(a,b R),则20b +≠2a (B) ≠若 a=b 0∈(a,b R),则20b +≠2a (C) 0≠≠若 a 且b 0∈(a,b R),则20b +≠2a(D) 0≠≠若 a 或b 0∈(a,b R),则20b +≠2a【审题要津】命题结论中的a=b=0如何否定是关键.解: a=b=0是a=0且b=0,否定时“且”应变为“或”,所以逆否命题为:0≠≠若 a 或b 0∈(a,b R),则20b +≠2a ,故应选D【方法总结】一个命题结论当条件,条件作结论得到的命题为原命题的逆否命题. 题型二:充分、必要条件题型例2 “,,αβγ 成等差数列”是“等式αγβsin(+)=sin2成立”的 ( A ). (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分有不必要的条件【审题要津】,,αβγ 成等差数列,说明2αγβ+= ,问题的关键是由两个角的正弦值相等是否一定有两个角相等.解: 由,,αβγ 成等差数列,所以2αγβ+= ,所以αγβsin(+)=sin2成立,充分;反之,由αγβsin(+)=sin2成立,不见得有,,αβγ 成等差数列,故应选A.【方法总结】p q ⇒:p 是q 充分条件; q 是p 必要条件,否则:p 是q 的不充分条件; q 是p 不必要条件. 变式练习:“1a =”是“,21ax x x+≥对任意的正数”的 ( A ). (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分有不必要的条件 例3 221:212;:210(0)3x p q x x m m --≤-≤-+-≤>已知,若p ⌝是q ⌝的必要但不充分条件,求实数m 的取值范围.【审题要津】命题p ,q 可以化的更简,由p ⌝和q ⌝的关系可以得到p 与q 的关系,利用集合的理论方法将问题解决.解: 由22210x x m -+-≤得:11,(0)m x m m -≤≤+>,{}:11,0q A x x m x m m ∴⌝=>+<->或. {}112210,:2103x x p B x x x -≤-≤-≤≤∴⌝=<->由-2得或. 由p ⌝是q ⌝的必要但不充分条件知:p 是q 的充分但不必要条件,即B A ⊆于是:012110m m m >⎧⎪-≥-≤⎨⎪+≤⎩解得0<m 3为所求. 【方法总结】利用集合作为逻辑演绎的一个方法,体现了集合的应用,能把各种关系清楚地描绘出来. 题型三:复合命题真假的判断例4 已知2:10p x mx ++=方程有两个不等的负实数根;q :方程24x +()4210m x -+=无实根, p q p q 若或为真,且为假,求m 的取值范围. 【审题要津】把两个方程化简,然后根据p q p q 或及且列不等式组,方可求m 的取值范围.解:240,:2;0m p m m ⎧∆=->>⎨>⎩解得 ()()22:16216164301 3.q m m m m ∆=--=-+<<<解得p q p q 或及且,p q p q ∴为真,为假或为假,为真,2,2,3121 3.13m m m m m m m >≤⎧⎧≥<≤⎨⎨<<≤≥⎩⎩即或解得或或 【方法总结】此题是方程与命题的综合题,涉及到一元二次方程的判别式和根与系数的关系,一元二次不等式及不等式组、集合的补集、p q p q 或及且两类复合命题的真假判断.变式练习:设有两个命题, p :不等式1x x a ++>的解集为R, q :函数()f x =()73xa --在R 上是减函数,如果这两个命题中有且只有一个真命题,则a 的取值范围是12a ≤<.题型四:全称命题、特称命题例5 设,A B 为两个集合,下列四个命题:(1),A B x A x B ⊆⇔∀∈∉有 (2) A B AB ⊄⇔=∅(3) A B B A ⊄⇔⊄ (4) A B x A x B ⊄⇔∃∈∉使得其中真命题的序号为(4).【审题要津】根据子集的概念,通过举反例加以排除假命题. 解: {}{}{}1231241112A B A B A B AB ==⊄∈∈=若,,,,,,满足,但且,,,所以(1),(2)是假命题; {}{}1241A B A B B A ==⊄⊆若,,,,满足但,所以(3)是假命题,只有(4)为真命题.【方法总结】全称命题通过“举反例”来否定.变式练习:下列命题中,既是真命题又是特称命题的是 ( A ).(A) ()n 90sin ααα︒-=有一个使si (B) sin 2x x π=存在实数,使(C) (),sin 180sin ααα︒-=对一切 (D) sin15sin 60cos 45cos60sin 45︒︒︒︒︒=- 题型五:综合应用例6 已知关于x 的实系数二次方程20x ax b ++=有两个实数根,αβ.证明: 2α< 且2244b βα<<+<是且b 的充要条件.【审题要津】充要条件的证明题都必须从充分和必要两个方面加以证明,其中的充分性是由条件推出结论,从题目的叙述中可以看出,2α<且2β<是条件,244b α<+<且b 是结论,由于二次方程的根由相应的二次函数的图象与x 轴的交点直观的表示出来,因此可以其直观性帮助解题。
证明:(1)充分性:由韦达定理得224αβαβ==<⨯=b .设2()f x x ax b =++,则函数()f x 的图象是开口向上的抛物线,又2α<,2β<,(2)0f ∴±>.即有420a b ++>,420a b -+>联立解得24a b <+.(2)必要性: 由24a b <+(2)0f ⇒±>且()f x 的图象是开口向上的抛物线,∴方程 ()0f x =的两根,αβ同在(2,2)-内或无实根. ,αβ是方程()0f x =的根, ,αβ同在(2,2)-内,即2α<且2β<.课堂练习: 一、选择题1.B 可以判断真假的陈述句2.D 原命题是真命题,所以逆否命题也为真命题 3.A ①220a b a b >>⇒>,仅仅是充分条件 ②0a b >>⇒ba 11< ,仅仅是充分条件;③330a b a b >>⇒>,仅仅是充分条件 4.D 否命题和逆命题是互为逆否命题,有着一致的真假性 5.A :,120A a R a a ∈<⇒-<,充分,反之不行6.A :12,31p x x ⌝+≤-≤≤,22:56,560,3,2q x x x x x x ⌝-≤-+≥≥≤或 p q ⌝⇒⌝,充分不必要条件 二、填空题1.若,a b 至少有一个为零,则a b ⋅为零 2.充分条件 A B ⇒3.必要条件;充分条件;充分条件,:15,:219219,A x B x A B -<<-<<+⊆ 4.[3,0]- 2230ax ax --≤恒成立,当0a =时,30-≤成立;当0a ≠时,24120a a a <⎧⎨∆=+≤⎩得30a -≤<;30a ∴-≤≤5.必要条件 左到右来看:“过不去”,但是“回得来” 三、解答题1.解:(1) :91,91p A B ⌝∉∉或;p 真,p ⌝假;(2) :p ⌝每一个素数都不是偶数;p 真,p ⌝假;(3) :p ⌝存在一个正整数不是质数且不是合数;p 假,p ⌝真;(4) :p ⌝存在一个三角形有两个以上的外接圆或没有外接圆。
2.解:{}:46,10,2,|10,2p x x x A x x x ⌝->><-=><-或或{}22:2101,1,|1,1q x x a x a x a B x x a x a -+-≥≥+≤-=≥+≤-,或记或而,p q A⌝⇒∴B ,即12110,030a a a a -≥-⎧⎪+≤∴<≤⎨⎪>⎩。
3.证明:假设,,a b c 都是奇数,则222,,a b c 都是奇数得22a b +为偶数,而2c 为奇数,即222a b c +≠,与222a b c +=矛盾所以假设不成立,原命题成立4.证明:210(0)ax ax a -+>≠恒成立240a a a >⎧⇔⎨∆=-<⎩ 04a ⇔<<课后作业: BBABBBD9.已知命题:矩形的对角线相等.(1)写出这个命题的否命题,并判断真假; (2)写出这个命题的否定,并判断真假.解:(1)先将命题改写成“若p 则q ”的形式:若四边形是矩形,则它的对角线相等. 否命题:若四边形不是矩形,则它的对角线不相等(假).这是一个全称命题,所以它的否定是:有些矩形的对角线不相等(假).10.已知方程()22210x k x k +-+=,求使方程有两个大于1的实数根的充要条件.解:令()22()21f x x k x k =+-+,方程有两个大于1的实数根11 ()221,2140,42111,.22(1)0,210.k k k k k f k k ⎧≤⎧⎪∆=--≥⎪⎪-⎪⎪⇔-><-⎨⎨⎪⎪><->⎪⎪⎩⎪⎩即或 所以其充要条件为 2.k <-。