太阳能光伏并网逆变器的设计原理框图

合集下载

AN1444 - 并网太阳能微型逆变器参考设计

AN1444 - 并网太阳能微型逆变器参考设计

© 2012 Microchip Technology Inc.DS01444A_CN 第 1页AN1444作者:Alex Dumais 和Sabarish Kalyanaraman Microchip Technology Inc.简介风力发电系统和光伏(PV )发电系统等可再生资源使用方便且前景广阔,在过去几年获得了大量关注。

太阳能系统具有很多优势,例如:•清洁的可再生能源,可替代煤、石油和核能产生的能量•可降低/消除用电费用•用于制造PV 电池板的硅是地球上含量第二多的元素•能够为边远地点提供电能随着晶体电池板制造能力的增强,总体制造成本随之降低,PV 电池板的效率也得以提高,因此近来对太阳能系统的需求不断增长。

使太阳能需求增长的其他原 因包括:PV 技术经过验证且可靠,PV 模块具有30年以上的保修期,以及政府的鼓励措施。

太阳能逆变器系统有两个主要要求:从PV 电池板收集可用能量,以及将与电网电压同相的正弦电流注入电网。

为了从PV 电池板收集能量,需要使用最大功率点追踪(Maximum Power Point Tracking ,MPPT )算法。

该算法决定了在任何给定时间可从PV 模块获取的最大功率。

与电网接口要求太阳能逆变器系统符合公共事业公司指定的特定标准。

这些标准(如EN61000-3-2、IEEE1547和美国国家电气规范(NEC )690)涉及电源质量、安全、接地和孤岛情况检测。

太阳能电池的特性要开始开发太阳能微型逆变器系统,了解太阳能电池的不同特性非常重要。

PV 电池是半导体器件,其电气特性与二极管相似。

但是,PV 电池是电力来源,当其受到光(如太阳光)照射时会成为电流源。

目前最常见的技术是单晶硅模块和多晶硅模块。

PV 电池的模型如图1所示。

Rp 和Rs 为寄生电阻,在理想情况下分别为无穷大和零。

图1:PV 电池的简化模型RpRsVoIoPV 电池的表现会因其尺寸或与其连接的负载的类型,以及太阳光的强度(照度)而有所不同。

太阳能光伏并网逆变器的原理PPT

太阳能光伏并网逆变器的原理PPT

• 操作步骤 •步骤 1 在主界面,点击“设置〞,进入用 户及密码设置界面
•步骤 2 设置正确的“用户名〞和“密码
步骤 3 点击“保护参数〞,进入“保护参数〞界面 • 步骤 4 设置“绝缘阻抗保护点〞、“开机软启动时间〞
“电网短时中断判断时间〞及“快速启动梯度〞。 • “绝缘阻抗保护点〞参数,设置范围为“0.033Ω ~
21
11、防止不必要的电路板接触。 12、遵守静电防护标准,佩戴防静电手环。 13、注意并遵守产品上的警告标识。 14、操作前初步目视检查设备有无损坏或其它危 险状态。 15、注意逆变器热外表。例如功率半导体的散热 器等,在逆变器断电后一段时间内,仍保持较高 温度。
22
五.逆变器安装位置的要求: 1、勿将逆变器安装在阳光直射处。否那么可能会导致 额外的逆变器内部温度,逆变器为保护内部元件将降 额运行。甚至温度过高引发逆变器温度故障。 2、选择安装场地应足够巩固能长时间支撑逆变器的重 量。 3、所选择安装场地环境温度为-25°C ~ 50°C,安装 环境清洁。 4、所选择安装场地环境湿度不超过 95%,且无凝露 5、逆变器前方应留有足够间隙使得易于观察数据以及 维修。
12
13
2.高频环节逆变技术 高频环节逆变电路如图2 所示,就是利用高频变
压器替代低频变压器进展能量传输、并实现变流装置 的一、二次侧电源之间的电器隔离,从而减小了变压 器的体积和重量,降低了音频噪音,此外逆变器还具 有变换效率高、输出电压纹波小等优点。此类技术中 也有不用变压器隔离的,在逆变器前面直接用一级高 频升压环节,这级高频环节可以提高逆变侧的直流电 压,使得逆变器输出与电网电压相当,但是这样方式 没有实现输入输出的隔离,比较危险,相比这两种技 术来讲,高频环节的逆变器比低频逆变器技术难度高 、造价高、拓扑构造复杂。

500W太阳能光伏并网逆变器电路设计图

500W太阳能光伏并网逆变器电路设计图

500W太阳能光伏并网逆变器电路设计图500W太阳能光伏并网逆变器电路设计图光伏并网发电系统是光伏系统发展的趋势。

根据光伏并网发电系统的特点,设计了一套额定功率为500W的光伏并网逆变器,该并网逆变器能实现最大功率跟踪和反孤岛效应控制功能,控制部分采用基于TMS320F240型DSP的电流跟踪控制策略,实现了与网压同步的正弦电流输出。

关键词:太阳能;光伏系统;最大功率点跟踪;孤岛效应;并网逆变器1 引言太阳能的大规模应用将是21世纪人类社会进步的重要标志,而光伏并网发电系统是光伏系统的发展趋势。

光伏并网发电系统的最大优点是不用蓄电池储能,因而节省了投资,系统简化且易于维护。

这类光伏并网发电系统主要用于调峰光伏电站和屋顶光伏系统。

目前,美、日、欧盟等发达国家都推出了相应的屋顶光伏计划,日本提出到2010年要累计安装总容量达50 000MW的家用光伏发电站。

作为屋顶光伏系统的核心,并网逆变器的开发越来越受到产业界的关注[1]。

2 光伏并网系统设计2.1 系统结构光伏并网逆变器的结构如图1所示。

光伏并网逆变器主要由二部分组成:前级DC-DC变换器和后级DC-AC逆变器。

这2部分通过DClink相连接,DClink的电压为400V。

在本系统中,太阳能电池板输出的额定直流电压为100V~170V。

DC—DC变换器采用boost结构,DC—AC部分采用全桥逆变器,控制电路的核心是TMS320F240型DSP。

其中DC-DC变换器完成最大功率跟踪控制(MPPT)功能,DC-AC 逆变器维持DClink中间电压稳定并将电能转换成220V/50Hz的正弦交流电。

系统保证并网逆变器输出的正弦电流与电网的相电压同频和同相。

2.2 控制电路设计2.2.1 TMS320F240控制板TMS320F240控制板如图2所示,以TI公司的TMS320F240型DSP为核心,外围辅以模拟信号调理电路、CPLD、数码管及DA显示、通信及串行E2PROM,完成电压和电流信号的采样、PWM脉冲的产生、与上位机的通信和故障保护等功能。

图解光伏逆变器电路图原理

图解光伏逆变器电路图原理

图解光伏逆变器电路图原理光伏逆变器电路图及原理简介据了解,随着国内光伏市场的启动,光伏并网标准也日渐苛刻,新的光伏并网标准对发电站和光伏逆变器的要求都有大幅提高。

今天我们就来了解一下,光伏逆变器的电路图及原理简介。

逆变器是一种把直流电能(电池、蓄电池)转变成交流电(一般为220伏50HZ正弦波或方波)的装置。

我们常见的应急电源,一般都是把直流电瓶逆变成220V交流的。

简单来讲,逆变器就是一种将直流电转化为交流电的装置。

不管是在偏远山村,或是野外需要或是停电应急,逆变器都是一个非常不错的选择。

比较常见的是机房会用到的UPS电源,在突然停电时,UPS可将蓄电池里德直流电逆变成交流供计算机使用,从而防止因突然断电而导致的数据丢失问题。

能够不间断地提供电源,具有一定的安全可靠性、稳定性。

逆变器还可以与发电机配套使用,能有效地节约燃料、减少噪音,在风能、太阳能领域,逆变器更是必不可少。

小型逆变器还可利用汽车、轮船、便携供电设备在野外提供交流电源。

本文将介绍两种比较简单的逆变器原理图。

性能优良的家用逆变电源电路图这种设计,材料易取,输出功率150W,本电路设计频率为300HZ左右,目的是缩小逆变变压器的体积、重量、输出波形方波。

这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。

这款逆变器较为容易制作,可以将12V 直流电源电压逆变为220V市电电压,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和BG2驱动,来控制BG6和BG7工作。

其中振荡电路由BG5与DW组的稳压电源供电,这样可以使输出频率比较稳定。

在制作时,变压器可选有常用双12V输出的市电变压器。

可根据需要,选择适当的12V蓄电池容量。

高效率的正弦波逆变器电器图该电路用12V电池供电。

先用一片倍压模块倍压为运放供电。

可选取ICL7660或MAX1044。

运放1产生50Hz正弦波作为基准信号。

运放2作为反相器。

光伏并网逆变器设计方案讲解

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。

3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。

百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。

百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。

在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。

该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。

2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计
1 引言
21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。

在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。

因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。

太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。

文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。

2 系统工作原理及其控制方案
2.1 光伏并网逆变器电路原理
太阳能光伏并网逆变器的主电路原理图如图1所示。

在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。

系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。

图1 电路原理框图
2.2 系统控制方案
图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC变换器和后级的DC/AC 逆变器组成。

DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。

考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。

DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。

图2 主电路拓扑图。

太阳能光伏并网逆变器的设计原理框图

太阳能光伏并网逆变器的设计原理框图

太阳能光伏并网逆变器的设计原理框图————————————————————————————————作者:————————————————————————————————日期:太阳能光伏并网逆变器的设计原理框图随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。

光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。

在光伏并网系统中,并网逆变器是核心部分.目前并网型系统的研究主要集中于DC—DC和DC-AC两级能量变换的结构。

DC—DC 变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC—AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。

其中DC—AC是系统的关键设计.太阳能光伏并网系统结构图如图1所示.本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器.前级用于最大功率追踪,后级实现对并网电流的控制。

控制都是由DSP芯片TMS320F2812协调完成。

图1 光伏并网系统结构图逆变器的设计太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。

同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。

并且具有完善的并网保护功能,保证系统能够安全可靠地运行。

图2是并网逆变器的原理图。

图2 逆变器原理框图控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。

实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。

控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路.其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。

第二章单相光伏并网发电系统结构与工作原理

第二章单相光伏并网发电系统结构与工作原理
本章首先介绍了光伏并网发电系统的基本原理接着对光伏并网逆变器的拓扑结构进行了介绍和分类在分析对比了隔离型单级拓扑结构非隔离型两级拓扑结构的基础上确定了本系统设计采用无变压器隔离的两级拓扑结构前级是boost升压电路后级是单相全桥逆变电路两者通过直流母线dclink相连
第二章单相ቤተ መጻሕፍቲ ባይዱ伏并网发电系统结构与工作原理
第2章单相光伏并网发电系统结构与工作原理2.1 单相光伏并网发电系统基本原理
图2-1 典型光伏发电系统框图 单相光伏并网发电系统由四部分组成,即太阳能电池方阵、蓄电池组、逆变器和控制器,其典型的系统框图如图2-1所示。 并网光伏发电系统的主要特点是,与公用电网发生紧密的电联系。光伏发电系统多余的电力向电网供电,不足的电力由电网 补。其工作的基本原理是,太阳能电池方阵受到太阳辐照,通过太阳能电池的光生伏打效应,将太阳光能直接转换为直流电 能,太阳能电池方阵的输出端经防反充二极管接至控制器。控制器的一对输出端接至蓄电池组,对其进行充、放电保护控制; 控制器的另一对输出端通过开关接至逆变器,将直流电逆变为交流电,可以向交流负载供电,也可以通过锁相环节向电网输出 与电网电压同频、同相的交流电。这样就构成了一个完整的发电、输电和供电系统。 对于光伏并网系统而言,将太阳能经光伏电池阵列转化成电能馈送给交流电网,其间能量的传递与转换可以有很多种方式,并 网逆变器的结构也因而有所不同,可以是直接从太阳能电池到电网的单级DC- AC变换结构,也可以是DC- DC 和DC- AC的两 级变换结构。对于小功率光伏并网发电系统,由于光伏电池阵列的输出电压比较低,因而更多的采用了先通过一级DC- DC变 换器升压,然后再通过一级DC- AC逆变器的两级变换并网结构。 太阳能并网逆变器的控制目标是控制并网逆变器的输出电流为稳定的高质量的正弦波电流,同时还要求并网逆变器输出的电流 与电网电压同频、同相,因此需要采用合适的控制策略以达到上述的控制目标。 2.2光伏发电系统逆变器的拓扑结构 由于太阳能电池,燃料电池每个单元的输出电压较低,所以在串联数量很少的情况下,并网逆变器的输入电压较低,这样并网 逆变器就需要具有直流电压的提升和逆变的功能。通常并网逆变器依照级数可以划分为单级式逆变器和多级式逆变器。单级指 直流电压的提升和产生正弦波的输出电流或者输出电压在同一级电路中完成。多级即指在前一级或者前几级电路中实现了电压 的升降或者隔离,在后级的电路中实现了DC/AC的变换,常见的是两级逆变器。还有一些逆变器可以认为是两级也可以认为是 一些复杂的单级变换器。 2.2.1单级式光伏并网逆变器 单级式逆变器结构简单,成本较低,但是单级式非隔离型升压的程度有限,靠电感的储能实现,所以仅适用于较小功率场合, 不适合于并网运行。 单级式结构的逆变器所有的控制都在逆变环节中实现,即最大功率点的跟踪控制和逆变并网控制。单级式结构逆变器所并电网 为低电压电网,可以直接接入电网供电;如果单级式结构逆变器所并电网为高电压电网,并且光伏阵列输入电压较低,则逆变 器输出需升压变压器后接入电网,该变压器不仅具有升压作用,还具备滤波和隔离作用。单相单级式逆变器的结构如图1.8所 示。 单级式逆变器系统由光伏阵列、稳压滤波电容、单相全桥逆变电路、并网滤波电感和市电电网组成。单级式逆变器系统只有一 个逆变环节,因此该系统的结构比较简单,相应的效率比较高,但是所有的控制算法都在在该环节中实现,导致整个的控制系 统比较复杂。另外,由于光伏阵列的输出直接输入逆变器中,导致光伏阵列的电压输出有两倍工频的纹波电压,因此需要在光 伏阵列的输出侧加入大功率的滤波电容,来抑制电压纹波,如果滤波电容的选取较大,将会降低光伏系统的MPPT的响应速 度。

光伏并网逆变器的分类及原理ppt课件

光伏并网逆变器的分类及原理ppt课件
5
二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后 升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以 下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工 作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时 间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。 (二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳 定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。
21
3.2故障现象:逆变器不并网 故障分析:逆变器和电网没有连接, 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或 者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是 否断开。 3.3逆变器硬件故障:分为可恢复故障和不可恢复故障 故障分析:逆变器电路板,检测电路,功率回路,通讯回路等电路有故障。 解决办法:逆变器出现上述硬件故障,请把直流端和交流端全部断开,让逆变器停电30分钟以 上,如果自己能恢复就继续使用,如果不能恢复,就联系售后技术工程师。
直流侧断路器 PV+
PV-
直流支撑 逆变单元 电容
直流
EMI 滤波器

太阳能光伏并网逆变器的原理ppt课件

太阳能光伏并网逆变器的原理ppt课件
处理:1.查找华为说明书,查找ID,
72
73
2,如果长时间跳跃(例如本次跳跃时间将 近一个小时),应进入设置页面,进行欠 压保护的修改。
74
11.6逆变器的保护有哪些?
本逆变器的保护很多,下面我列举几个比较常见的保护 11.6.1直流输入反接保护 首次运行的时候容易出现,所以在首次并网时都要用万用 变测量PV的正负极是否对应 11.6.2逆变器输出短路 故障消失后自动恢复运行,如果故障没有立刻消失,应关 机,进行相关处理 11.6.3孤岛保护,低电压穿越保护 当逆变器检测到电网无电压时,自动解列,不再向电网供 电。电网电压恢复后,逆变器自动恢复并网。
步骤 5 分别设置不同保护参数的“保护点”和“保护时 间”。
• 允许设置的保护参数包括:电网过压一级 保护、电网过压二级保护、电网欠压一级 保护、电网欠压二级保护、电网过频一级 保护、电网过频二级保护、电网欠频一级 保护、电网欠频二级保护。一般情况下, 电网保护的阈值和时间由具体国家的标准 决定,所以选择不同的电网标准码,需要 设置的保护参数有所不同。
61
• 在电力领域,各次谐波的方均根值与基波 方均根值的比例称为该次谐波的谐波含量 。所有谐波的方均根值的方和根与基波方 均根值的比例称为总谐波失真。通常说的 谐波失真等同于总谐波失真。 •如220v则总电压畸变率 5%以内合格, 10kV 就4%了
62
10.注意事项
• 10.1系统正常运行时禁止打开逆变器机柜 柜门,否则将会造成逆变器关机。
66
11.2逆变器并网前首先要进行绝缘检测。 平时并网的时候可能这是一个不起眼的环 节,但是这一环节至关重要。是对设备和 人身的一个重要保证。平时我们在干电气 行业,电气设备都要定期对设备进行绝缘 检测试验,而逆变器每次并网前都要进行 自动绝缘检测,绝缘合格是并网的必要条 件。这是逆变器比较智能的一个体现。

光伏并网逆变器原理ppt课件

光伏并网逆变器原理ppt课件

二、光伏并网逆变器相关技术要点
2.9 监控软件和附件
二、光伏并网逆变器相关技术要点
2.9 监控软件和附件
光伏阵列防雷汇流箱 (4~12路)
二、光伏并网逆变器相关技术要点
2.9 监控软件和附件 光伏阵列防雷汇流箱 (二)
三、相关产品介绍
单相: SG1K5TL, SG2K5TL, SG3K, SG5K,SG6K,
上海太阳能 3KW×2 并网发电系统
项目描述: 上海太阳能 3KW×2 并网发电系统.
上海人民政府20KW
项目描述: 上海市市政府东西两个门卫室屋顶的阵列照片。(配备两台SG10K3) .
内蒙古乌海市光伏并网项目
第二讲:光伏并网逆变器原理
合肥阳光电源有限公司
研发中心 李维华 2009.07.13
报告内容
一、常见光伏并网逆变器的拓扑结构 二、光伏并网逆变器相关技术要点
2.1 效率 2.2 直流输入电压适应范围 2.3 可靠性(保护配置方式和种类) 2.4 并网电流谐波 2.5 逆变控制策略 2.6 最大功率点跟踪方式 2.7 锁相技术特点 2.8 孤岛效应检测技术 2.9 监控软件和附件 三、 阳光电源相关产品介绍 四、 相关业绩
一 常见光伏并网逆变器的拓朴结构
• 光伏并网发电系统由光伏组件、光伏并网逆变器、计量装置及配电系
统组成。
• 太阳电池产生直流电能。 • 通过光伏并网逆变器直接将电能转化为与电网同频、同相的正弦波电
流,馈入电网。
一 常见光伏并网逆变器的拓朴结构
•直接逆变系统 •工频隔离系统
一 常见光伏并网逆变器的拓朴结构
二、光伏并网逆变器相关技术要点
2.8 孤岛效应检测技术 逆变器中同时具有两种软件解决方案

光伏并网逆变器工作原理及太阳能电池特性ppt课件

光伏并网逆变器工作原理及太阳能电池特性ppt课件
1.电流源 电流源是相对于电压源来说的. 对于电压源,电源输出到负载两端的电压试
图维持不变,这就是说,电源上的电压是恒定的, 从欧姆定律来看,就是电源电压V不变,I和R可 以变化,即V=IR
对于电流源,电源输出到负载的电流试图不 变,也就是来自电源的电流不变。这并不常见, 但确实存在,并且在许多场合得到应用,也遵从 欧姆定律,即V=IR
图中的U1为逆变器, U0为电网,Z1逆变器和电 网间的线路阻抗,i1是并 网电流,它们之间的关系 是i1=U1-U0/Z1,也就是要 实现并网,必须符合 U1>U0,这就是在直流电 压过低时不能并网的原因。
6
并网逆变器拓扑结构
现在,各个逆变器厂家的拓扑结构大同小异,最常见 的就是这种电压型电路拓扑结构,电压型就是直流母线侧 用大容量电容来支撑电压,如下图:
13
并网逆变器原理
14
并网逆变器原理
光伏并网逆变器通过检测直流电压、 电流和电网交流电压、电流来控制逆变器 三相逆变模块,由数字控制系统发出 PWM驱动信号,使逆变器发出与电网电 压同频、同相的交流电。
下图是我公司并网逆变器运行原理框 架图:
15
并网逆变器原理
16
谢谢大家!
17
有源逆变的典型特点是其输出端也是连 接到一个电源上,因此形象称有源逆变。 逆变器是做为一个电源把其自身能量输送 到另一个电源的过程就是并网发电。
5
并网逆变器拓扑结构
3.并网发电 光伏并网发电就是以电池板组件和逆变器作为一个电
源把光照转换的电能输送到电网这个无限大容量的电源中 供电网中的负载使用。如图所示:
在实际的光伏系统中,太阳能电池的输出功率同时受 到辐照强度S和电池温度T共同影响
12

太阳能光伏并网逆变器的原理ppt课件

太阳能光伏并网逆变器的原理ppt课件

步骤 8 在“运行”界面,点击“操作日志”,查看系统 操作日志数据
• 操作步骤
8.2.2查询告警记录
步骤 1 在主界面,点击“告警”,进入“告警”界面 步骤 2 在“告警”界面,点击“当前告警”。
步骤 3 在“告警”界面,点击“历史告警”
8.2.3设置系统参数
• 操作步骤 步骤 1 在主界面,点击“设置”,进入用 户及密码设置界面。 步骤 2 在“用户名”下拉框中选择“高级 用户”,并在“密码”区域框中输入正确 的密码,
适合 2 个功率柜的电池板配置完全一致,周边 无遮挡的电站。
全独立方式指的是,2 个功率柜的 PV 输入在逆 变器内部独立,此时逆变器具有 2路 MPPT 控 制。在这种方式下,可实现 2 路 PV 的独立控制 ,请确保此时 2 路 PV没有在逆变器外部相连。
适合 2 个功率柜的电池板因为外部条件原因导致 电池板朝向、遮挡或者配置有差异的电站。
8.2.4 设置保护参数
• 操作步骤 •步骤 1 在主界面,点击“设置”,进入用 户及密码设置界面 •步骤 2 设置正确的“用户名”和“密码
步骤 3 点击“保护参数”,进入“保护参数”界面 • 步骤 4 设置“绝缘阻抗保护点”、“开机软启动时间
”“电网短时中断判断时间”及“快速启动梯度”。 • “绝缘阻抗保护点”参数,设置范围为“0.033Ω ~
• “电压不平衡保护点”参数,用于设置电 网电压不平衡度的保护阈值,当不平衡度 超过该阈值时 SUN8000 会关机并上报告 警。 •系统提供电网电压 10 分钟平均值监控的 方法,当检测到的电网电压平均值超过设 定保护点长达设定的保护时间时, SUN8000 会关机并上报告警。
8.2.6LVRT 曲线
步骤 3 点击 ,然后点击“系统参数”,进入“系统参数 ”界面。

光伏逆变器的设计原理

光伏逆变器的设计原理

光伏逆变器的设计原理并网光伏逆变器的基本设计无论采用何种技术,逆变器的基本设计都很明确,且非常相似。

其核心就是将直流电压(光伏组件)转换成交流电压(可并网)的过程。

在转变的过程中,不停地转换直流电的正负极连接,从而形成方向变化的交流电。

所以,逆变器的关键部件是桥接开关(晶体管元件,见图1:a)),这个开关桥的一侧连接输入的直流电源,在另一侧连接交流电网。

在工作过程中,只有两个相对的开关可以同时关闭。

如果将此开关桥的开关速度设置成与电网频率相同,则在理论上可以将桥的输出侧与电网连接。

但是,由于这样输出的电流是方波,且强度没有变化,因此需要在输出端安装一个具有铁芯的电感器,用以将输出电流控制成为正弦波形状。

桥的断开采用脉冲过程进行,从而形成与脉冲相关的较小电流分量。

这样的电流分量可以对电感器的电流进行控制。

脉冲的频率一般为20KHz ,这样就完全可以形成50Hz的电流,见图1:b)。

对于光伏逆变器来说,还有一个非常重要的设备不能遗漏:输入端的电容器,见图1:c ) 。

电容器的作用是储存电能,确保来自发电侧的电流持续一致供给桥接开关,并通过与电网频率同步变化的桥进入电网。

只有在输入电容器的容量足够大的情况下,才能够保证光伏发电系统的持续、正常运行。

图1:光伏逆变器的基本设计图2描述了可用于直接并网的逆变器的基本功能。

但在实际应用中,输入电压的范围具有一定的局限性。

对于并网发电应用,其输入电压必须在任何时刻都高于电网的峰值电压。

当电网电压的有效值为250V时,达到正常并网要求的发电源侧的最低电压应为354V。

与标准逆变器的基本设计不同,直接并网逆变器有很多方法来调整或提升输入电压范围。

常用的逆变器技术方案与结构都各不相同:图2:最常用的逆变器电路图表一览上面提到的逆变器拓朴结构不仅在电气隔离方面不同,在可达到的效率、对电压的依赖性等方面也各不相同。

因此,没有统一的公式来界定何种逆变器设计是最优秀的设计,用户必须要考虑到具体使用的逆变器特性。

太阳能光伏并网逆变器的原理教材教学课件

太阳能光伏并网逆变器的原理教材教学课件

定义与工作原理
工作原理
定义
光伏并网逆变器的分类
按功率等级分类
根据功率等级的不同,光伏并网逆变器可以分为小型、中型和大型三种类型。
按工作原理分类
光伏并网逆变器可以分为单相和三相两种类型,其中三相光伏并网逆变器又可以分为三相三线制和三相四线制。
光伏并网逆变器的应用场景
家庭应用
光伏并网逆变器可以用于家庭太阳能发电系统,将太阳能转化为电能,供给家庭使用。
太阳能光伏并网逆变器的原理教材教学课件
目录
光伏并网逆变器概述 光伏电池板的工作原理 逆变器的工作原理 光伏并网逆变器的控制策略 光伏并网逆变器的安装与维护 案例分析
01
CHAPTER
光伏并网逆变器概述
光伏并网逆变器是将太阳能电池板产生的直流电转换为交流电,并能够与电网进行连接的设备。
光伏并网逆变器通过最大功率点跟踪(MPPT)技术,将太阳能电池板产生的直流电转换为交流电,并经过滤波处理后,与电网进行连接。
光伏电池板的效率
03
CHAPTER
逆变器的工作原理
逆变器是一种将直流电能转换为交流电能的电子设备。
逆变器的定义
工作原理
电路结构
逆变器通过半导体开关器件的导通和关断,将直流电转换为交流电。
逆变器通常由输入滤波电路、整流电路、储能电路、逆变电路和输出滤波电路等部分组成。
03
02
01
逆变器的定义与工作原理
光伏效应由法国物理学家贝克雷尔于1839年首次发现,随后在1876年,德国物理学家爱因斯坦解释了光伏效应的原理。
光伏效应的发现
光伏电池板利用光伏效应将光能转化为直流电能,是太阳能光伏发电系统的核心组成部分。
光伏效应的应用

光伏逆变器回路图

光伏逆变器回路图

表5 合肥阳光电源公司两种典型逆变器的性能指标光伏并网接口逆变器控制方法1 引言世界文明史上, 人类不断地从自然界索取、探求适合生存和发展所需要的各种能源, 人们利用能源经历了材薪、煤炭、石油三个历史时期,这类常规能源不仅枯竭有期,而且它将引起一系列局部的或全球的环保问题。

因而目前世界上许多国家都在采取措施,积极提高能源效率,改善能源结构,去探索新能源和可再生能源的利用,并逐步使其取代常规能源,以减少环境污染并合理利用资源。

太阳能发电由于具有很多的优点,无污染,可再生,资源具有普遍性,机动灵活,可存储等,因此,光伏发电具有广阔的发展前景。

对于普通的光伏并网发电装置,已经有了比较成熟的产品,然而随着对太阳能利用的进一步开发,和用户对电能质量的要求的进一步提高,光伏系统与电力系统的接口有以下发展趋势:(1) 既可以并网又可以独立发电, 光伏发电系统和电网共同向用户供电,提高供电可靠性;(2) 具备供电质量控制功能, 如谐波补偿、无功补偿、电压调节等。

本文正是在此要求基础之上提出的一种新型的并网接口逆变器控制方法,该方法既能使得并网发电装置向电网以单位功率因数提供电能,同时也能按要求补偿无功和谐波,兼具有静止无功发生器(SVG)和有源滤波器(APF)的功能。

2 并网接口装置的基本结构和等效电压源模型整个并网装置一般由三个部分组成:补偿分量检测回路, 控制回路, IGBT主回路,其结构如图1所示。

图1 并网装置框图工作原理为由补偿分量检测回路检测出需要补偿的信号,形成参考电流值,控制回路通过参考电流值来控制逆变器工作,使逆变器向电网输送单位功率因数的电流和补偿分量,从而使系统电流中不含有谐波分量和无功功率。

控制回路根据检测到的谐波电流以及直流电压,按照一定的控制规律计算出控制量,这个控制规律便是本文所要讨论的重要问题。

并网接口装置系统基本结构如图2所示:其主电路由电压型三相桥式、电力电子器件IGBT构成的逆变器组成。

并网光伏电站设计—逆变器 PPT课件

并网光伏电站设计—逆变器 PPT课件

2020/4/1
26
7、其他器件的选择
(1)断路器:由于光伏阵列的电压范围为2001000V,所以直流断路器耐压至少为1000V,最 好为1500V。
(2)熔断器:熔断器的最小等级可由光伏组件的 短路电流计算而得。一般系统中使用的熔断器及 连接线的电流额定值应满足最小1.56倍的Isc的值。
例如,每路光伏组串最大Isc电流为7A,,那么熔 断器的电流等级应为7A×1.56=11A。
网发生故障时,超级电容器放电给并网点注入能量, 提供并网点的支撑电压,可以继续使光伏设备并网 工作正常运行; b、用无功补偿设备 电网侧发生瞬时故障时,光伏电站本身不能提供瞬 间的电压支撑,容性动态无功补偿装置可释放无功 能量,显著提供光伏电站各母线电压,增强光伏电 站低电压穿越能力。 4、孤岛监测保护功能
(3)停机。当光伏电池阵列输出功率减小,逆变 器输出功率接近于零时,逆变器便进入待机状态。
2020/4/1
8
2、最大功率跟踪(MPPT)控制功能
(1)最大功率最佳工作点。光伏电池阵列的 输出是随太阳辐射强度和光伏组件自身温度而 变化的,光伏电池输出电压和电流呈非线性关 系变化,其输出功率也随之改变。
2020/4/1
27
标称放电电流(In):In(8/20μs)≥20kA
2020/4/1
23
c、电压保护水平(Vp):
汇流箱参数:额定直流电 电压保护水平Vp/kV
压Vn/V
Vn≤60
<1.1
60<Vn≤250
<1.5
250<Vn≤400
<2.5
400<Vn≤690
<3.0
690<Vn≤1000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,必须完成从补充能源向替代能源的过渡。

光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。

在光伏并网系统中,并网是核心部分。

目前并网型系统的研究主要集中于DC-DC和DC-AC 两级能量变换的结构。

DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。

其中DC-AC是系统的关键设计。

太阳能光伏并网系统结构图如图1所示。

本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。

前级用于最大功率追踪,后级实现对并网电流的控制。

控制都是由DSP芯片TMS320F2812协调完成。

图1 光伏并网系统结构图
逆变器的设计
太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将发出的直流电逆变成单相交流电,并送入电网。

同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。

并且具有完善的并网保护功能,保证系统能够安全可靠地运行。

图2是并网逆变器的原理图。

图2 逆变器原理框图
控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。

实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。

控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。

其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。

驱动电路起到提高脉冲的驱动能力和隔离的作用。

保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。

在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式:
Vac=Vs+jωL·IN+RS·IN (1)
式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。

图1 光伏并网系统结构图
图3 控制矢量图
在网压Vac(t)为一定的情况下,IN(t)幅值和相位仅由光伏并网逆变器输出端的脉冲电压中的基波分量Vs(t)的幅值,及其与网压Vac(t)的相位差来决定。

改变Vs(t)的幅值和相位就可以控制输入电流IN(t)和Vac(t)同相位。

PWM整流器输入侧存在一个矢量三角形关系,在实际系统中RS 值的影响一般比较小,通常可以忽略不计得到如图3b所示的简化矢量三角形关系,即下式:
(2)
在一个开关周期内对上式进行周期平均并假设输入电流能在一个开关周期内跟踪电流指令即可推导出下式:
(3)式中K= L/TC,TC为载波周期。

从该模型即可以得到本系统所采用的图4所示的控制框图。

此方法称为基于改进周期平均模型的固定频率电流追踪法。

图4 逆变器控制框图
逆变器的控制框图中参考电压Vref与光伏电池实际输出电压VDC相比较后,误差经PI 调节得到电流指令I*,再与正弦波形相乘得到正弦指令Iref,Iref与实际输出的电流相比较后,误差经P调节后得到的值(物理意义上就相当于逆变器输出侧电感上产生的电压)与网压Vac(t)相加得到的波形与三角波比较,便产生了4路PWM波控制逆变器开关管的通断,这样就实现了光伏电池输出电压基本工作在Vref附近,系统输出正弦电流波形幅值为I*。

方案中对并网电流的采用了固定开关频率的控制方法。

固定开关频率控制是将电流误差P调节后作为调制波与三角载波比较产生PWM波。

其缺点是必须与实际电流存在偏差才能产生PWM波。

因此在固定开关频率控制的基础上有所改进,加人了交流侧网压Vac的计算,即电流误差信号Iref经过PI调节后与Vac相加,得到的值再与三角载波进行比较。

Δi在物理意义上就相当于逆变器输出侧电感上产生的电压。

Δi×P与Vac之和,就相当于逆变器输出脉冲电压,这样构成的矢量图与逆变器输出向量图一致。

改进的固定开关频率的控制策略在保持原有优点的同时,电流跟踪误差显着减小,改善了PWM整流器的电流跟踪性能。

最大功率跟踪和反孤岛效应的检测
MPPT控制的最总目的在于动态的追寻太阳能电池板的最大功率点。

常用的方法有固定电压跟踪法、扰动观测法、导纳微增法和间歇扫描跟踪法。

本文采用的是最后一种方法。

这种方法的原理是定时扫描太阳能电池板阵列的输出功率,然后逐次比较,直到追踪到最大功率点。

由于电池板最大功率点受光照的影响变化不是很剧烈,所以笔者对这种方法进行了改进,只需要在最大功率点附近搜索扫描即可找到最大功率点。

改进后的间歇扫描法控制既保持了跟踪的控制精度又提高了系统运行的稳定性。

所谓孤岛效应就是当电力公司的供电系统,因故障事故或停电维修等原因而停止工作时,安装在各个用户端的光伏并网发电系统未能即时检测出停电状态而迅速将自身切离市电网络,因而形成了一个由光伏并网发电系统向周围负载供电的一个电力公司无法掌握的自给供电孤岛现象。

其具体实现思想就是:系统通过软硬件电路周期性地检测出相邻两次电网电压过零点的时刻,计算出电网电压的频率f,然后在此频率f的基础上引入偏移量△f,最后将频率(f士△f)作为输出并网电流的给定频率,并且在电网电压每次过零时使输出并网电流复位。

那么,当电网无故障时,负载上的电压频率即为电网电压频率,因此DSP每次检测到的电网电压频率基本不变;而当市电脱网时,光伏阵列的输出并网电流单独作用于负载上,由于输出并网电流频率的逐周期偏移,所以,DSP每次检测到的负载电压频率就会相应地改变,这样,就形成了给定输出并网电流频率的正反馈,使得负载电压的频率很快就会超过频率保护的上、下限值,从而使系统有效检测出市电脱网,因此,主动频率偏移法使系统具有了良好的反孤
岛效应功能。

实验结果
根据以上设计方案,已在搭建完成额定功率 1.5kw的光伏并网实验样机。

输入为100-300V,输出并网电流为4.5A。

输出功率约为1kw,频率为50Hz。

并网电流与电网电压同相同频,功率因数接近为1。

实验波形如图5所示。

图5 1500W实验时输出电流电压波形
结语
目前已经制作出2KW的实验样机,并已完成1500W的并网实验。

本文介绍的小功率光伏并网逆变器采用改进的固定开关频率的电流控制并网方案,使输出功率因数接近为1。

采用TMS320F2812作为控制芯片,使系统具有很好的动态相应,保护完善,提高了并网效率。

运用了具有最大功率跟踪和反孤岛效应的软件设计,通过实验证明该系统工作稳定可靠,性能良好。

相关文档
最新文档