数学建模方法及其应用中的随机模型讲解部分随机模型详解演示文稿

合集下载

数学建模—概率模型 ppt课件

数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)

数学建模课堂PPT(部分例题分析)

数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。

《数学模型电子教案》课件

《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

化学反应动力学的数学建模分析

化学反应动力学的数学建模分析

化学反应动力学的数学建模分析化学反应是自然界中常见的过程之一,它涉及原子和分子之间的相互作用,由此而引起的能量和物质的转化。

对于化学反应的研究,化学反应动力学是一个非常重要的分支领域。

它主要研究反应的速率、化学反应速率与反应物浓度的关系、反应的气体动力学等方面,对于深入理解化学反应过程及其工业应用具有重要作用。

化学反应动力学是一个涉及多个学科知识的领域,其中重要的一部分就是数学建模分析。

数学建模是指根据已知的原理、概念和数据,利用数学方法,建立适当的模型,来描述所研究的现象或系统。

数学建模分析在化学反应动力学领域的应用,包括了多个方面,下面我们将逐一进行介绍。

一、手推式建模手推式建模是一种基本的方法,可以对于一些简单的化学反应模型进行模拟和分析。

手推式建模通常基于质量守恒和能量守恒原理,构建反应物浓度变化的微分方程。

比如,AB反应的模型可以写成以下形式:d[A]/dt = - k[A][B]d[B]/dt = - k[A][B]其中,k是反应的速率常数,[A]和[B]分别表示反应物A和B 的浓度。

从这个方程式中我们可以看出,当反应物A的浓度减少时,反应速率也会随之减小。

这种手推式建模方法对于一些简单的反应体系的分析非常有用,但是对于复杂体系而言,手推式建模则显得力不从心。

二、动态系统建模动态系统建模是一种可以描述化学反应中各个组分之间耦合关系的方法。

动态系统建模涉及到微分方程和控制论的知识,可通过建立反应动力学的微分方程,用数学的方法进行求解,来得到化学反应的动力学行为。

举个例子,对于单一组分分子总体达到平衡的一个反应体系,其化学反应的动态系统可以用以下控制方程来描述:dN/dt = C●N(1-N/K)其中,N是化学反应体系中分子的数目;K是达到最大平衡态时化学反应体系中分子的最大数目;C是最大化学反应速率的控制因子。

这个方程描述了组分数量随时间的变化,并考虑了反应速率与组分浓度之间的关系。

三、随机过程建模随机过程建模是一种更为复杂和跨学科的建模方法,适用于非线性或混沌系统的模拟。

数学建模第五章随机模型

数学建模第五章随机模型

05
随机模拟
随机模拟的基本原理
随机模拟是一种基于概率统计的数值计算方法,通过模拟随机事件或过程来求解实 际问题。
随机模拟的基本原理包括抽样、统计推断和误差分析,其中抽样是随机模拟的核心 步骤,通过从概率分布中抽取样本,模拟随机事件的概率特征。
随机模拟的精度取决于样本数量和分布的准确性,样本数量越多,模拟结果越接近 真实情况。
THANKS FOR WATCHING
感谢您的观看
蒙特卡洛积分
蒙特卡洛积分是一种基于随机抽样的 数值积分方法,通过将积分转化为求 和的形式,利用大数定律和中心极限 定理来估计积分值。
蒙特卡洛积分在金融、物理、工程等 领域有广泛应用,可以用于求解复杂 的高维积分问题。
蒙特卡洛积分的精度与样本数量和积 分的可积性有关,对于不可积的积分, 可以通过增加样本数量来提高估计精 度。
马尔科夫链蒙特卡洛方法
总结词
马尔科夫链蒙特卡洛方法是一种基于马尔科夫链的随机抽样方法,常用于求解复杂数学 问题的不确定性。
详细描述
马尔科夫链蒙特卡洛方法通过构造一个马尔科夫链,使其平稳分布为目标分布,从而通 过抽样得到目标分布的近似解。这种方法在统计学、物理、经济学等领域有广泛应用, 可以用于求解复杂数学问题的不确定性,如概率论中的积分、统计推断中的参数估计等。
描述随机变量取值概率分布的函数称 为随机变量的分布函数。常见的分布 函数有离散型分布和连续型分布,如 二项分布、泊松分布、正态分布等。
03
随机过程
随机过程的定义与分类
定义
随机过程是随机变量在时间或空间上的扩展,描述了一个随机现象在连续时间或 离散时间上的变化。
分类
根据过程的性质和特点,随机过程可以分为平稳随机过程、非平稳随机过程、离 散随机过程和连续随机过程等。

数学建模方法详解

数学建模方法详解

数学建模方法详解数学建模是指利用数学方法来研究和分析实际问题,并通过构建数学模型来描述和解决这些问题的过程。

数学建模具有很高的理论性和广泛的应用性,可以应用于科学、工程、经济等众多领域。

下面详细介绍几种常用的数学建模方法。

一、优化建模方法优化建模方法是指在给定的约束条件下,寻求其中一种目标函数的最优解。

该方法常用于生产、运输、资源分配等问题的优化调度。

优化建模的一般步骤包括确定决策变量、建立目标函数和约束条件、制定求解算法以及分析和验证最优解。

二、动力系统建模方法动力系统建模方法是指将实际问题转化为一组微分方程或差分方程,研究系统在时间上的演化规律。

该方法可以用于描述和预测物理、生物、经济等多个领域的系统行为。

动力系统建模的关键在于建立正确的微分方程或差分方程,并选择合适的求解方法。

三、决策分析建模方法决策分析建模方法是指将决策问题转化为数学模型,并采用数学方法进行决策分析和评估。

该方法常用于风险管理、投资决策、供应链管理等领域。

决策分析建模的关键在于准确描述决策者的目标和偏好,并选择合适的决策规则进行决策分析。

四、统计建模方法统计建模方法是指利用统计学理论和方法来描述和分析实际问题。

该方法多用于数据分析、预测和模式识别等领域。

统计建模的过程包括收集数据、建立概率模型、估计模型参数以及进行模型检验和应用。

五、图论建模方法图论建模方法是指利用图论的理论和方法来描述和分析网络结构和关联关系。

该方法常用于社交网络分析、路径规划、电力网络优化等领域。

图论建模的关键在于构建网络模型,并选择适当的图算法进行分析和优化。

六、随机模型建模方法随机模型建模方法是指利用随机过程和概率论的理论和方法来描述和分析随机现象。

该方法常用于金融风险管理、信号处理、系统可靠性评估等领域。

随机模型建模的关键在于建立正确的随机过程模型,并进行概率分布和随机变量的分析。

七、模拟建模方法模拟建模方法是指利用计算机仿真技术来模拟和分析实际问题。

数学模型之随机模型

数学模型之随机模型
如 取 整 数 x1=3178, 第 一 个 随 机 数 是 u1=0.3178 , x12=10156969, 取其中的四位数得x2=1569,得第 二 个 随 机 数 u2=0.1569 。 x22=02461761, 取 x3=4617 , u3=0.4617 , x32=21316689, 取 x4=3166, u1=0.3166,…….
用数学公式或位移寄存器的 移位操作来产生的随机数,实际 上是伪随机数
几种产生均匀随机数的方法
2
(1) 利用计算机移位寄存器的移位操作来产生均匀分 布的伪随机数
如 取 原 整 数 45086273, 可 以 得 到 第 一 个 随 机 数 0.45086273;
将 45086273 右 移 三 位 得 00045086 , 将 45086273 与 00045086 按 位 相 加 得 45021259 , 将 45021259 左 移 四 位 得 12590000, 将12590000 与 45021259 按位相加得57511259, 于是得到第二个随机数0.5751129;
X1 2lnU1 cos(2U2 )
X2 2lnU1 sin(2U2 ).
8
证明: 由
y1 2ln v1 cos(2v2)
y2 2ln v1 sin(2v2).
解得
v1 exp(( y12 y22 ) / 2)
v2
1
2
arctan(
y2 y1
)
F (x1, x2 ) P{X1 x1, X 2 x2}
再将 57511259与右移三位的数按位相加得57568760, 将57568760与左移四位的数相加得整数34168760,这就得 到第三个随机数0.34168760。按此规律一直重复下去,可以 得到一个随机数序列。

经典数学建模方法--随机建模算法

经典数学建模方法--随机建模算法
第三讲
储层随机建模
Stochastic Reservoir Modeling
随机模拟原理 随机建模方法
储层建模
确定的
不确定而需预测的
建 模 途 径
确定性建模 随机建模
储层系统的复杂性
资料的不完备性
储层随机建模
以已知的信息 为基础,以随机函 数为理论,应用随 机模拟方法 ,产 生可选的、等可能 的储层模型。
建模基本输入:
条件数据 数据均值与偏差 变差函数参数(如变程)
(若为相控建模,还需分相输入上述参数)
2.截断高斯模拟
Truncated Gaussian Simulation (TGS) ----离散变量的模拟
截断高斯随机域属于 离散随机模型,其基 本模拟思路是通过一 系列门槛值截断规则 网格中的三维连续变 量而建立离散物体的 三维分布 。
误差模拟
(Error simulation)
( 1 )应用原始数据进行克里 金插值估计,得到估计值 Z * (u); ( 2 )进行非条件模拟,得到 一个模拟实现Z(1)(u) ( 3 )提取在模拟实现 Z(1)(u) 中观察点处的非条件模拟值, 对其进行克里金插值估计,得 到新的估计值Z*(1)(u)。 ( 4 )比较非条件模拟与新的 估计值,得出模拟残 差 Z(1)(u)-Z*(1)(u) ,其中,观察 点的残差赋为0。 ( 5 )将模拟残差与原始的克 里金估计值相加,即得到一个 忠实于井点观察值的条件模拟 实现 Z c(1)(u)。
在实际应用中,若参数 分布不符合正态分布, 则通过正态得分变换将 其变为正态分布,模拟 后再进行反变换。
累计条件概率分布函数(ccdf)的求取:
通过克里金方法,求取某网格的随机变量的 均值和估计方差,并转换为ccdf。 (简单克里金、普通克里金、 具有趋势的 克里金、 (综合地震信息) 同位协同克里金)

数学建模方法及其应用

数学建模方法及其应用

一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理1层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1].1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层个因素对上层一个因素的影响,每次取两个因素和,用表示和n n C C ,,1 O i C j C ij a i C 对的影响之比,全部比较结果可用成对比较阵j C O 表示,称为正互反矩阵.()1,0,ij ij ji n nijA a a a a ⨯=>=A 一般地,如果一个正互反阵满足:A (1),ij jk ik a a a ⋅=,,1,2,,i j k n = 则称为一致性矩阵,简称一致阵.容易证明阶一致阵有下列性质:A n A ①的秩为1,的唯一非零特征根为;A A n ②的任一列向量都是对应于特征根的特征向量.A n 如果得到的成对比较阵是一致阵,自然应取对应于特征根的、归一化的特征向量(即分量之和为1)表n示诸因素对上层因素的权重,这个向量称为权向量.如果成对比较阵不是一致阵,但在不一致的n C C ,,1 O A 容许范围内,用对应于最大特征根(记作)的特征向量(归一化后)作为权向量,即满足:A λw w (2)Aw w λ=直观地看,因为矩阵的特征根和特征向量连续地依赖于矩阵的元素,所以当离一致性的要求不远时,A ij a ij a 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.A 2. 比较尺度当比较两个可能具有不同性质的因素和对于一个上层因素的影响时,采用Saaty 等人提出的尺i C j C O 91-度,即的取值范围是及其互反数.ij a 9,,2,1 91,,21,1 3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根的特征向量作为被比较因素的权向量,其λ不一致程度应在容许范围内.若已经给出阶一致阵的特征根是,则阶正互反阵的最大特征根,而当时是一致阵.所以n n n A n λ≥n λ=A 比大得越多,的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用数值λn A n λ-的大小衡量的不一致程度.Saaty 将A3(3)1nCI n λ-=-定义为一致性指标.时为一致阵;越大的不一致程度越严重.注意到的个特征根之和恰好等0CI =A CI A A n 于,所以相当于除外其余个特征根的平均值.n CI λ1n -为了确定的不一致程度的容许范围,需要找到衡量的一致性指标的标准,又引入所谓随机一致性指A A CI 标,计算的过程是:对于固定的,随机地构造正互反阵,然后计算的一致性指标.RI RI n A 'A 'CI 表1 随机一致性指标的数值RI 表中时,是因为阶的1,2n =0RI =2,1正互反阵总是一致阵.对于的成对比较阵,将它3n ≥A 的一致性指标与同阶(指相同)CI n 的随机一致性指标之比称为一致性比率,当RI CR (4)0.1CICR RI=<时认为的不一致程度在容许范围之内,可用其特征向量作为权向量.A 对于利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已A 有的进行修正.A n1234567891011RI00.580.901.121.241.321.411.451.491.514. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有层,则第层对第一层(设只有个因素)的组合权向量满足:s k 1 (5)()()()1,3,4,k k k w W w k s -== 其中是以第层对第层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()k W k 1k - (6)()()()()()132sss w W W W w -= 5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第层的一致性指标为(是第层因素的数目),随机一致p ()()p n p CI CI ,,1 n 1-p 性指标为,定义()()1,,p p n RI RI ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第层的组合一致性比率为:p5(7)()()(),3,4,,pp p CI CRp s RI== 第层通过组合一致性检验的条件为.p ()0.1p CR <定义最下层(第层)对第一层的组合一致性比率为:s (8)()2*sP p CR CR ==∑对于重大项目,仅当适当地小时,才认为整个层次的比较判断通过一致性检验.*CR 层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有个因素,最下层通常为1方案或对象层,中间可以有个或几个层次,通常称为准则或指标层,当准则过多时(比如多于个)应进一19步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第层开始,对于从属于上一层每个因素的同一层诸因素,用成2对比较法和比较尺度构造成对比较阵,直到最下层.91-(3) 计算权向量并做一致性检验 对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率较大的成对比较阵.CR(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题.1.正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题.定理1对于正矩阵(的所有元素为正数)A A1)的最大特征根是正单根;Aλ2)对应正特征向量(的所有分量为正数);λwω73),其中,是对应的归一化特征向量.w IA I I A k k k =T ∞→lim ()T=1,1,1 I w λ定理2 阶正互反阵的最大特征根;当时是一致阵.n A n λ≥n λ=A 定理2和前面所述的一致阵的性质表明,阶正互反阵是一致阵的充要条件为 的最大特征根.n A A n λ=2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法.(1) 幂法 步骤如下:a .任取维归一化初始向量n ()0w b .计算()()1,0,1,2,k k wAw k +== c .归一化,即令()1k w+ ()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度,当 时,即为所求的特征向量;否则返回bε()()()1||1,2,,k k i i i n ωωε+-<= ()1k w +e.计算最大特征根()()111k n i k i in ωλω+==∑9这是求最大特征根对应特征向量的迭代法,可任选或取下面方法得到的结果.()0w (2) 和法 步骤如下:a.将的每一列向量归一化得A 1nij ij iji a aω==∑ b .对按行求和得ij ω1ni ij j ωω==∑ c .将归一化即为近似特征向量.i ω()*121,,,ni i n i w ωωωωωωT===∑ d.计算,作为最大特征根的近似值.()11n ii iAw n λω==∑这个方法实际上是将的列向量归一化后取平均值,作为的特征向量.A A (3) 根法 步骤与和法基本相同,只是将步骤b 改为对按行求积并开次方,即.根法是将和法ij ω n 11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ 中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵是一致阵时,与权向量的关系满,那么当不是一致阵时,权向量A ij a ()T =n w ωω,,1 iij ja ωω=A的选择应使得与相差尽量小.这样,如果从拟合的角度看确定可以化为如下的最小二乘问题:w ij a ijωωw (9)()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于的非线性方程组,i ω计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:(10)()21,,11min ln ln i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ 则化为求解关于的线性方程组.可以验证,如此解得的恰是前面根法计算的结果.ln i ωi ω特征根法解决这个问题的途径可通过对定理2的证明看出.4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?11一般地,由残缺阵构造修正阵的方法是令()ij A a =()ij Aa = ,,0,,1,ij ij ij ij i i a a i j a a i j m m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数,(11)表示残缺.已经证明,可以接受的残缺阵的充分必要条件是为不可约矩阵.θA A (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表 肉、面包、蔬菜三类食品所含的营养成分及单价2食品维生素A/(IU/g)维生素B/(mg/g)热量/(kJ/g)单价/(元/g )肉面包蔬菜0.3527250.00210.00060.002011.9311.511.040.02750.0060.0.007该人体重为kg,每天对各类营养的最低需求为:55维生素A 国际单位 (IU)7500维生素B mg1.6338热量 R kJ8548.5考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构②根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵13W D ED 13E311,,,主特征向量max 2λ=10CI =100.1CR =<()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=表4 比较判断矩阵D ABR A 112B 112R5.05.01,主特征向量111max 1113,0,0,0.58CI CR RI λ====()0.4,0.4,0.2W T=故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为,()()2111211112120;0.435CI CI CI W RI RI RI W ====212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出的总权重E15为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始W 的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化食品维生素A维生素B 热量R单价F肉0.0139 0.44680.48720.1051面包0.00000.12770.47020.4819蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:,结果表明,按这个人的偏好,肉、()3320.2376,0.2293,0.5331W P W T==面包和蔬菜的比例取较为合适.引入参数变量,令,,,0.2376:0.2293:0.533110.2376x k =20.2293x k =30.5331x k =代入()1LP 123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得kf 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得,故得最优解;最优值,即肉g ,面1418.1k =()*336.9350,325.1650,755.9767x T=*16.4497f =336.94g ,蔬菜g ,每日的食品费用为元.325.17755.9816.45总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容一一一研究模糊数学的理论,以及它和精确数学、随机数学的关系;一一一研究模糊语言和模糊逻辑,并能作出正确的识别和判断;一一一研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是17用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3. 数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量,其中, ,为()12,,,m b b b b =01j b <<m 可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当时,最大隶属原则最有效;而在11max 1,1nj j j n j b b ≤≤===∑()1max 01,j j nb c c ≤≤=<<时,最大隶属原则完全失效,且越大(相对于而言),最大隶属原则也越有效.由此可1njj bnc ==∑1max j j nb ≤≤1njj b=∑19认为,最大隶属原则的有效性与在中的比重有关,于是令:1max j j nb ≤≤1njj b=∑ (12)11max njjj nj b bβ≤≤==∑显然,当时,则为的最大值,当, 时,有为11max 1,1nj j j n j b b ≤≤===∑1β=β()1max 01j j nb c c ≤≤=<<1nj j b nc ==∑1n β=的最小值,即得到的取值范围为:.由于在最大隶属原则完全失效时,而不为,所以不宜ββ11n β≤≤1n β=0直接用值来判断最大隶属原则的有效性.为此设:β (13)()()11111n n n n βββ--'==--则可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与(的含义是β'j n j b ≤≤1sec j nj b ≤≤1sec 向量各分量中第二大的分量)的大小有很大关系,于是我们定义:b (14)11sec njjj nj b bγ≤≤==∑可见: 当时,取得最大值.()1,1,0,0,,0b = γ12当时,取得最小值.()0,1,0,0,,0b = γ0即的取值范围为,设.一般地,值越大最大隶属原则有效程度越高;而值越大,γ012γ≤≤()02120γγγ-'==-β'γ'最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:(15)()112121n n n n βββαγγγ'--⎛⎫===⎪'--⎝⎭使用指标能更准确地表明实施最大隶属原则的有效性.α2. 指标的使用α从指标的计算公式看出与成反比,与成正比.由与的取值范围,可以讨论的取值范围:ααγββγα当取最大值,取最小值时,将取得最小值;γβα0当取最小值,取最大值时,将取得最大值:因为 ,所以可定义时,.即:γβα0limγα→=+∞0γ=α=+∞.0α≤<+∞由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当时,可认为α=+∞1α≤<+∞施行最大隶属原则非常有效;当时,可认为施行最大隶属原则比较有效,其有效程度即为值;当0.51α≤<α21时可认为施行最大隶属原则是最低效的;而当时,可认定施行最大隶属原则完全无效.有了测00.5α<<0α=量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级.讨论a . 在很多情况下,可根据值的大小来直接判断使用最大隶属原则的有效性而不必计算值.根据与βαα之间的关系,当,且时,一定存在.通常评价等级数取和之间,所以这一条件往往β0.7β≥4n >1α>494n >可以忽略,只要就可免算值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.0.7β≥αb . 如果对进行归一化处理而得到,则可直接根据进行最大隶属原则的有效度测量.()12,,,m b b b b = b 'b '(四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用.举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设是一个带出发点和收点的容量-费用网络,(),,,D V A c ω=s v t v 对于任意,表示弧上的容量,表示弧上通过单位流量的费用,是给定的非负数,问(),i j v v A ∈ij c (),i j v v ij ω(),i j v v 0v 怎样制定运输方案使得从到恰好运输流值为的流且总费用最小?如果希望尽可能地节省时间并提高道路s v t v 0v的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从到运送的流的值恰好为;(2)总运输费用最小;(3)在容量大的弧 上适当多运输.如果仅考虑s v t v 0v ij c (),i j v v 条件(1)和(2),易写出其数学模型为:()()()()()()()}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v A v v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑把条件(3)中的“容量大”看作上的一个模糊子集,定义其隶属函数:为:A Aμ[]0,1A →()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中(平均容量)()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑:23()()()()21,21,0,11i j i j ij v v A ij v v A A c c d A c c -∈-∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎪⎢⎥->⎪⎢⎥⎪⎣⎦⎩∑∑::建立是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量大的弧,人为地降低ij μij c (),i j v v 运价,形成“虚拟运价”,其中满足:越大,相应的的调整幅度也越大.选取为,ij ωij ωij ωij c ij ωij ω()1k ij ij ij ωωμ=-.其中是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),取值(),ijv v A ∈k k 越小;当取值足够大时,便可忽略条件(3) .一般情况下,合适的值最好通过使用一定数量的实际数据进k k 行模拟、检验和判断来决定.最后,用代替原模型中的,得到一个新的模型.用现有的方法求解这ij ωM ij ωM '个新的规划问题,可期望得到满足条件(3)的解.模型的评价此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一) 灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1. 原始数据初值化变换处理分别用时间序列的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,()k 各值均大于零,且数列有共同的起点.2. 求关联系数()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数01ρ<<254. 求关联度 ()()11ni k i k k r n ξ==∑(二) 灰色预测1. 灰色预测方法的特点(1) 灰色预测需要的原始数据少,最少只需四个数据即可建模;(2) 灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为:(1)1-ADO :对原始数据序列进行一次累加生成序列(){}0k x ()1,2,,k n = ()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =。

《随机数学模型》课件

《随机数学模型》课件
数学语言描述
将实际问题转化为数学语言,运用数学符号和公式来表示问题中的 变量、参数和关系。
确定随机因素
识别问题中的随机因素,并将其引入模型中,以反映模型的随机性 。
随机数学模型的求解方法
解析法
通过数学公式和定理,直接求解模型中的未 知数。适用于具有明确解的简单模型。
蒙特卡罗模拟法
利用随机抽样的方法,通过大量模拟实验来估计模 型的解。适用于难以解析求解的复杂模型。
集成学习
将多个模型集成在一起,通过综合各个模型的优点来提高整体性能 。可以通过集成多种模型、特征或数据来实现。
05 随机数学模型的 应用案例
在金融领域的应用案例
1 2
风险评估
随机数学模型用于评估投资组合的风险,通过模 拟市场波动和价格变化,帮助投资者制定风险管 理策略。
衍生品定价
随机数学模型用于确定衍生品的公允价值,如期 权、期货等,为市场参与者提供定价参考。
流体动力学模拟
随机数学模型用于模拟流体动力学现象,如湍流、流体阻力等,为流 体机械和流体控制系统的设计提供依据。
在社会科学领域的应用案例
人口统计学研究
随机数学模型用于预测 人口发展趋势和分布, 分析人口结构变化对社 会经济的影响。
社会网络分析
随机数学模型用于分析 社会网络的结构和演化 规律,揭示网络中个体 和群体的互动关系。
多维随机变量的概率分布
高斯分布
描述n维实数空间中服从正态分布的随机变 量的概率分布。
联合概率分布
描述多个随机变量之间相互关联的概率分布 。
条件概率分布
在给定其他随机变量值的条件下,一个随机 变量的概率分布。
随机变量的函数变换
线性变换
01

数学建模简明教程课件:概率模型

数学建模简明教程课件:概率模型
33
31
图 7-4
32
5.决策树的优缺点
•决策树方法的优点:可以生成可以理解的规则;计 算量相对来说不是很大;可以处理连续和种类字段;决策 树可以清晰地显示哪些字段比较重要.
•决策树方法的缺点:对连续性的字段比较难预测; 对有时间顺序的数据,需要很多预处理的工作;当类别太 多时,错误可能就会增加得比较快;一般算法分类的时候 ,只是根据一个字段来分类.
(a b)np(r) d r
0
n
计算
(7.2.2)
d G (a b)np(n)
n
(b c) p(r) d r (a b)np(n)
(a b) p(r) d r
dn
0
n
n
(b c)0 p(r) d r (a b)n p(r) d r
18
令 d G 0 ,得到 dn
n
0
p(r)d r p(r)d r
14
2.问题的分析及假设
众所周知,应该根据需求量确定购进量.需求量是随机 的,假定报童已经通过自己的经验或其它的渠道掌握了需 求量的随机规律,即在他的销售范围内每天报纸的需求量 为r份的概率是f(r)(r=0,1,2,…).有了f(r)和a,b,c,就 可以建立关于购进量的优化模型了.
假设每天的购进量为n份,因为需求量r是随机的,故r 可以小于n、等于n或大于n,致使报童每天的收入也是随 机的.所以作为优化模型的目标函数,不能是报童每天的收 入,而应该是他长期(几个月或一年)卖报的日平均收入.
26
(4)设定变量: A——试销成功,——试销失败 B——大量销售成功,——大量销售失败
27
3.建立模型 先来计算两个概率,注意到P(A|B)=0.84,P(B)=0.6 ,P(A|)=0.36,代入贝叶斯概率公式:

随机理论模型.ppt

随机理论模型.ppt

D87.5% (89.4%)
的途径: • 习题1
9.2 报童的诀窍
报童售报: a (零售价) > b(购进价) > c(退回价)
问 售出一份赚 a-b;退回一份赔 b-c 题 每天购进多少份可使收入最大?
购进太多卖不完退回赔钱
分 析
购进太少不够销售赚钱少
应根据需求确定购进量
存在一个合 适的购进量
每天需求量是随机的
0
(
x
r
)
p(r
)dr
c3
x
(r
x)
p(r
)dr
J(u)在u+x=S处达到最小
I(x)
J(u)与I(x)相似
I(S)+c0
I(x)在x=S处达到最小值I(S) I(S)
I(x)图形 I(S)
0s
I
(x)
c 0
I
(S)
的最小正根
s
S
x
9.4 轧钢中的浪费
背 轧制钢材 • 粗轧(热轧) ~ 形成钢材的雏形 景 两道工序 • 精轧(冷轧) ~ 得到钢材规定的长度
求 m 使浪费最小。
=l/=10
z*=-1.78
-1.0 3.477 2.0 0.420
-0.5 1.680
2.5 0.355
10 z
*= -z*=11.78 m*= *=2.36(米)
5
F(z)
z -2.0 * -1.0 0
1.0
2.0 z
9.5 随机人口模型
背景 • 一个人的出生和死亡是随机事件
PN
P
记 J (m) m P(m)
更合适的目标函数
P(m)
l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为需求量是随机的,致使报亭每天的销售收 入也是随机的。所以,不能以报亭每天的收入数作 为优化模型的目标函数,而应该是以报亭的长期( 几个月,或一年)卖报的日平均收入最大为目标函 数。
由概率论的知识,这相当于报亭每天销售收入 的期望值,以下简称平均收入。
设每天报纸的需求量为 r 份的概率是 p(r) (r=0,1,2,… ),报亭每天购进 n 份报纸的 平均收入为 G(n)元。
n 1
即得一名健康人与一名指定病人接触并被感染的概率为
p1
p
m
n 1

问题2:传染病的传播模型
(2)模型的建立与求解
为了求出一名健康人每天被感染为病人的
概率 p2 ,利用对立事件概率的计算方法:
p2
1 (1
p1)i
1
(1
m )i 。
n 1
健康人被感染为病人的人数也服从二项分布,
其平均值 sp2 (n i) p2 ,
问题3 报亭的进报策略模型
(3)模型的建立与求解
问题为在已知 p(r) 和 a,b, c ,求进报数量 n 使 G(n) 有最大值。
通常需求量 r 的取值和购进量 n 都比较大,将 r
视为连续变量,这时概率 p(r) 转化为概率密度函数
f (r) ,则
G(n)
n
0
(a
b)r
(b
c)(n
r)f
(r)dr
n n 1
1 1 1 (1)n1 1
2! 3!
n!
当充分大,即人数较多时,至少有1人抽取到自己所带礼品
的概率为
n
P( ) 1 e1 0.63212
i 1
1、初等概率模型
问题2:传染病的传播模型
现在的问题:
对某种传染病而言,人群中有病人(带菌者)和 健康人(易感染者),任何两人之间的接触是随机 的,当健康人与病人接触时健康人是否被感染也是 随机的.
问题3 报亭的进报策略模型
(3)模型的建立与求解
根据报亭每天的需求量(即销售量)的不确定性。
如果某天的需求量 r n ,则售出 r 份,退回 n r 份;
如果某天的需求量 r n ,则 n 份将全部售出。
考虑到该报亭需求量为 r 的概率是 p(r) ,平均收入
n
G(n) [(a b)r (b c)(n r)] p(r) r 0 (a b)np(r) r n1
均方差为 sp2 (1 p2 ) (n i) p2(1 p2) 。
问题2:传染病的传播模型
(2)模型的建立与求解
为了简便,将上式右端作 Taylor 展开,并取 前两项:
p2
1
(1
mi
n 1
) mi mi , (n
n 1 n
m, n
1)
最后得到: mi(n i) ,
n
1 p2 n mi 。 (n i) p2 mi(n i)
也随之减少。
问题3:售报厅的进报策略模型
(1)问题的提出
报纸每份购进价为 b 元,零售价为 a 元,退回价为 c 元,且 a b c 。
则报亭售出一份赚 a b 元,退回一份 赔 b c 元。报亭应该如何确定每天购进
报纸的数量,以获得最多的收入?
问题3 报亭的进报策略模型
(2) 问题的分析
有一个抽取到自己所带礼品的概率为
n
n
P( Ai ) P(Ai ) P(Ai Aj )
P( Ai Aj Ak ) (1)n1 P( A1A2 An )
i 1
i 1
1i jn
1i jk n
C C C 1 1 2 1 1 3 1 1 1 (1)n1 1 1 1
n n n n n 1 n n n 1 n 2
数学建模方法及其应用中的随机 模型讲解部分随机模型详解演示 文稿
(优选)数学建模方法及其应用 中的随机模型讲解部分随机模型
1、初等概率模型
问题1:有趣的蒙特莫特模型
假设某班共有 n 个同学参加活动,每个同学都
随机地抽取一份礼品, Ai (i 1, 2, , n) 表示第 i 个
同学抽取到自己所带的礼品。
这个结果合理吗?
为了直观,给出几组检验数据的计算结果。
问题2:传染病的传播模型
(3)模型的检验
不妨设 m 20, 0.1,对于不同的i ,计算 和 。
从计算结果可以看出:随着病人数 i 的增加,平均感
染率 随之增加,而相对误差 随之减少;
当病人的比例 i 一定,总人口数 n 变大时,相对误差 n
如果通过实际数据或经验掌握了这些随机规律, 那么怎样估计平均每天有多少健康人被感染,这种 估计的准确性有多大?
问题2:传染病的传播模型
(1)问题的分析与假设
假设将人群分为病人和健康人两类,病人
数和健康人数分别记为 i 和 s ,总人数为 n ,短 时间内不变,即 i s n 。
人群中任何两人的接触是相互独立的,且
P( Ai Aj )
1 1 , (1 i n n 1
j
n) 。
类似地, P( Ai Aj Ak )
1 1 1 , (1 i n n 1 n 2
j
k
n) ,
P( A1 A2
11
An )
n
n 1
1
n
1、初等概率模型
问题1:有趣的蒙特莫特模型
由概率的加法公式与乘法公式,则 n 个同学中至少
n 个同学中至少有一人抽取到自己所带的礼品
为 A1 A2
n
An ,简记为 Ai 。 i 1
n
要解决的问题是求事件的概率 P( Ai ) 。 i 1
1、初等概率模型

问题1:有趣的蒙特莫特模型
事实上,第 i 个同学抽取到自己所带礼品的概率为
P(
Ai
)
1 n
,
(i
1,
2,
, n) 。
第 i 和第 j 个同学同时抽取到自己所带礼品的概率为
具有相同概率 p ,每人每天平均与 m 人接触。
当一个健康人与病人接触时,这个健康人
被感染的概率为 。
问题2:传染病的传播模型
(2)模型的建立与求解
由于任何两人接触的概率为 p ,且两两接触的独立 性,一名健康人每天接触的人数服从二项分布,其平均值 为 m 。利用二项分布的基本性质,并注意到人群总数为 n , 则有 m (n 1) p ,于是, p m 。
问题2:传染病的传播模型
(3)模型的检验
健康人群每天平均被感染的人数 与人群中每人 每天平均接触的人数 m 以及接触时被感染的概率 成
正比,并且随着人群总数 n 的增加而增加。
平均感染率 与病人数 i 的关系,当 i 很小或很大 (接近 n )时, 值都很小,而当 i n 时, 值最大。
2
相关文档
最新文档