电容传感器桥式电路介绍PPT课件
合集下载
第3章传感器技术——电容式传感器精品PPT课件
输出电容的变化量ΔC与输入位移Δd之间成非线性关系
当 |Δd/d0|<<1 时可略去高次项,得到近似的线性关系
k c c0 d d0
电容式传感器的灵敏度及非线性变极距型
k c d
c0 d0
(
|Δd/d0|<<1
时)
d 1
d0
一般取:d 0.02~0.1
d0
1.传感器的测量范围由初始距离d0决定
C S d
:极板间介质的介电常数
S :两个极板的相对有效积面 d :两个极板间的距离
变极距型 (变间隙型)
电容式传感器
变面积型
变介电常数型
电极形状:平板形、圆柱形、球平面形
各种结构形式
变极距型
差分式 差分式
各种结构形式
差分式 变面积型
各种结构形式
变介电常数型
常用于测量液体的液位和材料的厚度
d
电容式传感器的灵敏度及非线性变极距型
电容的变化量:当|Δd/d0|<<1时,可按级数展开
ccc0
s s
d0 d d0
..
.
..
.
dd0 1c0( dd0 )1( dd0 )( dd0 )2
(d)3 d0
.
.
...
.
灵敏度k为: k d cd c0 0 1( dd 0)( dd 0)2( dd 0)3... ...
灵敏 k度 C0rb
x d
线性关系
a
d
x S
b
x
测线位移
动极 板 定极 板
测角位移
变面积型电容式传感器
电容式传感器的灵敏度及非线性变介质型
L0 L
第三章电容传感器PPT课件
第22页/共74页
3.2电容传感器的性能改善
电容传感器虽然有许多独具的优点,但由于它的工作 原理、结构特点而使它也存在一些缺点,在实际使用时需采 取相应的技术措施来改善。
1.静电击穿问题
该问题在3.1节中作过介绍,具体办法就是在电容中
加 容
入 为
介 :
质
,
防
止
静c
电
击穿
dg
,A见
图3
d0
-
3
所
示
说明:
电容C的相对变化△C/C0与角位移也呈线性关系,因此可用来测量角位移
的变化,理论测量范围0-π,但实际由于边缘效应等原因达不到该测量范 围。
3.齿形极板的电容式线性位移传感器 图3-1(j)是一齿形极板的电容式线性位移传感器的原理图。它是
图3-2的一种变形。采用齿形极板的目的是为了增加遮盖面积,提高灵敏 度。
01
d2 2
第20页/共74页
3.1电容传感器的结构原理
则有:
1 1
C
C C0
C0
x a
d1
2 1
d2 2
说明:
(1)变面积介质传感器电容量的相对变化△C/C0与位 移△x呈线性关系。
(2) 该类型传感器可用来测介质厚度,鉴别介质种类或 测量介质位移变化等.
第21页/共74页
3.1电容传感器的结构原理
体(包括仪器中的各种元件甚至人体)之间产生电容联系,这 种电容称为寄生电容。由于传感器本身电容很小,所以寄生电 容可能使传感器电容量发生明显改变;而且寄生电容极不稳定, 从而导致传感器特性的不稳定。
第26页/共74页
3.2电容传感器的性能改善
为了克服上述寄生电容的影响,必须对传感器进行静电屏蔽,即将电容器极板放 置在金属壳体内,并将壳体良好接地。出于同样原因,其电极引出线也必须用屏蔽线, 且屏蔽线外套须同样良好接地,但屏蔽线本身的电容量较大,且由于放置位置和形状不 同而有较大变化,也会造成传感器的灵敏度下降和特性不稳定。目前解决这一问题的有 效方法是采用驱动电缆技术,也称双层屏蔽等电位传输技术。
3.2电容传感器的性能改善
电容传感器虽然有许多独具的优点,但由于它的工作 原理、结构特点而使它也存在一些缺点,在实际使用时需采 取相应的技术措施来改善。
1.静电击穿问题
该问题在3.1节中作过介绍,具体办法就是在电容中
加 容
入 为
介 :
质
,
防
止
静c
电
击穿
dg
,A见
图3
d0
-
3
所
示
说明:
电容C的相对变化△C/C0与角位移也呈线性关系,因此可用来测量角位移
的变化,理论测量范围0-π,但实际由于边缘效应等原因达不到该测量范 围。
3.齿形极板的电容式线性位移传感器 图3-1(j)是一齿形极板的电容式线性位移传感器的原理图。它是
图3-2的一种变形。采用齿形极板的目的是为了增加遮盖面积,提高灵敏 度。
01
d2 2
第20页/共74页
3.1电容传感器的结构原理
则有:
1 1
C
C C0
C0
x a
d1
2 1
d2 2
说明:
(1)变面积介质传感器电容量的相对变化△C/C0与位 移△x呈线性关系。
(2) 该类型传感器可用来测介质厚度,鉴别介质种类或 测量介质位移变化等.
第21页/共74页
3.1电容传感器的结构原理
体(包括仪器中的各种元件甚至人体)之间产生电容联系,这 种电容称为寄生电容。由于传感器本身电容很小,所以寄生电 容可能使传感器电容量发生明显改变;而且寄生电容极不稳定, 从而导致传感器特性的不稳定。
第26页/共74页
3.2电容传感器的性能改善
为了克服上述寄生电容的影响,必须对传感器进行静电屏蔽,即将电容器极板放 置在金属壳体内,并将壳体良好接地。出于同样原因,其电极引出线也必须用屏蔽线, 且屏蔽线外套须同样良好接地,但屏蔽线本身的电容量较大,且由于放置位置和形状不 同而有较大变化,也会造成传感器的灵敏度下降和特性不稳定。目前解决这一问题的有 效方法是采用驱动电缆技术,也称双层屏蔽等电位传输技术。
电容式传感器PPT课件
l1
C 22 (l l1) 21l1
d
ln( D ) ln( D )
D
d
d
ε1—被测液体介电常数 ε2—空气的介电常数 D、d—两同心圆柱的直径
l—柱体的有效总长度 l1——浸入液体的实际高度
C
2
ln( D
)
(1
2
)l1
d
K C 2 (1 2 )
l1 ln( D d )
第二节 电容传感器测量电路
5、新型电容式指纹传感器
FPS110电容式指纹传感器表面集合了300×300个电容器, 其外面是绝缘表面,当用户的手指放在上面时,由皮肤来组成 电容阵列的另一面。电容器的电容值由于导体间的距离而降低, 这里指的是脊(近的)和谷(远的)相对于另一极之间的距离。 通过读取充、放电之后的电容差值,来获取指纹图像。该传感 器的生产采用标准CMOS技术,大小为15×15mm2,获取 的图像大小为300×300,分辨率为500DPI。FPS110提供有 与8位微处理器相连的接口,并且内置有8位高速A/D转换器, 可直接输出8位灰度图像。FPS110指纹传感器整个芯片的功 耗很低(<200mw),价格也比较便宜(人民币600元以 下)。下图为利用FPS110获取的指纹图象
5、新型电容式指纹传感器
电容传感器系列 创新应用
第五章小结
1、变极距型电容传感器 输出呈非线性关系,灵敏度与极距平方成反比, 适合检测微小位移。
2、变面积型电容传感器
输出与被测量呈线性关系,适合检测较大的位移。 3、变介质型电容传感器
输出与被测量呈线性关系,典型应用是检测液位。 4、检测电路
运算放大器检测电路和电桥检测电路
剂固定两个截面为T型的绝缘体,
《电容传感器》PPT课件
四、双T电桥
双T电桥电路
差动式
负载
U0
iC1 +
iC2
+
正半周:C1充电,C2放电
若将二极管理想化,则正半周时,二极管V1导通、V2截止,电
容C1被以极短的时间充电至U ,电容C2的电压初始值为 U,电源
经R1以i1向RL供电,而电容C2经R2、RL放电,流过RL 的放电电流
为20i221/,4/24流过RL 的总电流iL为i1 和i2的代数和。
补充:差动电容传感器
差动电容传感器结构示意图
a)差动变极距式 b)差动变面积式 1-动极板 2-定极板
从热胀冷缩和电源电压波动、频率波动等方面,分析差 动电容传感器的好处:
1、提高传感器的灵敏度,减小非线性。 2、外界的影响诸如温度、激励源电压、频率变化等也 基本能相互抵消,即减小外部影响带来的相对误差
变面积式电容传感器的特性
变面积电容传感器的灵敏度为常数, 即输出与输入呈线性关系!!!!这
一类传感器多用于检测直线位移、角 位移、尺寸等参量。
2021/4/24
4
轨道交通学院
School of Railway Transportation
二、变间隙式电容传感器
定极板
C0
A
d
C A
dx
x
动极板
C0
17
轨道交通学院
School of Railway Transportation
负半周:C2充电,C1放电
在负半周时,二极管V2导通、V1截止,电容C2很快被充电至电 压U;电源经电阻R2以i1 向负载电阻RL供电,与此同时,电容C1 经电阻R1、负载电阻RL 放电,流过RL 的放电电流为i2。流过RL 的总电流iL为i1 和i2的代数和。
双T电桥电路
差动式
负载
U0
iC1 +
iC2
+
正半周:C1充电,C2放电
若将二极管理想化,则正半周时,二极管V1导通、V2截止,电
容C1被以极短的时间充电至U ,电容C2的电压初始值为 U,电源
经R1以i1向RL供电,而电容C2经R2、RL放电,流过RL 的放电电流
为20i221/,4/24流过RL 的总电流iL为i1 和i2的代数和。
补充:差动电容传感器
差动电容传感器结构示意图
a)差动变极距式 b)差动变面积式 1-动极板 2-定极板
从热胀冷缩和电源电压波动、频率波动等方面,分析差 动电容传感器的好处:
1、提高传感器的灵敏度,减小非线性。 2、外界的影响诸如温度、激励源电压、频率变化等也 基本能相互抵消,即减小外部影响带来的相对误差
变面积式电容传感器的特性
变面积电容传感器的灵敏度为常数, 即输出与输入呈线性关系!!!!这
一类传感器多用于检测直线位移、角 位移、尺寸等参量。
2021/4/24
4
轨道交通学院
School of Railway Transportation
二、变间隙式电容传感器
定极板
C0
A
d
C A
dx
x
动极板
C0
17
轨道交通学院
School of Railway Transportation
负半周:C2充电,C1放电
在负半周时,二极管V2导通、V1截止,电容C2很快被充电至电 压U;电源经电阻R2以i1 向负载电阻RL供电,与此同时,电容C1 经电阻R1、负载电阻RL 放电,流过RL 的放电电流为i2。流过RL 的总电流iL为i1 和i2的代数和。
电容式传感器1完整ppt课件
图4.16 差动脉冲宽度调制电路
.
11
(a)C1 = C2
(b)C1 > C2 图4.17 电路各点的充放电波形
当电阻R1 = R2 = R 时,则有
Uo
C1 C1
C2 C2
UH
由此可知,差动脉冲宽度调制型电路,其输出电压与电容变化成线性关系。
.
12
4.2.3 调频电路
1.载波频率改变的调幅调频式
S
d02
图4.6 基本的变间隙式电容传感器
差动式电容的相对变化量和灵敏度
分别为 C 2 d
C0
d0
KC2C0 2S
d d0 d02
与基本结构间隙式传感器相比,
差动式传感器的非线性误差减少了一个 图4.7 差动结构的变间隙电容传感器 数量级,而且提高了测量灵敏度,所以
在实际应用中被较多采用。 .
3.寄生电容的影响 (1)减小引线长度。
图4.19 极板周边加装同心圆环示意图
(2)屏蔽。
.
14
4.4 电容式传感器的应用
1.电容式位移传感器 采用了差动式结构。当测量杆随被测位移运动而带动活动电极位
移时,导致活动电极与两个固定电极间的覆盖面积发生变化,其 电容量也相应产生变化。
图4.20 变面积式位移传感器结构图
电容式传感器可用于测量压力、位移、振动、液 位、厚度。
.
2
4.1 电容式传感器工作原理
C=ε.S/d=ε0. εr.S/d ε=ε0. εr
C为电容 ε0=8.85×10-12F/m 对介电常数
εr为相
用S为极板相对覆盖面积m2 d为极板间距
电容式传感器分为变面积式、变间隙式、变介电
常数式三大类,其中变面积式可分为直线位移式 、角位移式;变介电常数式可分为平面介电常数 式、圆筒介电常数式。
电容式传感器原理及其应用PPT课件
2.1 变面积式电容传感器
变面积式电容式传感器通常分为线位移型 和角位移型两大类。
〔1〕线位移变面积型
常用的线位移变面积型电容式传感器可分 为平面线位移型和柱面线位移型两种结 构。
➢ 对于平板状结构,在图4-2〔a〕中,两极板有效覆盖面积就发生变化,电容 量也随之改变,其值为:
➢
➢ 式中,
,为初始电容值。
➢ 当电容式传感器的电介质改变时,其介电常数变化, 也会引起电容量发生变化。
➢ 变介电常数式电容传感器就是通过介质的改变来实 现对被测量的检测,并通过传感器的电容量的变化 反映出来。它通常可以分为柱式和平板式两种,如 下图。
〔a〕柱式
〔b〕平板式
变介电常数式电容传感器
➢ 变介电常数式电容传感器的两极板间假设存在导电 物质,还应该在极板外表涂上绝缘层,防止极板短 路,如涂上聚四氟乙烯薄膜。
➢ 电桥的输出电压为:
2.2 变压器电桥电路
电容式传感器接入变压器电桥测量电路如下图,它可 分为单臂接法和差动接法两种。
〔a〕单臂接法
〔b〕差动接法
〔1〕单臂接法
图4-8(a)所示为单臂接法的变压器桥式测量电路,高 频电源经变压器接到电容桥的一个对角线上,电容 构成电桥的四个臂,其中 为电容传感器。
〔a〕电容器的边缘效应
〔b〕带有等位环的平板式电容器
图4-14 等位环消除电容边缘效应原理图
〔2〕保证绝缘材料的绝缘性能 ① 温度、湿度等环境的变化是影响传感器中绝缘材料
性能的主要因素。 ②传感器的电极外表不便清洗,应加以密封,可防尘、
防潮。 ③ 尽量采用空气、云母等介电常数的温度系数几乎为
零的电介质作为电容式传感器的电介质。 ④ 传感器内所有的零件应先进行清洗、烘干后再装配。
第04章电容式传感器ppt课件
4.3.1 调频测量电路
调频测量电路把电容式传感器作为振荡器谐 振回路的一部分。当输入量导致电容量发生 变化时, 振荡器的振荡频率就发生变化。
高频、低频激励电压作用下电容传感器的等效电路
4.3.1 调频测量电路
虽然可将频率作为测量系统的输出量, 用以判 断被测非电量的大小, 但此时系统是非线性的, 不易校正
因此加入鉴频器, 将频率的变化转换为振幅的 变化, 经过放大就可以用仪器指示或记录仪记 录下来
调频测量电路原理框图如图所示:
4.3.1 调频测量电路
图中调频振荡器的振荡频率为:
f
1
1
2(LC) 2
(4-13)
4.3.1 调频测量电路
✓调频电容传感器测量电路具有较高灵敏 度, 可以测至0.01μm级位移变化量
改变极板间距离(δ)的极距型传感器 改变极板遮盖面积( A )的面积型传感器 改变电介质介电常数〔ε0〕的介质型传感器
4.2 电容传感器分类
电容传感器分类结构图如下
电容式传感器
极距型
ቤተ መጻሕፍቲ ባይዱ面积型
介质型
4.2.1 极距式电容传感器
➢当传感器的εr和A为常
+ +
+
数,初始极距为δ0时,由
式(4-1)可知其初始电
为此, 极板间可采用高介电常数的材料〔云母、 塑料膜等〕作介质
4.2.1 极距式电容传感器
此时电容C变为:
C
A
g 0
0 g 0
(4-4)
4.2.1 极距式电容传感器
➢式中: ➢ εg—云母的相对介电常数,εg= 7
ε0—空气的介电常数, ε0= 1 ➢ d0—空气隙厚度 ➢ dg—云母片的厚度
电容式传感器PPT课件
20
CA0CCB0C0 r R2r2a
0
CAC 0 CBC 0 R 0rlrra
A B C
21
5.1.3变介质型电容传感器
这种电容传感器有较多的结构型式,可以用来测量纸 张、绝缘薄膜等的厚度,也可用来测量粮食、纺织品、 木材或煤等非导电固体物质的湿度。
图中两平行极板固定不动,极距为 0 ,相对介电常数
现以变极距型为例,设定极板厚度为 g 0 ,绝缘件厚
度 b 0 ,动极板至绝缘底部的壳体长为a 0 ,各零件材料的
线膨胀系数分别为aa、ab、ag。当温度由t0 变化 Δt 后,极
间隙将由δ0=a0-b0-g0变为δt由此一起的温度误差为
35
e t0 t t0 a 0 a a a 0 a a b 0 a b b 0 a bg 0 a g g 0 a gt t
对变化量为 1 = 0 - , 2 = 0 +
16
C C 0 C 1C 0 C 22 0 1 0 2 0 4
略去高次项,可得近似得线性关系
C 2
C0
0
相对非线性误差
e
f
为
ef2 2 //00310% 0/0210% 0
上式与前几式比较可知,差动式比单级式灵敏 度提高一倍,且误差大大减小。
29
5.2.3静电引力
电容式传感器两极板间因存在静电场,而作用 有静电引力或力矩。静电引力的大小与极板间 的工作电压、介电常数、极间距离有关。通常 这种静电引力很小,但在采用推动力很小的弹 性敏感元件情况下,须考虑因静电引力造成的 测量误差。查阅相关手册得到各种电容传 感 器静电引力的计算公式。
由此可见,消除温度误差的条件为: a0aab0abg0ag0
或者满足条件
CA0CCB0C0 r R2r2a
0
CAC 0 CBC 0 R 0rlrra
A B C
21
5.1.3变介质型电容传感器
这种电容传感器有较多的结构型式,可以用来测量纸 张、绝缘薄膜等的厚度,也可用来测量粮食、纺织品、 木材或煤等非导电固体物质的湿度。
图中两平行极板固定不动,极距为 0 ,相对介电常数
现以变极距型为例,设定极板厚度为 g 0 ,绝缘件厚
度 b 0 ,动极板至绝缘底部的壳体长为a 0 ,各零件材料的
线膨胀系数分别为aa、ab、ag。当温度由t0 变化 Δt 后,极
间隙将由δ0=a0-b0-g0变为δt由此一起的温度误差为
35
e t0 t t0 a 0 a a a 0 a a b 0 a b b 0 a bg 0 a g g 0 a gt t
对变化量为 1 = 0 - , 2 = 0 +
16
C C 0 C 1C 0 C 22 0 1 0 2 0 4
略去高次项,可得近似得线性关系
C 2
C0
0
相对非线性误差
e
f
为
ef2 2 //00310% 0/0210% 0
上式与前几式比较可知,差动式比单级式灵敏 度提高一倍,且误差大大减小。
29
5.2.3静电引力
电容式传感器两极板间因存在静电场,而作用 有静电引力或力矩。静电引力的大小与极板间 的工作电压、介电常数、极间距离有关。通常 这种静电引力很小,但在采用推动力很小的弹 性敏感元件情况下,须考虑因静电引力造成的 测量误差。查阅相关手册得到各种电容传 感 器静电引力的计算公式。
由此可见,消除温度误差的条件为: a0aab0abg0ag0
或者满足条件
传感器技术课件——电容式传感器
)
U SC
ZZ
1
2
(1
Z 1
)2
E
Z
2
Z U SC Z 1
对于电容传感元件来说,有如下关系:
Z =C d
Z1
C1
d1
a
18
Cr1
U Cr2 USC
变压器式交流电桥
变压器电桥使用元件最少,桥路内阻最小,因此目前较多 采用。
差动式电容传感器接入变压器式电桥,当放大器输入阻抗 极大时,对任何类型的电容式传感器,电桥输出电压与输 入位移均成线性关系。
总的电容 C相当于上方气体介质间的电容量 C 1 和液体介质间电容量C 2 之 和(相并联)。
C 12 ln (D 0/2d h2 )2ln 0(D 2(h /d )h1)
C2
2 01h1
ln(D / d )
CC1
C2
202(hh1)
ln(D/d)
201h1
ln(D/d)
CAK1h
202
ln(D/d)
h20(1 2)
ln(D/d)
h1可见,同轴圆筒电容传感器的电容量
A
K
与液位成线性关系。
a
15
2. 电容式传感器的测量电路
电容式传感器的电容值一般十分微小,不便于直接显示、记录和传输。因此, 必须借助于测量电路检测出这个微小的电容变量,并转换为电压、电流或频 率信号。
与电容式传感器配用的测量电路很多,常用的有桥式电路、调 频振荡电路、运算放大器式电路和脉冲调宽型电路等几种。
变面积式电容传感器也采用差动形式,可使灵敏度提高一倍。
a
11
(3) 介质变化型
C 0 A
当电容式传感器中的电介质改变时,其介电常数变化,从而引起了电容
3电容传感器 PPT课件
L-本身的电感和外部
引线电感组成。
这是典型的RLC电路,具有谐振频率,通常为几十兆赫, 当工作频率等于或接近于谐振频率时,谐振频率破坏了电
容的正常工作,所以工作频率应选低于谐振频率,否则电
容传感器不能正常工作。
CE CE
C C 1 w2LC
结论:1、电容传感器有效电容的相对变换量与w、L有关 2、实际使用时必须与标定条件相同,电源频率、导线 长度必须与标定值相同。
(d )图,采用差动式电容传感器
1
1
U sc
wC 1 wC
R
wC 1 wC
R
E
(c)图
1
1
U
' sc
wC 1 wC
R
wC 1 wC
R
E
U sc
2U
' sc
Usc
E
2、二极管环形检波电路
2
d d0
3
]
考虑线性项与二次项 C = d(1 d )
C0 d0
d0
拟合直线(线性): d d0
2
实际校准曲线:
d d0
则传感器的相对非线性误差
d
=
d0 2
100%
d
100%
d d0
d0
由前 而
K d0
,d0
2
三、变极距式电容传感器
当动极板受被测物体作用引起位移时,改变了两
极板之间的距离d,从而使电容量发生变化。
A
d
r
变极距型电容式传感器
引线电感组成。
这是典型的RLC电路,具有谐振频率,通常为几十兆赫, 当工作频率等于或接近于谐振频率时,谐振频率破坏了电
容的正常工作,所以工作频率应选低于谐振频率,否则电
容传感器不能正常工作。
CE CE
C C 1 w2LC
结论:1、电容传感器有效电容的相对变换量与w、L有关 2、实际使用时必须与标定条件相同,电源频率、导线 长度必须与标定值相同。
(d )图,采用差动式电容传感器
1
1
U sc
wC 1 wC
R
wC 1 wC
R
E
(c)图
1
1
U
' sc
wC 1 wC
R
wC 1 wC
R
E
U sc
2U
' sc
Usc
E
2、二极管环形检波电路
2
d d0
3
]
考虑线性项与二次项 C = d(1 d )
C0 d0
d0
拟合直线(线性): d d0
2
实际校准曲线:
d d0
则传感器的相对非线性误差
d
=
d0 2
100%
d
100%
d d0
d0
由前 而
K d0
,d0
2
三、变极距式电容传感器
当动极板受被测物体作用引起位移时,改变了两
极板之间的距离d,从而使电容量发生变化。
A
d
r
变极距型电容式传感器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容式传感器
目录
一、电容式传感器的工作原理及分类 二、电容式传感器的测量电路 三、电容式传感器在应用中的注意事项 四、电容式传感器的研究现状
2
一、电容式传感器的工作原理及分类
由物理学可知,两块平行金属板构成的电容器,其电容量C
为
C 0 A
3
当被测参数(如位移、压力等)使公式中的、A、 变化时,都将引起
虽然面积变化型电容传感器在理想情况下灵敏度为常 数,不存在非线性误差,但实际上因为电场边缘效应 的影响仍存在一定的非线性误差,且灵敏度较低。
面积变化型一般用于测量角位移或较大的线位移。
11
1.3 介质变化型电容传感
器
对于图所示的液位测量用介质变化型
电容传感器,传感器的总电容C等于
上、下两部分电容C 和C 的并联,即
1
2
C
ห้องสมุดไป่ตู้C1
C2
20 l h
ln
D d
2 x0l
ln
D d
a
bh
灵敏度S C b 2 x 10 =常数
h
ln
D d
由上式可知,这种传感器的灵敏度为常数,电容C理论上与液位h
成线性关系,只要测出传感器电容C的大小,就可得到液位h的值。
介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 12
13
二、电容式传感器的测量电路
电容传感器将被测物理量转换为电容量的变化后, 由后续电路转换为电压、电流或频率信号。
14
2.1 电桥型电路
将电容传感器作为桥路的一部分,由电容变化转换为 电桥的电压输出,通常采用电阻、电容或电感、电容 组成的交流电桥。
图所示的电桥型电路,是一种电感、电容组成的桥 路,电桥的输出为一调幅波,经放大、相敏解调、 滤波后获得输出,再推动显示仪表。
9
1.2.2 角位移型
当动板转动一角度时,与定板之间的覆盖面积就发生 变化,导致电容量随之改变。
覆盖面积 A r 2
2
其中,为覆盖面积对应的中心角,r为极板半径。
所以,电容量为 C r 2 2
灵敏度S C r2 常数 2
由上式可知,角位移型电容传感器的输出C与输入也为线性关系。
10
5
1.1 极距变化型电容传感器
电容器的极板面积为A,初始极距为0,极板间介质的介电常数为
电容器的初始电容量为
C0
A 0
间隙 0减小 时,电容量增加C,即
C
C0 C
A 0
C0
1
1
0
C
C0 1
0
0
C C0
0
1+
0
+
0
2
+
0
3
+
+
0
n
6
由上式可知,被测参数引起的极距变化 与电容的变化C之间的关系
谐振电路比较灵敏,但缺点是工 作点不易选好,变化范围也较窄, 传感器连接电缆的分布电容影响 也较大。
20
2.4 调频电路
如图所示,传感器电容式振荡器谐振回路的一部分,当输入 量使传感器电容量发生变化时,振荡器的振荡频率发生变化, 频率的变化经过鉴频器变为电压变化,再经过放大后由记录 器或显示仪表指示。 这种电路具有抗干扰性强,灵敏度高等优点,可测0.01um的位 移变化量。但缺点是电缆分布电容的影响较大,使用中有一些 麻烦。
显然,输出电压与膜片位移速度成正比,因此这种传 感器可以测量电流(或液流)的振动速度,进而得到 压力。
19
2.3 谐振电路
电容传感器的电容Cx作为谐振电路调谐电容的一部分。 此谐振回路通过电压耦合,从稳定的高频振荡器获得震荡电压。 当传感器电容量C 发生变化时,谐振回路的阻抗发生相应变化,
x
并被转换成电压或电流输出,经放大、检波,即可得到输出。
此时,电桥输出电压
当Cx改变时, 容的变化值
电桥有输出电压,从而课测得电
17
(2)差动接法
变压器电桥测验电路一般采用差 动连接,如图b所示。C1和C2一 差动形式接入相邻两个桥臂,另 外两个桥臂为初次线圈。在交流 电路中,C1和C2的阻抗非别为:
则有: 故,当输出为开路时,电桥空载输出电压为:
18
2.2 直流极化电路
此电路又称为静压电容传感器电路, 多用于电容传声器或压力传感器。
图所示电路,弹性膜片在外力(气压, 液压等)作用下发生位移,使电容量发生变化。 电容器接于具有直流极化电压E 的电路中,
0
电容的变化由高阻值电阻R转换为电压变化。
电压输出为
ug
RE0
dC dt
RE0
0 A 2
d
dt
21
2.5 运算放大器电路
由前述已知,极距变化型电容传感器的极距变化
与电容变化量成非线性关系,这一缺点使电容传
感器的应用受到一定限制。为此采用比例运算放
大器电路可以得到输出电压u 与位移量的线性关系。 g
ug
=-u0
C0 0 A
输出电压ug与电容传感器间隙 成线性关系。这种电路用于位移测量传感器。
电容器电容量C的变化,从而达到从被测参数到电容的变换。
其测量原理可表示为:
被测量 电容式传感器、A或 变化 电容C变化 测量电路
电压、电流、频率
总得来说,电容式传感器是将被测量的变化转换成电容量 变化的器件
4
通常我们限定、A、 三个参数中的两个保持不变,只改变其
中的一个参数,使电容产生变化,所以电容式传感器可分为: 极距变化型,面积变化型,介质变化型三类。
15
2.1 电桥型电路 如下图所示为电容传感器介入变压器电桥测量 电路,它可分为单笔接法和差动接法两种
16
(1)单臂接法
如图(a)所示为单臂接法的变压器桥式 测量电路,高频电源经变压器街道电容桥 的一个对角线上,电容C1、C2、C3和 Cx构成电桥的四个臂,其中Cx为电容传 感器 当传感器为工作时,交流电桥处于平衡 状态, 有:
是非线性的,由非线性引起的误差为
2
3
n
=
0
+
0
+
+
0
当
0
1时,可略去高次项,即 C = ,此时可认为是线性的。 C0 0
也就是说,在 / 0 很小时,才有近似的线性输出。
灵敏度S
C
C0
0
A
2 0
7
极距变化型电容传感器的特点:动态特性好,灵 敏度和精度较高(可达纳米级),适用于较小位 移的精密测量,一般用来测量微小的线位移或由 于力、压力、振动等引起的极距变化。
8
1.2 面积变化型电容传感器
1.2.1直线位移型
当动板沿x方向移动时,相互覆盖面积发生了变化,电容量随 之改变,其输出特性为:
C bx
其中,b为极板宽度,x为位移, 为极板间距。
灵敏度S C b 常数 x
由上式可知,面积变化型线位移传感器的输出C与其输入 (极板覆盖面积的改变)呈线性关系。
目录
一、电容式传感器的工作原理及分类 二、电容式传感器的测量电路 三、电容式传感器在应用中的注意事项 四、电容式传感器的研究现状
2
一、电容式传感器的工作原理及分类
由物理学可知,两块平行金属板构成的电容器,其电容量C
为
C 0 A
3
当被测参数(如位移、压力等)使公式中的、A、 变化时,都将引起
虽然面积变化型电容传感器在理想情况下灵敏度为常 数,不存在非线性误差,但实际上因为电场边缘效应 的影响仍存在一定的非线性误差,且灵敏度较低。
面积变化型一般用于测量角位移或较大的线位移。
11
1.3 介质变化型电容传感
器
对于图所示的液位测量用介质变化型
电容传感器,传感器的总电容C等于
上、下两部分电容C 和C 的并联,即
1
2
C
ห้องสมุดไป่ตู้C1
C2
20 l h
ln
D d
2 x0l
ln
D d
a
bh
灵敏度S C b 2 x 10 =常数
h
ln
D d
由上式可知,这种传感器的灵敏度为常数,电容C理论上与液位h
成线性关系,只要测出传感器电容C的大小,就可得到液位h的值。
介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 12
13
二、电容式传感器的测量电路
电容传感器将被测物理量转换为电容量的变化后, 由后续电路转换为电压、电流或频率信号。
14
2.1 电桥型电路
将电容传感器作为桥路的一部分,由电容变化转换为 电桥的电压输出,通常采用电阻、电容或电感、电容 组成的交流电桥。
图所示的电桥型电路,是一种电感、电容组成的桥 路,电桥的输出为一调幅波,经放大、相敏解调、 滤波后获得输出,再推动显示仪表。
9
1.2.2 角位移型
当动板转动一角度时,与定板之间的覆盖面积就发生 变化,导致电容量随之改变。
覆盖面积 A r 2
2
其中,为覆盖面积对应的中心角,r为极板半径。
所以,电容量为 C r 2 2
灵敏度S C r2 常数 2
由上式可知,角位移型电容传感器的输出C与输入也为线性关系。
10
5
1.1 极距变化型电容传感器
电容器的极板面积为A,初始极距为0,极板间介质的介电常数为
电容器的初始电容量为
C0
A 0
间隙 0减小 时,电容量增加C,即
C
C0 C
A 0
C0
1
1
0
C
C0 1
0
0
C C0
0
1+
0
+
0
2
+
0
3
+
+
0
n
6
由上式可知,被测参数引起的极距变化 与电容的变化C之间的关系
谐振电路比较灵敏,但缺点是工 作点不易选好,变化范围也较窄, 传感器连接电缆的分布电容影响 也较大。
20
2.4 调频电路
如图所示,传感器电容式振荡器谐振回路的一部分,当输入 量使传感器电容量发生变化时,振荡器的振荡频率发生变化, 频率的变化经过鉴频器变为电压变化,再经过放大后由记录 器或显示仪表指示。 这种电路具有抗干扰性强,灵敏度高等优点,可测0.01um的位 移变化量。但缺点是电缆分布电容的影响较大,使用中有一些 麻烦。
显然,输出电压与膜片位移速度成正比,因此这种传 感器可以测量电流(或液流)的振动速度,进而得到 压力。
19
2.3 谐振电路
电容传感器的电容Cx作为谐振电路调谐电容的一部分。 此谐振回路通过电压耦合,从稳定的高频振荡器获得震荡电压。 当传感器电容量C 发生变化时,谐振回路的阻抗发生相应变化,
x
并被转换成电压或电流输出,经放大、检波,即可得到输出。
此时,电桥输出电压
当Cx改变时, 容的变化值
电桥有输出电压,从而课测得电
17
(2)差动接法
变压器电桥测验电路一般采用差 动连接,如图b所示。C1和C2一 差动形式接入相邻两个桥臂,另 外两个桥臂为初次线圈。在交流 电路中,C1和C2的阻抗非别为:
则有: 故,当输出为开路时,电桥空载输出电压为:
18
2.2 直流极化电路
此电路又称为静压电容传感器电路, 多用于电容传声器或压力传感器。
图所示电路,弹性膜片在外力(气压, 液压等)作用下发生位移,使电容量发生变化。 电容器接于具有直流极化电压E 的电路中,
0
电容的变化由高阻值电阻R转换为电压变化。
电压输出为
ug
RE0
dC dt
RE0
0 A 2
d
dt
21
2.5 运算放大器电路
由前述已知,极距变化型电容传感器的极距变化
与电容变化量成非线性关系,这一缺点使电容传
感器的应用受到一定限制。为此采用比例运算放
大器电路可以得到输出电压u 与位移量的线性关系。 g
ug
=-u0
C0 0 A
输出电压ug与电容传感器间隙 成线性关系。这种电路用于位移测量传感器。
电容器电容量C的变化,从而达到从被测参数到电容的变换。
其测量原理可表示为:
被测量 电容式传感器、A或 变化 电容C变化 测量电路
电压、电流、频率
总得来说,电容式传感器是将被测量的变化转换成电容量 变化的器件
4
通常我们限定、A、 三个参数中的两个保持不变,只改变其
中的一个参数,使电容产生变化,所以电容式传感器可分为: 极距变化型,面积变化型,介质变化型三类。
15
2.1 电桥型电路 如下图所示为电容传感器介入变压器电桥测量 电路,它可分为单笔接法和差动接法两种
16
(1)单臂接法
如图(a)所示为单臂接法的变压器桥式 测量电路,高频电源经变压器街道电容桥 的一个对角线上,电容C1、C2、C3和 Cx构成电桥的四个臂,其中Cx为电容传 感器 当传感器为工作时,交流电桥处于平衡 状态, 有:
是非线性的,由非线性引起的误差为
2
3
n
=
0
+
0
+
+
0
当
0
1时,可略去高次项,即 C = ,此时可认为是线性的。 C0 0
也就是说,在 / 0 很小时,才有近似的线性输出。
灵敏度S
C
C0
0
A
2 0
7
极距变化型电容传感器的特点:动态特性好,灵 敏度和精度较高(可达纳米级),适用于较小位 移的精密测量,一般用来测量微小的线位移或由 于力、压力、振动等引起的极距变化。
8
1.2 面积变化型电容传感器
1.2.1直线位移型
当动板沿x方向移动时,相互覆盖面积发生了变化,电容量随 之改变,其输出特性为:
C bx
其中,b为极板宽度,x为位移, 为极板间距。
灵敏度S C b 常数 x
由上式可知,面积变化型线位移传感器的输出C与其输入 (极板覆盖面积的改变)呈线性关系。