大学物理习题答案 19 静电场中的导体(1)

合集下载

大学物理学 大作业参考解答

大学物理学 大作业参考解答
大学物理学
静电场中的导体和电介质
大作业参考解答
选择题1:当一个带电导体达到静电平衡时, (A)导体表面上电荷密度较大处电势较高; (B)导体表面曲率较大处电势较高; (C)导体内部的电势比导体表面的电势高; (D)导体内任一点与表面上任一点的电势差等于零。
NIZQ 第1页
大学物理学
静电场中的导体和电介质
d a
a
E dx
x
d a d ln ln 0 a 0 a
0 q 1 C U U A U B ln d a
NIZQ 第18页
大学物理学
静电场中的导体和电介质
计算题3:如图所示,在一不带电的金属球旁,有一点电荷 +q,金属球半径为R,点电荷+q与金属球球心的间距为d, 试求: (1)金属球上感应电荷在球心处产生的电场强度。 (2)若取无穷远处为电势零点,金属球的电势为多少?
-σ1 σ1 σ2 -σ2
d1 (A) d2 (C) 1
d2 (B) d1 d2 (D) 2 d1
2
d1
d2
1 2 d1 d2 0 0
NIZQ 第8页
大学物理学
静电场中的导体和电介质
填空题1:如图所示,两同心导体球壳,内球壳带 电量+q,外球壳带电量 -2q . 静电平衡时,外球壳 的内表面带电量为 ;外表面带电量 -q 为 。 -q
q CU r C 0U r q 0
U E E0 d
1 1 1q 2 W qU CU r E0 2 2 2C
NIZQ 第16页
2
计算题1:两块相互平行的导体板a和b ,板面积均为S,
大学物理学
静电场中的导体和电介质

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 静电场中的导体)【圣才出品】

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 静电场中的导体)【圣才出品】

第9章 静电场中的导体9.1 求导体外表面紧邻处场强的另一方法。

设导体面上某处面电荷密度为σ,在此处取一小面积ΔS,将ΔS 面两侧的电场看成是ΔS 面上的电荷的电场(用无限大平面算)和导体上其他地方以及导体外的电荷的电场(这电场在ΔS 附近可以认为是均匀的)的叠加,并利用导体内合电场应为零求出导体表面紧邻处的场强为σ/ε0(即教材式(8.2))。

解:如图8-1所示,导体表面小面积ΔS 上所带电荷在它的两侧分别产生场强为σ/2ε的电场E'1和E'2,ΔS以外的电荷在ΔS 附近产生的电场为E",可视为均匀的。

由电场叠加原理,在ΔS 的导体内一侧应有于是在ΔS的导体外一侧,则合电场应为这说明E ex 的大小为2σ/(2ε0)=σ/ε0,而其方向垂直于导体表面。

图8-19.2 一导体球半径为R1,其外同心地罩以内、外半径分别为R2和R3的厚导体壳,此系统带电后内球电势为φ1,外球所带总电量为Q 。

求此系统各处的电势和电场分布。

解:设内球带电为q 1,则球壳内表面带电将为-q1,而球壳外表面带电为q 1+Q ,这样就有由此式可解得于是,可进一步求得9.3 在一半径为R1=6.0 cm 的金属球A 外面套有一个同心的金属球壳B 。

已知球壳B 的内、外半径分别为R2=8.0 cm ,R3=10.0 cm 。

设A 球带有总电量QA =3×10-8 C ,球壳B 带有总电量QB =2×10-8C 。

(1)求球壳B 内、外表面上各带有的电量以及球A 和球壳B 的电势;(2)将球壳B 接地然后断开,再把金属球A 接地。

求金属球A 和球壳B内、外表面上各带有的电量以及球A 和球壳B 的电势。

解:(1)由高斯定律和电荷守恒可得球壳内表面带的电量为球壳外表面所带电量为于是(2)B 接地后断开,则它带的总电量变为然后球A 接地,则φ'a=0。

设此时球A 带电量为q'A ,则由此解得9.4 一个接地的导体球,半径为R ,原来不带电。

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21s s。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。

上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)
d R
(2)两输电线的电势差为 U
xR

E dl

R
Ed x
d R ln 0 R
(3)输电线单位长度的电容 C

U
0 / ln
d R d 0 / ln 4.86 1012 F R R
【12.9】半径为 R1 的导体球被围在内半径为 R2 、外半径为 R3 、相对电容率为 r 的介质球壳内,它们是同 球心的。若导体带电为 Q ,则导体内球表面上的电势为多少? 【12.9 解】先求各区域电场 (1)
Q 4 0 R3
( R3 r )
B 球壳为等势体,其电势为
V
R3
E dr
Q 4 0
R3
r
dr
2
【12.2】一导体球半径为 R1,外罩一半径为 R2 的同心薄导体球壳,外球壳所带总电荷为 Q,而内球的电势为 V0.求此系统的电势和电场分布。 【12.2 解】已知内球电势为 V0 ,外球壳带电 Q 。 (1)先求各区域的电场强度:设内球带电荷 q 。由高斯定理,有

E
U

z
2R
( 1 )一根带电 的输电线在两线之间、距其轴心 x 处 p 点的场强为
x
dx
p
E i 2 0 x
另一根带电 的输电线在 p 点产生的电场强度为
x
E

2 0 ( d x )
i
p 点的总电场强度为
E E E
d R
1 1 ( )i 2 0 x d x
E1 0
(r R1 ) ( R1 r R2 ) 4 r 2 D Q , D 0 r E3

静电场中的导体习题

静电场中的导体习题

《静电场中的导体》习题一、判断题1、在带正电的导体A附近,有一不接地的中性导体B,则A离B越近时,A的电位越低。

[]2、接地导体,其表面必处处无电荷。

[]3、静电平衡时,电力线不能由导体一端的正电荷发出而终止于该导体另一端的负电荷。

[]4、静电感应达到平衡时,凡是接地导体必不带电。

[]5、由于静电感应,在导体表面的不同区域出现异号电荷,因而导体不再是等位体。

[]6、由于中性导体壳B对带电体A的屏蔽作用,带电体A的电场将对验电器C无影响。

[]7、由于静电屏蔽作用,空腔导体内的带电体在腔外产生的场强为零。

[]8、静电平衡时,导体表面是等位面,所以导体表面附近的场强大小处处相等。

[]二、选择题:1、在串联电容电路中,若电压逐渐升高,对耐压值相同的电容器来说,先击穿的将是[ ]A、电容值小的B、电容值大的C、同时击穿D、无法确定2、在一个带正电荷,电量为Q的大导体附近P点放一个带电量也为Q的点电荷,若此时点电荷受到的斥力大小为F,则F/Q与未放置此点电荷时场强E相比( )A、大于B、相等C、小于3、在一带电为Q的导体壳A内有一接地的导体球B,A与B不接触,静电平衡时导体球B上所带电量q,则q为( )A、零;q<;B、符号与Q相反,且Qq<C、符号与Q相同,且Q4、两个同心得均匀带电球面,半径分别为R1和R2,且R2=2R1,内球面带正电荷q1,要使内球面的电位为正值,则外球面的电量q2必须满足[ ]A 、q 2>-q 1B 、q 2>-2q 1C 、q 2=-2q 1D 、q 2<-2q 15、平行板电容器充电后与电源断开,然后使极板间距增大,则[ ]A 、C ↑U ↓E ↓B 、C ↓U ↑E ↑C 、C ↓U ↑E 不变D 、C ↑U ↓E 不变 6、如图所示,三个无限大均匀带电平面,面电荷密度均为σ,相互平行放置,E 沿x 正方向为正,则P 点的E 为[ ]A 、εσ-23B 、023εσ C 、02εσ- D 、02εσ 6、如图所示,已知C 1=6μF ,C 2=3μF ,R 1=6Ω,R 2=3Ω,若U de =18V ,则a 、b 两点间的电压为[ ]A 、0B 、-6VC 、6VD 、12V7、中性金属球壳A 内有一带电体B ,如图所示各个电场线图中,哪一个图正确地表示出球壳内外的场强分布[ ]8、如图 所示,导体空腔腔内有一电荷q 和测量仪器A ,腔外有一电荷Q 和测量仪器B ,则测量仪器测得的结果是[ ]A 、只测到q 的场,B 只测到Q 的场B 、A 只测到q 的场,B 能测到q 和Q 的场C 、A 能测到q 和Q 的场,B 只能测到Q 的场D 、A 能测到q 和Q 的场,B 也能测到q 和Q 的场9、在一金属壳的内部放一点电荷(不在导体壳中心),则金属壳内外电场分布( )(1)内、外场强分布均匀(2)内场强不均匀,外场强均匀 (3)内外场强分布都不均匀(4)内场强均匀,外场强不均匀10、如右图所示,将一个带正电的金属小球移近一个绝缘的不带电的导体时,则( )(1)A 端电势高 (2)B 端电势高 (3)电势相等 (4)电势相等11、有两个半径均为R ,分别带电+Q 和-Q 的金属球,球心相距为d ,(d>R),它们的相互作用力大小为F 1。

静电场中的导体参考答案

静电场中的导体参考答案

2.1 填空题2.1.1 引,引,引, 2.1.2 0E q F <,0E q F >2.1.3 导体内部任一点的场强为0,导体表面附近的场强垂直于导体表面 2.1.4 处处为0,导体表面 2.1.5 等势、等势 2.1.6 0,无穷远2.1.7 204q 2R πε2.1.8 -q 2.1.9 升高2.1.10 有,有,无,有 2.1.11 均匀,均匀 2.1.12 r A ∶r B2.1.13 22etmd ,222tmd2.1.14 –q, q2.1.15 等值异号2.1.16 bQ 04πε2.1.17 –Q 1,Q 1+Q 2 2.1.18 –Q 1,02.1.19 A,B 分别带等量异号电荷,A 带电B 接地2.1.20 4.0×106N/C ,0 2.1.2116∶252.2 选择题2.2.1 B 2.2.2 D 2.2.3 C 2.2.4 C 2.2.5 C 2.2.6 A 2.2.7 C 2.2.8 B 2.2.9 D 2.2.10 D 2.2.11 B 2.2.12 A 2.2.13C2.2.14 C 2.2.15 B 2.2.16 A 2.2.17 C 2.2.18 D2.2.19 C 2.2.20 B 2.2.21 D 2.2.22 D 2.2.23 D 2.2.24 D 2.2.25 A2.2.26 BE ,D ,AC 2.2.27 B 2.2.28C2.3 证明题及问答题2.3.1证明:由电场线的性质1,B 左端的负电荷处一定有电场线终止,这些电场线的来源有3种可能:(1)A 上的正电荷,(2)B 右端的正电荷,(3)无限远。

假定止于B 左端的电场线发自B 右端的正电荷,根据电场线的性质2,同一条电场线不能有电势相等的点,于是B 的左右两端电势不等,这就与导体在静电平衡时是等势体的结论矛盾。

可见第(2)种可能性不成立。

再假定止于B 左端的电场线发自无限远,根据电场线性质2就有B V V >∞ 。

大学大学物理习题解答参考答案-导体与电介质的静电场(一)

大学大学物理习题解答参考答案-导体与电介质的静电场(一)

20XX年复习资料大学复习资料专业:班级:科目老师:日期:导体与电介质的静电场(一)20XXXX-1-1. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ] 20XXXX-1-2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A)N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]20XXXX-1-3. 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:(A) 1 = -, 2 = +.(B) 1 =σ21-, 2 =σ21+. (C) 1 =σ21-, 1 =σ21-. (D) 1 = -, 2 = 0. [ ]20XXXX-1-4. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ ] 20XXXX-1-5. 一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q 0PM N A B +σ12(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204r E ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 20XXXX-1-6. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh . [ ] 20XXXX-1-7. 一带电大导体平板,平板二个表面的电荷面密度的代数和为 ,置于电场强度为0E 的均匀外电场中,且使板面垂直于0E 的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为:(A) 002εσ-E ,002εσ+E . (B) 002εσ+E ,002εσ+E . (C) 002εσ+E ,002εσ-E . (D) 002εσ-E ,002εσ-E . [ ] 20XXXX-1-8. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B板接地,则AB 间电场强度的大小E 为 (A) S Q 012ε . (B) SQ Q 0212ε-. (C) S Q 01ε. (D) SQ Q 0212ε+. [ ] 20XXXX-1-9. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R q επ . (B) 204R q επ . O P r a b d b a hh σ 0E +Q 1 +Q 2 A B q q R 1 R 2(C) 102R q επ . (D) 20R qε2π . [ ] 20XXXX-1-20XXXX. 两个同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若分别带上电荷q 1和q 2,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A) U 1. (B) U 2.(C) U 1 + U 2. (D) )(2121U U +. [ ]20XXXX-1-20XXXX. 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为(A) 0 . (B) dq 04επ. (C)R q 04επ-. (D) )11(40R d q -πε. [ ]20XXXX-1-20XXXX. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为1和2,如图所示.则比值1 / 2为(A) d 1 / d 2. (B) d 2 / d 1.(C) 1. (D) 2122/d d . [ ]20XXXX-1-20XXXX. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.[ ]20XXXX-1-20XXXX. 一半径为R 的薄金属球壳,带电荷-Q .设无穷远处电势为零,则球壳内各点的电势U 可表示为: (041επ=K ) (A) R Q K U -<. (B) RQ K U -=. R O d +q d 1 d 2 σ2 σ1P(C) R Q K U ->. (D) 0<<-U RQ K . [ ] 20XXXX-1-20XXXX. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A) 球壳内、外场强分布均无变化.(B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ ] 20XXXX-1-20XXXX. 在带有电荷+Q 的金属球产生的电场中,为测量某点场强E ,在该点引入一电荷为+Q/3的点电荷,测得其受力为F .则该点场强E 的大小(A) Q F E 3=. (B) QF E 3>. (C) QF E 3<. (D) 无法判断. [ ] 20XXXX-1-20XXXX. 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀.(B) 内表面不均匀,外表面均匀.(C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ ]20XXXX-1-20XXXX. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D 通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]20XXXX-1-20XXXX. 关于静电场中的电位移线,下列说法中,哪一个是正确的?(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ ]20XXXX-1-20XX. 一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r -0)E . [ ]导体与电介质的静电场(二)20XXXX-2-1. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E > E 0,两者方向相同. (B) E = E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ ]20XXXX-2-2. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ ]20XXXX-2-3. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]20XXXX-2-4. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动.(C) 向下运动. (D) 是否运动不能确定. [ ]20XXXX-2-5. 两只电容器,C 1 = 8 F ,C 2 = 2 F ,分别把它们充电到 20XXXX00 V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0 V . (B) 20XX0 V .(C) 600 V . (D) 20XXXX00V . [ ]20XXXX-2-6. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 20XXXX 、电场强度的大小E 、电场能量W 将发生如下变化:(A)U 20XXXX 减小,E 减小,W 减小.(B) U 20XXXX 增大,E 增大,W 增大.(C) U 20XXXX 增大,E 不变,W 增大.(D) U 20XXXX 减小,E 不变,W 不变. [ ] E E 0+q mC 1 C 220XXXX-2-7. C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则 (A) C 1极板上电荷增加,C 2极板上电荷增加.(B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ ]20XXXX-2-8. C 1和C 2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示. 则 (A) C 1上电势差减小,C 2上电势差增大.(B) C 1上电势差减小,C 2上电势差不变.(C) C 1上电势差增大,C 2上电势差减小.(D) C 1上电势差增大,C 2上电势差不变. [ ]20XXXX-2-9. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ ]20XXXX-2-10. C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小.(B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小. (D) C 1的电容减小,电容器组总电容增大. [ ]20XXXX-2-11. C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷增大. [ ]20XXXX-2-12. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ ]C 1 C 2C 1 C 2C 1 C 212C 1 C 220XXXX-2-13. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ ]20XXXX-2-14. 如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ ]20XXXX-2-15. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ]20XXXX-2-16. 用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将(A) 都增加.(B) 都减少.(C) (a)增加,(b)减少.(D) (a)减少,(b)增加. [ ]20XXXX-2-17. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ ]20XXXX-2-18. 两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小.(B) C 1上的电荷大于C 2上的电荷.(C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. [ ]20XXXX-2-19. 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两qF F 充电后仍与电源连接 充电后与电源断开C 1C 2极板间距离拉大,则极板上的电荷Q、电场强度的大小E和电场能量W将发生如下变化(A) Q增大,E增大,W增大.(B) Q减小,E减小,W减小.(C) Q增大,E减小,W增大.(D) Q增大,E增大,W减小.[]20XXXX-2-20. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.[]。

静电场中的导体习题与解答

静电场中的导体习题与解答

静电场中的导体1、在一半径为R 1=6.0cm 的金属球A 外面套有一个同心的金属球壳B 。

已知B的内外半径分别为R2=8.0cm ,R 3=10.0cm 。

设球A带有总电荷QA=3.0810-⨯C,球壳B带有总电荷QB=2.0810-⨯C。

(1)求球壳B内外表面上所带的电荷以及A和B的电势;(2)将B接地后断开,再把A接地,求A和B内外表面上所带的电荷以及A和B的电势。

分析:(1)根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q A +Q B ,电荷在导体表面均匀分布,由带电球面电势的叠加可求得球A 和球壳B 的电势。

(2)导体接地,表明其电势为零。

B 接地后,外表面电荷为零,内表面带电荷为-Q A 不变。

断开B 后,再将A 接地,此时A 的电势为零,电荷重新分布。

可设此时A 带电q A ,则B 的内表面感应电荷为-q A ,外表面带电为q A -Q A 。

而此时A 的电势可表示为0444302010=-+-+=R Q q R q R q V AA A A A πεπεπε。

解出q A 即可求得结果。

解:(1)V R Q Q R Q R Q V BA A A A 3302010106.5444⨯=++-+=πεπεπεV R Q Q V BA B 330105.44⨯=+=πε(2)由0444302010=-+-+=R Q q R q R q V AA A A A πεπεπε解得 C R R R R R R Q R R q AA 83132********.2-⨯=-+=即A 外表面带电C 81012.2-⨯,B 内表面带电C 81012.2-⨯-, 外表面带电 q A -Q A =C 81088.0-⨯- A 与B 的电势分别为 0=A V=-=304R Q q V AA B πεV 31092.7⨯-2、三个平行导体板A、B和C的面积均为S,其中A板带电Q,B、C板不带电,A、B间相距为d 1,A、C间相距为d 2。

东华理工大学 物理练习试卷答案 静电场中的导体与电介质

东华理工大学 物理练习试卷答案 静电场中的导体与电介质
2q A qA 2 , 1 3S 3S
qB 2 S 110 7 C
U A EAC d AC
1 d AC 2.3 103V 0
12 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球 壳,介质相对介电常数为εr,金属球带电Q.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势;
解: 利用有介质时的高斯定理
(1)介质内R1<r<R2场强 介质外r>R2场强 (2)介质外r<R2电势
Qr Qr D 3 , E内 4πr 4π 0 r r 3
Qr Qr D , E外 3 4πr 4π 0 r 3
D dS q
E0
r>R3的区域
1 Q Q2 1 2 2 W2 0 ( ) 4πr dr 2 R3 2 8π 0 R3 4π 0 r

Qr 4π 0 r 3 r>R3时 E2 E1
在R1<r<1 W W1 W2 ( ) 8π 0 R1 R2 R3
静电场中的导体与电介质
一、选择题
1.有一接地金属球,有一弹簧吊起,金属球原来 不 带 电,若在它的下方放置一电量为q的点电荷则 【C 】 (A)只有当q>0时,金属球才会下移 (B)只有当q<0时,金属球才下移 (C)无论q是正是负金属球都下移 ; (D)无论q是正是负金属球都不动
q
2.A、B为两导体板,面积均为S,平行放置, A板带电荷+Q1 , B板电荷 +Q2,如果使 B板接地,则AB间电场强度的大小E为 【C】
E 则两圆筒的电势差为 2 0 r r R2 R2 dr R2 U E d r ln 2 0 r r 2 0 r R1 R1 R1

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。

A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) SQ 01ε (D) S Q Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。

习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。

把它们串联起来在两端加上1000V 的电压,则[ ](A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有231221==C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。

所以,应该选择答案(C)。

习题8—3 三个电容器联接如图。

已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。

则此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。

静电场中的导体解答

静电场中的导体解答

(2) 球心O点处,由球壳内表面上电荷
产生的电势. (3) 球心O点处的总电势.
a
q
r Ob
Q
图3-1
静电场中的导体
第六章 静电场中的导体与电介质
解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q,
外表面上带电荷q+Q.
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一
电荷元离O点的距离都是a,所以由这些电荷在O点产生的
电势为 U q
dq
4 0a
q
4 0a
(3) 球心O点处的总电势为分布在球壳内外表面上的电荷和
点电荷q在O点产生的电势的代数和
UO
U q U q UQq q q
4 0 r 4 0a
Qq
4 0b
a
q
r Ob
Q
q (1 1 1) Q
4 0 r a b 4 0b
图3-1
静电场中的导体
第六章 静电场中的导体与电介质
6. 假想从无限远处陆续移来微量电荷使一半径为R的 导体球带电.(1) 当球上已带有电荷q时,再将一个电荷 元dq从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q的过程中,外力共作 多少功?
解:
U q
4 0 R
dW dq U qdq
4 0R
2 0
,
2 0
所以合场强为:E0
ቤተ መጻሕፍቲ ባይዱ
2
0
,
E0
2 0
静电场中的导体
第六章 静电场中的导体与电介质
4.一空心导体球壳,其内、外半径分别为R1和R2,带 电荷q,如图所示.当球壳中心处再放一电荷为q的点电

大学物理 第七章静电场中的导体、电介质答案

大学物理 第七章静电场中的导体、电介质答案

第七章 静电场中的导体、电介质答案一、选择1.(C )2.(B)3.(C)4.(A)5.(D)6.(D)7.(A)8.(D )9.(A) 10(C) 11(B)12.(C) 13.(C) 14.(B) 15.(D) 16.(A) 17.(D) 18.(C) 19 .(B) 20.( B)21.( C) 22.( B)23.(C) 24.(D) 25.(A) 二、填空1. -q ; -q;2.不变,减小;3.σ(x 、y 、z )/ε0 ,与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<o ) ;4.0、C r q 04πε;5.S Qd 02ε;S Qd0ε; 6.)(21B A q q -; S d q q B A 02)(ε-; 7. 电位移线 、 电力线 ;8.r πλ2/,r r επελ02/ ;9. u/d ,d-t , u/d ;10.σ,)(/r 0εεσ;11.2C 0 ;12.-Q 2/(4C) ;13. R 1/R 2 ; )(4210R R +πε;R 2/R 1 ; 14.r 02πελ;204r L πελ;15. 8.85×10-10C ·m -2 , 负 ;16. 正;17. 9.421310-⋅⨯m V , C 9105-⨯; 18. 2221r r ;19.1/εr20. 2:1, 1:2, 2:9;三、计算题:1. 解:由题给条件(b-a )≤a 和L ≥b ,忽略边缘效应,将两同轴圆筒导体看作是无限长带电体,根据高斯定理可以得到两同轴圆筒导体之间的电场强度为r 00/2/)(επε⎰⎰==∑=⋅s sQ rLE Eds q s d E 内 Lr2QE 0πε= 同轴圆筒之间的电势差: 00ln 22b b a aQ dr Q b U E dl L r L a πεπε=⋅==⎰⎰ 根据电容的定义:02ln L Q C b U aπε== 电容器储存的能量:2201ln 24Q b W cU L aπε==2. 解: (1)设内、外球壳分别带电荷为+Q 和-Q ,则两球壳间的电位移大小为 2=/(4r )D Q π场强大小为20 =/(4r )r E Q πεε2101222020124)()11(442121R R R R Q R R Q r dr Q r d E U r r R R r R R επεεπεεπε-=-==⋅=⎰⎰电量 )/(41221120R R R R U Q r -=επε(2) 电容 12210124R R R R U Q C r -==επε (3)电场能量 1221221021222R R U R R CU W r -==επε3.解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为E 1=q/(ε0S )金属片内部场强为E 2=q/(ε0S )金属片内部场强为E ’=0 则两极板间的电势差为 U A -U B =E 1d 1+E 2d 2=[q/(ε0S )](d 1+d 2) =[q/(ε0S )](d-t)由此得C=q/(U A -U B )=ε0S/(d-t) 因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响。

大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

大学物理第8章——静电场中的导体和电介质(1)

大学物理第8章——静电场中的导体和电介质(1)

4. 电荷密度为 +σ 和 -σ 的两块“无限 的两块“ -σ 均匀带电的平行平板, 大 ” 均匀带电的平行平板 , 放在与平 位置上, 面相垂直的 X 轴上的 +a 和 a 位置上, a O 如图所示。 处电势为零, 如图所示。设坐标原点 O 处电势为零, 则在 a < x < +a 区域的电势分 [ ] 布曲线为 (A)
上次课练习答案 1. 半径为 r 的均匀带电球面 1,带电量 q;其外有一同心的半径为 R 的均匀带电球面 2,带电量 Q。 则此两球面之间的电势差
q 1 1 1 - 2 为 。 4πε0 r R
2. 两个半径分别为 R 和 2R 的同心均匀带电球面,内球荷电 q; 的同心均匀带电球面 匀带电球面, 选无穷远为电势零点,则内球面电势为 外球荷电 Q,选无穷远为电势零点,则内球面电势为 j
E = F q0
矢量迭加原理 矢量迭加原理 电场线 E 高斯定理
=W q0
零点 = ∫P E dl
迭 加 形象化 规 律
∫S E dS = ∑qint ε0 ∫L E dl = 0
关 系
标量迭加原理 标量迭加原理 等势面 E 环路定理
E = grad =
1. 求解电场强度的方法: 求解电场强度的方法: (1)利用点电荷场强公式和场强迭加原理,通过矢量积分求场强。 利用点零, 球电势为零 (2q + Q);欲使内球电势为零,则外球面上的电量 8πε0R Q = -2q 。
3. 在电量为 q 的点电荷的静电场中,若选取与点电荷距离为 r0 的 的点电荷的静电场中, 一点为电势零点, 一点为电势零点,则与点电荷距离为 r 处的电势 =
q 1 1 。 4πε0 r r0

静电场中的导体和电介质(大学物理作业,考研真题)

静电场中的导体和电介质(大学物理作业,考研真题)

物理(下)作业专业班级:姓名:学号:第十一章静电场中的导体和电介质(1)一、选择题1、两个同心薄金属球壳,半径分别为1R 和2R (1R <2R ),若分别带上电量1q 和2q 的电荷,则两者的电势分别为1U 和2U (选无穷远处为电势零点)。

现用导线将两球壳连接,则它们的电势为(A )、1U ;(B )、2U ;(C )、21U U ;(D )、)(2121U U 。

[]2、两导体板A 和B 相距为d ,并分别带有等量异号电荷。

现将另一不带电的,且厚度为t (t ﹤d )的导体板C 插入A 、B 之间(不与它们接触),则导体板A 和B 之间的电势差U AB 的变化为:(A )、不变;(B )、增大;(C )、减小;(D )、不一定。

[]3、(2018年暨南大学)将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有:(A )金属导体因静电感应带电,总电量为-Q ;(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ;(C )金属导体两端带等量异号电荷,且电量q<Q ;(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。

二、填空题1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)的电势应是______;导体表面的场强方向应是______。

2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布在;若腔内有电荷,则空腔导体上的电荷应分布在。

3、如图所示,两同心导体球壳,内球壳带电量+q ,外球壳带电量-2q 。

静电平衡时,外球壳的内表面带电量为______;外表面带电量为_______。

三、计算题1、同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱体构成,如图所示。

设内圆柱体的半径为R 1,外圆柱体的内半径为R 2。

并假定内外圆柱导体分别带等量异号电荷,其线电荷密度大小为λ,求内外圆柱导体之间的电场强度分布以及它们之间的电势差。

大学物理下 静电场中的导体和电介质习题解答

大学物理下 静电场中的导体和电介质习题解答

q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为

电势 (选U∞=0)为

D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布

;若腔内有电荷,则空腔导体上的电荷应分布


3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与球外点电荷 + q 的作用力: F1
=
1 4πε 0
− q′ ⋅ q (r − b)2

由于 1 (r − b)2
>
1 r2

F1
=
1 4πε 0
− q′⋅ q (r − b)2
<
1 4πε 0
− q′⋅q r2

左侧电荷 Q
+
q′ 与点电荷 +
q 的作用力: F2
=
1 4πε 0
(Q + q′)⋅ q (r + a)2
50
大学物理习题解答
σ′ =
Q+q 4π R22
= 1.274 ×10−5 C
m2
,金属球外表面场强大小: E
σ′ =
ε0
= 1.44 ×106 V
m.
6. 题目有误!
7. 点电荷 − Q 位于空腔导体内,静电平衡后,空腔导体内表面感应电荷的电量为 + Q ,空腔导体原来电中性,
不带电,则空腔导体外表面感应电荷的电量为 − Q ;所以空腔导体外表面的净余电荷总量是 − Q ,空腔导体内表
− VC
=
E2
⋅d
=
σ2 ε0
d2 ;
B
A
C
σ1 σ2
−σ1 −σ2
由于 B 和 C 板用导线相连,电势相等,即VB = VC ⇒ VA −VB = VA −VC

σ1 ε0
d1
=
σ2 ε0
d2
⇒ σ1 = d2 . σ 2 d1
(第 10 题图)
11. (1)金属平板静电平衡后,金属平板 A 和 B 相邻两表面电荷电量等量异号,设电荷面密度分别为 σ 和 − σ ;

由于 1 (r + a)2
<
1 r2

F2
=
1 4πε 0
(Q + q′) ⋅ q (r + a)2
<
1 4πε 0
(Q
+ q′) ⋅ q r2

那么,考虑到静电感应,导体球 + Q 和点电荷 + q 之间的作用力:
F
=
F1
+ F2
=
1 4πε 0
− q′⋅q (r − b)2
+
1 4πε 0
(Q + q′)⋅ q (r + a)2

⎪⎧σ1

⎪σ ⎩
2
σ =
2 =σ
2
− ε0E0 + ε0E0

导体平板左右两侧场强:
⎪⎪⎧E1 ⎨
⎪⎪⎩E2
=
− σ1 ε0
=
E0

σ 2ε 0
=
σ2 ε0
=
E0
+
σ 2ε 0
.
9. 题目中“两个同心球壳”应该为“两个同心导体球壳”。
由于小导体球壳空腔内无电荷,小球壳带电 + 2Q 均匀分布在半径为 b 的小球壳外表面;大球壳内表面感应
分布与球心处 + q 的位置有关;空腔导体球外表面会出现 + q 的电量,注意:外表面 + q 的分布与球心处 + q 的位
置无关,只与外表面的形状有关,由于外表面是球面,外表面上电荷 + q 均匀分布。
本题选(A)
注意:题目中缺少“正点电荷 + q ”的条件,所以内表面上不一定均匀分布!
3. 库仑定律适用于两点电荷之间的作用力,即把导体球 + Q 看成点电荷,忽略静电感应,则导体球 + Q 和点电
荷为 q′ = −5µ C ,金属球外表面电量为 Q + q = 1×10−5C ,金属球外表面电荷面密度变为:
All rights reserved. This work may not be copied in whole or in part without the permission of Wu Lusen.
∫� � 1
E ⋅ dS = 6Q
⇒ E ⋅ 4π r2 = 1 6Q
⇒E=
3Q

S3
ε0
ε0
2π ε0 r 2
All rights reserved. This work may not be copied in whole or in part without the permission of Wu Lusen.
52
ε0
ε0
(2) c < r < d ,在大球壳内部作一半径为 r 的同心球面 S2 为高斯面,包围电荷为 2Q + (−2Q) = 0 ,
∫� �
E ⋅ dS =
1
0
⇒ E ⋅ 4π r 2 = 1 0

E = 0;
S2
ε0
ε0
(3) r > d ,在大球壳外作一半径为 r 的同心球面 S3 为高斯面,包围电荷为 2Q + (−2Q) + 6Q = 6Q ,
d

(2)若金属板 B 接地,金属板 B 和无穷远处电势相等,VB = V∞ = 0 ,
则金属板 B 右侧电荷不能存在,即σ ′ = 0 ⇒ 金属板 A 左侧电荷也为零,金属板 A 带电量 Q 全部分布在 A 板右表面,即σ = Q ,注意由于 B 板接地,B 板电荷不守恒。
S
A
B
(第 11 题图 a)
发出的电场线不能存在,因为沿电场线方向电势降低。所以导体 N 上右侧正电荷不能存在,正感应电荷被大地中
和,如图 b 所示。
本题选(B)
5. 中空金属球空腔中无电荷时,金属球带电全部分布在外表面,电荷面密度为 σ = 6.37 ×10−6 C m2 ,半径为
R2 = 0.25m ,金属球带电量: Q = σ ⋅ 4π R22 = 5×10−6 C ;现将 q = 5µ C 的电荷放入空腔内,空腔内表面感应电
出 − 2Q ,大球壳原来带电 + 4Q ,则大球壳外表面带电为 + 6Q ,均匀分布在半径为 d 的大球壳外表面。
(1) a < r < b ,在小球壳内部作一半径为 r 的同心球面 S1 为高斯面,包围电荷为 0 ,
∫� �
E ⋅ dS =
1
0
⇒ E ⋅ 4π r2 = 1 0

E = 0;
S1
密度为σ 2 ,静电平衡后,B 板右表面感应电荷面密度为 − σ1 ,C 板左表面感应电荷面密度为 −σ 2 ,则
A

B
板之间电场强度大小: E1
=
σ1 ε0
,电势差:U ABBiblioteka = VA− VB=
E1 ⋅ d
=
σ1 ε0
d1 ;
A和
C 板之间电场强度大小: E2
=
σ2 ε0
,电势差: U AC
= VA
荷 + q 之间的库仑力大小: FC
=
1 4πε 0
Q⋅q r2

若考虑到导体球的静电感应,设导体球右侧感应出负电荷为 − q′ ,导体球左侧电荷电量为 Q + q′ ,并且设右侧负
感应电荷 − q′ 的等效中心距球心 o 的距离为 b ,左侧电荷 Q + q′ 等效中心距球心 o 的距离为 a ,则负感应电荷 − q′
金属平板 A 和 B 最外边两表面电荷电量相等,设电荷面密度为σ ′ ,如图 a,则
⎧(σ + σ ′)S = Q
⎨ ⎩



σ
)S
=
0

σ =σ′= Q , 2S
金属平板 A 和 B 之间的电场强度大小: E = σ = Q , ε0 2ε0S
Q
0
σ −σ
σ′
σ′
电势差:U AB
=
E
⋅d
=
Q 2ε 0S
51
大学物理习题解答
⎧ ⎪0

综上,各区域中电场强度的大小:
E
=
⎪ ⎨
0

⎪ 3Q
⎪⎩2π ε0 r 2
(a < r < b) (c < r < d ) ,可验证导体中场强处处为零。
(r > d)
10. 三块平行导体板,设中间板为 A,左右侧板分别为 B 和 C. 由于 A 板左表面电荷面密度为σ1 ,右表面电荷面
大学物理习题解答
静电场中的导体 (1)
1. 正电荷 + Q 位于导体球壳球心,则由静电平衡有:导体球壳内表面会感应出 − Q 电量;导体球壳上总电量为
− 3Q 保持守恒,导体球壳外表面的电量为 − 2Q ;导体球壳内部在 a 到 b 之间的电场强度处处为零。 本题选(C)
2. 正点电荷 + q 位于空腔的球心处,则静电平衡有:空腔导体球内表面会感应出 − q 的电量,注意:内表面 − q 的
Q
0
σ −σ
σ′
σ′
此时,金属平板 A 和 B 之间的电场强度大小: E′ = σ = Q , ε0 ε0S
A
B
(第 11 题图 b)
电势差:U ′AB
=
E′ ⋅
d
=
Q ε0S
d
.
All rights reserved. This work may not be copied in whole or in part without the permission of Wu Lusen.
<
1 4πε 0
− q′⋅ q r2
相关文档
最新文档