《反比例函数的应用》公开课获奖课件ppt
合集下载
反比例函数的应用PPT课件
![反比例函数的应用PPT课件](https://img.taocdn.com/s3/m/432090d2cd22bcd126fff705cc17552706225e76.png)
学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关
新湘教版九年级数学上册《反比例函数的应用》精品课件(共19张PPT)
![新湘教版九年级数学上册《反比例函数的应用》精品课件(共19张PPT)](https://img.taocdn.com/s3/m/601b1e7d02d276a201292e21.png)
(2)踩气球时,气球的体积会发生什么变 化?
根据第(1)小题的结果,此时气球内 气体
的压强会发生什么变化?这是根据反
体压积强比变增小大,.例函数这 当的是k >哪根0且据条x反性>比0质时例?,函函数数y 值= kx随,
自变量取值的减小而增大.
(3) 当气球内气体的压强大到一定程度时, 气球会爆炸吗?
•7、is a progressive discovery of our ignorance.教育是一个逐步发现自己无知的过程。2021/11/262021/11/26November 26, 2021
•8、is a admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught.教育 是令人羡慕的东西,但是要不时地记住:凡是值得知道的,没有一个是能够教会的。2021/11/262021/11/262021/11/262021/11/26
定时, p 是S 的反比例函数吗?
函数的定义可知, p 是S的反比例函数.
(2) 若人对地面的压
力F = 450 N,
完因为成F =下450表N,:所以当S = 0.005 m2时
由 p F ,得
S
450 p=
= 90000(Pa).
0 .0 0 5
受力面积 S(m2) 0.005 0.01 0.02 0.04
S
略不计)通过湿由时地图,的象地的面道性所理质受可.压知强,p当会受越力来面越积小S.
增大 因此,
该科技小组通过铺垫木板的方法来增大
受力面积,以减小地面所受压强,从而
1.3.1反比例函数的应用(1)(共17张PPT)
![1.3.1反比例函数的应用(1)(共17张PPT)](https://img.taocdn.com/s3/m/db623c7c524de518974b7d53.png)
(1)药物燃烧时,y与x的关系
为
y=
3 4
x
(0<x≤8);
(2)药物燃烧完后,y与x的关系
为
y=
48 x
(x≥8)
;
(3)研究表明,当空气中每立方米的含药量低于1.6
mg时学生方可进入教室,那么从消毒开始,至少经过
多少min后,学生才能回到教室;
分析:当空气中每立方米的含药量低于1.6 mg时, 即函数值y=1.6,于是过y=1.6作x轴的平行线,与反 比例函数图象相交,求出交点的横坐标即可。
上式通常称为波义耳定律.
(1)在温度不变的情况下,气球内气体的压强p 是它的体积V的反比例函数吗?写出它的解析式.
p=
k V
(k为常数,k>0).
(2)踩气球时,气球的体积会发生什么变化? 根据第(1)小题的结果,此时气球内气体的压强 会发生什么变化?这是根据反比例函数的哪条 性质?
当气球内气体的压强大到一定程度时, 气球就会爆炸。
多长时间可将满池水全部排空? 解5h:可当将Q满=1池2(水m全3)时部,排t空= .4182 =4(h).所以最少需
(6)画出函数图象,根据图象请对问题(4)和(5)作
出直观解释,并和同伴交流.
2、你吃过拉面吗?实际上在做拉面 y
100
的过程中,就渗透着数学知识,一 80
60
定体积的面团做成拉面,面条的总 40
解:把y=1.6代入反比例函数解析式:
48 x
=Байду номын сангаас.6
解得:x=30
●
30 min后,学生才能回到教室;
(30,1.6)
(4)研究表明,当空气中每立方米的含药量不低于 3mg且持续时间不低于10 min时,才能有效杀灭空气 中的病菌,那么此次消毒是否有效?请说明理由。
反比例函数应用ppt课件ppt
![反比例函数应用ppt课件ppt](https://img.taocdn.com/s3/m/77abf78eba4cf7ec4afe04a1b0717fd5360cb2b2.png)
经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。
反比例函数的应用PPT
![反比例函数的应用PPT](https://img.taocdn.com/s3/m/80c11fb8f80f76c66137ee06eff9aef8941e480e.png)
载完毕,那么平均每天至少要卸载多少吨?
解:把 t =5
240
代入 v
t
240
48.
,得 v
t
从结果可以看出,如果全部货物恰好用 5 天卸载完,
则平均每天卸载 48 吨. 而观察求得的反比例函数
的解析式可知,t 越小,v 越大. 这样若货物不超
过 5 天卸载完,则平均每天至少要卸载 48 吨.
过程
确数学问题
实际问题
中的反比
例函数
实际问题中的两个变量往往都只能取非
注意 负值;
作实际问题中的函数图象时,横、纵坐
标的单位长度不一定相同
随堂练习
1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y= ,
k≠0),已知400度近视眼镜的镜片焦距为0.25 m,则y与x之间的
100
y=
函数关系式是____________.
2.一个水池装水12 m3,如果从水管每小时流出x(m3)的水,经
12
y=
过y(h)可以把水放完,那么y与x之间的函数关系式是________,
塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所
产生的压强,如下表:
体积x/ml
100
80
60
40
20
压强y/kPa
60
75
100
150
300
则可以反映y与x之间的关系的式子是 ( D )A.y=3000x
6000
3000
B.y=6000x C.y=
D.y=
5.如图,在直角坐标系xOy中,直线 y=mx与双曲线
解:(1)由题意设函数表达式为I= ,
解:把 t =5
240
代入 v
t
240
48.
,得 v
t
从结果可以看出,如果全部货物恰好用 5 天卸载完,
则平均每天卸载 48 吨. 而观察求得的反比例函数
的解析式可知,t 越小,v 越大. 这样若货物不超
过 5 天卸载完,则平均每天至少要卸载 48 吨.
过程
确数学问题
实际问题
中的反比
例函数
实际问题中的两个变量往往都只能取非
注意 负值;
作实际问题中的函数图象时,横、纵坐
标的单位长度不一定相同
随堂练习
1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y= ,
k≠0),已知400度近视眼镜的镜片焦距为0.25 m,则y与x之间的
100
y=
函数关系式是____________.
2.一个水池装水12 m3,如果从水管每小时流出x(m3)的水,经
12
y=
过y(h)可以把水放完,那么y与x之间的函数关系式是________,
塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所
产生的压强,如下表:
体积x/ml
100
80
60
40
20
压强y/kPa
60
75
100
150
300
则可以反映y与x之间的关系的式子是 ( D )A.y=3000x
6000
3000
B.y=6000x C.y=
D.y=
5.如图,在直角坐标系xOy中,直线 y=mx与双曲线
解:(1)由题意设函数表达式为I= ,
反比例函数的应用ppt课件
![反比例函数的应用ppt课件](https://img.taocdn.com/s3/m/f5858f6db80d6c85ec3a87c24028915f804d84a0.png)
如图,一辆汽车匀速通过某段公路,所需时间
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
反比例函数应用课件ppt课件ppt课件
![反比例函数应用课件ppt课件ppt课件](https://img.taocdn.com/s3/m/c7c6d03b7ed5360cba1aa8114431b90d6c8589e3.png)
• 举例说明如何利用已知条件求反比例函数的解析 式。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
《反比例函数的应用》示范公开课教学PPT课件【九年级数学上册北师大】
![《反比例函数的应用》示范公开课教学PPT课件【九年级数学上册北师大】](https://img.taocdn.com/s3/m/2fb11e0e6ad97f192279168884868762caaebb9f.png)
所以I与R之间的函数解析式为 I 10 .
R
(2)当电流I=0.5 A时,I 10 0.5, R
所以R=20(Ω),即电阻R的值为20 Ω.
课堂小结
1.一般地,建立反比例函数的解析式有以下两种方法:
(1)待定系数法:若题目提供的信息中明确此函数为反比例函 数,则可设反比例函数的解析式为 y k (k 0) ,然后求出k的值即
探究新知
解:(1)p
600 (S>0) S
,p是S的反比例函数,因为
p
600 S
符合反比例函数的概念.
(2)p=3 000 Pa. (3)至少0.1 m2. (4)如图所示.
探究新知
(5)问题(2)是已知图象上某点的横坐标是0.2,求 该点的纵坐标;问题(3)是已知图象上点的纵坐标不大 于6 000,求这些点横坐标的取值范围.
h
课堂小结
(3)在物理知识中:
①当功W一定时,力F与物体在力F的作用下移动的距离s成反比
例,即 F W ;
s
②当压力F一定时,压强p与受力面积S成反比例,即
p F
;
S
③在电路中,当电压U一定时,电流I与电阻R成反比例,
即 I U . R
④杠杆原理为:阻力×阻力臂=动力×动力臂.
敬请各 位老 师提 出宝 贵意见 !
探究新知
做一做 蓄电池的电压为定值.使用此电源时,用电器的电流I(A)
与电阻R(Ω)之间的函数关系如图所示. (1)蓄电池的电压是多少?你能
写出这一函数的表达式吗? (2)如果以此蓄电池为电源的用
电器限制电流不得超过10 A,那么用电 器的可变电阻应控制在什么范围内?
I/A 36 33 30 27 24 21 18 15 12 9 6 3
R
(2)当电流I=0.5 A时,I 10 0.5, R
所以R=20(Ω),即电阻R的值为20 Ω.
课堂小结
1.一般地,建立反比例函数的解析式有以下两种方法:
(1)待定系数法:若题目提供的信息中明确此函数为反比例函 数,则可设反比例函数的解析式为 y k (k 0) ,然后求出k的值即
探究新知
解:(1)p
600 (S>0) S
,p是S的反比例函数,因为
p
600 S
符合反比例函数的概念.
(2)p=3 000 Pa. (3)至少0.1 m2. (4)如图所示.
探究新知
(5)问题(2)是已知图象上某点的横坐标是0.2,求 该点的纵坐标;问题(3)是已知图象上点的纵坐标不大 于6 000,求这些点横坐标的取值范围.
h
课堂小结
(3)在物理知识中:
①当功W一定时,力F与物体在力F的作用下移动的距离s成反比
例,即 F W ;
s
②当压力F一定时,压强p与受力面积S成反比例,即
p F
;
S
③在电路中,当电压U一定时,电流I与电阻R成反比例,
即 I U . R
④杠杆原理为:阻力×阻力臂=动力×动力臂.
敬请各 位老 师提 出宝 贵意见 !
探究新知
做一做 蓄电池的电压为定值.使用此电源时,用电器的电流I(A)
与电阻R(Ω)之间的函数关系如图所示. (1)蓄电池的电压是多少?你能
写出这一函数的表达式吗? (2)如果以此蓄电池为电源的用
电器限制电流不得超过10 A,那么用电 器的可变电阻应控制在什么范围内?
I/A 36 33 30 27 24 21 18 15 12 9 6 3
6.3《反比例函数的应用》参考课件(共21张PPT)
![6.3《反比例函数的应用》参考课件(共21张PPT)](https://img.taocdn.com/s3/m/24324eedd5bbfd0a78567326.png)
求当2<x<8时y的取值范围。 8.
. 解: k=12>0, 又因为x>0,所以
6
图形在第一象限。用描点法画出
. 函数 y 12 的图象如图,当x=2 4
. 时,y=6;当x x=8时,y= 3
2
2
.
.
.
.
有图像得,当2<x<8时
3< y < 6
2
2 46 8
探究活动:
如果例1中BC=6cm。你能作出∆ABC吗? 能作出多少个?请试一试。 如果要求∆ABC是等腰三角形呢?
回顾:反比例函数的图象性质特征:
形状
图象是双曲线
位置 当k>0时,双曲线分别位于第一,三象限内
当k<0时, 双曲线分别位于第二,四象限内
增减性 当k>0时,在每一象限内,y随x的增大而减小
当k<0时,在每一象限内,y随x的增大而增大
变化趋势 双曲线无限接近于x、y轴,但永远不会与坐
标轴相交
对称性 双曲线既是轴对称图形又是中心对称图形.
课内练习:
例2中,若压强80<p<90,请估汽缸内气体体积的 取值范围,并说明理由。
∵ k=6000 ∴ 在每个象限中,p随V的增大而减小 当p=80,90时,V分别为75,200
3
∴当80<p<90时, 200 <V<75.
3
探索活动:
某一农家计划利用已有的一堵长为 7.9m的墙,围成一个面积为12m2的园子.现 有可用的篱笆总长为11m. (1)你能否给出一种围法? (2)要使园子的长,宽都是整数米,问共 有几种围法? (3)若要使11m长的篱笆恰好用完,应 怎样围?
例2、如图,在温度不变的条件下,通过一次又一次地
《反比例函数的应用》PPT课件
![《反比例函数的应用》PPT课件](https://img.taocdn.com/s3/m/2ebcd9f3988fcc22bcd126fff705cc1755275fe6.png)
前提条件:在同圆或等圆中
圆心角 相等
弧 相等
弦 相等
16.(12分)制作一种产品,需先将材料加热达到60℃后再进行操作, 设该材料温度为y(℃),从加热开始计算的时间为x(分钟),据了解该 材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时, y与时间x成反比例关系(如图),已知该材料操作加工前温度为15℃, 加热5分钟后温度达到60℃. (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,必须停止操作,那么 开始加热到停止操作,共经历了多长时间?
27.3 反比例函数的应用
利用反比例函数知识解决实际问题一般思路大致可分为以下两个步 骤:(1)认真审题,建立反比例函数_____模__型_;(2)根据已知条件,由 一个变量求___另_一__个__变__量____.
1.(4分)红星中学冬季储煤120吨,若每天用煤x吨,则使用天数y与 x的函数关系的大致图像是( C)
形物体乙(重量保持不变,压强与桌面接触面积成反比),则乙对桌面的压
强为( A )
A.500 帕
B.1000 帕
C.2000 帕
D.250 帕
7.(6分)实验表明,当导线的长度一定时,导线的电阻与它的横截
面积成反比例,一条长为100 km的铅导线的电阻R(Ω)与它的横截
面积S(cm2)的函数图像如图所示,那么,其函数关系式为 __R_=__2_S9_(_S_>__0_)_,_____;当S=2 cm2时,R=__1_4_._5___Ω.
等量关系是否依然成立?为什么?
B C
A
O·
D
· O'
通过平移将两个等圆变成同圆
弧、弦与圆心角的关系定理
圆心角 相等
弧 相等
弦 相等
16.(12分)制作一种产品,需先将材料加热达到60℃后再进行操作, 设该材料温度为y(℃),从加热开始计算的时间为x(分钟),据了解该 材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时, y与时间x成反比例关系(如图),已知该材料操作加工前温度为15℃, 加热5分钟后温度达到60℃. (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,必须停止操作,那么 开始加热到停止操作,共经历了多长时间?
27.3 反比例函数的应用
利用反比例函数知识解决实际问题一般思路大致可分为以下两个步 骤:(1)认真审题,建立反比例函数_____模__型_;(2)根据已知条件,由 一个变量求___另_一__个__变__量____.
1.(4分)红星中学冬季储煤120吨,若每天用煤x吨,则使用天数y与 x的函数关系的大致图像是( C)
形物体乙(重量保持不变,压强与桌面接触面积成反比),则乙对桌面的压
强为( A )
A.500 帕
B.1000 帕
C.2000 帕
D.250 帕
7.(6分)实验表明,当导线的长度一定时,导线的电阻与它的横截
面积成反比例,一条长为100 km的铅导线的电阻R(Ω)与它的横截
面积S(cm2)的函数图像如图所示,那么,其函数关系式为 __R_=__2_S9_(_S_>__0_)_,_____;当S=2 cm2时,R=__1_4_._5___Ω.
等量关系是否依然成立?为什么?
B C
A
O·
D
· O'
通过平移将两个等圆变成同圆
弧、弦与圆心角的关系定理
反比例函数的应用 ppt课件
![反比例函数的应用 ppt课件](https://img.taocdn.com/s3/m/408a293deef9aef8941ea76e58fafab069dc44a9.png)
21.5 反比例函数
第3课时 反比例函数的应用
学习目标
1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力.
2. 能够通过分析实际问题中变量之间的关系,建立反 比例函数模型解决问题,进一步提高运用函数的图 象、性质的综合能力. (重点、难点)
3. 能够根据实际问题确定自变量的取值范围.
你帮助阿基米德设计,该用多长动力臂的杠杆才能把
地球撬动? 解: 2000 千米 = 2×106 米,
由已知得F×l=6×1025×2×106 =1.2×1032 米, 变形得:F 1.21032 .
l 当 F =500时,l =2.4×1029 米,
故用2.4×1029 米动力臂的杠杆才能把地球撬动.
O1
x
y
O
4x
y
4
4
C.
D. 1
O1
x
O1 4
x
2. (1) 体积为 20 cm3 的面团做成拉面,面条的总长度 y
(单位:cm) 与面条粗细 (横截面积) S (单位:cm2)
的函数关系为
y 20 S>0
S
.
(2) 某家面馆的师傅手艺精湛,他拉的面条粗 1 mm2, 则面条的总长度是 2000 cm.
练一练
某乡镇要在生活垃圾存放区建一个老年活动中心, 这样必须把 1200 立方米的生活垃圾运走. (1) 假如每天能运 x 立方米,所需时间为 y 天,写出 y
与 x 之间的函数关系式;
解:y 1200 . x
(2) 若每辆拖拉机一天能运 12 立方米,则 5 辆这样的 拖拉机要用多少天才能运完?
解:把 t =15代入函数的解析式,得: y 3600 240. 15
第3课时 反比例函数的应用
学习目标
1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力.
2. 能够通过分析实际问题中变量之间的关系,建立反 比例函数模型解决问题,进一步提高运用函数的图 象、性质的综合能力. (重点、难点)
3. 能够根据实际问题确定自变量的取值范围.
你帮助阿基米德设计,该用多长动力臂的杠杆才能把
地球撬动? 解: 2000 千米 = 2×106 米,
由已知得F×l=6×1025×2×106 =1.2×1032 米, 变形得:F 1.21032 .
l 当 F =500时,l =2.4×1029 米,
故用2.4×1029 米动力臂的杠杆才能把地球撬动.
O1
x
y
O
4x
y
4
4
C.
D. 1
O1
x
O1 4
x
2. (1) 体积为 20 cm3 的面团做成拉面,面条的总长度 y
(单位:cm) 与面条粗细 (横截面积) S (单位:cm2)
的函数关系为
y 20 S>0
S
.
(2) 某家面馆的师傅手艺精湛,他拉的面条粗 1 mm2, 则面条的总长度是 2000 cm.
练一练
某乡镇要在生活垃圾存放区建一个老年活动中心, 这样必须把 1200 立方米的生活垃圾运走. (1) 假如每天能运 x 立方米,所需时间为 y 天,写出 y
与 x 之间的函数关系式;
解:y 1200 . x
(2) 若每辆拖拉机一天能运 12 立方米,则 5 辆这样的 拖拉机要用多少天才能运完?
解:把 t =15代入函数的解析式,得: y 3600 240. 15
反比例函数的应用课件
![反比例函数的应用课件](https://img.taocdn.com/s3/m/b4ec05365bcfa1c7aa00b52acfc789eb172d9ebd.png)
误差分析
在进行数值计算时,需要 进行误差分析,以确保计 算结果的精度和可靠性。
04
反比例函数的应用案例
案例一:解决实际问题
总结词
反比例函数在实际问题中的应用广泛,可以通过建立数学模型来求解实际问题 。
详细描述
反比例函数可以描述一些实际问题的关系,例如电流与电阻、电容与电压等。 通过建立反比例函数模型,可以求解出未知量,为实际问题的解决提供依据。
详细描述
在经济学中,反比例函数可以用于描述供需关系、市场均衡等经济现象和规律。 通过应用反比例函数,可以更好地理解经济现象和规律,为经济政策的制定提供 依据。
案例四:在其他领域中的应用
总结词
反比例函数在其他领域中也有应用,例如生物学、化学等。
详细描述
在生物学中,反比例函数可以用于描述生物种群数量与环境容量的关系;在化学中,反比例函数可以用于描述化 学反应速率与反应物浓度的关系等。通过应用反比例函数,可以更好地理解这些领域的规律和现象,为相关领域 的发展提供支持。
反比例函数在生物学中的应用:计算生物种群数量、繁 殖率等。
反比例函数在心理学中的应用:研究人的行为与心理活 动之间的关系。
03
反比例函数的应用方法
建模方法
建立实际问题与反比例函数的联系
01
通过分析实际问题的数学模型,将问题转化为反比例函数的形
式,以便利用其性质和结论解决问题。
确定变量的实际意义
02
图像变化
当k的值逐渐增大或减小,双曲线的形 状会发生变化,但始终关于原点对称 。
反比例函数的性质
奇函数
无界性
单调性
实际应用
由于反比例函数的图像关于 原点对称,因此它是一个奇 函数。
《反比例函数的应用》反比例函数精品ppt课件3
![《反比例函数的应用》反比例函数精品ppt课件3](https://img.taocdn.com/s3/m/89c74d1e647d27284b735181.png)
和
y6 x
做一做
(2)B点的坐标是两个函数组成的方程组的另
一个解.
y 2x
y
6 x
解得x= 3
x 3, y 2 3. B( 3,2 3)
练一练
某蓄水池的排水管每时排水8m3,6h可将 满池水全部排空.
(1)蓄水池的容积是多少? (2)如果增加排水管,使每时的排水量达到
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
《反比例函数的应用》反比例函数PPT课件
![《反比例函数的应用》反比例函数PPT课件](https://img.taocdn.com/s3/m/63210915905f804d2b160b4e767f5acfa0c78370.png)
(一)选择题
3.(2005·宁波)如图,正比例函数y=x与反比例函数 的图象交关于A、C两点,分别过A、C 作AB⊥x 轴于 B,CD⊥x 轴于D,则四边形ABCD的面积为( ) A.1 B. 3 C.2 D. 5
2
2
五.能力训练
(一)选择题
4. (2005·东营)在反比例函数 y k (k 0) 的图象 上有两点A(x1,y1),B(x2,y2),且x1>xx2,则y1-y2的 值是( )
AB⊥x 轴x 于B,且
3.
(1)求这两个函数的S表AB达O 式2.
(2)求直线与双曲线的两个
交点A、C的坐标和△AOC
的面积.
五.能力训练
(三)解答题 10.(2005·常州)有一个Rt△ABC,∠A=90°, ∠B=60°,AB=1,将它放在直角坐标系中,使斜 边BC在x轴上,直角顶点A在反比例函数的图象上, 求点C的坐标.
四.典型例题
思路分析:这是反比例函数在实际中的应用 问题.根据图象可直接得到函数表达式,根 据已知条件可求出相应的压强和面积. 知识考查:考查反比例函数在实际问题中应 用.
四.典型例题
解:(1) 由题意得,设 p F (S 0) , 当木板面积为1.5 m2时,压强S为400Pa, ∴(2F) =当1.5木×板40面0=积60S0=,0.2∴m2p时,6S00 (S 0) 压(∴3S强)由≥0p题.1m意6020.,2得0 即,30木60000板(P的a6)0面0,0积所,至以少压要强0为.13m020.0Pa.
四.典型例题
例2(2006·武汉)如图,已知点A是一次函数 y=x图象与反比例函数 y 2 的图象在第一 象限内的交点,点B 在 x 轴x 的负半轴上,且
浙教版八年级数学下册第六章《6.3 反比例函数的应用》公开课课件 (共16张PPT)
![浙教版八年级数学下册第六章《6.3 反比例函数的应用》公开课课件 (共16张PPT)](https://img.taocdn.com/s3/m/e4fa9acba5e9856a571260b7.png)
❖ 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/232021/7/232021/7/23Jul-2123-Jul-21
❖ 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/232021/7/232021/7/23Friday, July 23, 2021
积压缩到多少ml?
解:
因为函数解析式为
6000 p
有 72 6000
V
V
解得
V600083(m)l 72
答:当压力表读出的压强为72kPa时,汽缸内气体的
体积压缩到约83ml。
课内练习:
1、例2中,若压强80<p<90,请估汽缸内气体体积的 取值范围,并说明理由。
∵ k=6000 ∴ 在每个象限中,p随V的增大而减小 当p=80,90时,V分别为75,200
❖
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。2021/7/232021/7/23Friday, July 23, 2021
❖ 10、阅读一切好书如同和过去最杰出的人谈话。2021/7/232021/7/232021/7/237/23/2021 9:31:55 PM
(1)分别求出将材料加热和停止加热进行 6 0 y ℃
操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于
15℃时,须停止操作,那么从开始加热 1 5
到停止操作,共经历了多少时间;
o 5 10 15 20 25 x(分 钟 )
探索活动:
某一农家计划利用已有的一堵长为 8m的墙,围成一个面积为12m2的园子 现有可用的篱笆总长为10.5m.