环境工程原理实验

合集下载

填料塔吸收实验(环境工程原理)

填料塔吸收实验(环境工程原理)

实验九 填料塔吸收实验一.实验目的1.了解填料吸收装置的设备结构及操作。

2.测定填料吸收塔的流体力学特性。

3.测定填料吸收塔的体积吸收总系数K Y α。

4.了解气体空塔流速与压力降的关系。

二.实验原理1.填料塔流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。

填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。

测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。

气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如左图中AB 线,其斜率为1.8~2。

当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB 线几乎平行,但压降大于同一气速下干填料的压降,如图中CD 段。

随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。

当气速增大到E 点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E 称为泛点。

2.传质实验填料塔与板式塔内气液两相的接触情况有着很大的不同。

在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。

但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料的高度。

填料层高度计算方法有传质系数法、传质单元法以及等板高度法等。

气相体积吸收总系数K Y α是单位填料体积、单位时间吸收的溶质量,它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。

本实验是用水吸收空气-氨混合气体中的氨。

混合气体中氨的浓度很低。

吸收所得的溶液浓度也不高。

气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。

《环境工程原理实验指导书》-环境工程专业

《环境工程原理实验指导书》-环境工程专业

环境工程原理实验指导书目录前言----------------------------------------------------------------------------------------------------2实验守则-------------------------------------------------------------------------------------------------3对学生基本要求----------------------------------------------------------------------------------------3实验一化工流体过程综合实验-------------------------------------------------------------------4实验二恒压过滤常数测定实验-------------------------------------------------------------------12实验三传热综合实验-------------------------------------------------------------------------------16实验四填料吸收塔实验----------------------------------------------------------------------------23、前言21世纪人类将进入知识经济的时代,人们正将其视为继农业经济、工业经济之后人类社会所面临的又一次生产方式、生活方式乃至思维方式的历史性变革。

面对知识经济的到来,我国高等教育改革势在必行,以培养出知识面宽广且具有较强创新能力的人才。

化工原理实验作为化工类创新人才培养过程中重要的实践环节,在化工教育中起着重要的作用,它具有直观性、实践性、综合性和创新性,而且还能培养学生具有一丝不苟、严谨的工作作风和实事求是的工作态度。

环境工程专业实验报告

环境工程专业实验报告

环境工程专业实验报告学院专业班级学号学生姓名完成日期实训项目1 气象色谱的使用操作1.1 实验目的1. 掌握气象色谱的使用方法2. 了解气象色谱原理1.2 实验原理待测组分的气相混合物被载气携带流经色谱柱内的固定相时,其与固定相发生相互作用。

由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着载气的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中流出。

与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。

并按照组分流出色谱柱的先后顺序记录得到色谱流出曲线。

1.3 实验操作1.3.1仪器山东金普GC-2010气相色谱仪、填充住或毛细管柱,固定相(SE-30),氢火焰检测器,微量进样器。

气相色谱仪主要包括:载气系统(气源、净化干燥管和载气流速控制)、进样系统(进样器、气化室)、色谱柱(填充柱或毛细管柱、柱箱)、检测器(可连接各种检测器,以热导检测器或氢火焰检测器最为常见)、记录系统(放大器、记录仪或数据处理仪)以及温度控制系统等。

1.3.2试剂邻甲苯胺(AR),未知浓度的邻甲苯胺溶液。

1.3.3谱仪气路气密性检查气密性检查是一项十分重要的工作,若气路有漏,不仅直接导致仪器工作不稳定或灵敏度下降,而且还有发生爆炸的危险,故在操作使用前必须进行这项工作(气密检查一般是检查载气流路,氢气和空气流路若未拆动过,可不检查)。

方法是,打开色谱柱箱盖,把柱子从检测器上拆下,将柱口堵死,然后开启载气流路,调低压输出压力为0.35~0.6Mpa,打开主机面板上的载气旋钮,此时压力表应有指示。

最后将载气旋钮关闭,半小时内其柱前压力指示值不应有下降,若有下降则有漏,应予排除。

若是主机内气路有漏,则拆下主机有关侧板,用肥皂水(最好是十二烷基磺酸钠溶液)逐个刷在接头处检漏(氢,空气也可如此检漏),最后将肥皂水擦干。

1.3.4仪器的调试仪器等按上述接好,色谱仪电路各部件检查仪器启动前应首先接通载气流路,调节气瓶上的减压阀旋钮(即:载气稳流阀),载气流量的设置视使用的色谱柱而定,一般,填充柱为20-30ml/min;毛细管柱的柱头压为0.6-0.8Mpa;氢气、空气全部处于关闭状态。

环境工程原理能量转换实验

环境工程原理能量转换实验

环境工程原理能量转换实验
环境工程原理的能量转换实验可以包括以下几个方面的内容:
1. 光能转化实验:通过太阳能光伏电池将光能转化为电能。

可以使用太阳能光照下的电池板,在不同光照强度下测量电池输出的电能。

2. 风能转化实验:利用风能发电机将风能转化为电能。

在实验中可以使用风能发电机模型或小型风力发电机,根据风速和转速的关系测量风能转化效率。

3. 水能转化实验:使用水力发电机将水能转化为电能。

可以使用小型水力发电机模型,在不同水流强度下测量水能转化的效率。

4. 热能转化实验:通过热电偶或热电堆将热能转化为电能。

实验中可以使用热源和冷源,通过热电偶或热电堆将温差能转化为电能。

5. 生物能转化实验:通过生物发酵或生物转化过程将生物能转化为电能。

可以使用厌氧发酵罐等设备,观察生物过程中产生的电能。

在以上的实验中,需要测量能量输入和输出的参数,如光照强度、风速、水流速度、温差等,并计算能量转换的效率。

实验中还需要使用安全措施,并注意环保和资源节约。

环境工程实验方案

环境工程实验方案

环境工程实验方案一、实验目的1.了解土壤重金属污染对水稻生长的影响;2.探讨不同修复措施对土壤重金属污染的修复效果;3.为解决土壤重金属污染问题提供科学依据。

二、实验原理土壤重金属污染对水稻生长产生的影响主要表现在土壤中的重金属含量对水稻吸收、生长、养分运输、生理代谢等方面的影响。

不同的土壤修复措施,如植物修复、生物堆肥、土壤修复剂等,可以对土壤中的重金属进行改良或修复,从而减少其对水稻生长的不利影响。

三、实验材料和仪器1.材料:包括重金属污染土壤样品、水稻种子、生物堆肥、土壤修复剂等;2.仪器:包括离心机、pH计、电导计、土壤重金属浓度测定仪器等。

四、实验步骤1.准备土壤样品,做好土壤重金属含量测定;2.对土壤进行修复处理,包括植物修复、生物堆肥、土壤修复剂等;3.进行水稻播种及生长期间的观察和测定,包括生长状况、株高、叶面积、产量等;4.对不同处理组的土壤和水稻进行重金属含量的测定;5.分析实验结果,比较不同处理对水稻生长的影响以及修复效果。

五、实验设计1.对照组:不进行任何修复措施,直接进行水稻播种和生长;2.植物修复组:在土壤中播种适合修复重金属污染的植物种子,并观察其修复效果;3.生物堆肥组:在土壤中添加生物堆肥,比较其对土壤重金属的修复效果;4.土壤修复剂组:在土壤中添加土壤修复剂,观察其修复效果;5.综合修复组:综合使用不同修复措施,比较其综合修复效果。

六、实验预期1.通过对比不同处理组的水稻生长状况和产量,了解土壤重金属污染对水稻生长的影响;2.比较不同修复措施对土壤重金属的修复效果,为解决土壤重金属污染问题提供科学依据。

七、安全注意事项1.实验操作时需戴好防护手套,避免接触砷、铅等重金属物质;2.实验后要及时清洗手部和工作台面,避免重金属物质的残留;3.实验废液要妥善处理,避免对环境造成污染。

八、实验意义土壤重金属污染是目前环境问题中的重要问题之一,对水稻等农作物的生长和品质产生较大的影响。

环境工程原理实验

环境工程原理实验

七、实验安全须知
绪论
本实验主要特点是结合环境工程相关单元操作的典型 设备的来解释单元操作的基本原理,同时掌握主要设备的 构造原理和功能。涉及到的主要对象是设备的模型,这些 模型一般是按照实物设备按比例缩小的,材质主要是有机 玻璃,每一设备的各部分之间一般是用胶粘接,在搬动时, 一定要轻拿轻放,以免脱落或损坏。部分需通电演示的设 备须由老师先演示,在通电前一定要检查电线是否完好, 防止电线裸露或潮湿现象,加水演示的设备,如潜水泵, 更要特别注意。
环境工程原理实验
绪论
一、教材及参考资料 二、本课程的目的、要求 三、授课方式及考察方式 四、学时分配及实验内容 五、实验课纪律 六、实验报告的撰写 七、实验安全须知
一、教材及参考资料
绪论
教材:
《化工原理》,王志魁 编著,第3版,2005年1月, 化学工业出版社
参考资料:
1.《环境工程原理》,胡洪营,张旭,黄霞,王 伟 合编,2005年8月,第1版,高等教育出版社
实验二 传热过程及换热器设备
三、典型设备的工作原理及结构特点
重点讲解模型有双层列管式换热器、有补偿圈的固 定管板式换热器、螺旋板式换热器、翅片式换热器、 逆流加料三效蒸发流程,主要围绕如下几个问题开 展讲解: 1. 换热器按不同方式分类的各自类别。 2. 列管式换热器的主要优点有哪些?什么是管层、 壳层?
实验一 流体流动及输送设备、管件
一、目的要求 二、主要设备及试材 三、典型设备的工作原理及结 构特点
一、目的要求
实验一 流体流动及输送设备、管件
1、掌握流体静力学、流体流动过程中的相关原理; 2、常用仪表、管件和设备的结构、工作方式和原理; 3、掌握液体输送设备离心泵的结构和使用中要注意 的问题; 4、了解沉降、旋风(液)分离、过滤、离心等流体 动力过程的典型设备和工作方式。

环境工程实验

环境工程实验

四、实验结果讨论
1.根据实验结果以及实验中所观察到的现象,
简述影响混凝的几个主要因素。 2.为什么最大投药量时,混凝效果不一定好。
曝气充氧实验
一、 实验目的
1.加深理解曝气充氧的机理及影响因素。 2.了解掌握曝气设备清水充氧性能测定的 方法。 3.测定几种不同形式的曝气设备氧的总转移系数 KLas,氧利用率η%,动力效率等,并进行比较。


2.鼓风曝气清水充氧实验步骤: (1)河柱内注人清水至3.lin处时,测定水中溶解氧值,计算池内溶 氧量G=DO· V。 (2)计算投药量。 (3)将称得药剂用温水化开由柱顶倒人柱内,几分钟后,测定水中溶 解氧值。 (4)当水中溶解氧为零后,打开空压机,向贮气罐内充气。空压机停 止运行后,打开供气阀门,开始曝气,并记录时间;同时每隔一定时间 (lmin)取一次样,测定溶解氧值,连续取样10一豆5个;而后,拉长间 隔,直至水中溶解氧不再增长(达到饱和)为止;随后,关闭进气阀门。 (5)实验中计量风量、风压、室外温度。并观察曝气时柱内现象。
混凝实验
一、 实验目的
1、通过本实验,加深对混凝机理的理解,
了解影响混凝沉淀的主要因素。 2、选择和确定最佳混凝工艺条件。 3、掌握综合设计实验能力。
二、实验原理





水中的胶体颗粒,主要是带负电的粘土颗粒。胶粒间的静电斥力,胶粒 的布朗运动及胶粒表面的水化作用,使得胶粘具有分散稳定性,三者中 以静电斥力影响最大。 向水中投加混凝剂能提供大量的正离子,压缩胶团的扩散层,使ξ电位降 低,静电斥力减小。 布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚。水 化膜中的水分子与胶粒有固定联系,具有弹性和较高的粘度,把这些水 分子排挤出去需要克服特殊的阻力,阻碍胶粒直接接触。 有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位。有可能使 水化作用减弱。 混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有 链状结构在胶粒与胶粒间起吸附架桥作用,即使ξ电位没有降低或降低不 多,胶粒不能相互接触,通过高分子链状物吸附胶粒,也能形成絮凝体。

实验报告环境工程原理

实验报告环境工程原理

板框压滤机一、实验目的1.熟悉板框压滤机的构造和操作方法; 2.通过恒压过滤实验,验证过滤基本原理; 3.学会测定过滤常数的方法; 4.了解操作压力对过滤速率的影响。

二、实验原理过滤是利用能让液体通过而截留固体颗粒的多孔介质(滤布和滤渣),使悬浮液中的固体、液体得到分离的单元操作。

过滤速率计算式为:AdtdVu =式中:dt---微分过滤时间,s ;dV---dt 时间内通过过滤介质的滤液量,m 3; A ---过滤面积,m 2。

由此可以导出过滤基本方程式:()e V Vf r pA Adt dV +∆==μu (1) ()e sV V f r p A Adt V +∆=-μ01d (2)一般情况下,s=0~1,对于不可压缩滤饼,s=0。

在恒压过滤时对(2)积分得()()e e t t K q q +=+2(3)对上式微分得:()Kdt dq q e =+q 2e q Kq K dq t 21d += 该式表明以dt/dq 为纵坐标,以q 为横坐标作图可得一直线,直线斜率为1/K ,截距为2q e /K 。

在实验测定中,为便于计算,可用增量Δ替代,把上式改写成:e q q K K21q t +=∆∆在恒压条件下,用秒表和量筒分别测定一系列时间间隔及对应的滤液体积,由此算出一系列在直角坐标系中绘制的函数关系,得一直线。

由直线的斜率和截距便可求出K 和q e ,再以q=0,t=0,如式(3),求出τe 。

三、实验步骤及注意事项1.配料:配置含4%CaCO 3悬浮液,并检查电源是否连接正常,之后开启机器。

2.料液搅拌:使CaCO3悬浮液搅拌均匀,避免沉淀。

3.安装过滤系统:正确装好滤板、滤框及滤膜。

滤膜使用前先用水浸湿。

滤膜要绷紧,平整紧贴,避免有气泡产生,滤膜不能有破损。

贴好滤膜后,先慢慢转动手轮使板框合上,然后再压紧。

4.灌入清水检验:先在进料槽中注入清水,检测实验装置是否连接正确,是否有泄漏,若发现有泄漏,应重新连接实验装置。

实验报告环境工程原理

实验报告环境工程原理

板框压滤机一、实验目的1.熟悉板框压滤机的构造和操作方法;2.通过恒压过滤实验,验证过滤基本原理;3.学会测定过滤常数的方法;4.了解操作压力对过滤速率的影响。

二、实验原理过滤是利用能让液体通过而截留固体颗粒的多孔介质(滤布和滤渣),使悬浮液中的固体、液体得到分离的单元操作。

过滤速率计算式为:式中:dt---微分过滤时间,s;dV---dt时间内通过过滤介质的滤液量,m3;A ---过滤面积,m2。

由此可以导出过滤基本方程式:(1)(2)一般情况下,s=0~1,对于不可压缩滤饼,s=0。

在恒压过滤时对(2)积分得(3)对上式微分得:该式表明以dt/dq为纵坐标,以q为横坐标作图可得一直线,直线斜率为1/K,截距为2qe/K。

在实验测定中,为便于计算,可用增量Δ替代,把上式改写成:在恒压条件下,用秒表和量筒分别测定一系列时间间隔及对应的滤液体积,由此算出一系列在直角坐标系中绘制的函数关系,得一直线。

由直线的斜率和截距便可求出K和qe,再以q=0,t=0,如式(3),求出τe。

三、实验步骤及注意事项1.配料:配置含4%CaCO3悬浮液,并检查电源是否连接正常,之后开启机器。

2.料液搅拌:使CaCO3悬浮液搅拌均匀,避免沉淀。

3.安装过滤系统:正确装好滤板、滤框及滤膜。

滤膜使用前先用水浸湿。

滤膜要绷紧,平整紧贴,避免有气泡产生,滤膜不能有破损。

贴好滤膜后,先慢慢转动手轮使板框合上,然后再压紧。

4.灌入清水检验:先在进料槽中注入清水,检测实验装置是否连接正确,是否有泄漏,若发现有泄漏,应重新连接实验装置。

5. 进料:将4%的碳酸钙保持较稳定的流速注入进料槽,进料时避免空气进入。

6.过滤:过滤一段时间后,滤液量逐渐减少,这说明滤室内滤饼层逐渐形成。

当出液口不出液或只有少量滤液流出时,说明滤室内滤道已充满并形成滤饼。

7.记录数据:每隔一分钟记录一次滤液量,直至滤料用完或没有滤液流出时停止实验,,在每次记录滤液量时同时记录压力值。

环境工程原理实验课程教学大纲

环境工程原理实验课程教学大纲

环境工程原理实验课程教学大纲一、课程基本信息课程名称:环境工程原理实验课程编号:XXXXXX课程时长:48学时开课部门:环境工程系授课人:XXX老师课程简介:本课程是一门环境工程原理实验课程,通过实验操作和数据分析,使学生掌握环境工程中的基本原理和方法,提高实践能力。

二、教学目标1. 掌握环境工程中常见物理、化学和生物原理的应用;2. 学会使用常见实验仪器和设备,进行实验操作;3. 学会实验数据的收集、整理和分析;4. 培养实验安全意识和操作规范。

三、教学内容与教学安排1. 实验一:流体流动与输送实验(8学时)内容:* 实验目的:掌握流体流动基本原理和方法,了解流体输送设备(如泵、风机等)的工作原理和使用方法。

* 实验设备:流量计、压力计、泵、风机等。

* 实验操作:学生分组进行流体流动演示实验,观察实验现象,记录数据。

* 实验总结:分析实验数据,总结流体流动与输送的基本原理和方法。

2. 实验二:吸收实验(8学时)内容:* 实验目的:通过实验操作,了解吸收过程的基本原理和方法,掌握吸收设备(如吸收器)的使用方法。

* 实验设备:吸收器、吸收液、搅拌器、温度计等。

* 实验操作:学生分组进行吸收实验,根据实验要求选择吸收液,操作吸收设备进行实验,记录数据。

* 实验总结:分析实验数据,总结吸收过程的基本原理和方法,并讨论实验中可能存在的问题及解决方法。

3. 实验三:吸附与过滤实验(4学时)内容:* 实验目的:通过实验操作,了解吸附和过滤过程的基本原理和方法,掌握吸附和过滤设备(如活性炭过滤器、滤布等)的使用方法。

* 实验设备:吸附柱、过滤器、压力计、温度计等。

* 实验操作:学生分组进行吸附与过滤实验,根据实验要求选择吸附材料和过滤介质,操作吸附和过滤设备进行实验,记录数据。

* 实验总结:分析实验数据,总结吸附和过滤过程的基本原理和方法,并讨论实验中可能存在的问题及解决方法。

4. 综合实验:污水处理工程实践(8学时)内容:* 实验目的:通过综合实验,使学生将前面所学原理和方法应用于实际污水处理工程中,了解污水处理的全过程,掌握污水处理设备的操作和维护方法。

环境工程原理实验指导书修改版

环境工程原理实验指导书修改版

实验1 板框过滤实验--------------------------------------------------------------------------- 实验2 传热系数及其准则关联式常数的测定---------------------------------------------- 实验3 填料吸收塔实验--实验1 板框过滤实验本实验设备由过滤板、过滤框、旋涡泵等组成,是一种小型的工业用板框过滤机。

本套装置可进行设计型、研究型、综合型实验。

由于设备接近工业生产状况,通过实验可培养学生的工程观念、实验研究能力、设计能力以及解决生产实际问题的能力。

一、实验任务根据实验指导教师要求,从下列实验任务中选择其中一项实验。

1.板框压滤机选型:工业用过滤机选型的依据是物料的性能、分离任务和要求。

为使过滤机的选型最为恰当,通常是用同一悬浮液在小型过滤实验设备中进行实验,以取得必要的过滤数据作为主要依据,然后从技术和经济两方面进行综合分析,确定过滤机的种类和型号。

现有某一工厂需过滤含CaCO3 5.0~5.5 % 的水悬浮液,过滤温度为25℃,固体CaCO3的密度为2930kg/m3。

工业过滤机在0.28MPa的压强差下进行过滤,规定每一操作循环处理悬浮液10m3,过滤时间为30min,滤饼不洗涤,过滤至框内全部充满滤渣时为止,卸饼、清洗、重装等辅助时间为20min。

请你利用实验室的小型板框压滤机(详见设备流程部分,该过滤机的最高过滤推动力(表压力)为0.24Mpa)进行实验,测定有关的过滤参数,根据表1所提供的过滤机型号与规格,从中选择一种合适型号的压滤机,并确定滤框的数目,求出该过滤机的生产能力,为工厂提供选型的技术依据。

表1 过滤机的型号与规格型号过滤面积m2框内尺寸mm框数框内总容积[l]工作压强[kg/cm2]BAS20/635-25 20 635×635×2526 260 8 BAS30/635-25 30 635×635×2538 380 8 BAS40/635-25 40 635×635×2550 500 8 BAY20/635-25 20 635×635×2526 ——BAY30/635-25 30 635×635×2538 ——BAY40/635-25 40 635×635×2550 ——BMS20/635-25 20 635×635×2526 260 8 BMS30/635-25 30 635×635×2538 380 8 BMS40/635-25 40 635×635×2550 500 8表1中板框压滤机型号如BMS20/635-25的意义为:B 表示板框压滤机,M 表示明流式(若为A ,则表示暗流式),S 表示手动压紧(若为Y ,则表示液压压紧),20表示过滤面积为20m 2,635表示滤框边长为635mm 的正方形,25表示滤框的厚度为25mm 。

环境工程专业实验——混凝

环境工程专业实验——混凝

混凝实验一实验目的1.了解混凝的现象及过程,净水作用及影响混凝的主要因素;2.学会求水样最佳混凝条件(包括投药量、pH值、水流速度梯度)的基本方法;3.了解助凝剂对混凝效果的影响。

二实验原理胶体颗粒带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。

胶体表面的电荷值常用电动电位ξ表示,又称为Zeta电位。

Zeta电位的高低决定了胶体颗粒之间斥力的大小和影响范围。

一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。

相反,当Zeta电位降到零,往往不是最佳混凝状态。

投加混凝剂的多少,直接影响混凝效果。

水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。

在水中投加混凝剂如Al2(SO4)3、FeCl3后,生成的Al(III)、Fe(III)化合物对胶体的脱稳效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响,还受水的pH值影响。

如果pH值过低(小于4),则混凝剂水解受到限制,其化合物中很少有高分子物质存在,絮凝作用较差。

如果pH值过高(大于9~10),它们就会出现溶解现象,生成带负电荷的络合离子,也不能很好地发挥絮凝作用。

投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体。

混凝剂量少,达不到降低浊度的目的,混凝剂量过多,混凝效果反而下降,浊度增大,所以通过实验有最佳的投药量。

选定水样的pH,投药量从最小(确定形成矾花所用的最小混凝剂量:通过慢速搅拌烧杯中500ml的原水,并每次增加1ml混凝剂,直至出现矾花为止,这时的混凝剂作为形成矾花的最小投加量。

一般以5ml为最小混凝剂量)逐级递加,取6个药量梯度。

当单独使用混凝剂不能取得预期效果时,需投加助凝剂以提高混凝效果。

助凝剂通常是高分子物质,作用机理是高分子物质的吸附架桥,它能改善絮凝体结构,促使细小而松散的絮粒变得粗大而结实。

三实验设备仪器1.六联搅拌机(附6个800ml烧杯,实验水样选用500ml体积);2. pH计; 3.温度计; 4.浊度仪。

环境工程原理实验

环境工程原理实验
式中: 式中:
∆q ∆θ
∆q
— 每次测定的单位过滤面积滤液体积,m3/ m2; — 每次测定滤液体积
—所对应的时间间隔,s;
q
— 相邻二个q值的平均值,m3/ m2。
二.实验原理
以 ∆θ / ∆q 为纵坐标,q 为横坐标, 将上式标绘成一直线, 将上式标绘成一直线,由该直线的斜率和截距 可求出过滤常数K和qe,而虚拟过滤时间
环境工程原理实验
恒压过滤常数的测定
河南师范大学 环境科学与工程实验教学中心
一.实验目的
(1)在一定真空度下进行恒压过滤,测定K、qe、θe的值。 (2)改变压强差重复上述操作,测定压缩性指数s和 物料特性常数 k (3)掌握上述恒压过滤常数的测定方法,加深对过滤操作中 各种影响因素的理解。
二.实验原理
恒压过滤方程:
(q + qe )2 = K (θ + θ e )
式中: 式中:q— 单位过滤面积所得滤液体积,m3/ m2;
θ— 过滤时间,s; K- 恒压过滤常数,m2/s; qe- 反映过滤介质阻力的常数,m3/ m2 。
微分得:
2(q + q e )dq = Kdθ
二.实验原理
∆θ 2 − 2 = q+ qe 写成差分形式Hale Waihona Puke ∆q K K六.实验数据处理
(1)由恒压过滤实验求出实验常数 K q e θ e
的值。
(2)比较几种压强差下过滤常数 K q e θ e 的值,讨论压差变化 对以上数值的影响。 (3)在双对数坐标纸上绘出 K~ ∆p曲线求出s和k。 (4)写出完整的过滤方程式,弄清其中各参数的符号及物理意义。
七.思考题
(1)板框过滤机的优缺点是什么?适用于什么场合? (2)板框过滤机的操作一般分哪几个阶段? (3)为什么过滤开始时,滤液常常有点浑浊, 而过段时间后才变清? (4)当操作压强增加一倍,其 K 值是否也增加一倍? 要得到同样的过滤液,其过滤时间是否缩短了一倍? (5)恒压过滤时,欲增加过滤速率,可行的措施有那些?

环境工程学实验教案

环境工程学实验教案

环境工程学实验教案第一章:环境工程学概述1.1 实验目的了解环境工程学的基本概念、原理和目标。

掌握环境工程学的主要研究领域和应用范围。

1.2 实验原理环境工程学的定义和重要性。

环境工程学的基本原理和理论基础。

1.3 实验内容介绍环境工程学的主要研究领域,如水处理、大气污染控制、固废处理与资源化等。

分析环境工程学在实际应用中的案例。

1.4 实验方法与步骤讲解环境工程学实验的基本方法和步骤。

示范环境工程学实验的操作技巧。

第二章:水处理技术实验2.1 实验目的学习水处理技术的基本原理和方法。

了解不同水处理技术的应用和效果。

2.2 实验原理过滤、沉淀、吸附等水处理技术的原理。

水质指标和水质评价方法。

过滤实验:使用砂滤池去除水中的悬浮物。

沉淀实验:利用化学沉淀法去除水中的重金属离子。

吸附实验:使用活性炭吸附水中的有机物和异味。

2.4 实验方法与步骤讲解每个水处理实验的操作步骤和注意事项。

示范实验设备的组装和操作方法。

第三章:大气污染控制实验3.1 实验目的学习大气污染控制技术的基本原理和方法。

了解不同大气污染控制技术的应用和效果。

3.2 实验原理燃烧控制、过滤、静电除尘等大气污染控制技术原理。

大气污染物排放标准和空气质量评价方法。

3.3 实验内容燃烧控制实验:通过调整燃烧条件减少废气中的污染物排放。

过滤实验:使用袋式过滤器去除废气中的颗粒物。

静电除尘实验:利用静电原理去除废气中的粉尘。

3.4 实验方法与步骤讲解每个大气污染控制实验的操作步骤和注意事项。

示范实验设备的组装和操作方法。

第四章:固废处理与资源化实验学习固废处理与资源化的基本原理和方法。

了解不同固废处理与资源化技术的应用和效果。

4.2 实验原理固废分类、固废处理与资源化的技术原理。

固废处理与资源化的环境和经济效益。

4.3 实验内容固废分类实验:对不同类型的固废进行分类和识别。

固废处理实验:如压实、破碎、生物降解等。

固废资源化实验:如废纸回收、塑料再生、废电池处理等。

环境工程原理实验

环境工程原理实验

2020/8/15
四、学时分配与实验内容
绪论
学时分配:
每次实验2学时,共6学时。 本课程理论课计划学时为66学时,课程总学时为72学时。
实验内容:
实验一 流体流动及输送设备、管件 实验二 传热过程及换热器设备 实验三 传质过程主要单元操作及设备
2020/8/15
五、实验课纪律
绪论
1. 遵守实验室的一切规章制度,按时上课。 2. 注意安全是实验的基本要求。在实验前,了解实验室一些
2020/8/15
实验一 流体流动及输送设备、管件
一、目的要求 二、主要设备及试材 三、典型设备的工作原理及结
构特点
2020/8/15
一、目的要求
实验一 流体流动及输送设备、管件
1、掌握流体静力学、流体流动过程中的相关原理; 2、常用仪表、管件和设备的结构、工作方式和原理; 3、掌握液体输送设备离心泵的结构和使用中要注意 的问题; 4、了解沉降、旋风(液)分离、过滤、离心等流体 动力过程的典型设备和工作方式。
2020/8/15
实验一 流体流动及输送设备、管件
三、典型设备的工作原理及结构特点
重要模型有微差压差计、孔板流量计、转子流量计、 离心泵的安装高度、闸阀、截止阀、旋风分离器、 旋液分离器、板框压滤机,主要要求回答如下几个 问题: 1. 微差压差计的结构特点、工作原理、对两种工作 液体和扩大室的要求是什么? 2. 孔板流量计和转子流量计在原理和结构特点上的 差异。 3. 闸阀和截止阀各有何优缺点?
2020/8/15
绪论
一、教材及参考资料 二、本课程的目的、要求 三、授课方式与考察方式 四、学时分配与实验内容
五、实验课纪律 六、实验报告的撰写
七、实验安全须知

环境工程学实验指导书

环境工程学实验指导书

实验一、间歇式活性污泥法实验模型一、实验目的(1)应熟练掌握SBR活性污泥法工艺各工序的运行操作要点;(2)熟练掌握活性污泥浓度和COD的测定方法;(3)正确理解SBR活性污泥法作用机理、特点和影响因素;(4)了解SBR活性污泥工艺曝气池的内部构造和主要组成;(5)了解有机负荷对有机物去除率及活性污泥增长率的影响。

二、实验原理间歇式活性污泥处理系统又称序批式活性污泥处理系统,即SBR工艺(sequencing Balch Reactor)。

本工艺最主要的特征是集有机污染物降解与混合液沉淀于一体,与连续式活性污泥法相比较,工艺组成简单,无需设污泥同流设备,不设二沉池,一般情况下,不产生污泥膨胀现象,在单一的曝气池内能够进行脱氮和除磷反应,易于自动控制,处理水水质好。

间歇式活性污泥曝气池在流态上属于完全混合式,在有机物降解方面是时间上的推流,有机污染物是沿着时间的推移而降解的。

如示意图1所示:间歇式活性污泥曝气池的运行操作是由①流入;②反应;③沉淀;④排放;⑤待机(闲置)等五个工序组成。

这五个工序构成了一个处理污水的周期,可以根据需要调整每个工序的持续时间。

进水、排水、曝气等动作均由自动控制箱设置的程序自动运行。

三、试验装置图四、实验水样及活性污泥(1)生活污水;(2)城市污水厂同流泵房的活性污泥。

五、操作过程首先必须弄清楚组成模型的所有装置和连接管路的作用,以及相互之间的关系,了解模型的工作原理。

在此基础上,方可开始模型的启动和运行。

(1)清水试验按进水——曝气——沉淀——排水——搅拌顺序设定四个时间继电器的运行时间,配水箱灌满自来水,刚进水泵将水打入本体,然后曝气一段时间,再停止曝气一段时间,打开排水电磁阀排一部分水,观察滗水器是否灵活,最后开动搅拌慢速搅拌一段时间。

这是一个完整的运行周期,可根据实验目的调整时间继电器使用的个数和设定时间。

一个周期接着一个周期,周而复始,重复循环。

(2)活性污泥的培养和驯化取城市污水处理厂同流泵房的活性污泥装入本体中,体积在本体有效容积的l/3—2/3,其余体积为自来水,只开动曝气的空气泵曝气1—2d,然后在配水箱配低COD浓度的试验用水,或稀释的生活污水或工业废水,控制每次进水量,延长曝气时间。

环境工程原理实验教学大纲

环境工程原理实验教学大纲

环境工程原理实验教学大纲一、课程目标本环境工程原理实验课程旨在培养学生的实验能力和科学思维,帮助学生深入了解环境工程领域的原理和实际操作,并掌握环境监测与处理的基本技术。

二、教学内容1.环境工程原理实验概述-介绍环境工程原理实验的背景和意义-强调实验的重要性和安全性2.环境监测实验-大气环境监测实验*学习大气污染物的监测技术*学习大气污染物的采样与分析方法-水环境监测实验*了解水资源保护的重要性*学习水质监测的基本原理和方法*学习水样的采集和处理技术-土壤环境监测实验*了解土壤污染与固体废弃物处理的关系*学习土壤环境监测的方法和技术3.环境处理实验-大气污染控制实验*学习大气污染控制的原理和方法*探索大气污染控制技术的实际操作-水污染治理实验*学习水污染治理的原理和方法*探索水污染治理技术的实际操作-固体废弃物处理实验*学习固体废弃物处理的原理和方法*探索固体废弃物处理技术的实际操作4.实验报告撰写与分析-学生通过实验操作和数据分析,撰写实验报告-学生对实验结果进行分析和总结,提出改进意见和建议三、教学方法1.理论教学与实践相结合-结合每个实验内容,进行简短的理论讲解,让学生对实验有充分的了解-实践操作与理论知识相结合,加深学生对环境工程原理实验的理解2.小组合作学习-将学生分为小组,进行实验操作-激发学生之间的合作能力和沟通能力3.实验室安全教育-强调实验操作的安全性要求,确保学生的人身安全-教授学生应急处理方法和实验室安全意识四、考核方式1.实验报告评分-学生撰写实验报告,并由教师进行评分和点评-实验报告评分占总成绩的50%2.实验操作评分-对学生实验操作的技能和实验成果进行评分-实验操作评分占总成绩的50%五、教材和参考书目1.教材:《环境工程实验教程》2.参考书目:-环境工程技术手册-环境工程原理与实践六、实验设备与材料1.大气环境监测实验室:大气采样器、气候箱、气体分析仪等2.水环境监测实验室:水样采集器、溶解氧测定仪、氨氮测定仪等3.土壤环境监测实验室:土壤可吸入气体采样器、有机物测定仪等4.污染治理实验室:污染物处理设备、水处理试验台等七、实验安全注意事项1.实验过程中要注意佩戴实验室安全防护用具,如安全眼镜和实验室服装等2.实验操作前应仔细阅读实验操作步骤和安全须知3.实验操作过程中要遵循实验操作规范和安全操作要求4.实验结束后要及时清洗实验器材,并注意正确的废液处理方法以上是环境工程原理实验教学大纲,旨在培养学生实验能力和科学思维,确保实验操作的安全性和有效性。

环境工程学实验教案

环境工程学实验教案

环境工程学实验教案一、实验概述1. 实验目的:(1)了解环境工程学的基本概念和实验方法;(2)掌握环境监测和污染治理的基本技能;(3)培养学生的实践能力和创新思维。

2. 实验内容:(1)环境质量监测与评价;(2)水污染治理技术;(3)大气污染治理技术;(4)固体废物处理与资源化;(5)噪声控制技术。

二、实验原理1. 环境质量监测与评价:通过对环境中的污染物进行采样、分析,评价环境质量,为环境治理提供依据。

2. 水污染治理技术:利用物理、化学和生物方法去除水中的污染物,达到净化水质的目的。

3. 大气污染治理技术:通过净化装置,去除大气中的污染物,改善空气质量。

4. 固体废物处理与资源化:对固体废物进行分类、无害化处理和资源化利用,减少环境污染。

5. 噪声控制技术:采用隔声、吸声、消声等方法,降低噪声对环境的影响。

三、实验器材与试剂1. 实验器材:(1)采样设备:采样瓶、采样袋、采样泵等;(2)分析仪器:光谱仪、气相色谱仪、液相色谱仪等;(3)净化装置:活性炭吸附装置、过滤装置等;(4)噪声测量仪器:声级计等。

2. 实验试剂:(1)水质分析试剂:硫酸、硝酸、盐酸、氢氧化钠等;(2)大气污染物分析试剂:碘化钾、硫化氢等;(3)固体废物处理试剂:熟石灰、消毒剂等。

四、实验步骤1. 环境质量监测与评价:(1)采样:选择合适的采样点,按照规定的采样方法进行采样;(2)分析:将采集的样品送至实验室,利用分析仪器进行检测;(3)评价:根据检测结果,评价环境质量,并提出治理措施。

2. 水污染治理技术:(1)预处理:对原水进行沉淀、过滤等预处理;(2)净化:采用活性炭吸附、絮凝沉淀等方法进行水质净化;(3)消毒:加入消毒剂,杀灭水中的病原微生物。

3. 大气污染治理技术:(1)净化:采用过滤、活性炭吸附等方法去除空气中的污染物;(2)监测:使用碘量法、硫化氢监测仪等测定气体中的污染物浓度;(3)评价:根据监测结果,评估空气质量,并提出治理措施。

流体力学实验(环境工程)

流体力学实验(环境工程)

实验一 伯努利方程实验一、目的和要求1.验证不可压缩流体的定常流动的总流Bernoulli 方程(能量方程),加深对流动过程中能量损失的了解;2.掌握流速、流量、压强等流动参量的实验测量技能3.用实例流量计算流速水头去核对测压板上两线的正确性;。

二、实验原理在实验管路中沿管内水流方向取n 个过水断面。

运用不可压缩流体的定常流动的总流Bernoulli 方程,可以列出进口附近断面(1)至另一缓变流断面(i )的Bernoulli 方程:i w i i ii h gv p z gv p z -+++=++122111122αγαγ其中i=2,3,4,……,n ;取121====n ααα 。

选好基准面,从断面处已设置的静压测管中读出测管水头γpz +的值;通过测量管路的流量,计算出各断面的平均流速v 和gv 22α的值,最后即可得到各断面的总水头gv pz 22αγ++的值。

验装置装置图实验装置如图一所示。

三、实验步骤1. 熟悉实验设备,了解测压管的布置情况;2.打开泵供水,待水箱溢流后,关闭伯努利管阀门,检查所有测压管的液面是否平齐。

如不平,则查明故障原因(如连通管阻塞、漏气或夹气泡等),并加以排除,直至调平;3.打开伯努利管阀门,待测压管的液面完全静止后,观察测量测压管的液面高度,并记录在表2;4.调节伯努利管阀的开度,待流量稳定后,测量并记录各测压管和液面的高度,同时测记此时的管道流量;5.改变流量2次,重复上述测量。

四、实验结果记录与分析 1. 有关常数记入表1。

表1 常数记录表格2. 测量流量和)(γpz +并记入表2。

3. 计算速度水头和总水头,填入表3和表4。

4.将上述结果中最大流量下的总水头线(动压水头线和计算水头线)和测压管水头线绘在图上。

六、结果分析及讨论1.沿管长方向,总水头线的变化趋势如何?静水头线的变化趋势与总水头线的有何不同?简要说明原因。

2.水箱水位恒定,流量增加,静水头线发生哪些变化?简要说明原因。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题1、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?2、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?3、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 流体流型的观察与测定一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

二、基本原理雷诺(Reynolds )用实验方法研究流体流动时,发现影响流动类型的因素除流速u 外,还有管径(或当量管径)d ,流体的密度ρ及粘度μ,由此四个物理量组成的无因次数群Re 的值是判定流体流动类型的一个标准。

μρdu R e =(1-1)Re<2000~2300时为层流,Re>4000时为湍流,2000<Re<4000时为过渡区,在此区间流型可能表现为流层,也可能表现为湍流。

从雷诺数的定义式来看对同一个仪器d 为定值,故u 仅为流量的函数。

对于流体水来说,ρ、μ几乎仅为温度的函数。

因此确定了水的温度及流量,即可计算雷诺数。

注意:雷诺实验要求减少外界干扰,严格要求时应在有避免震动设施的房间内进行。

如果条件不具备,演示实验也可以在一般房间内进行。

因为外界干扰及管子粗细不均匀等原因,层流的雷诺数上界达不到2000,只能达到1600左右。

层流时红墨水成一线流下,不与水相混。

湍流时红墨水与水混旋,分不出界限。

三、实验装置及仪器试验装置如图1-1所示,液面保持一定高度的水箱与玻璃测试管相连,水箱上放有颜色水瓶,测试管上安有带针头的胶塞,用出口阀调节流量,用转子流量计测定流量。

试验时水由高位水箱进入玻璃管,槽内水由进水管供应,槽内设有进水稳流装置及溢流箱用以维持平稳而又稳定的液面,多余之水由溢流管排入水沟。

图1-1 雷诺实验装置四、实验步骤1、检查针头是否堵塞,颜色水是否沉淀。

2、向水箱内注水。

3、打开出口阀,排除实验管中的气体。

进水4、开启上水阀,使高位槽充水至产生溢流时关闭(若条件许可,此步骤可在实验前数小时进行,以使高位槽中的水经过静置,消除旋流,提高实验的准确度)。

5、开颜色水阀,使颜色水由针头注入玻璃试验管。

6、逐步开大排水阀,观察不同雷诺数时的流动状况,并把现象记入表中。

7、做两种情况下的对比实验:(1)关闭高位槽的进水阀,保持液面平静,从观察的玻璃管中,测取管中水流从层流转变为湍流时的Re临界值。

注意,此时液面虽平静,但液面的高度是在缓慢下降的。

(2)开启高位槽的进水阀以保持槽中液面高度不变,但此时液面是不平而有波动的,测取此时的Re临界值,并分析和比较两种情况下的实验结果。

8、观察层流时流体质点的速度分布。

层流时,由于流体与管壁间的摩擦力及流体内摩擦力的作用,管中心处流体质点速度最大,愈靠近管壁速度愈小。

因此,静止时处于同一横截面的流体质点,开始层流流动后,由于速度不同,组成了旋转抛物面(即由抛物线绕其对称轴旋转形成的曲面)。

先打开红墨水阀门,使红墨水扩散为团状。

再稍稍开启排水阀,使红墨水缓慢随水运动,则可观察到红墨水团前端的界限,形成了旋转抛物面。

五、思考题1、影响流动形态的因素有哪些?2、如果管子是不透明的,不能直接观察管中的流动形态,你可以用什么办法来判断流体在管中的流动形态?3、有人说可以只用流速来判断管子中的流动形态,流速低于某一个具体数时是层流,否则是湍流,这种看法对吗?在什么条件下可以只由流速来判断流动形态?4、研究流动形态有何意义?实验三 流体流动阻力的测定一、实验目的1、测定水流过一段粗糙直管、光滑直管的沿程摩擦阻力损失Δp f ,确定层流时摩擦阻力系数λ和雷诺准数Re 之间的关系;2、测定水流过管件、阀门等的局部阻力损失,确定其局部阻力系数ζ;3、熟悉测定流体流经直管和管件时的阻力损失的实验组织方法及测定摩擦系数的工程意义;4、学会U 形压差计、转子流量计的使用方法,了解涡轮流量计、差压变送器、变频器等的工作原理;5、识别组成管路中的各个管件、阀门并了解其作用。

二、实验原理由于流体粘性的存在,流体在流动的过程中会发生流体间的摩擦,从而导致阻力损失。

层流时阻力损失的计算式是由理论推导得到的;湍流时由于情况复杂得多,未能得出理论式,但可以通过因次分析法再结合实验研究,获得具体的关联式。

实验研究发现,影响湍流时直管阻力损失 Δp f 的因素有: 流体性质:密度 ρ 和粘度 μ;管路特性:管径d 、管长 l 和 管壁粗糙度ε; 操作条件:流速u ;根据因次分析法,Δp f 可以表示成上述诸多影响因素的关系式:Δp f = f (d, u, ρ , μ , l , ε) (2-1)组合成四个无因次数群:),,(2dd l du u pεμρϕρ=∆ (2-2) 若实验设备已定,(2-2) 式可写为: h f =2)(Re,2u d l d p⋅⋅=∆εϕρ(2-3)若实验设备是水平直管,Δp f = Δp ,即阻力损失表现为压力降,(2-3) 式可写为:h f =2)(Re,2u d l d p⋅⋅=∆εϕρ (2-4) 所以: h f = 22u d l P⋅⋅=∆λρ (2-5)即: )(Re,dεϕλ= (2-6)式中 λ 为直管的摩擦阻力系数。

由 (2-6) 式可知,λ 与流体流动的雷诺数Re 及管壁的相对粗糙度 ε/d 有关。

若流体为层流流动时,直管的摩擦阻力系数为:eR 64=λ (2-7) 若装置已经确立,物系也已确定,那么λ只随R e 而变,实验操作变量仅有流量,改变阀门的开度可以达到改变流速u 的目的,因此在管路中需要安装一个流量计;在直径为d 、长度为l 的水平直管上,引出二个测压点,并接上一个压差计,可以用压差变送器或液柱压差计测量压差Δp (注:压差变送器是将压差转换成电信号再用仪表显示,液柱压差计是将压差以液柱高度表示的,若为U 形管压差计计算公式为:gR p )(液体指示ρρ-=∆。

若为倒U 型管压差计,计算公式请自行推导);实验体系确定后,ρ、μ是物性参数,它们只取决于实验温度,所以,在实验装置中需要安装测流体的温度计;再配上水槽、泵、管件等组建成循环管路,实验装置流程见图2-1。

局部阻力损失通常有两种表示方法:当量长度法和阻力系数法。

由阻力系数法:22ρζup=∆ (2-8)测定通过某局部(弯头、管件、阀门等)的前后压差Δp (=Δp f )和通过此局部的平均流速u ,由(2-7) 式计算其局部阻力系数ζ。

三、实验流程图和实验步骤(1)手动阻力实验装置 a 、实验流程图(图2-1)41-光滑管,2-粗糙管,3-层流管,4-离心泵管实验装置参数见下表1、泵的启动:关闭控制阀,关闭光滑管和粗糙管引压阀,引水灌泵,启动泵。

2、系统排气(1)总管排气:同时打开光滑管和粗糙管的切换阀,先将控制阀开足然后再关闭,重复三次,目的为了使总管中的大部分气体被排走,然后打开总管排气阀,开足后再关闭,重复三遍。

(2)引压管及压差计排气:每次测直管阻力或测局部阻力时,打开相应的引压阀,再打开差压变送器上的平衡阀和相应的引压管放气阀,开、关重复三次。

注意:检验排气是否彻底是将控制阀开至最大,再关至为零,看压差变送器计读数,若前后读数相等,则判断系统排气彻底;若前后读数不等,则重复上述2步骤。

3、湍流时直管阻力的测定:由于R e 在充分湍流区时,λ~Re的关系曲线处在双对数座标的密集区,所以在大流量时少布点,而Re在比较小时,λ~Re的关系是曲线,所以小流量时多布点。

先将控制阀开至最大,读取流量显示仪读数F大,然后关至压差显示值约0.3kPa时,再读取流量显示仪读数F小,在F小和F大二个读数之间布14~16个点。

4、局部阻力和层流阻力的测定:切换引压阀,测定相应局部阻力。

关闭总管控制阀,打开转子流量计,排除空气,测定层流阻力。

5、停泵:关闭出口阀,停止水泵电机。

上机处理数据。

c 、实验数据记录(2)自动控制阻力实验装置a 、实验流程图(图2-2)自动测量阻力实验装置具有在线操作功能。

实验对象部分是由贮水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U 型压差计等所组成的。

管路部分有三段并联的长直管,自上而下分别为用于测定局部阻力系数、光滑管直管阻力系数和粗糙管直管阻力系数。

测定局部阻力使用不锈钢管,其上装有待测管件(闸阀);光滑管直管阻力的测定同样使用内壁光滑的不锈钢管,而粗糙管直管阻力的测定使用内壁较粗糙的镀锌管。

实验四 传热系数的测定一、实验目的1、通过实验掌握总传热系数K 和传热膜系数α的测定方法;2、通过实验提高对α关联式的理解,了解工程上强化传热的措施;3、测定流体在圆形直管内作强制湍流时的传热准数方程式。

二、基本原理1.总传热系数的测定m t KA Q ∆= (5-1)如果实验设备保温良好,系统的热损失可忽略不计, 根据热量衡算式得得热负荷Q()i o p v t t c q Q -=ρ (5-2)则mt A QK ∆=(5-3) os i s io m t T t T t t t ---=∆ln(5-4)K ——传热系数,W/m 2.Kρ——流体的密度,m 3/kgA ——换热器的传热面积,m 2 q v ——流体的体积流量, m 3/sQ ——传热量,WC P ——流体的恒压热容,J/kg.KT s ——水蒸气的温度,Kt i 、t o ——冷流体的进、出口温度,Km t ∆——2.传热膜系数的测定流体与壁面的对流传热可由牛顿冷却定律表示Q =αA (T w -t ) (5-5)A ——传热面积(内管外表面积),m 2T w ——传热管的外壁面平均温度,K α——对流传热系数,W/m 2.K在实验中只要已知管壁的平均温度和流体的平均温度t ,即可计算出传热膜系数α的值。

相关文档
最新文档