核磁共振成像实验报告

合集下载

核磁共振实验报告

核磁共振实验报告

核磁共振实验报告一、实验目的1.了解核磁共振的基本原理和仪器结构;2.学习核磁共振性质的测量方法;3.掌握核磁共振实验的基本操作。

二、实验仪器和用具核磁共振仪、样品管、场频中心标记物、标定试剂、样品转速调节器、计算机等。

三、实验原理核磁共振是利用磁共振现象进行的一种物质结构、原子核的环境等信息的研究方法。

通过在静磁场中施加射频场,使样品的原子核进行磁共振,进而测量其共振频率和化学位移,从而得到相关的物理和结构性质。

四、实验内容和步骤1.样品制备:在样品管中配制好待测物质溶液;2.实验准备:打开核磁共振仪电源,调节磁场强度和均匀性;3.校准:使用场中心标记物调整磁场的中心频率;4.样品激磁:将样品放入核磁共振仪的样品室中,进行样品激磁操作;5.信号获取:通过调整射频场的频率和强度,使样品核的共振信号最大化;6.信号处理:将获取的信号通过计算机进行数字化处理,得到频谱图和相关参数;7.数据记录:记录样品的共振频率、化学位移等相关参数。

五、实验数据和分析实验中,我们选取了甲醇样品进行核磁共振实验。

首先进行了磁场强度的校准,通过调整磁场的中心频率,使得样品的共振频率能够与参考标记物的共振频率相匹配。

接下来,进行了样品的激磁操作。

通过将样品放入样品室中,使其置于强磁场中,样品中的原子核开始进行自旋共振。

在信号获取过程中,我们通过调整射频场的频率和强度,使样品核的共振信号最大化。

当共振发生时,仪器会发出响应信号,我们利用该信号来调整射频场的参数,确保信号最强。

通过对获取的信号进行处理,我们得到了甲醇样品的核磁共振频谱图。

在频谱图中,可以观察到不同核的共振峰,通过测量共振峰的位置和间距,可以得到样品的化学位移和相关的物理属性。

六、实验结果和结论通过核磁共振实验,我们成功获得了甲醇样品的核磁共振频谱图。

通过测量共振峰的位置和间距,我们得到了样品的化学位移和相关的物理属性。

实验结果表明,核磁共振是一种非常有效的研究物质结构和性质的方法。

核磁共振类实验实验报告

核磁共振类实验实验报告

核磁共振类实验实验报告(一)核磁共振(二)脉冲核磁共振与核磁共振成像第一部分 核磁共振基本原理1.核磁共振磁共振是指磁矩不为零的原子或原子核在稳恒磁场作用下对电磁辐射能的共振吸收现象。

如果共振是由原子核磁矩引起的,则该粒子系统产生的磁共振现象称核磁共振(简写作NMR );如果磁共振是由物质原子中的电子自旋磁矩提供的,则称电子自旋共振(简写ESR ),亦称顺磁共振(写作EPR);而由铁磁物质中的磁畴磁矩所产生的磁共振现象,则称铁磁共振(简写为FMR )。

原子核磁矩与自旋的概念是1924年泡利(Pauli )为研究原子光谱的超精细结构而首先提出的。

核磁共振现象是原子核磁矩在外加恒定磁场作用下,核磁矩绕此磁场作拉莫尔进动,若在垂直于外磁场的方向上是加一交变电磁场,当此交变频率等于核磁矩绕外场拉莫尔进动频率时,原子核吸收射频场的能量,跃迁到高能级,即发生所谓的谐振现象。

研究核磁共振有两种方法:一是连续波法或称稳态法,使用连续的射频场(即旋转磁场)作用到核系统上,观察到核对频率的感应信号;另一种是脉冲法,用射频脉冲作用在核系统上,观察到核对时间的响应信号。

脉冲法有较高的灵敏度,测量速度快,但需要快速傅里叶变换,技术要求较高。

以观察信号区分,可观察色散信号或吸收信号。

但一般观察吸收信号,因为比较容易分析理解。

从信号的检测来分,可分为感应法,平衡法,吸收法。

测量共振时,核磁矩吸收射频场能量而在附近线圈中感应到信号,则为感应法;测量由于共振使电桥失去平衡而输出电压的即为平衡法;直接测量共振使射频振荡线圈中负载发生变化的为吸收法。

本实验用连续波吸收法来观察核磁共振现象。

2.核磁共振的量子力学描述核角动量P 由下式描述, (1) 式中,)1(+=I I P π2h =I 是核自旋磁量子数,可取0,1/2,1,...对H 核,I=1/2。

核自旋磁矩μ 与P 之间的关系写成P⋅=γμ (2) 式中,称为旋磁比e 为电子电荷;p m 为质子质量;J g 为朗德因子。

核磁共振类实验实验报告

核磁共振类实验实验报告

核磁共振类实验实验报告一、实验目的本次核磁共振类实验的主要目的是通过对样品进行核磁共振(NMR)测试,了解核磁共振的基本原理和实验操作方法,获取样品的结构和化学环境等相关信息,并对所得数据进行分析和解释。

二、实验原理核磁共振(Nuclear Magnetic Resonance,NMR)是指具有磁矩的原子核在恒定磁场中,由射频电磁场引起磁能级跃迁而产生的共振现象。

在NMR实验中,常用的原子核有氢核(^1H)、碳-13核(^13C)等。

当样品置于恒定磁场中时,原子核会产生不同的能级。

射频电磁波的频率与原子核在磁场中的进动频率相等时,就会发生共振吸收,从而在仪器上检测到信号。

化学位移是NMR中的一个重要概念,它反映了原子核周围电子云密度的差异。

不同化学环境中的原子核,其共振频率会有所不同,表现为在谱图上的化学位移不同。

此外,耦合常数也是NMR谱图中的重要参数,它反映了相邻原子核之间的相互作用。

三、实验仪器与试剂1、仪器核磁共振波谱仪样品管移液器2、试剂测试样品(如某种有机化合物)四、实验步骤1、样品制备准确称取一定量的样品,溶解于适当的溶剂中。

将溶液转移至样品管中,确保样品管内无气泡。

2、仪器调试打开核磁共振波谱仪,设置仪器参数,如磁场强度、射频频率等。

进行匀场操作,使磁场均匀性达到最佳状态。

3、样品测试将样品管放入仪器中,启动测试程序。

等待仪器采集数据,获取NMR谱图。

4、数据处理对所得谱图进行基线校正、相位调整等处理。

标注化学位移和耦合常数等重要参数。

五、实验结果与分析1、氢谱(^1H NMR)分析观察谱图中的峰形、峰位和峰强度。

根据化学位移值确定不同类型的氢原子。

分析耦合常数,判断相邻氢原子的关系。

例如,在某有机化合物的氢谱中,化学位移在 10 ppm 附近的峰可能归属于甲基上的氢原子,而在 70 ppm 附近的峰可能归属于苯环上的氢原子。

耦合常数的大小和模式可以提供关于氢原子之间连接方式的信息。

核磁共振成像实验报告

核磁共振成像实验报告

核磁共振成像实验报告
一、引言
核磁共振成像(MRI)是一种非侵入式的医学成像技术,常用于诊断和治疗疾病。

本实验旨在通过模拟MRI扫描实验,了解MRI的工作原理和影像生成过程。

二、实验材料与方法
1. 实验材料:包括磁共振设备模型、水样品、图像处理软件等。

2. 实验方法:
a. 将水样品放入磁共振设备中。

b. 使用磁场梯度和射频脉冲来激发水样品的核自旋。

c. 采集信号,并通过图像处理软件生成MRI图像。

三、实验结果与分析
经过实验操作和数据处理,成功生成了水样品的MRI图像。

在图像中,我们观察到不同组织的信号强度和分布情况。

通过分析MRI图像,可以发现水样品内部的结构特征,如脂肪、肌肉等组织的分布情况。

四、实验结论
本实验通过模拟MRI扫描,深入理解了MRI技术的工作原理和影像生成过程。

MRI技术在医学诊断中具有重要的应用前景,可为医生提供更准确的诊断结果,帮助患者得到更好的治疗。

五、参考文献
1. Smith A, et al. Magnetic Resonance Imaging: Principles and Applications. New York: John Wiley & Sons, 2010.
2. Brown C, et al. Introduction to MRI Technology. London: Springer, 2015.
六、致谢
感谢实验室的老师和同学们对本次实验的支持与帮助。

以上为核磁共振成像实验报告。

磁共振成像实验报告

磁共振成像实验报告

核磁共振实验报告小组成员:一.实验目的1.了解磁共振设备结构。

2.了解磁共振设备软件的使用。

3.分析比较不同物质的T1,T2值。

二.实验原理1.本实验所使用小型核磁设备磁场强度为0.5T。

2.该设备包括谱仪,射频柜,梯度柜和一个主机。

其中谱仪中有线圈,样品通过试管放在谱仪中进行检测。

梯度柜有三个旋钮调整磁场的均匀性。

3.核磁成像的原理是根据物质中的氢原子成像,自由水所表现出的特征是T1和T2均长,即含水量多的物质T1,T2均长。

三.实验步骤1.开启总电源,开主机。

2.待设备正常工作后,进入数据采集界面。

3.打开射频柜,将被测样品放入试管中,放入谱仪。

4.测量T2.(1)调整中心频率,由于刚开机,噪音大,所以需要过一段时间之后调整中心频率。

(2)选择硬脉冲序列,将采集到的信号累加,进行FFT变化,在一维处理中选择设置中心频率,点击波峰处,将此操作重复,直至其中心频率为0,或者信号的实部和虚部两条曲线无相交。

此步骤目的为将久为开机的设备从偏共振状态变为共振状态。

(3)寻找P1,P2值,其中P1为90°脉冲的作用时间,P2为180°脉冲的作用时间,其寻找方法为将界面调至模数据,累加,在采样菜单下改变P1值,当P1值从小到大变化时,对应模数据左端点的值先变大后变小,找到最大值P1和零值P2,一般P1=1/2P2.(4)选择硬脉冲CPMG序列,填入步骤5中所测得的P1,P2值,并且调整其他数值。

其中,根据经验,D1=300,D2=600,D1为90°脉冲和180°脉冲之间的间隔,D2为180°脉冲之间的间隔,C1为180°脉冲个数,TD为坐标轴中显示的时长,RG为接受增益,一般设置为2,增加C1可使回波能够衰减为0。

设置完这些参数后,累加,观察所示波形,若回波噪音过大或不能衰减为0,需重新设置步骤(4)中的参数,保存.fid文件,退出该数据采集软件。

实验报告核磁共振实验

实验报告核磁共振实验

实验报告核磁共振实验实验报告:核磁共振实验引言:核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种用于研究核自旋和分子结构的重要实验技术。

该技术的发展和应用在化学、物理、生物等领域有着广泛的意义。

本实验旨在通过核磁共振技术对样品中的核自旋进行分析,以便研究样品的分子结构和特性。

实验原理:核磁共振实验基于核自旋的特性。

当样品置于强磁场中时,核自旋会进入不同的能级态,其能级之间的差异可以通过能级跃迁来获得。

在本实验中,我们使用核磁共振仪器来探测核自旋间能级之间的差异,并进一步得到与样品相应的核磁共振谱。

实验步骤:1. 样品准备:a. 选择合适的样品,确保样品具有核自旋。

b. 准备样品溶液,使样品均匀溶解于溶剂中。

2. 仪器操作:a. 打开核磁共振仪器,确保仪器处于正常运行状态。

b. 将样品放置于核磁共振仪器中,保证样品与仪器之间的正常接触。

3. 参数设置:a. 设置核磁共振的相关参数,如磁场强度、扫描频率等。

b. 根据样品的特性设置相关的扫描模式和参数。

4. 开始扫描:a. 启动核磁共振扫描,并观察核磁共振信号的变化。

b. 记录核磁共振信号的强度、频率等相关数据。

5. 数据分析:a. 基于实验所得的数据,进行核磁共振谱的分析。

b. 利用相关的核磁共振谱图谱进行比对和验证。

实验结果与讨论:通过本实验的核磁共振扫描,我们得到了样品的核磁共振谱。

在谱图中,我们可以观察到一系列峰信号,这些峰信号代表了样品中不同核自旋的能级跃迁情况。

通过对这些峰信号的位置、强度等信息进行分析和比对,我们可以推断出样品中的分子结构、官能团等信息。

此外,通过对核磁共振谱的进一步分析,我们也可以获得一些与样品性质相关的参数,比如化学位移、耦合常数等。

这些参数对于研究样品的动力学、分子间相互作用等具有重要意义。

因此,核磁共振技术在化学、生物等学科的研究中得到了广泛的应用。

结论:核磁共振实验是一种重要的实验技术,可以用于研究样品的分子结构和性质。

核磁共振成像实训报告

核磁共振成像实训报告

一、引言核磁共振成像(MRI)作为一种无创性、高分辨率的医学影像技术,在现代医学诊断中扮演着越来越重要的角色。

为了提高我们对核磁共振成像技术的理解和应用能力,我们参加了核磁共振成像实训课程。

本文将详细记录实训过程,总结实训收获,并探讨核磁共振成像技术在临床诊断中的应用。

二、实训内容1. 核磁共振成像原理实训首先介绍了核磁共振成像的原理,包括核磁共振的基本原理、成像过程、成像参数等。

通过学习,我们了解到核磁共振成像利用人体内氢原子核在外加磁场中的共振特性,通过射频脉冲激发氢原子核,并检测其发射的信号,从而获得人体内部结构的图像。

2. 核磁共振成像设备实训过程中,我们参观了核磁共振成像设备,了解了设备的结构、功能及操作流程。

通过实际操作,我们掌握了设备的基本操作方法,如患者摆放、射频脉冲序列选择、成像参数设置等。

3. 核磁共振成像技术实训重点介绍了核磁共振成像技术,包括T1加权成像、T2加权成像、质子密度加权成像等。

我们学习了不同加权成像的特点及临床应用,如T1加权成像在显示骨骼、肌肉等方面具有优势,T2加权成像在显示水肿、肿瘤等方面具有优势。

4. 核磁共振成像临床应用实训课程还介绍了核磁共振成像在临床诊断中的应用,包括神经系统、骨骼肌肉系统、消化系统、呼吸系统、泌尿系统等。

我们通过案例分析,了解了核磁共振成像在临床诊断中的重要作用。

三、实训收获1. 提高了理论水平通过实训,我们对核磁共振成像的原理、设备、技术及临床应用有了更深入的了解,提高了我们的理论水平。

2. 增强了实践能力实训过程中,我们亲自动手操作核磁共振成像设备,掌握了基本操作技能,增强了我们的实践能力。

3. 拓宽了视野实训课程使我们了解到核磁共振成像在临床诊断中的广泛应用,拓宽了我们的视野。

四、核磁共振成像技术在临床诊断中的应用1. 神经系统疾病诊断核磁共振成像在神经系统疾病诊断中具有很高的准确性,如脑肿瘤、脑梗死、脑出血、脑积水、癫痫等。

核磁共振实验报告

核磁共振实验报告

核磁共振实验报告一、实验目的本次核磁共振实验的主要目的是通过对样品的核磁共振现象进行观测和分析,深入理解核磁共振的基本原理,掌握核磁共振仪器的操作方法,并获取有关样品的结构和性质等方面的信息。

二、实验原理核磁共振(Nuclear Magnetic Resonance,简称 NMR)是指处于外磁场中的原子核在射频场作用下发生能级跃迁的现象。

当原子核处于外加磁场中时,其核自旋会产生不同的能级。

如果在垂直于外磁场的方向上施加一个射频场,且射频场的频率与原子核的进动频率相等时,就会发生共振吸收,从而产生核磁共振信号。

对于氢原子核(质子)来说,其自旋量子数为 1/2,在外磁场中会产生两个能级。

共振频率与外磁场强度成正比,可用公式表示为:ω =γB其中,ω 是射频场的角频率,γ 是核的旋磁比,B 是外磁场强度。

通过测量共振吸收信号的强度和位置,可以获取关于样品中氢原子的化学环境、分子结构等信息。

三、实验仪器与样品本次实验使用的仪器为_____型核磁共振仪。

仪器主要由磁场系统、射频发射与接收系统、数据采集与处理系统等组成。

实验所用的样品为_____溶液。

四、实验步骤1、样品制备将适量的样品溶解于适当的溶剂中,制备成均匀的溶液,并装入核磁共振样品管中。

2、仪器调试打开核磁共振仪,设置合适的磁场强度、射频功率、扫描时间等参数,进行仪器的预热和调试。

3、样品测量将样品管放入仪器的检测区域,启动测量程序,记录核磁共振信号。

4、数据处理对测量得到的数据进行处理,包括基线校正、峰面积积分、化学位移标定等,以获取有用的信息。

五、实验结果与分析1、共振图谱得到的核磁共振图谱显示了多个吸收峰,每个峰的位置和强度都反映了样品中不同化学环境下氢原子的信息。

2、化学位移通过对峰位置的测量和与标准物质的对比,确定了样品中各氢原子的化学位移值。

化学位移的差异表明了氢原子周围电子云密度的不同,从而反映了分子结构的特点。

3、峰面积积分对各吸收峰的面积进行积分,积分值与相应氢原子的数量成正比。

核磁共振实验报告(写写帮整理)

核磁共振实验报告(写写帮整理)

核磁共振实验报告(写写帮整理)第一篇:核磁共振实验报告(写写帮整理)核磁共振实验报告一、实验目的:1.掌握核磁共振的原理与基本结构;2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用;二、实验原理核磁共振的研究对象为具有磁矩的原子核。

原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。

原子核的自选运动与自旋量子数I有关。

I=0的原子核没有自旋运动。

I≠0的原子核有自旋运动。

原子核可按I的数值分为以下三类:1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。

2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等;I=3/2;7Li、9Be、23Na、33S等;I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。

3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。

以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。

当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向:氢核(I=1/2),两种取向(两个能级):a.b.与外磁场平行,能量低,磁量子数m=+1/2;与外磁场相反,能量高,磁量子数m=-1/2;正向排列的核能量较低,逆向排列的核能量较高。

两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。

一个核要从低能态跃迁到高能态,必须吸收△E的能量。

让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。

这种现象称为核磁共振,简称NMR。

三、仪器设备结构核磁共振波谱仪(仪器型号:Bruker AVANCE 400M)由以下三部分组成:1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。

核磁共振实验报告

核磁共振实验报告

核磁共振实验报告核磁共振实验报告引言:核磁共振(Nuclear Magnetic Resonance,NMR)是一种重要的物理现象和科学技术,广泛应用于化学、生物、医学等领域。

本实验旨在通过核磁共振技术,了解其基本原理、仪器构成和应用。

一、核磁共振的基本原理核磁共振是基于原子核的磁性性质而产生的一种现象。

原子核具有自旋,即角动量,当处于外磁场中时,原子核会产生磁矩,并与外磁场相互作用。

这种相互作用会导致原子核发生能级分裂,产生能级差,从而形成共振吸收。

二、核磁共振的仪器构成核磁共振实验主要依赖于核磁共振仪器,其主要包括磁体、射频线圈、探测线圈和数据采集系统等组成部分。

1. 磁体磁体是核磁共振仪器的核心部分,用于产生稳定的外磁场。

常见的磁体有永磁体和超导磁体。

永磁体可以产生较弱的磁场,适用于一些小型实验室;而超导磁体可以产生较强的磁场,适用于大型实验室和医学影像设备。

2. 射频线圈射频线圈是用于产生射频场的设备,用于激发样品中的原子核共振吸收。

射频线圈的设计和制造对于实验结果的准确性和稳定性起着重要作用。

3. 探测线圈探测线圈用于接收样品中的核磁共振信号,并将其转化为电信号。

探测线圈的设计和性能直接影响到实验的信噪比和分辨率。

4. 数据采集系统数据采集系统用于记录、处理和分析核磁共振信号。

现代核磁共振仪器通常配备了先进的数据采集系统,可以实现高速、高分辨率的数据采集和处理。

三、核磁共振的应用核磁共振技术在化学、生物、医学等领域有着广泛的应用。

1. 化学领域核磁共振技术可以用于分析和鉴定化合物的结构。

通过测量样品中的核磁共振信号,可以推断出化合物的分子结构、官能团等信息。

这对于化学合成、药物研发等具有重要意义。

2. 生物领域核磁共振技术在生物领域中被广泛应用于蛋白质结构研究、代谢组学等方面。

通过核磁共振技术,可以揭示生物大分子的结构和功能,有助于理解生物体内的生物过程。

3. 医学领域核磁共振成像(Magnetic Resonance Imaging,MRI)是医学影像学中常用的一种无创检查方法。

医学磁电共振实验报告

医学磁电共振实验报告

实验名称:医学磁电共振成像技术实验日期:2023年4月15日实验地点:XX医院磁共振成像中心实验目的:1. 了解磁电共振成像的基本原理和设备结构。

2. 掌握磁电共振成像的基本操作流程。

3. 学习磁电共振成像在临床诊断中的应用。

实验材料:1. 磁共振成像设备2. 成像软件3. 被检者4. 检查用线圈实验方法:1. 磁共振成像原理介绍:磁共振成像(MRI)是一种利用强磁场和射频脉冲产生的生物磁共振现象进行人体成像的技术。

其基本原理是利用人体内水分子的磁矩在外加磁场中的进动,通过射频脉冲激发产生磁共振信号,经接收线圈采集后,经过信号处理和图像重建,最终得到人体内部的断层图像。

2. 磁共振成像设备操作:实验过程中,操作者需按照以下步骤进行操作:a. 开机:打开磁共振成像设备,进行预热。

b. 检查准备:将被检者带入检查室,协助其躺在检查床上,调整体位,确保线圈与被检部位紧密贴合。

c. 参数设置:根据被检者的病情和部位,设置合适的扫描参数,如梯度场强度、射频频率、翻转角、回波时间等。

d. 扫描:启动扫描程序,进行磁共振成像。

e. 数据传输:将采集到的数据传输至计算机进行图像重建。

f. 图像分析:观察重建后的图像,进行初步分析。

3. 磁共振成像在临床诊断中的应用:磁共振成像技术在临床诊断中具有广泛的应用,主要包括以下方面:a. 脑部疾病:如脑肿瘤、脑梗死、脑出血、脑积水等。

b. 骨骼系统疾病:如骨折、骨肿瘤、关节病变等。

c. 软组织疾病:如肌肉、肌腱、韧带损伤等。

d. 呼吸系统疾病:如肺炎、肺肿瘤等。

e. 消化系统疾病:如肝脏、胰腺、肾脏等器官病变。

实验结果:本次实验成功完成了磁共振成像操作,采集到了被检者的头部和脊柱图像。

图像清晰,分辨率高,为临床诊断提供了有力依据。

实验讨论:1. 磁共振成像技术在临床诊断中具有很高的应用价值,其优势在于无辐射、软组织分辨率高、多序列成像等优点。

2. 磁共振成像操作过程中,需注意被检者的体位调整、线圈与被检部位的贴合程度等因素,以保证图像质量。

核磁共振实验实验报告

核磁共振实验实验报告

一、实验目的1. 理解核磁共振的基本原理。

2. 掌握核磁共振实验的操作技能。

3. 学习通过核磁共振谱图分析物质的结构。

4. 熟悉核磁共振仪器的使用方法。

二、实验原理核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种利用原子核在外加磁场中产生共振吸收现象的技术。

当原子核置于磁场中时,其磁矩会与磁场相互作用,导致原子核的自旋能级发生分裂。

通过向样品施加特定频率的射频脉冲,可以使原子核从低能级跃迁到高能级,当射频脉冲停止后,原子核会释放能量回到低能级,产生核磁共振信号。

三、实验仪器1. 核磁共振仪(NMR Spectrometer)2. 样品管3. 射频脉冲发生器4. 数据采集系统5. 计算机四、实验步骤1. 准备样品:将待测样品溶解在适当的溶剂中,并转移至样品管中。

2. 调整磁场:将样品管放置在核磁共振仪的样品腔中,调整磁场强度至所需值。

3. 设置射频脉冲参数:根据样品的核磁共振特性,设置射频脉冲的频率、功率和持续时间等参数。

4. 数据采集:开启核磁共振仪,开始采集核磁共振信号。

5. 数据处理:将采集到的信号传输至计算机,进行数据处理和分析。

五、实验结果与分析1. 核磁共振谱图:通过核磁共振仪采集到的样品谱图显示了不同化学环境下的原子核的共振吸收峰。

峰的位置、形状和强度等信息可以用来推断样品的结构。

2. 化学位移:峰的位置(化学位移)反映了原子核在磁场中的相对位置。

通过比较标准物质的化学位移,可以确定样品中不同类型的原子核。

3. 峰的积分:峰的面积与样品中该类型原子核的数目成正比。

通过峰的积分,可以确定样品中不同类型原子核的相对比例。

4. 峰的分裂:峰的分裂(耦合)反映了原子核之间的相互作用。

通过分析峰的分裂情况,可以推断样品中原子核的连接方式和空间结构。

六、实验讨论1. 实验误差:实验误差可能来源于多种因素,如仪器精度、操作技能和样品纯度等。

为了减小误差,需要严格控制实验条件,并多次重复实验。

核磁共振 实验报告

核磁共振 实验报告

核磁共振实验报告核磁共振实验报告引言:核磁共振(Nuclear Magnetic Resonance,NMR)是一种重要的物理现象,它在医学、化学、材料科学等领域有着广泛的应用。

本实验旨在通过核磁共振技术,探索其原理与应用。

一、实验目的本实验的目的是通过核磁共振技术,了解原子核的磁性与能级结构,掌握核磁共振信号的产生与检测方法,并探索核磁共振在医学与化学中的应用。

二、实验原理核磁共振是基于原子核的磁性与能级结构的现象。

原子核由质子和中子组成,而质子和中子都具有自旋。

当原子核处于外加磁场中时,由于自旋的存在,原子核会具有磁矩。

当外加磁场的方向与原子核的磁矩方向一致时,原子核的能量较低;当外加磁场的方向与原子核的磁矩方向相反时,原子核的能量较高。

这种能级差距可以通过外加射频脉冲来激发或翻转。

三、实验步骤1. 实验前准备:调节核磁共振仪的磁场强度和频率,确保仪器的正常运行。

2. 样品制备:选择合适的样品,将其溶解在适当的溶剂中,并注入玻璃管中。

3. 样品放置:将含有样品的玻璃管放置在核磁共振仪的样品室中,确保其与磁场方向垂直。

4. 实验参数设置:调节核磁共振仪的扫描参数,如扫描时间、扫描次数等。

5. 信号检测:通过核磁共振仪的探测器,检测样品中的核磁共振信号。

6. 数据处理:对得到的核磁共振信号进行分析和处理,得到样品的核磁共振谱图。

四、实验结果与分析通过实验,我们成功得到了样品的核磁共振谱图。

核磁共振谱图是由核磁共振信号的强度和频率构成的。

通过分析谱图,我们可以得到样品中不同核的化学位移、耦合常数等信息,从而确定样品的结构和成分。

五、实验应用核磁共振技术在医学与化学领域有着广泛的应用。

在医学中,核磁共振成像(MRI)技术可以用于人体内部的无创成像,帮助医生进行疾病的诊断与治疗。

在化学中,核磁共振技术可以用于分析和鉴定化合物的结构,帮助化学家进行合成和研究。

六、实验总结通过本次实验,我们深入了解了核磁共振技术的原理与应用。

实验报告核磁共振实验

实验报告核磁共振实验

实验报告核磁共振实验实验报告:核磁共振实验一、实验目的本次核磁共振实验的主要目的是通过对样品进行核磁共振测量,了解核磁共振现象的基本原理,掌握核磁共振仪器的操作方法,测量样品的核磁共振参数,并对实验结果进行分析和讨论。

二、实验原理核磁共振(Nuclear Magnetic Resonance,NMR)是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。

在磁场中,原子核会发生能级分裂,当外加射频场的频率与原子核的进动频率相等时,就会发生共振吸收,从而产生核磁共振信号。

对于氢原子核(质子),其磁矩μ与自旋角动量 I 之间的关系为:μ =γI,其中γ为旋磁比。

在磁场 B 中,质子的能级分裂为:E =μ·B =γhI·B /2π,其中 h 为普朗克常数。

当射频场的频率ν满足:hν =ΔE =γhB /2π 时,就会发生核磁共振。

通过测量共振时的射频频率ν和磁场强度 B,可以计算出旋磁比γ等参数。

三、实验仪器本次实验使用的是_____型核磁共振仪,主要包括以下部分:1、磁铁:提供恒定的磁场。

2、射频发射和接收系统:产生和检测射频信号。

3、样品管:放置待测样品。

4、控制台:用于控制实验参数和采集数据。

四、实验步骤1、样品制备将待测样品(如_____溶液)准确配制,并装入样品管中。

2、仪器调试开启核磁共振仪,预热一段时间后,进行磁场匀场和射频频率校准,以获得良好的实验条件。

3、测量参数设置在控制台上设置测量参数,如磁场强度、射频频率扫描范围、扫描时间等。

4、数据采集启动测量程序,仪器自动进行射频频率扫描,并采集核磁共振信号。

5、数据处理对采集到的数据进行处理,如基线校正、峰面积积分等,以获得准确的实验结果。

五、实验数据与分析1、共振频率的测量通过实验,我们得到了样品在不同磁场强度下的共振频率。

如下表所示:|磁场强度(T)|共振频率(MHz)||::|::|| 05 | 213 || 10 | 426 || 15 | 639 |根据上述数据,我们可以绘制出共振频率与磁场强度的关系曲线,并通过线性拟合得到旋磁比γ的实验值。

核磁共振成像实验

核磁共振成像实验
横向弛豫T2:自旋原子核进 动相位的一致性逐渐散相, 回到均匀,不会影响到自旋系 统能量(垂直磁场方向)
核磁共振成像原理
自旋回波成像
自旋回波 若磁场是均匀的,则不同
位置的共振频率相同,无 法区分 梯度磁场,使得不同位置 处的共振频率不同 选层梯度 相位编码梯度 频率编码梯度
回波信号强度: S (TE ,TR ) A N (H ) (1 eTR T1 ) eTE T2
回波信号强度: S (TE ,TR ) A N (H ) (1 eTR T1 ) eTE T2
x SWY NE
GX 2D1 GX
不失真 z x
NE SW GX D1 GZ
D1相位编码时间
相位编码步数 频宽 采样点数
z z SW 2 Gz 2 Gz
x SWY NE
GX 2D1 GX
SW=256KHz,NE=256,GX=60%,GY=80%,GZ
截断伪影:
由于采样时间=TD/SW太短而,对回波信号的截取造成失真
由于不同的组织具有不同的T1和T2,由此来区分
Z’
Y’ X’
由K空间到实空间



FFT



采样时间=TD/SW
y
SLICE=1 横断面 xz平面
z SLICE=0 矢面 yz平面
x
图像大小控制
D1
z
SW
2 Gzz,z
z 2 Gz
SW 2 Gz
NE SW TD
NE SWx 2D 1
共振原理
Bz
y y
μI
B
μI
B1
Lt x
x
x
从量子力学的角度看,核磁共振是自旋不为零的原子核的核磁矩在静磁场 中被磁化后与特定频率的射频场产生的共振吸收现象. 吸收能量后的自旋 核与周围物质相互作用并以相同的频率退激辐射。

核磁共振成像实验报告

核磁共振成像实验报告

核磁共振成像实验报告————————————————————————————————作者:————————————————————————————————日期:中国石油大学 近代物理实验 实验报告 成 绩:班级: 姓名 同组者: 教师:核磁共振实验【实验目的】1、理解核磁共振的基本原理;2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法;3、掌握梯度回波序列成像原理及其成像过程;4、掌握弛豫时间的计算方法,并反演 T1和T2谱。

【实验原理】 一.核磁共振现象原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。

图1 质子磁矩的进动在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:.0/2f B γπ=二、施加射频脉冲后(氢)质子状态当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。

在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。

这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。

施加的射频脉冲越强,持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。

如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。

这时质子群几乎以同样的相位旋进。

施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。

图2 90°脉冲后横向磁化矢量达到最大图3 180°脉冲后的横向磁化分量为0三、射频脉冲停止后(氢)质子状态脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。

当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。

实验报告核磁共振实验

实验报告核磁共振实验

实验报告核磁共振实验实验报告:核磁共振实验一、实验目的本次核磁共振实验的主要目的是深入了解核磁共振现象,掌握核磁共振的基本原理和实验方法,通过对样品的测试分析,获取有关样品分子结构和物理化学性质的信息。

二、实验原理核磁共振(Nuclear Magnetic Resonance,NMR)是指处于静磁场中的原子核在另一交变磁场作用下发生的物理现象。

原子核具有自旋的特性,自旋会产生磁矩。

在没有外加磁场时,原子核的磁矩方向是随机的。

当置于外加静磁场中时,原子核的磁矩会取向于特定的方向,分为与磁场平行和反平行两种状态。

平行时能量较低,反平行时能量较高。

如果再施加一个与静磁场垂直的交变磁场,且其频率与原子核在静磁场中的进动频率相等时,就会发生共振吸收现象,原子核从低能态跃迁到高能态。

这个共振频率与原子核的种类、所处的化学环境以及外加磁场强度有关。

通过测量共振时吸收的能量和频率,可以得到关于原子核及其所处环境的信息。

三、实验仪器与试剂1、核磁共振仪:包括超导磁体、射频发射与接收系统、控制台等。

2、样品管:用于容纳测试样品。

3、测试样品:例如某种有机化合物溶液。

四、实验步骤1、样品制备准确配制一定浓度的样品溶液,确保溶液均匀无沉淀。

将样品溶液装入样品管中,注意避免气泡产生。

2、仪器调试开启核磁共振仪,预热一段时间,使其达到稳定工作状态。

调节磁场强度和射频频率,使其达到实验所需的条件。

3、样品测试将装有样品的样品管放入仪器的检测区域。

启动测试程序,记录核磁共振信号。

4、数据处理对获得的核磁共振信号进行处理,例如傅里叶变换,以得到频谱图。

分析频谱图中的峰位置、峰强度和峰形等信息。

五、实验结果与分析1、频谱图分析观察到了多个明显的共振峰,每个峰对应着样品中不同化学环境的原子核。

通过峰的位置可以确定原子核的化学位移,化学位移反映了原子核周围电子云的密度和化学键的特性。

2、峰强度分析峰的强度与相应原子核的数量成正比,可以用于定量分析样品中不同组分的含量。

磁共振实验报告

磁共振实验报告

磁共振实验报告一、实验目的本次磁共振实验的目的在于深入了解磁共振现象的原理和应用,掌握磁共振实验的基本操作和数据处理方法,通过实验测量样品的磁共振参数,如共振频率、弛豫时间等,并对实验结果进行分析和讨论。

二、实验原理磁共振(Magnetic Resonance,MR)是指处于静磁场中的原子核系统在射频场作用下发生能级跃迁的现象。

当原子核置于外加静磁场中时,核自旋会产生不同的能级。

如果在垂直于静磁场的方向上施加一个射频场,当射频场的频率与原子核的进动频率相等时,就会发生共振吸收,即磁共振现象。

磁共振实验中常用的参数有共振频率、弛豫时间等。

共振频率与静磁场强度和原子核的旋磁比有关。

弛豫时间包括纵向弛豫时间(T1)和横向弛豫时间(T2),分别反映了原子核系统在纵向和横向方向上恢复平衡态的过程。

三、实验仪器与材料本次实验使用的仪器为磁共振实验仪,主要包括永磁体、射频发射与接收系统、磁场调节装置、数据采集与处理系统等。

实验材料为装有某种液体样品的玻璃管。

1、仪器连接与调试将磁共振实验仪的各个部分正确连接,打开电源,预热一段时间。

调节磁场调节装置,使静磁场强度达到预定值,并确保磁场均匀稳定。

2、样品放置将装有液体样品的玻璃管小心地放入磁场中心位置,确保样品位置准确。

3、射频频率扫描启动射频发射系统,逐渐改变射频频率,同时观察接收信号的强度。

当接收到的信号达到最大值时,此时的射频频率即为共振频率。

4、弛豫时间测量采用特定的脉冲序列,分别测量纵向弛豫时间(T1)和横向弛豫时间(T2)。

对于 T1 的测量,采用反转恢复法;对于 T2 的测量,采用自旋回波法。

5、数据采集与记录使用数据采集系统采集实验过程中的信号数据,并进行记录。

实验完成后,关闭仪器电源,取出样品,清理实验台。

五、实验数据处理与分析1、共振频率根据实验中测量得到的共振频率数据,结合静磁场强度和原子核的旋磁比,计算出样品中原子核的种类和浓度。

2、弛豫时间对于 T1 和 T2 的测量数据,采用拟合曲线的方法得到弛豫时间的值。

核磁共振成像实验报告

核磁共振成像实验报告

核磁共振成像实验【目的要求】1.学习和了解核磁共振原理和核磁共振成像原理;2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程;【仪器用具】MRIjx 核磁共振成像仪、计算机、样品(油)【原 理】磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。

具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。

当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。

在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。

在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。

MRI 的特点:● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。

● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。

● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。

● 能进行形态学、功能、组织化学和生物化学方面的研究。

● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。

一、核磁共振原理产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师:
核磁共振实验
【实验目的】
1、理解核磁共振的基本原理;
2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法;
3、掌握梯度回波序列成像原理及其成像过程;
4、掌握弛豫时间的计算方法,并反演 T1和T2谱。

【实验原理】
一.核磁共振现象
原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。

图1 质子磁矩的进动
在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:.
0/2f B γπ=
二、施加射频脉冲后(氢)质子状态
当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。

在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。

这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。

施加的射频脉冲越强,
持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。

如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。

这时质子群几乎以同样的相位旋进。

施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。

图2 90°脉冲后横向磁化矢量达到最大
图3 180°脉冲后的横向磁化分量为0
三、射频脉冲停止后(氢)质子状态
脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。

当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。

图4 90度脉冲停止后宏观磁化矢量的变化
1. 纵向弛豫时间(T1)
90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时
间越长,所测得磁化矢量信号幅度就越大。

弛豫过程表现为一种指数曲线,T1值规定为M z 达到最终平衡状态63%的时间,如图5所示。

图5 纵向弛豫时间T1
T1进一步的物理意义的理解,只有从微观的角度分析。

由于质子从射频波吸收能量,处于高能态的质子数目增加,T1弛豫是质子群通过释放已吸收的能量,以恢复原来高低能态平衡的过程,T1弛豫也称为自旋-晶格弛豫。

2. 横向弛豫时间(T2)
90°脉冲的一个作用是激励质子群使之在同一方位,同步旋进(相位一致),这时横向磁化矢量Mxy值最大,但射频脉冲停止后,质子同步旋进很快变为异步,旋转方位也由同而异,相位由聚合一致变为丧失聚合而各异,磁化矢量相互抵消,Mxy很快由大变小,最后趋向于零,称之为去相位。

横向磁化矢量衰减也表现为一种指数曲线,T2值规定为横向磁化矢量衰减到其原来值37%所用的时间,如图6所示。

图6 90度脉冲停止后宏观磁化矢量的变化
四、核磁共振成像
在弛豫过程中通过测定横向磁化矢量Mxy可得知生物组织的磁共振信号。

横向磁化矢量Mxy垂直并围绕主磁场B0以Larmor频率旋进,按法拉第定律,磁矢量Mxy的变化使环绕在人体周围的接收线圈产生感应电动势,这个可以放大的感应电流即MR信号。

90°脉冲后,由于受T1、T2的影响,磁共振信号以指数曲线形式衰减,称为自由感应衰减
(free induction decay,FID),如图7。

图7 自由感应衰减信号
磁共振信号的测量只能在垂直于主磁场的XY平面进行。

由于脉冲发射和接收生物组织原子核的共振信号不在同一时间,而射频脉冲和生物组织发生的共振信号的频率又是一致的,因此,可用一个线圈兼作发射和接收。

由于Mxy指向或背向接收线圈,MR信号或正或负,横向磁化矢量转动,在接收线圈中出现周期性电流振荡,这些振荡为正弦波并逐渐阻尼(阻尼指信号幅度随时间减弱),幅度的变化可用信号演变来表示。

由于质子和质子的相互作用(spin-spin),自由感应衰减的时间为T2,质子和质子间的相互作用以及磁场不均匀性的影响,自由感应衰减的时间为T′2,T′2显著短于T2。

在一个磁环境中,所有质子并非确切地有同样的共振频率。

在一个窄频率带,自由感应衰减信号代表叠加到一起的正弦振荡,用数学方法(傅里叶变换)可把这一振幅随时间而变化的函数变成振幅按频率分布而变化的函数,后者即MR波谱,见图8。

图8 傅立叶变换
振幅随时间而降低的正弦信号经傅里叶变换后用窄细的钟形波为代表。

由于振幅演变的起始值取决于横向磁矩,而该磁矩又取决于特定组织体素(voxel)中受激励原子核的数目,因此波峰高度(信号强度)代表质子密度N(H),如质子群为纯水且主磁场又很均匀,则质子群共振频率只有1个,钟形波为一直线。

如由于质子群的自旋-自旋作用及磁场不均匀性的影响,在频率域座标上就不是一直线,而表现为一钟形波,其宽度与T′2成反比,即钟形波越宽,T′2越短,而钟形波最宽处为其共振频率。

【实验装置】
NMI20台式磁共振成像仪;乙醇和水的混合溶液;
【实验内容】
1 测量乙醇和汽油混合溶液的横向弛豫时间T2
(1)配置乙醇和水的混合溶液,乙醇质量含量分别为0%、20%、50%、80%、100%。

(2)系统参数和脉冲参数的设置
(3)CPMG实验
(4)弛豫信号反演
(5)分析不同浓度乙醇和水混合液T2的区别。

【数据记录及处理】
1 测量乙醇和汽油混合溶液的横向弛豫时间T2
运行NMI20的分析软件,寻找中心频率和硬脉冲宽度,并设置其他参数后,调入CPMG序列界面进行采样并提取回波峰点,然后进行弛豫信号反演。

表一乙醇和水混合溶液的横向弛豫时间T2
乙醇浓度峰起始
时间
峰顶时

峰结束
时间
峰面积比例
0% 2477.08 2718.59 2983.65 14735.06 1
14735.06
20% 705.48 811.131 1072.27 411.572 0.031 20% 1417.47 2056.51 2595.02 12952.15 0.969
13363.72
50% 509.414 613.591 849.753 405.321 0.032 50% 1123.32 1707.35 2257.02 12374.46 0.968
12779.78
80% 367.838 422.924 533.67 91.321 0.007 80% 1232.85 1707.35 2154.43 12191.62 0.773
12282.94
100% 1629.75 1963.04 2364.49 11037.78 1
11037.78
比率-浓度关系图
【思考与讨论】
1.什么是核磁共振,描述磁共振产生的基本原理;以及核磁共振成像的基本原理;答:具有磁距的原子核在高强度磁场作用下,可吸收适宜频率的电磁辐射,由低能态跃迁到高能态的现象。

如1H、3H、13C、15N、19F、31P等原子核,都具有非零自旋而有磁距,能显示此现象。

由核磁共振提供的信息,可以分析各种有机
和无机物的分子结构。

核磁共振现象来源于原子核的自旋角动量在外加磁场作用
下的进动,而其产生的条件是:核有自旋;外磁场,能级分裂。

核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。

它是利用磁场与射频脉冲使物体内进动的氢核(即H+)产生射频信号,经计算机处理而成像的。

原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。

共振吸收和共振发射的过程叫做“核磁共振”。

当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像,这就是核磁共振成像。

2.分析磁场空间分布不均匀性对共振信号的影响?
答:不均匀的磁场会在样品内形成局部磁场,它将加剧磁化强度横向分量进动,相位失配的过程,使共振信号产生附加的展宽。

【实验总结】
此实验实验原理非常复杂,但是由于是全电脑自动处理数据,所以总体感觉实验很轻松,实验结果也很明显,后期数据处理上也不难。

但是在对实验原理和实验操作进一步了解后,明白了核磁共振的重要性及其在各领域的影响,体会到物理学的魅力。

相关文档
最新文档