钢筋混凝土梁的正截面承载力计算

合集下载

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。

钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。

在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。

因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。

故需进行正截面承载力计算。

(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。

为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。

第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。

钢筋混凝土板可分为整体现浇板和预制板。

在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。

通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。

预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。

板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。

空心板桥的顶板和底板厚度,均不宜小于80mm。

(整理)钢筋混凝土受弯构件正截面承载力的计算

(整理)钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。

②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。

③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。

比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。

其计算与梁计算原理一样。

b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。

⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。

一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。

当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。

板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。

板中弯起钢筋的弯起角不宜小于30°。

板的受力钢筋直径一般用6、8、10mm。

对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。

b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。

c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。

混凝土受弯构件正截面承载力计算

混凝土受弯构件正截面承载力计算
h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y

x
h0

r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。

正截面承载力计算

正截面承载力计算

最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。

对于受弯构件, 按下式计算:(2)基本公式及其适用条件 1)基本公式式中:M —弯矩设计值;f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。

2)适用条件l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。

在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能min t y max(0.45f /f ,0.2% )ρ= (3.2.1) sy c 1A f bx f =α(3.2.2)()20c 1x h bx f M -≤α(3.2.3) ()20y s x h f A M -≤(3.2.4)或承受的最大弯矩的表达式: (3)计算方法 1)截面设计己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h求:所需受拉钢筋截面面积A s 计算步骤:①确定截面有效高度h 0h 0=h -a s式中h —梁的截面高度;a s —受拉钢筋合力点到截面受拉边缘的距离。

承载力计算时,室内正常环境下的梁、板,a s 可近似按表3.2.4取用。

表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜)②计算混凝土受压区高度x ,并判断是否属超筋梁若x ≤ξb h 0,则不属超筋梁。

否则为超筋梁,应加大截面尺寸,或构件种类纵向受力 钢筋层数混凝土强度等级 ≤C20 ≥C25 梁一层 40 35 二层65 60 板一层2520提高混凝土强度等级,或改用双筋截面。

③计算钢筋截面面积A s ,并判断是否属少筋梁若A s ≥ρmin bh ,则不属少筋梁。

否则为少筋梁,应A s=ρmin bh 。

钢筋混凝土受弯构件—T形截面梁正承载力计算

钢筋混凝土受弯构件—T形截面梁正承载力计算

现浇肋梁楼盖(梁跨中截面) (a)
槽型板 (b)
(a)
(b)
空(c心) 板
(c)
单元4 T形截面梁正截面承载力计算
T形梁有效(计算)翼缘宽度:
离梁肋越远,T形梁翼缘受压的 压应力越小,因此对受压翼缘的宽 度有一定限制,在这个限制的宽度 范围内,认为翼缘的压应力均匀分 布。
单元4 T形截面梁正截面承载力计算
2.T形梁截面复核例题
上一例题中,若已配置受拉钢筋为8Φ25,即As=4418mm2,弯矩设计值 M=650KN.m,其余已知条件不变,试验算截面是否安全。
解题分析:T形梁首先需要确定计算翼缘宽度,之后判定T形截面类别,再进 行相应计算。 [解] (1)确定翼缘计算宽度
as
同上一题,取bf'=600mm
(2)判别T形截面类别
fc=9.6N/mm2,ft=1.1N/mm2; fy=300N/mm2, ξb=0.55
1
fcbf
hf
h0
hf 2
1.0 9.6
600
100
730
100 2
391 .7 10 6
N .mm
391 .7KN.m 450 KN.mm 第二类T形截面
(3)求M1
139.8mm b h0
0.55 740mm
(5)求As As
1 fcbx 1 fc b f
fy
bh f
1.0 9.6 250139.8 1.0 9.6 600 250100 2238mm2
300
(6)选钢筋 选用6Φ22,As=2281mm2
6Φ22
250
单元4 T形截面梁正截面承载力计算
求:验算截面是否安全

钢筋混凝土受弯构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力计算
在实际工程中要做到经济合理,梁的截面
配筋率要比b 低一些。
4.2.1 正截面受弯的三个受力阶段
试验方法
荷载分配梁
试验梁
P
外加荷载
数据采集系统
应变计
位移计
L/3
L/3
L
h0
h
As
b
As
bh0
矩M/Mu~ af 关系曲线如图:
af
第一阶段 —— 截面开裂前阶段。 第二阶段 —— 从截面开裂到纵向受拉钢筋
屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
各阶段和各特征点的截面应力 — 应变分析:
cu
应变图
应力图 M
t u
Mcr
M
y
My
M
xc C
Mu Z
sAs
I
ftk sAs
Ia
sAs
II
fyAs IIa
fyAs III
fyAs=T IIIa
进行受弯构件截面各受力工作阶段的分析, 可 以详细了解截面受力的全过程, 而且为裂缝、变形 及承载力的计算提供依据。
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
• 破坏前裂缝、变形有明显的发展, 有破坏征 兆, 属延性破坏
• 钢材和砼材料充分发挥
• 设计允许
4.2.2 正截面受弯的三种破坏

钢筋混凝土受弯构件正截面承载力计算—单筋矩形截面梁计算

钢筋混凝土受弯构件正截面承载力计算—单筋矩形截面梁计算

受压混凝土的应力-应变关系
计算原则
2)等效矩形应力图
简化原则:受压区混凝土的合力大小不变;受压区混凝土的合力作用点不变。
等效矩形应力图形的混凝土受压区高度 x 1xn ,等效矩形应力图形的应力值 为 1 fc, 1、1 的值见下表。
表 1、1 值
混凝土强 度等级
≤C50
C55
C60
C65
C70
C75
(2)求跨中截面的最大弯矩设计值。
因仅有一个可变荷载,故弯矩设计值应有取下列两者中的较大值:
M 1 1.2g 1.4q l 2
8
1 1.2 5 1.4 10 5.02 62.5
8
M 1 1.35g 1.4 0.7q l 2
8
1 1.35 5 1.4 0.7 10 5.02 51.7
需要加固、补强
计算原则
1)基本假定
01 平截面假定。
02
钢筋的应力 s 等于钢筋应变 s 与其弹性模量 Es 的乘积,但不得大
于其强度设计值 fy,即
s sEs fv
03 不考虑截面受拉区混凝土的抗拉强度。
计算原则
04
受压混凝土采用理想化的应力-应变关系,当混凝土强度等级为
C50及以下时,混凝土极限压应变 cu=0.0033。
(1)受拉钢筋为4 25,As=1964 mm2; (2)受拉钢筋为3 18,As=763 mm²。
单筋矩形截面梁计算
解 查表得:
fc 9.6N/mm2
ft 1.10N/mm2
f y 300N/mm2 c 1.0
b 0.550
c 30mm
单筋矩形截面梁计算
(1)
d
25
h0 h c 2 450 30 2 408

第三章-钢筋混凝土受弯构件正截面承载力计算

第三章-钢筋混凝土受弯构件正截面承载力计算
截面抗裂验算是建立在第Ⅰa阶段的基础之上,构 件使用阶段的变形和裂缝宽度的验算是建立在第 Ⅱ阶段的基础之上,而截面的承载力计算则是建 立在第Ⅲa阶段的基础之上的。
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;

梁正截面受弯承载力计算书

梁正截面受弯承载力计算书

梁正截面受弯承载力计算书1 已知条件梁截面宽度b=250mm,高度h=600mm,受压钢筋合力点至截面近边缘距离a's=35mm,受拉钢筋合力点到截面近边缘距离a s=35mm,计算跨度l0=6300mm,混凝土强度等级C20,纵向受拉钢筋强度设计值f y=300MPa,纵向受压钢筋强度设计值f'y=300MPa,非抗震设计,设计截面位于框架梁梁中,截面设计弯矩M=142.88kN·m,截面下部受拉。

2 配筋计算构件截面特性计算A=150000mm2, I x=4499999744.0mm4查混凝土规范表4.1.4可知f c=9.6MPa f t=1.10MPa由混凝土规范6.2.6条可知α1=1.0 β1=0.8由混凝土规范公式(6.2.1-5)可知混凝土极限压应变εcu=0.0033由混凝土规范表4.2.5可得钢筋弹性模量E s=200000MPa相对界限受压区高度ξb=0.550截面有效高度h0=h-a's=600-35=565mm受拉钢筋最小配筋率ρsmin=0.0020受拉钢筋最小配筋面积A smin=ρsmin bh=0.0020×250×600=300mm2混凝土能承受的最大弯矩M cmax=α1f cξb h0b(h0-0.5ξb h0)=1.0×9.6×0.550×565×250×(565-0.5×0.550×565)=304043584N·mm >M由混凝土规范公式(6.2.10-1)可得αs=M/α1/f c/b/h20=142880000/1.0/9.6/250/5652=0.19截面相对受压区高度ξ=1-(1-2αs)0.5=1-(1-2×0.19)0.5=0.209由混凝土规范公式(6.2.10-2)可得受拉钢筋面积A s=(α1f c bξh0)/f y=(1.0×9.6×250×0.21×565)/300=941.47mm2A s>A smin,取受拉钢筋面积A s=941.47mm2梁斜截面受剪承载力计算书1 已知条件梁截面宽度b=250mm,高度h=600mm,纵向钢筋合力点至截面近边缘距离a s=35mm,计算跨度l0=6300mm,箍筋间距s=100mm,混凝土强度等级C20,箍筋设计强度f yv=270MPa,非抗震设计,竖向剪力设计值V=90.72kN,求所需钢筋面积。

混凝土梁正截面承载力计算(1)

混凝土梁正截面承载力计算(1)
➢ 在截面的受拉和受压区均布置纵向受力钢筋的矩形 截面,称为双筋矩形截面。
➢ 由于钢筋混凝土受弯构件由两种材料组成,混凝土 本身为非弹性、非均质的,抗拉强度远低于抗压强 度,因而其受力性能于匀质、弹性材料相比由很大 的不同。
➢ 要建立受弯构件抗弯承载力计算原则,首先要进行 构件的加载试验,以了解钢筋混凝土受弯构件的破 坏过程的特征,研究其截面应力和应变的变化规律。
c
c
Mcr=
MI
My
t<ft
sAs
sAs t=ft(t =tu)
少筋破坏
梁的三种破坏形态
结论一:
•适筋梁具有较好的变形能力,超筋梁和少筋梁的破 坏具有突然性,设计时应予避免;
结论二:
•在适筋和超筋破坏之间存在一种平衡破坏。其破坏 特征是钢筋屈服的同时,混凝土压碎,是区分适筋破 坏和超筋破坏的定量指标;
板的受拉钢筋常用HRB400级和HRB500级钢筋, 常用直径是6mm、8mm、10mm和12mm。为了 防止施工时钢筋被踩下,现浇板的板面钢筋直径不 宜小于8mm。
C、板的砼保护厚度 见前保护层表格
d、板的分布钢筋
分布钢筋宜采用 HRB400级和HRB335 级钢筋,常用直径是 6mm和8mm。
• 若钢筋必须排成两排,上 下两排钢筋应当对齐.
d、混凝土保护层厚度
混凝土规范8.2.1
• 为了保证钢筋不被锈蚀,同时保证钢筋与混凝土的紧密粘结,梁 内钢筋的两侧和近边都应该设有保护层。
• 1、构件中受力钢筋的保护层厚度不应小于钢筋直径;
• 2、设计使用年限50年的结构,最外层钢筋的保护层厚度按下
环境类别
三a类: 受除冰盐影响环境;严寒和寒冷地区水 位变动的环境;海风环境

钢筋混凝土梁正截面抗弯承载力计算表

钢筋混凝土梁正截面抗弯承载力计算表

C20 13.4 1.54 9.6 1.1 25500
HPB23 强度 类型 5 fyv N/mm2 210
HPB23
强度 类型 5
fy N/mm2 210
Es N/mm2 210000
直径
8~20
梁截面尺寸
b=
300 (mm)
h=
600 (mm)
c=
35 (mm)
h0=
565 (mm)
l0=
3.000 (m)
300 )(N/mm2 纵筋抗拉压强度设计值 fy
200000 )
1.00
1.0<C50<内插<C80<0.94
0.80
0.8<C50<内插<C80<0.74
0.55
ξb=β1/(1+fy/0.0033Es)
7.14
αE=Es/Ec
混凝土强度及弹性模量
强度 类型 fck N/mm2 ftk N/mm2 fc N/mm2 ft N/mm2 Ec N/mm2
1.27 )(N/mm2 混凝土抗拉强度设计值 ft
28000 )
混凝土弹性模量 Ec
HPB fyv=
235 (HNP/Bm(m2325,335,400) 箍筋强度等级
210 )
箍筋抗拉压强度设计值 fyv
HRB fy= Es= α1= β1= ξb= αE=
335 (HNR/mB(m2325,335,400) 纵筋强度等级
Nj= φj=
dj=
2 6 (mm) 200 (mm)
ρj=
0.283
跨中正筋直径 φz 跨中正筋面积 Asz 跨中正筋配筋率 ρz
箍筋肢数 Nj 箍筋直径 φj 箍筋间距 dj 配箍率 ρj

钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算

钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算

这时本题转化为已知As´求As的问题。
(3)求As

= −
+ ′ ′ ( − ′ )


× × = . × . × − .
+ × × ( − )
偏心受拉构件正截面受拉承载力计算
− =

×


属于大偏心受拉构件。
(2) 计算As´


= − + = −
+ =


由式(5-6)可得


− ² ( − . )
=
′ ( − ′ )
As=1963mm2
,
(1-1)、(1-2)式可得


=
=
− ( −. ) ²
′ ( −′ )
+′ ′ +

(5-6)
(5-7)
当采用对称配筋时,求得x为负值,取 = 2′ ,并对As´合力点取矩,计算As 。
偏心受拉构件正截面受拉承载力计算
315×103 ×125−1.0×14.3×1000×1752 ×0.55×(1−0.5×0.55)
=
<0
300×(175−25)
偏心受拉构件正截面受拉承载力计算

′ = ′ = . × × = ²
取2
16,
选2
16,A's=402mm2
偏心受拉构件的正截面受力原理及承载能力计算
判别条件:
M h
e
as
N 2
M h
e
as
N 2

3.2 正截面承载力计算

3.2 正截面承载力计算

3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。

所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。

一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。

ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。

①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。

适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。

第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。

当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。

当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。

Ⅰa阶段的应力状态是抗裂验算的依据。

第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。

裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。

随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。

第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。

当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。

钢筋混凝土受弯构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力计算
承载力计算
根据钢筋混凝土受弯构件的正截面承载力计算公式, 计算出梁或板的承载力。
结果分析与讨论
结果分析
对比实际工程载荷和计算出的承载力,分析承载力的安全储备和可能存在的风险。
讨论
针对不同工程实例,讨论影响钢筋混凝土受弯构件正截面承载力的因素,如截面尺寸、 配筋、混凝土强度等。
07 结论与展望
研究结论
钢筋混凝土受弯构件正 截面承载力计算
目录
Contents
• 引言 • 钢筋混凝土受弯构件的基本理论 • 钢筋混凝土受弯构件正截面承载力
的计算公式 • 钢筋混凝土受弯构件正截面承载力
的影响因素
目录
Contents
• 钢筋混凝土受弯构件正截面承载力 的试验研究
• 工程实例分析 • 结论与展望
01 引言
采用现有的钢筋混凝土受弯构件 正截面承载力的计算公式或软件 ,如SAP2000、Midas等。
对比分析
将试验结果与理论计算结果进行 对比,分析两者的差异和原因, 验证理论模型的准确性和适用性 。
结论与建议
根据对比结果,得出结论并提出 相应的建议,为实际工程中的钢 筋混凝土受弯构件设计提供参考 。
06 工程实例分析
试验表明,当构件达到承载力极限状 态时,其破坏形态与理想化的脆性破 坏形态相符,因此可以基于这种破坏 形态推导出承载力计算公式。
承载力计算公式的应用
承载力计算公式可用于各种类型的钢筋混凝土受弯构件,如 梁、板、拱等。
根据构件的截面尺寸、配筋率、混凝土强度等级等参数,使 用承载力计算公式可以快速准确地计算出构件的正截面承载 力。
工程概况
要点一
某桥梁工程
主梁采用钢筋混凝土结构,跨度为30米,宽度为10米,设 计载荷为20吨。

桥梁结构受弯构件正截面承载力计算

桥梁结构受弯构件正截面承载力计算

M u
fcd bx(h0
) 2
fsd As (h0
) 2
Mu
•适用条件
fcd x/2
C
fsdAs
x h0
防止超筋 脆性破坏
防止少筋 脆性破坏
x bh0 或
max
b
f cd fsd
As min bh0
◆受弯构件正截面
受弯承载力计算包 括截面设计、截面 复核两类问题。
二、计算内容
•按承载力要求进行新构件设计——截面设计
桥梁结构受弯构件正 截面承载力计算
第一节 钢筋混凝土受弯构件的构造要求
受弯构件:指截面上 通常有弯矩和剪力共同作 用而轴力可以忽略不计的 构件。
pp lll
梁和板是典型的受弯构 M
pl
件。它们是土木工程中数
量最多、使用面最广的一
V
类构件。
p
受弯构件常见的破坏形态
在弯矩作用下发生正截面受弯破坏; 在弯矩和剪力共同作用下发生斜截面受剪或 受弯破坏。
As
f sd (h0
as )
As = As1 + As2
计算步骤:
x bh0
h0 h
As1
M1
As1 fcd bx / fsd , M1 As1 fsd (h0 0.5x)
b
As’
M2 0Md M1,
As2 M 2 /(h0 as' ) fsd
As'
As 2
fsd
/
f
' sd
As2
x
h
h
x

h
As b
(a)
As1 b
(b)
As2 b

钢筋混凝土轴心受力构件正截面承载力计算

钢筋混凝土轴心受力构件正截面承载力计算

54 第八章 钢筋混凝土构件正常使用极限状态验算本章学习要点:1、了解裂缝出现、分布和开展的过程;2、掌握影响裂缝宽度的主要因素(钢筋直径、配筋率);3、掌握裂缝宽度计算公式的应用;4、掌握挠度计算公式计算挠度的过程;5、掌握最小刚度原则、ψ的含义,减小挠度最有效的措施。

重点:深入理解梁在纯弯区段内的应力重分布全过程,开裂后钢筋和混凝土应变分布规律及其影响因素,ψ等主要参数的物理意义。

难点:裂缝宽度及截面抗弯刚度计算原理。

§8-1 抗裂验算一般要求(1)抗裂就是不允许混凝土开裂。

(2)钢筋混凝土构件正截面抗裂验算应满足下式 tk ct t f ασ≤ (8-1)式中,t σ——由荷载标准组合或准永久组合计算的验算截面的混凝土拉应力值;tk f ——混凝土抗拉强度标准值;ct α——混凝土拉应力限制系数(对水工混凝土结构构件,荷载标准组合时,ct α=0.85;荷载准永久组合时,ct α=0.70)。

§8-2 钢筋混凝土结构裂缝宽度的验算一、裂缝产生的原因:1、荷载引起的裂缝:占20%,t ct f >σ计算[]lim max ωω≤,式中,lim ω −最大裂缝宽度限值。

552、非荷载引起的裂缝:材料收缩、温度变化、混凝土碳化后引起钢筋锈蚀、地基不均匀沉降。

占80%,而为防止温度应力过大引起的开裂,规定了最大伸缩缝之间的间距;为防止由于钢筋周围砼过快的碳化失去对钢筋的保护作用,出现锈胀引起的沿钢筋纵向的裂缝,规定了钢筋的混凝土保护层的最小厚度。

通常,裂缝宽度和挠度一般可分别用控制最大钢筋直径和最大跨高比来控制,只有在构件截面尺寸小,钢筋应力高时进行验算。

二、裂缝宽度的计算方法1、裂缝出现与分布规律图8-2 第一条裂缝至将出现第二条裂缝间混凝土及钢筋应力56 (1)在裂缝未出现前:受拉区钢筋与混凝土共同受力;沿构件长度方向,各截面的受拉钢筋应力及受拉区混凝土拉应力大体上保持均等。

钢筋混凝土偏心受压构件正截面承载力计算

钢筋混凝土偏心受压构件正截面承载力计算

2、受压破坏(小偏心受压) As受压不屈服
As受拉不屈服
As受压屈服
As受压屈服时 As受压屈服判断条件
大小偏心近似判据 真实判据
不对称配筋
大偏心受压不对称配筋 小偏心受压不对称配筋
实际工程中,受压构件常承受变号弯矩作用,所以采用对 称配筋 对称配筋不会在施工中产生差错,为方便施工通常采用对 称配筋
随l 0/h的增加而减小,通过乘一个修正系数ζ2(称为偏
心受压构件长细比对截面曲率的影响系数)
实际考虑是在初始偏心距ei 的基础上×η
上节课总结
一、初始偏心距
e0=M/N
附加偏心距ea取20mm与h/30 两者中的较大值, h是指偏心方向的截面尺寸。
二、两类偏心受压破坏的界限
ξ ≤ξb, 受拉钢筋先屈服,然后混凝土压碎-
1、大偏心受压 x=N/a1 fcb
若x=N /a1 fcb<2a",可近似取x=2a",对受压钢筋合力点取矩可
e" = hei - 0.5h + a"
2、小偏心受压 x=N /a1 fcb>
对称配筋截面设计
对称配筋截面校核 例5-9、5-10及5-11 构造要求(配筋率问题讲解) 作业:5.4、5.5、5.6、5.7、5.8
对称配筋
大偏心受压对称配筋 小偏心受压对称配筋
非对称配筋矩形截面
截面设计
按e i ≤ 0.3h0按小偏心受压计算
若ei > 0.3h0先按大偏心受压计算, (ξ≤ξb确定 为大偏心受压构件。若求得的ξ>ξb时,按小
偏心受压计算。) 强度复核
一s 不对称配筋截面设计 1 s 大偏心受压(受拉破坏)
受压构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算正文:在钢筋混凝土结构设计中,受弯构件是一种常见的结构元素,其正截面承载力是设计中的关键参数之一。

正截面承载力的计算是评估构件的抗弯能力和安全性的基础,因此在设计中起着重要的作用。

本文将介绍钢筋混凝土受弯构件正截面承载力的简便计算方法,帮助读者更好地理解和应用。

1. 承载力计算的基本原理钢筋混凝土受弯构件的正截面承载力可以通过极限状态计算方法来评估。

其基本原理是根据构件的几何形状、材料性质和荷载作用下的应力分布,计算出构件的抗弯承载力。

在计算过程中,一般采用等效矩形应力分布假设来简化计算。

2. 等效矩形应力分布假设等效矩形应力分布假设是钢筋混凝土受弯构件计算的基础。

该假设认为在受弯构件的截面内,混凝土的应力分布可以近似为一个矩形。

在矩形应力分布中,混凝土的应力是一个线性递减的函数,而钢筋的应力则保持不变。

3. 正截面抗弯承载力计算公式根据等效矩形应力分布假设,可以得到钢筋混凝土受弯构件正截面的抗弯承载力计算公式。

常见的计算公式有多种,其中最常用的是弯矩-曲率法和应力-应变法。

- 弯矩-曲率法:根据截面的几何特性、材料特性和荷载情况,可以通过弯矩-曲率关系来计算截面的抗弯承载力。

具体计算公式如下:M = σs * As * d + σc * Ac * (d - x)其中,M为截面的弯矩,σs为钢筋应力,As为钢筋面积,d为截面的有效高度,σc为混凝土应力,Ac为混凝土面积,x为等效矩形应力分布中混凝土应力变为零的距离。

- 应力-应变法:根据混凝土和钢筋的应力-应变关系,可以分别计算出混凝土和钢筋的应力,然后将二者叠加得到截面的总应力。

具体计算公式如下:σ = σc + σs其中,σ为截面的总应力,σc和σs分别为混凝土和钢筋的应力。

4. 工程实例分析为了更好地理解和应用正截面承载力的简便计算方法,我们将通过一个具体的工程实例来进行分析。

假设有一根钢筋混凝土梁,截面尺寸为200mm×400mm,混凝土强度等级为C30,钢筋强度等级为HRB400。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高钢筋混凝土梁正截面承载力,关键在于理解梁的受弯性能和破坏形态。适筋梁的正截面受弯过程经历三个阶段:未裂阶段、裂缝阶段和破坏阶段。在未裂阶段,混凝土未开裂,应力分布呈线性;裂缝阶段,受拉区混凝土退出工作,拉力主要由纵向受拉钢筋承担;破坏阶段,钢筋屈服,受压区混凝土压碎,截面破坏。因此,提高承载力的方法包括:优化钢筋配置,如选用高强度钢筋、合理布置钢筋间距和直径;增强混凝土性能,如采用高强度混凝土、添加掺合料改善混凝土性能;以及合理设计梁截面尺寸和形状。此外,避免超筋和少筋破坏也是关键。超筋破坏时,钢筋未屈服而混凝土压碎,需通过增大截面尺寸或减小钢筋用量来避免。少筋破坏时,钢筋过早屈服导致截面破坏,筋混凝土梁正截面承载力需综合考虑钢筋配置、混凝土性能和梁截面设计等因素。
相关文档
最新文档