数学中考复习专题BPPT课件

合集下载

中考数学考点专题复习课件反比例函数的图象和性质

中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

《中考数学专题讲座》课件

《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。

人教版初中数学中考复习专题复习 数与式(37张PPT)

人教版初中数学中考复习专题复习 数与式(37张PPT)

知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.

中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件

中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件

二、解题策略与解法精讲
• 选择题解题旳基本原则是:充分利用选择题旳特点,小题 小做,小题巧做,切忌小题大做.
• 解选择题旳基本思想是既要看到各类常规题旳解题思想, 但更应看到选择题旳特殊性,数学选择题旳四个选择支中 有且仅有一种是正确旳,又不要求写出解题过程. 因而, 在解答时应该突出一种“选”字,尽量降低书写解题过程, 要充分利用题干和选择支两方面提供旳信息,根据题目旳 详细特点,灵活、巧妙、迅速地选择解法,以便迅速智取, 这是解选择题旳基本策略. 详细求解时,一是从题干出发 考虑,探求成果;二是题干和选择支联合考虑或从选择支 出发探求是否满足题干条件. 实际上,后者在解答选择题 时更常用、更有效.
• 例3 下列四个点中,在反百分比函数y=− 旳图象上旳是( )
• A.(3,-2) B.(3,2) C.(2,3) D.(-2,-3)
• 思绪分析:根据反百分比函数中k=xy旳特点进行解答即可.
• 解:A、∵3×(-2)=-6,∴此点在反百分比函数旳图象上,故本选项正确; B、∵3×2=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; C、∵2×3=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; D、∵(-2)×(-3)=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错 误. 故选A.
• 思绪分析:反百分比函数旳图象是中心对称图形, • 则与经过原点旳直线旳两个交点一定有关原点对称. • 解:因为直线y=mx过原点,双曲线 旳两个分支有关原点对称,
所以其交点坐标有关原点对称,一种交点坐标为(3,4),另一种交 点旳坐标为(-3,-4). 故选:C. • 点评:此题考察了函数交点旳对称性,经过数形结合和中心对称旳定 义很轻易处理.
• 一. 一次函数、反百分比函数和二次函数图象旳分析问题

【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

【中考数学考点复习】第一节  尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线

第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;

4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.

中考数学《特殊平行四边形》专题复习课件(共32张PPT)

中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边

对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等

中考数学专题《一次函数》复习课件(共20张PPT)

中考数学专题《一次函数》复习课件(共20张PPT)

2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2

中考数学专题《二次函数》复习课件(共54张PPT)

中考数学专题《二次函数》复习课件(共54张PPT)

当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴

数学中考复习《探索规律》课件(共30张ppt)

数学中考复习《探索规律》课件(共30张ppt)
探索规律
探究型题有时可从数量关系
表示的规律着手,也可从图形本 身和规律着手.
归纳猜想
特殊入手
一般结论
探索
三角形的个数 1
2
3
4
5
… …
n
火柴棒的根数 3 5 7 9 11 … 2n+1

星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
谢谢观赏
You made my day!
我们,还在路上……
a2-8 a3-7 a4-6 a9-1 1a0 a1+11 a1+66 a1+77 a1+88
横排中右边的数比左边的数大1 纵列中下面的数比上面的数大7
1234567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 …… …… …… …… …… …… …… …… …… …… …… …… …… …… 995 996 997 998 999 1000 1001
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
横排中右边的数
3a 4a+1 比左边的数大1
纵列中下面的数
a1+07 a1+18 比上面的数大7
观察下面的几个算式,你发现了什么规律?
12=1 112=121 1112=12321 11112=1234321 利用上面的规律,请猜出 111112= 123454321 。

中考数学总复习课件(完整版)

中考数学总复习课件(完整版)

第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念

中考数学总复习ppt课件

中考数学总复习ppt课件

第28讲┃ 归类示例
归类示例
► 类型之一 确定圆的条件 命题角度: 1. 确定圆的圆心、半径; 2. 三角形的外接圆圆心的性质.
例1 [2012·资阳] 直角三角形的两边长分别为16和12,则此三 角形的外接圆半径是_1_0_或__8___.
第28讲┃ 归类示例
[解析] 直角三角形的外接圆圆心是斜边的中点,那么半径为斜 边的一半,分两种情况:
(1)作∠ABC的平分线BD交AC于点D; (2)作线段BD的垂直平分线交AB于点E,交BC于点F.由以 上作图可得:线段EF与线段BD的关系为互__相__垂__直__平__分__.
图28-6
第28讲┃ 归类示例
解: (1)作图如下图.(2)作图如下图;互相垂 直平分
第28讲┃ 归类示例
中考需要掌握的尺规作图部分有如下的要求: ①完成以下基本作图:作一条线段等于已知线段, 作一个角等于已知角,作角的平分线,作线段的垂 直平分线.②利用基本作图作三角形:已知三边作 三角形;已知两边及其夹角作三角形;已知两角及 其夹边作三角形;已知底边及底边上的高作等腰三 角形.③探索如何过一点、两点和不在同一直线上 的三点作圆.④了解尺规作图的步骤,对于尺规作 图题,会写已知、求作和作法(不要求证明). 我们在掌握这些方法的基础上,还应该会解一些新 颖的作图题,进一步培养形象思维能力.
第28讲┃ 归类示例
[解析] 四个命题的原命题均为真命题,①的逆 命题为:若|a|=-a,则a≤0,是真命题;②的逆命 题为:若m>n,则ma2>na2,是假命题,当a=0时, 结论就不成立;③的逆命题是平行四边形的两组对 角分别相等,是真命题;④的逆命题是:平分弦的 直径垂直于弦,是假命题,当这条弦为直径时,结 论不一定成立.综上可知原命题和逆命题均为真命 题的是①③,故答案为B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师版2005年数学中考复习专题B
2020年10月2日
1
函数与几何综合题选讲
复习要点 例题精析 考题演练
2020年10月2日
2
复习要点
1.能灵活运用函数的有关知识揭示几何图形的性质;如 一次函数与三角形的结合问题,二次函数与圆的综合问 题等;
2.利用几何图形的性质,用含x的代数式表示其他相关的 未知的几何量,能利用几何图形的性质建立几何图形中 元素之间的函数关系式.
2020年10月2日
3
例题精析
2020年10月2日
4
2020年10月2日
5
2020年10月2日
6
2020年10月2日
7
【例2】(2003年·河南省)已知:如图所示,在平面直角 坐标系中,以BC为直径的⊙M交x轴正半轴于点A、B,交y
轴正半轴于点E、F,过点C作CD垂直y轴,垂足为点D,连 结AM并延长交⊙M于点P,连结PE. (1)求证:∠FAO=∠EAM (2)若二次函数y=-x2+px+q的 图象经过点B、C、E,且以 C为顶点,当点B的横坐标等 于2时 ,四边形OECB的面积 是11/4,求这个二次函数的解析式.
3
∴y= 3 (x+1)(x+3)
3
即y=
3 3
x2+4 3
3 x+3
2020年10月2日
13
(3)⊙M与⊙A外切,证明如下: ∵ME∥y轴∴∠MED=∠B ∵∠B=∠BDA=∠MDE∴∠MED=∠MDE ∴ME=MD ∵MA=MD+AD=ME+AD∴⊙M与⊙A外切
2020年10月2日
14
考题演练
2020年10月2日
9
(2)∵二次函数y=-x2+px+q的图象的顶点为C点,得C点的
坐标( p , p2 4q ),图象过E点,得E点的坐标为(0,q),连 结AC,则2 AC4⊥OB,
∵CD⊥y轴,AO⊥OD∴四边形OACD为矩形
∴DC=OA,连结OC
S△OCB= S△OCE=
1 2 1 2
1.(2003年·天津市)已知:抛物线y=2x2-3x+m(m为常数) 与x轴交于A、B两点,且线段AB的长为12, (1)求m的值; (2)若该抛物线的顶点为P,求△ABP的面积.
2020年10月2日
15
解:(1)关于x的方程2x2-3x+m=0,判别式
Δ=(-3)2-8m=9-8m>0,得m<9/8 ,
2020年10月2日
10
【例3】(2003年·广西)如图,以A(0,3)为圆心的圆与x 轴相切于坐标原点O,与y轴相交于点B,弦BD的延长线交x 轴的负半轴于点E,且∠BEO=60°,AD的延长线交x轴于点 C. (1)分别求点E、C的坐标; (2)求经过A、C两点,且以过E而平行于y轴的直线为对称 轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC的交点为M,试判断以M点为圆 心,ME为半径的圆与⊙A的位置关系,并说明理由.
∴AB为⊙M的直径,连接MC交OA于点G
∴MC⊥OA∴OG=AG=12 OA=3/2
∴MG=1/2OB= 3 ∴MC=1/2AB=1/2 O 2 B O2 A 1( 3)2 3 23
2
2
∴CG=MC-MG= 3 3 3
∴C(-3/2,- 3 ) 2 2
2020年10月2日
2
18
设经过O、A、C三点的二次函数解析式为y=ax王2+bx+c
OB·AC=
1 2
OE·CD=12
×2×4qp2 4qp2
4
4
q×p pq 24

p2 4qpq 11
即p2+pq+4q=11
∵点B(24,0)在4 抛物线y=-x2+px+q上
p2 pq4q 11
∴解(2这不p个+合q方题-4程意=0组,联,舍立得去2)p qpq 2140
p q
5 14
∴过B、C、E三点的二次函数的解析式为:y=-x2+x+2.
⊙M的位置关系.
2020年10月2日
17
解:(1)∵直线y= 3 x+ 3 与x轴、y轴分别交于A、B两点, ∴A(-3,0)、B3(0,3 ) ∴OA=3 OB= 3
以OA、OB两线段长为根的一元二次方程是
m2-( 3 +3)m+3 3 =0
(2)∵∠COD=∠CBO,∠COD=∠CBA
∴∠CBA=∠CBO∴AC=CO∠AOB=90°
x1+x2=3/2 x1·x2=m/2
∴AB=|x1-x2|=
(x1x2)24x1x2
98m 2
根据题意AB= 9 8m = 1 ∴m=1
22
(2)∵m=1∴抛物线y=2x2-3x+1,其顶点P的纵坐标为
yp=
4acb2 1
4a
8
∴S△ABP=
1 2
·AB·|yp|=121218
1 32
2020年10月2日
2020年10月2日
8
【分析】(1)利用∠AFO=∠P,再结合等角的补角相等即可
证得∠FAO=∠EAM.
利用S四边形OECB=
11 4
=S二次函数图象上,列方程,最后联立方程组即可
求得解析式.
解:(1)∵四边形APEF是⊙M的内接四边形 ∴∠APE=∠AFO ∵AP为⊙M的直径∴∠EAM=90°-∠APE ∵∠FAO=90°-∠AFO∴∠EAM=∠FAO
2020年10月2日
11
【分析】
(1)在Rt△ACO和Rt△BEO中,利用三角函数知识易求出OE、 OC的长;
(2)利用设二次函数交点式解析式,将抛物线与x轴两交点 坐标求出,再将A点坐标代入即可求得;
(3)要说明⊙M与⊙A的位置关系即要判断ME与MD的大小关 系.
2020年10月2日
12
解:(1)在Rt△EOB中,EO=OB·cot 60°=23×33=2 ∴点E的坐标为(-2,0) 在Rt△COA中,OC=OA·tan ∠CAO=OA·tan 60°=3×3=3 ∴点C的坐标为(-3,0) (2)∵点C关于对称轴x=-2对称的点的坐标为(-1,0) 点C与点(-1,0)都在抛物线上 设y=a(x+1)(x+3),用A(0,3)代入得 ∴ 3 =a(0+1)(0+3)∴a= 3
16
2.(2002年·河南省)已知如图所示,直线y=3 x+3 与 x轴、y轴分别交于A、B两点,⊙M过原点及3A、B两点 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连接BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数解析式. (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与
相关文档
最新文档