公平的席位分配
公平的席位分配等四个数学模型例子
补例2 洗衣节水问题
因为lim n
1
1 n
n
e,所以当n趋于无穷大时,(7)式分母
趋于e AW。
当n趋于无穷大时,N
的极限存在,并有
n
A
lim
n
Nn
N0
eW
(8)
(8)式说明了当水的总量一定的时候,无论你怎样洗涤,不 管次数多少,最后的结果是不可能一点污物都不残留的。
18 8 4+3+2+2+2+4=17
A7 13 23 10 7 28 18
4 2+2+2+4+4+4=18
A8 17 11 27 22 14 8 4
3+2+2+2+4+4=17
由以上表格可知该安排是合理的
作业:当7支队参加单循环赛的排球比赛时,试 合理的安排其赛程。
补例2 洗衣节水问题
问题提出: 我国淡水资源有限,节约用水势在必行。那么如何在洗衣 服中合理地用水,使得既能把衣服洗干净,又能节约用水 的问题就摆在我们的面前。一般洗衣服的过程是先将衣服 用洗涤剂浸泡,然后一次次地用水漂洗。洗衣机的运行过 程分别为加水—>漂洗—>脱水—>加水—>漂洗—>脱 水……这么一个循环过程。我们的问题是在保证一定洗涤 效果下,洗衣服分成多少次(或在洗衣机中应循环几次), 每一次的用水量是否一致,使得总的用水量最为节省?
补例2 洗衣节水问题
进一步讨论:
如何确定洗涤的次数 n 。
先引入一个清洁度 的定义。设 是洗净衣服上的污物量与
第一次浸泡后残留在衣服上的污物量之比,即 Nn N0
数学论文席位的公平分配问题
数学建模论文席位的公平分配问题姓名:学号:18 15 20公平的委员分配问题摘要:1.我们首先是用惯例分配法来解决这委员分配问题的,由于方法来解决存在很大的缺陷,因此,通过组内的讨论,我们想出了Q值法来解决此问题,发现这样能作到相对公平。
我们这一组开始就考虑到了该怎样分配能作到相对公平,就这个问题,我们开始了研讨。
我们采用惯例分配法分析发现:各楼所得到的委员数A 、B 、C楼分别为:3、3、4人,而Q值法其结果为:A、B、C楼分别为:2、3、5人。
2.“取其精华,去其糟粕”我们发现Q值法能很好的解决委员分配问题,Q 值法:我们用Qi=(Pi*Pi)/[n(n+1)],其中i=A、B、C,Pi为第i楼的人数,n 为分配到的委员数,我们采用将剩下的一位委员名额分给Q值最大的一方。
通过计算得到Qa=9204.16、Qb=9240.75、Qc=9331.2比较得到:Qa>Qb>Qc,所以我们决定把剩下的一名委员分给C楼。
3.我们用惯例分配法发现有一名委员不好分配,不知道分给谁更公平些。
建议:我们的思维不能太单一了,在考虑问题方面要做到全面些,这样才会少走弯路。
(无论在哪方面都一样。
)关键字:委员分配、比例法、Q值法1.1问题的重述分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中.分配问题涉及的内容十分广泛,例如:学校共有1000学生,235人住在A楼,333人住B楼,432人住C楼,学校要组织一个10人委员会,试用惯例分配法和Q值方法分配各楼的委员数并比较结果。
1.2问题的分析数学中通常人们用比例的方法来分配各个楼要派出几个人来组建委员会,当比例中有小数时人们有按照惯例使得各组中小数最大的组拥有更多的人数。
然而人们是怎样分配的呢?又因为没栋楼所占比例不是整数,可以会出现不公平的现象。
为了让席位分配更加公平我们不应该采用比例法,要引用不比例法更好的Q值法对其进行求解。
公平席位分配方法
某学校三个系共200名学生,其中甲系 100名,乙系60名,丙系40名. 若学生代表 会议设20个席位,公平而又简单的席位分配 办法是按学生人数的比例分配,显然甲乙丙 三系分别应占10,6,4席位。 现在丙系有6名学生转入甲乙两系,各系 人数如下表第二列所示
要解决这个问题必须舍弃所谓惯例, 找到衡量公平分配席位的指标,并由此建 立新的分配方法。 建立数量指标 设两方人数分别 p1 和 p2 , 占有 席位分别是 n1 和 n2 ,则两方每个席位代表 的人数分别为 p2 n2 和 p2 n2 ,显然仅当
一般假设 p1 n1 > p2 n2 ,即对A不公平,当再分 配一个席位时, 关于 pi ni (i = 1, 2) 不等式有三 种情况:
公平分配席位的原则是使得相对不公平值 尽可能地小,所以如果 rB ( n1 + 1, n2 ) < rA ( n1 , n2 + 1) 则这一席应分给A方,反之则应分给B方。 事实上,第一种情况也包含在上式中。 p22 n2 (n2 +1) < p12 n1(n1 +1)
模型推广:m方分配席位的情况. 设第i 方人数为 pi ,分配席位为 ni ,当总席位增 加1席时,计算
pi 2 Qi = , i = 1, 2, ..., m n i ( n + 1)
应将1席分给最大一方-------Q值法
1.作业:用Q法重新讨论甲乙丙三系分配 21席问题。
p1 n1 = p 2 n2
因为人数和席位都是正数,但通常有 p1 n1 ≠ p2 n2 这时席位分配不公平,且 p i n i 的数值较大 的一方吃亏,或者说对这一方不公平。
假设 p1 n1 > p 2 n2 ,不公平程度可 以用 p1 n1 − p 2 n2 衡量。 1. p 1 = 1 2 0 , p = 1 0 0 , n1 = n 2 = 1 0 2. p 1 = 1 0 2 0 , p 2 = 1 0 0 0 , n1 , n 2 不变 设 p1, p 2 为A,B 两方固定人数, n 1 , n 2 两方 分配席位(可变)。
公平的席位分配
Q值法推广:当有m方,第i方人数 pi ,占有 ni 席位, 当总席位增加1席,计算
pi2 Qi ni (ni 1)
应将席位分给Q值最大的一方。
问题解决
先按比例计算结果将整数部分的19席分配完,有 n1 10, n2 6, n3 3 ,再用Q值法分配第20,21 席。
1032 632 342 第20席:Q1 , Q2 , Q3 , Q1最大分给甲。 1011 6 7 3 4 1032 第21席:Q1 , Q2 , Q3不变, Q3最大分给丙。 1112
公平的席位分配
问题背景
某校有3个系共200名学生,甲乙丙系各100, 60,40名。若学生代表席位设20个席位。 公平而简单的席位分配办法:按学生人数 的比例分配。 分配结果(席位):甲10;乙6;丙4。
若甲乙丙系人数分别:103、63和34,20个 席位如何分配? 若上述人数不变,增加一个席位,分配结 果如何? 这个结果对丙系太不公平,总席位增 加1席,而丙系席位却由4席减少为3席位。 找到衡量公平分配席位的指标,丙建立新 的分配方法。
练习
学校共1000名学生,235人住在A宿舍, 333人住在B宿舍,432人住在C宿舍。学生 门要组织一个10人的委员会,使用下列办 法分配各宿舍的委员数。 (1)按比例分配取整数的名额后,剩下的名 额按惯例分给小数部分较大者。 (2)用Q值法
(3)d’Hondt法:将A,B,C各宿舍的人数用 n=1,2,3等相除,其商如下
p1 p2 n1 n2 1
公平分配的原则:使得相对不公平度尽可能地小
若 rB (n1 1, n2 ) rA (n1 , n2 1) ,则席位分给A;反之分给B。 Q值法 2 2
公平的席位分配
每席代表人数: p1/ n1
不公平
Байду номын сангаас程度
例: 120:10 100:10→2 例: 1020:10 1000:10→2 改进
改进
对A相对不公平值
rA ( n1 , n 2 ) = p1 p2 − n1 n2 p2 n2 p2 p1 − n2 n1 p1 n1
绝对不公平值 基数
对B
rB ( n 1 , n 2 ) =
模型分析
总人数 p=∑pi ,总席位 n=∑ni 按人数比例 p
ni = [
i
p
n ]
则 则
pi p p < ≤ i ni +1 n n
pi Qi = n i ( n i + 1)
2
例: 120:10 100:10→2 → 0.2 例: 1020:10 1000:10→2 →0.02
目标:rA, rB 尽量小
2、确定分配方案
假设 A,B 占有 n1,n2 席 不妨设 p1/n1>p2/n2 则 p1/(n1 +1)>p2/n2 == p1/(n1 +1)<p2/n2 对A不公平值(相对)
某校 共200人 20席 调整 人数比例 20席 实际分配 21席 实际分配
甲系 100 10 103 51.3 10.3 10 10.815 11
乙系 60 6 63 31.5 6.3 6 6.615 7
丙系 40 4 34 17 3.4 4 3.57 3
产生问题:分配不公
原因 20个,丙多占0.6 21个,不充分的席位都在增加
p2 (n1 + 1) rA(n1 +1,n2)= -1 p1n2 p1/n1 )>p2/(n2 +1)
公平席位的分配(韩文斌)
公平席位分配模型班级:09数学(2)班姓名:韩文斌学号:0907022011摘要:通过建立人数比例模型、最大剩余法模型及Q值法模型解决了公平席位的分配问题。
比较三种模型分配的结果方案,我发现了Q值法模型是解决公平席位分配问题较公平的方法。
关键词:公平分配绝对不公平程度 Q值法模型正文1 问题的提出某学校有3个系共100名学生,其中甲系100名,乙系60名,丙系40名。
1.1 若学生代表会议设20个席位,公平而又简单的席位分配办法是什么?1.2 现在丙系有6名学生转入甲乙两系(其中3人转入甲系,3人转入乙系),现在该如何分配呢?1.3 因为有20个席位的代表会议在表决提案时可能出现10:10的结局,会议决定下一届增加1席。
在问题二中人数发生改变后的情况下,这1席又该分给哪个系呢?2 合理假设与变量说明假设3个系的总人数不再发生变动,各个系的人数除了问题二中人数的改动之外,不再发生任何改变。
3 模型建立3.1 人数比例模型公平标准iiP P N N =, i =1,2,3…通过计算总席位与总人数、各系席位数与各系总人数的比例相等,来确定各系的席位数的分配方案。
3.2 最大剩余法模型记,1,2,3ii iP R i N ==…的余数,i R 越大说明i 系分一个席位代表人数就越多,为了公平降低i R ,则剩余席位优先分给i R 最大的i 系。
3.3 Q 值法模型[1]当总席位增加1席时,计算令2(1)i i i i p Q n n =+,增加1席位应该分配给Q 值最大的一方。
3.3.1 不公平指标为简单起见考虑A ,B 两系分配席位的情况。
设两方人数分别为1P ,2P ,占有席位分别为1n ,2n ,则比值11p n ,22p n 为两方每个席位所代表的人数。
显然仅当1212p p n n =分配时才算完全公平的,但是因为人数和席位都是整数,所以通常1212p p n n ≠,分配不公平,并且对比值较大的一方不公平。
席位公平分配问题q值法的改进
席位公平分配问题q值法的改进随着社会的不断发展和进步,人们对于公平的追求也越来越强烈。
在各种社会活动和组织中,公平的分配问题一直备受关注。
席位公平分配问题作为一个重要的社会组织问题,一直以来都备受人们关注。
q值法作为目前解决席位公平分配问题的一种常用方法,然而在实际应用中却存在一些问题和不足。
如何改进q值法成为了当前亟待解决的一个问题。
1. q值法的基本原理q值法是一种基于权重的席位分配方法。
其基本原理是根据各个参与方的权重大小来确定席位的分配比例。
通常情况下,权重越大的参与方获得的席位数量也就越多。
这种方法在一定程度上确实能够体现参与方的重要性和影响力,但在实际应用中往往会出现一些问题。
2. q值法存在的问题q值法在确定权重时往往是基于主观判断的,缺乏客观的依据。
这就导致了权重的不确定性和不公平性,容易受到人为因素的影响。
q值法只是简单地依据权重来分配席位,忽略了其他可能存在的因素。
这就导致了分配结果可能并不合理和公平,无法充分考虑参与方的各种需求和意见。
再次,q值法在实际应用中往往面临的是计算复杂度较高的问题,尤其是在参与方众多、权重差异较大的情况下,很难进行准确而高效的计算。
q值法在解决席位公平分配问题时存在一些问题和不足,需要进行改进和优化。
3. q值法的改进方向为了解决q值法存在的问题,可以从以下几个方面进行改进:(1)建立客观评价体系。
可以通过建立客观的评价标准和体系来确定参与方的权重,以减少人为因素的干扰和影响,确保权重的客观和公正。
(2)综合考虑多种因素。
除了权重以外,还可以考虑其他多种因素来确定席位的分配比例,如参与方的历史贡献、实际需求等,以更全面地体现参与方的重要性和影响力。
(3)优化计算方法。
可以通过引入一些优化算法和技术,来提高席位分配的计算效率和准确性,特别是在复杂情况下的应用,能够更好地满足实际需求。
4. q值法的改进实践针对上述改进方向,可以通过实际案例和实践进行验证和应用。
公平席位分配Q值法
1 问题的假设与符号定义1.1问题的假设:1.席位是以整数计量的,并且为有限个,设为N个;2.每个系别有有限个人,席位是按各集体的人员多少来分配的;3.每个系别的每个人被选举都是等可能的;4.每个单位至少应该分配到一个名额,如果某个单位,一个名额也不应该分到的话,则应将其剔除在分配之外;5.在名额分配的过程中,分配是稳定的,不受任何其他因素所干扰.1.2符号的定义:n----表示某系别的席位数(n1、n2、n3分别表示甲、乙、丙的席位数);p----表示某系别的人数(p1、p2、p3分别表示甲、乙、丙的人数);q-------表示总席位数;N-------表示总的席位人数.Q-------表示某单位的Q值.3 问题的分析通常人们都是按照人数比例来进行分配的.当比例中有小数时,人们又按照惯例将多余的席位分给比例中小数最大者.我们能得出以下结论:公式:*pNqn/4 模型建立目标:建立公平的席位分配方案.4.1 引出绝对不公平值并给出相对不公平值:设A,B 两方人数分别为21,p p ;分别占有 1n 和2n 个席位,则两方每个席位所代表的人数分别为11n p 和 22n p. 我们称 2211n p n p -为.例:10,100,1202121====n n p p则22211=-n p n p ; 又 10,1000,10202121====n n p p 则22211=-n p n p 由上例可知,用绝对不公平程度作为衡量不公平的标准,并不合理,下面我们给出相对不公平值.①若 2211n pn p > 则称 11221222211-=-n p n p n p n p n p 为对A 的相对不公平值,记为 ),(21n n r A ;②若 2211n pn p < 则称 12112111122-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B .4.2给出相对公平的席位分配方案:如果,A B 两方分别占有1n 和2n 席,利用相对不公平值A r 和B r 讨论,当总席位增加1席时,应该分配给A 还是B.不妨设1122>p n p n ,即对A 不公平,当再分配一个席位时,有以下三种情况:I .当221>+11p pn n 时,这说明即使给A 增加1席,仍然对A 不公平,所以这一席显然应给A 方.II.当221<+11p pn n 时,这说明给A 增加1席,变为对B 不公平,此时对B 的相对不公平值为:21121211-1 ++=()(,)B p n r n n p n (3)III.当221>+11p pn n 时,这说明给B 增加1席,将对A 不公平,此时对A 的相对不公平值为:12122111-1 ++=()(,)A p n r n n p n (4)因为公平分配席位的原则是使相对不公平值尽可能小,所以如果121211+<+(,)(,)B A r n n r n n (5)则这1席给A 方,反之这1席给B 方.由(3)(4)可知,(5)等价于21222211<11++()()p p n n n n (6)不难证明上述的第I 种情况221>+11p pn n 也与(6)式等价,于是我们的结论是当(6)式成立时,增加的1席应给A 方,反之给B 方.若记:2, =1,21=+()i i i i p Q i n n则增加的1席给Q 值大的一方.4.3模型内部推广:上述方法可以推广到有m 方分配席位的情况.设第i 方人数为i p ,已占有i n 个席位.当总席位增加1席时,计算:2, =1,21=+()i i i i p Q i m n n ,,则增加的1席应分配给Q 值大的一方.这种席位分配的方法称为Q 值法.5 模型求解5.1下面用Q 值法讨论甲,乙,丙系分配20个席位的问题:先按照比例将整数部分的10席分配完毕n 1=10, n 2=6, n 3=3,.再用Q 值法分配第20席和第21席;分配第20席,计算得:Q1=96.4; Q2=94.5; Q3=96.3Q1最大,于是这1席应分给甲系.分配第21席,计算得:Q1=80.4;Q2=94.5;Q3=96.3;Q3最大,于是这1席应分给丙系.5.2现象分析及结果:根据Q值分配结果与假定情况一的现象,易得出:惯例分配总席位为21时,分配不公平,以至得出总席位数N增加一个,丙的席位数反而减少了一个的错误结论.6 模型评价●我们巧用绝对值,避免了分两种情况.从而简化了运算.●改进后的Q值法席位分配方案应用性推广,分配更公平.感谢您的支持与配合,我们会努力把内容做得更好!。
公平的席位分配问题
公平的席位分配问题席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。
通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。
符号设定:N :总席位数 i n :分配给第i 系席位数 (1,2,3i =分别为甲,乙,丙系)P :总人数 i P :第i 系数 (1,2,3i =分别为甲,乙,丙系)iQ :第i 系Q 值 (1,2,3i =分别为甲,乙,丙系)Z :目标函数方法一,比例分配法:即:某单位席位分配数 = 某单位总人数比例⨯总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。
这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。
方法二,Q 值法: 采用相对标准,定义席位分配的相对不公平标准公式:若2211n p n p >则称11221222211-=-n p np n p n p n p 为对A 的相对不公平值, 记为 ),(21n n r A ,若 2211n p n p < 则称 12112111122-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。
确定分配方案:使用不公平值的大小来确定分配方案,不妨设11n p >22n p ,即对单位A 不公平,再分配一个席位时,关于11n p ,22n p 的关系可能有 1. 111+n p >22n p ,说明此一席给A 后,对A 还不公平;2. 111+n p <22n p ,说明此一席给A 后,对B 还不公平,不公平值为1)1(11),1(212111112221-⋅+=++-=+n p p n n p n p n p n n r B3. 11n p >122+n p ,说明此一席给B 后,对A 不公平,不公平值为1)1(11)1,(121222221121-⋅+=++-=+n p p n n p n p n p n n r A4.11n p <122+n p ,不可能上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。
第二章 公平的席位分配
第二章 公平的席位分配2.1 公平的席位分配 问题:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。
现因学生转系,三系人数为103, 63, 34, 问20席如何分配。
若增加为21席,又如何分配。
比例加惯例对丙系公平吗?系别 学生 比例 20席的分配 21席的分配 人数 (%) 比例 结果 比例 结果 甲 103 51.5 10.3 10 10.815 11 乙 63 31.5 6.3 6 6.615 7 丙 34 17.0 3.4 4 3.570 3 总和 200 100.0 20.0 20 21.000 21―公平‖分配方法衡量公平分配的数量指标人数 席位A 方 p 1 n 1 当p 1/n 1= p 2/n 2 时,分配公平B 方 p 2 n 2 若 p 1/n 1> p 2/n 2 ,对A 不公平 p 1/n 1– p 2/n 2 ~ 对A 的绝对不公平度 p 1=150, n 1=10, p 1/n 1=15 p 2=100, n 2=10, p 2/n 2=10 p 1/n 1– p 2/n 2=5p 1=1050, n 1=10, p 1/n 1=105 p 2=1000, n 2=10, p 2/n 2=100 p 1/n 1– p 2/n 2=5虽二者的绝对不公平度相同,但后者对A 的不公平程度已大大降低!―公平‖分配方法: 将绝对度量改为相对度量 若 p 1/n 1> p 2/n 2 ,定义 ~ 对A 的相对不公平度类似地定义 rB(n1,n2)公平分配方案应使 rA , rB 尽量小将一次性的席位分配转化为动态的席位分配, 即设A, B 已分别有n1, n2 席,若增加1席,问应分给A, 还是B, 不妨设分配开始时 p1/n1> p2/n2 ,即对A 不公平应讨论以下几种情况: 初始 p1/n1> p2/n2 1)若 p1/(n1+1)> p2/n2 ,则这席应给 A2)若 p1/(n1+1)< p2/n2 ,应计算rB(n1+1, n2)),(///21222211n n r n p n p n p A =-3)若 p1/n1> p2/(n2+1),应计算rA(n1, n2+1) 问:p1/n1<p2/(n2+1) 是否会出现? 否! 若rB(n1+1, n2) < rA(n1, n2+1), 则这席应给A 若rB(n1+1, n2) >rA(n1, n2+1), 则这席应给 B当 rB(n1+1, n2) < rA(n1, n2+1), 该席给A的定义该席给A 否则, 该席给B 定义该席给Q 值较大的一方推广到m 方分配席位,计算 该席给Q 值最大的一方:Q 值方法三系用Q 值方法重新分配 21个席位按人数比例的整数部分已将19席分配完毕 甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3用Q 值方法分配第20席和第21席 第20席 Q 1最大,第20席给甲系 第21席 同上 Q 3最大,第21席给丙系Q 值方法分配结果:甲系11席,乙系6席,丙系4席,公平吗?进一步的讨论Q 值方法比“比例加惯例”方法更公平吗? 席位分配的理想化准则已知: m 方人数分别为 p 1, p 2,… , pm , 记总人数为 P = p 1+p 2+…+pm , 待分配的总席位为N 。
六、公平的席位分配
甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
对本例,Q值法可以从 n1 n2 n3 1 (即初始时每系已经占有1
席)开始计算,一直计算到19席的分配结果是 n1 10, n2 6, n3 3 . 再每次增加一席计算。
系别
学生人数
学生人数 的比例
%
20个席位的分配
按比例分 配的席位 10.3 6.3 3.4 20 参照惯例 的结果 10 6 4 20
21个席位的分配
按比例分 配的席位 10.815 6.615 3.570 21 参照惯例 的结果 11 7 3 21
甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
%
20个席位的分配
按比例分 配的席位 10.3 6.3 3.4 20 参照惯例 的结果 10 6 4 20
21个席位的分配
按比例分 配的席位 10.815 6.615 3.570 21 参照惯例 的结果 11 7 3 21
甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
按比例分 配的席位 10.3 6.3 3.4 20 参照惯例 的结果 10 6 4 20
21个席位的分配
按比例分 配的席位 10.815 6.615 3.570 21 参照惯例 的结果 11 7 3 21
甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
因为有20个席位的代表会议在表决提案时可能出现10:10的局 面,会议决定增加一席。仍按照比例分配的原则进行,丙系却 因总席位增加了一席,而由4席减少为3席。这个结果显然是不 公平的。
公平的席位分配
公平的席位分配问题提出:某学校有3个系⼀共200名学⽣,其中甲系100名,⼄系60名,丙系40名。
如果学校代表会议设置20个席位,怎样公平地分配席位?思考:按照传统的思维⽅式,按照每个系的⽐例进⾏席位的分配。
在该问题中,甲⼄丙三个系的⼈数⽐例为100:60:40=5:3:2。
因此按照这个⽐例进⾏席位的分配可以公平简单的实现席位分配。
但是上⾯的例⼦有些特殊,因为每个系的⼈数⽐例正好是整数,并且能够恰好分配所有的席位。
现在将问题进⼀步⼀般化。
假设甲系学⽣103⼈,⼄系学⽣63⼈,丙系学⽣34⼈。
此时甲⼄丙学⽣⼈数所占⽐例分⽐为51.5%、31.%、17.0%。
仍然分配20个席位,此时甲⼄丙按⽐例分配的席位个数分别为:10.3、6.3、3.4三个系进过协商同意将最后⼀个席位分配给⽐例中⼩数部分最⼤的丙系。
此时甲⼄丙席位分别为10、6、4现在问题进⼀步复杂。
由于决策过程可能出现10:10的现象,会议决定将增加⼀个席位。
依旧按照上述的将最后⼀个席位分配给⼩数⽐例最⼤的那个系。
见下⾯表格不过现在通过表格可以看出:总席位的增加,反⽽导致丙系由4个席位减少⾄3个席位,这样的分配⽅法(将最后⼀个席位分配给⼩数⽐例最⼤的那个系)对丙系不公平。
因此问题出现在分配席位的⽅法上⾯。
该分配席位的⽅法称为最⼤剩余法或者最⼤分数法最⼤分数法明显的缺陷:⼈⼝悖论,某⽅⼈⼝增加反⽽导致该⽅席位数⽬减少。
例如上述三系学⽣变为114,64,34.按照最⼤剩余法,21个席位的分配结果应该是:11、6、4,⼄系学⽣⼈数增加席位反⽽⽐原来少1席,丙系学⽣数量不变席位反⽽多了1席。
为了寻找新的公平的席位分配⽅法,先讨论衡量公平的数量指标不公平度指标为了简单,只考虑A,B两⽅分配席位的情况。
设两⽅⼈数分别为p1,p2,占有席位分别为n1,n2.则⽐例p1/n1,p2/n2为两⽅每个席位所代表的⼈数。
显然只有当p1/n1=p2/n2时,分配才公平。
第四讲(一)初等模型-公平的席位分配-实物交换PPT课件
若rB (n1 1, n2 ) rA (n1, n2 1),则这席位应给A,反之给B
10
当rB (n1 1, n2 ) rA (n1, n2 1),该席给A
根据rA,rB的定义
p22
p12
n2 (n2 1) n1(n1 1)
该席给A,否则该席给B
M1
p3(x3,y3)
将所有与p1, p2无差别的点连接 起来,得到一条无差别曲线MN,
y2
.p2
N1
N
0
x1
x2
xo x
线上各点的满意度相同, 线的形状反映对X,Y的偏爱程度,
比MN各点满意度更高的点如p3,在另一条无差别曲线M1N1
上。于是形成一族无差别曲线(无数条)。
16
y
甲的无差别曲线族记作
设A,B分别有n1, n2席,若增加1席, 问应分给A?还是B?
9
不妨设初始时 p1 / n1 p2 / n2, 即对A不公平,分下列几种情况
1)若 p1 /(n1 1) p2 / n2,则这席位应给A
2)若 p1 /(n1 1) p2 / n2,应计算rB (n1 1, n2 ) 3)若 p1 / n1 p2 /(n2 +1),应计算rA (n1, n2 1)
第四讲 初等模型
一、公平的席位问题 二、实物交换
1
一、公平的席位分配
席位分配是日常生活中经常遇到的问题,在企业、公 司、学校、政府部门都能应用该模型解决实际的问题。
席位可以是代表大会、股东会议、公司企业员工大会 等的具体座位。假设说,有一个公司要召集所有的部门开 一个员工会议,在公司的会议厅里只能坐40个人,而公 司总共有10个部门,10个部门总共有498个人,而每个部 门的人数都不尽相同。如果你是会议的策划人,你要合理 的分配会议厅的40个座位,既要保证每个部门都有人参 加,最关键的就是要对10个部门都公平,保证10个部门 对你所安排的位置没有异议。那么这个问题就要靠数学建 模的方法来解决。
公平的席位分配
席位公平分配问题—Q值法的改进摘要:本文为建立席位分配问题的公平合理方案.对经典Q 值法进行了研究并提出改进,构造了衡量相对不公平程度的新标准量。
通过对书本中的经典席位分配问题实例的计算,比较分析了多种席位分配方法的求解结果,并与经典的Q值法进行了公平性的比较。
结果表明改进的标准量更为合理,从而验证了该方法的有效性和合理性。
一、问题背景席位分配问题是人类社会生活中相当普遍的一类资源分配问题,是数学在政治领域中应用的典型实例,其目标是在一个大集体对小集体进行某种资源分配时试图尽可能做到公平合理。
席位分配问题最关键之处是它的悖论观,无论选择怎样的分配方案,总会产生这样或那样的矛盾,著名的有以下几种悖论:亚拉巴马悖论、人口悖论和新州悖论。
同时,席位公平分配的关键是提出衡量公平度的一个量,即满足下述5条公理:公理1(人口单调性):一方的人口增加不会导致它失去一个名额。
公理2(无偏性):在整个时间平均,每一方应接受到它自己应分摊的份额。
公理3(名额单调性):总名额的增加不会使某一方的名额减少。
公理4(公平分摊性):任何一方的名额都不会偏离其比例份额数。
公理5(接近份额性):没有从一方到另一方的名额转让会使得这两方都接近于它们应得的份额。
然而,1982年M .L .Balinski 和H .P .Young 证明了一个B —Y 不可能定理,即绝对公平的分配(满足公理1~公理5)方案是不存在的,既然绝对公平的分配方案不存在,人们便致力于席位分配问题的相对公平的研究。
著名的Q 值法是1982年由D .N .Burghes 和I .Hunttey 等人提出的一种相对不公平衡量标准,该方法简单易行,且克服了其他方法的一些矛盾,被广泛的应用于资源公平分配问题中。
但不足之处是未考虑名额分配后的整体状况,而首先给每一方分配一个名额也是没有道理的。
基于此考虑,这里提出了一种新的衡量相对不公平的标准,不需要事先给每一方分配一个名额,其计算量与Q 值法相当,但比Q 值法更趋于公平。
公平的席位分配
公平的席位分配姓名:仇嘉程 班级:数学与应用数学(2)班 学号:0907022010摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。
席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。
本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。
我主要根据各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平度的定义,采用了最大剩余法模型和Q 值法模型,通过检验2种模型的相对不公平度来制定比较合理的分配方案。
关键词:不公平度指标、Q 值法、最大剩余法一、问题的提出:某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
问题一:若学生代表会议设20个席位,如何公平席位分配?问题二:丙系有6名学生转入甲乙两系,其中甲系转入3人,乙系转入3人,又将如何公平的分配20个学生代表会议席位?三、模型的建立:模型1——比例分配法,若使得公平席位分配,最公平简单且常用的席位分配办法是按学生人数比例分配:某单位席位分配数 = 某单位总人数比例⨯总席位即:(1,2,3...)i i p P i n N N ==,其中1n i i N N ==∑ 1n i i P P ==∑但是在实际生活中,若按模型1来计算,由于席位数不同,很难使得到的结果为整数,因此模型1难以成立,即绝对公平难以成立,我们需要寻求可能相对公平的分配方案。
模型2——最大剩余法,如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。
这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。
某学院按有甲乙丙三个系并设20个学生代表席位。
它的最初学生人数及学生代表席位为系名甲乙丙总数学生数 100 60 40 200学生人数比例 100/200 60/200 40/200席位分配 10 6 4 20后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为系名甲乙丙总数学生数 103 63 34 200学生人数比例 103/200 63/200 34/200按比例分配席位 10.3 6.3 3.4 20按惯例席位分配 10 6 4 20由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。
公平分配席位数学建模
公平分配席位是一种数学建模问题,通常涉及到在一个组织或机构内,如何公平地分配有限的席位或资源给不同的成员或利益相关者。
该问题可通过以下步骤建立数学模型:
1.定义问题:明确参与者、资源和目标,确定席位数量和分配规则。
2.建立评价指标:根据目标和分配规则,建立评价指标来衡量分配方案的公平性和效
率性。
3.确定算法:选择合适的算法来进行席位分配,例如最大剩余法、顺序分配法、随机
分配法等。
4.模型求解:通过计算机程序或手工计算,进行模型求解,得出最优分配方案。
5.结果分析:对比各个方案的评价指标,选择最优方案并进行结果分析,验证模型的
可靠性和有效性。
公平分配席位模型可以应用于政治、教育、医疗、社会保障等领域,如选举、大学招生、医疗资源分配、社会福利等。
安排席位时应遵循的原则
安排席位时应遵循的原则在安排席位时,应遵循以下原则:1.尊重座位要求:首要原则是要尊重座位要求。
例如,如果有人特别要求靠窗或是离门近的位置,应尽量满足他们的需求。
这样能够增加座位的舒适度和满意度。
2.考虑人际关系:安排座位时,需要考虑到人际关系因素。
如果有人之间存在紧张关系或冲突,最好将他们安排在较远的位置,以避免不必要的争吵或冲突。
3.年龄和身体条件:对于老年人、孕妇或身体有特殊需求的人,应优先考虑他们的座位需求。
比如,为他们留出更加宽敞的座位空间,或是离卫生间较近的位置。
4.满足团队合作需求:如果座位是为一个团队或小组安排的,应考虑到他们的合作需求。
最好将他们安排在相邻的位置上,以方便他们沟通、协作和分享信息。
5.技能和职位:在工作场所中,根据员工的技能和职位进行座位安排也是很常见的。
比如,在一个开发团队中,可以将程序员们安排在一起,以方便他们交流和解决问题。
6.考虑工作性质和需求:不同的工作性质和需求也需要不同的座位安排。
比如,需要静音环境的员工可以安排在相对安静的区域,而需要大声沟通的员工可以安排在开放式的工作区。
7.公平原则:在安排席位时,应遵循公平原则,不偏袒任何一方。
应让每个人都有平等的机会获得更好的座位位置,以增加工作环境的公平性和员工的满意度。
8.灵活性:座位安排应具有一定的灵活性,以适应不同的工作需求和员工变动。
可能需要根据工作项目的性质、人员的变动或是团队的需要进行座位的调整和重新安排。
9.交流和反馈:在安排座位时,应充分与员工进行交流和征求反馈。
员工对座位安排有时可能会有个人偏好或特殊需求,应积极倾听并尽量考虑他们的建议。
10.改进与评估:定期评估座位安排的效果,并根据员工的反馈和需要进行改进。
座位安排是一个不断优化的过程,需要根据实际情况进行调整以提高工作效率和员工的满意度。
总之,在安排席位时,应综合考虑座位要求、人际关系、年龄和身体条件、团队合作需求、技能和职位、工作性质和需求、公平原则、灵活性、交流和反馈以及改进与评估等因素,以满足员工的需求和提高工作效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、合理的假设与变量说明
三、模型的建立:
p P
= i (i = 1, 2,3...n ) ,其中 ∑ N i = N
∑
P = P
公平的席位分配
姓名:仇嘉程 班级:数学与应用数学(2)班 学号:0907022010
摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部 门都能解决实际的问题。
席位可以是代表大会、股东会议、公司企业员工大会、 等的具体座位。
本文讨论了席位公平分配问题以使席位分配方案达到最公平状 态。
我主要根据各系人数因素对席位获得的影响,首先定义了公平的定义及相 对不公平度的定义,采用了最大剩余法模型和 Q 值法模型,通过检验 2 种模型 的相对不公平度来制定比较合理的分配方案。
关键词:不公平度指标、Q 值法、最大剩余法 一、问题的提出:
某学校有 3 个系共 200 名学生,其中甲系 100 名,乙系 60 名,丙系 40 名。
问题一:若学生代表会议设 20 个席位,如何公平席位分配?
问题二:丙系有 6 名学生转入甲乙两系,其中甲系转入 3 人,乙系转入 3 人, 又将如何公平的分配 20 个学生代表会议席位?
模型 1——比例分配法,若使得公平席位分配,最公平简单且常用的席位分配 办法是按学生人数比例分配:
某单位席位分配数 = 某单位总人数比例⨯总席位
即:
N N i i =1
n
n
i =1
i
但是在实际生活中,若按模型 1 来计算,由于席位数不同,很难使得到的结果 为整数,因此模型 1 难以成立,即绝对公平难以成立,我们需要寻求可能相对 公平的分配方案。
模型2——最大剩余法,如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。
这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。
某学院按有甲乙丙三个系并设20个学生代表席位。
它的最初学生人数及学生代表席位为
系名甲乙丙总数学生数1006040200学生人数比例100/20060/20040/200
席位分配106420
后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为
系名甲乙丙总数学生数1036334200学生人数比例103/20063/20034/200
按比例分配席位10.3 6.3 3.420按惯例席位分配106420
由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。
为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。
重新按惯例分配席位,有
系名甲乙丙总数
学生数1036334200
学生人数比例103/20063/20034/200
按比例分配席位10.815 6.615 3.5721
按惯例席位分配117321
这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。
这个结果也说明按惯例分配席位的方法有缺陷,我们需要建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。
模型3——Q值法
先讨论由两个单位公平分配席位的情况,设
- 2
- 2
= 1 2 - 1 - 1
单位 人数 席位数 每席代表人数
p 1 单位 A
p 1 n 1
单位 B
p 2
n 2
n 1 p 2 n 2
p 1 p 2
要公平,应该有 n 1 = n 2 , 但这一般不成立。
注意到等式不成立时有
p 1 p 2
若
n 1 > n 2 ,则说明单位 A 吃亏(即对单位 A 不公平 )
p 1 若 n 1 < p 2
n 2 ,则说明单位 B 吃亏 (即对单位 B 不公平 )
因此可以考虑用算式 p =
p 1 n 1 p n 2
来作为衡量分配不公平程度,不过此公式有
不足之处(绝对数的特点),如:
某两个单位的人数和席位为 n 1 =n 2 =10 , p 1 =120, p 2=100, 算得 p =2
另两个单位的人数和席位为 n 1 =n 2 =10 , p 1 =1020,p 2=1000, 算得 p =2
虽然在两种情况下都有 p=2,但显然第二种情况比第一种公平。
下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公 式:
若
p 1 n 1
>
p 2 n 2
则称
p 1 n 1 p 2 p n 2
p n p 2n 1
为对 A 的相对不公平值, 记为
n 2
r A (n 1 , n 2 )
若
p 1 n 1 <
p 2 n 2
则称
p 2 n 2 p 1 p
n 1 = p 2n 1
p 1n 2 - 1
为对 B 的相对不公平值 ,记为
n 1
r B (n 1 , n 2 )
由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用
p 1 2p 2 k
使不公平值尽量小的分配方案来减少分配中的不公平。
确定分配方案:
p 1 p 2
使用不公平值的大小来确定分配方案,不妨设 n 1 > n 2 ,即对单位 A 不公
平,再分配一个席位时,关于 n 1 , n 2 的关系可能有
1.
2.
3. p 1 p 2
n 1 +1 > n 2 p 1 p 2
n 1 +1 < n 2 p 1 p 2 n 1 > n 2 +1
,说明此一席给 A 后,对 A 还不公平;
,说明此一席给 A 后,对 B 还不公平,
,说明此一席给 B 后,对 A 不公平,
p 1 p 2 4. n 1 < n 2 +1
,不可能
上面的分配方法在第 1 和第 3 种情况可以确定新席位的分配,但在第 2 种情 况时不好确定新席位的分配。
用不公平值的公式来决定席位的分配,对于新的 席位分配,若有
r B (n 1 + 1, n 2 ) < r A (n 1 , n 2 + 1)
则增加的一席应给 A
,反之应给 B 。
对不等式 r B (n 1 + 1, n 2 ) < r A (n 1 , n 2 + 1)
进 行简单处理,可以得出对应不等式
p 2 n 2 (n 2 + 1) <
p 1
n 1 (n 1 + 1)
引入公式
Q k =
p 2 (n k +1)n k
于是知道增加的席位分配可以由 Q k 的最大值决定,且它可以推广到多个组的一 般情况。
用 Q k 的最大值决定席位分配的方法称为 Q 值法。
对多个组(m 个组)的席位分配 Q 值法可以描述为:
1.先计算每个组的 Q 值:
Q k,k=1,2,…,m
2.求出其中最大的Q值Q i(若有多个最大值任选其中一个即可)
3.将席位分配给最大Q值Q i对应的第i组。
四、模型的求解
用Q值法分配,很容易编写出MATLAB程序,以n1=n2=n3=1逐次增加一席的方法,求每一次的Q值,可得到最后的席位分配方案(MATLAB程序见附录)
第20席的分配,计算Q值
Q1=1032/(10⨯11)=96.45;Q2=632/(6⨯7)=94.5;Q3=342/(3⨯4)=96.33
因为Q1最大,因此第20席应该给甲系;对第21席的分配,计算Q值
Q1=1032/(11⨯12)=80.37;Q2=632/(6⨯7)=94.5;Q3=342/(3⨯4)=96.33
因为Q3最大,因此第21席应该给丙系
最后的席位分配为:甲11席乙6席丙4席
五、模型的优缺点分析
5.1、优点:
模型比较简单却较合理的解决了实际问题,用比例模型和Q值法模型就解决了席位的公平分配问题。
由相对不公平值的计算可知两种模型的公平程度都还比较符合要求。
模型1的计算过程简单却是公平度比较高的一种模型,操作起来比较方便。
模型2可以避免所得席位名额含有小数点的情况。
5.2、缺点:
模型1的建立比较简单,计算的结果含有小数点,通过四舍五入所得的结果会使公平性变差。
模型2的建立相对比较复杂,计算过程比较繁琐,最后得到的结果的公平性相对较差。
六、模型的改进
由于以上模型都是站在绝对公平的角度上来解决席位的公平分配问题。
实际上,每个系自身对席位的意愿不同,可以考虑征求各系自身的意见来分配席位以做
到席位的公平分配。
同时在建立模型时,使得得到的结果既不含有小数点,计算过程又不是太复杂,公平性又是相对比较强的。