随机过程题库
随机过程习题.
习题一1. 某战士有两支枪,射击某目标时命中率分别为0.9及0.5,若随机地用一支枪,射击一发子弹后发现命中目标,问此枪是哪一支的概率分别为多大?2. 设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>+0012x x x A求:(1)常数A; (2)分布函数F (x );(3)随机变量Y =lnX 的分布函数及概率分布。
3. 设随机变量(X, Y )的概率密度为 f (x , y) = Asin (x + y ), 0≤x ,y ≤2π 求:(1) 常数A ;(2)数学期望EX ,EY ; (3) 方差DX ,DY ;(4) 协方差及相关系数。
4. 设随机变量X 服从指数分布⎩⎨⎧<≥=-0)(x x ke x f kx()0>k 求特征函数)(x ϕ,并求数学期望和方差。
5. 设随机变量X 与Y 相互独立,且分别服从参数为λ1 和λ2的泊松分布,试用特征函数求Z = X +Y 随机变量的概率分布。
6.一名矿工陷进一个三扇门的矿井中。
第一扇门通到一个隧道,走两小时后他可到达安全区。
第二扇门通到又一隧道,走三个小时会使他回到这矿井中。
第三扇门通到另一隧道,走五个小时后,仍会使他回到这矿井中。
假定矿井中漆黑一团,这矿工总是等可能地在三扇门中选择一扇,让我们计算矿工到达安全区的时间X 的矩母函数。
7. 设 (X , Y ) 的分布密度为(1) ⎩⎨⎧<<<<=其他,,010,10xy 4),(y x y x φ(2)⎩⎨⎧<<<<=其他,,010,10xy 8),(y x y x φ问X ,Y 是否相互独立?8. 设(X ,Y )的联合分布密度为问: (1)α, β取何值时X ,Y 不相关; (2)α,β取何值时相互独立。
习题二1.设有两个随机变量X 、Y相互独立,它们的概率度分别为)(x f X 和)(y f Y ,定义如下随机过程:Yt X t Z +=)(,R t ∈试求)(t Z 的均值函数)(t m 和相关函数),(21t t R 。
随机过程习题和答案
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
应用随机过程期末复习题
1、设在底层乘电梯的人数服从均值5λ=的泊松分布,又设此楼共有N+1层。
每一个乘客在每一层楼要求停下来离开是等可能的,而且与其余乘客是否在这层停下是相互独立的。
求在所有乘客都走出电梯之前,该电梯停止次数的期望值。
2、设齐次马氏链{(),0,1,2,}X n n = 的状态空间{1,2,3}E =,状态转移矩阵1102211124412033P=(1)画出状态转移图;(2)讨论其遍历性;(3)求平稳分布;(4)计算下列概率: i ){(4)3|(1)1,(2)1};P X X X === ii ){(2)1,(3)2|(1)1}P X X X ===.3、设顾客以泊松分布抵达银行,其到达率为λ,若已知在第一小时内有两个顾客抵达银行,问:(1)此两个顾客均在最初20分钟内抵达银行的概率是多少? (2)至少有一个顾客在最初20分钟抵达银行的概率又是多少?4、设2()X t At Bt C ++,其中A , B , C 是相互独立的标准正态随机变量,讨论随机过程{(),}X t t −∞<<+∞的均方连续、均方可积和均方可导性.5、设有实随机过程{(),}X t t −∞<<+∞,加上到一短时间的时间平均器上作它的输入,如下图所示,它的输出为1(),()()d tt TY t Y t X u u T −=∫,其中t 为输出信号的观测时刻,T 为平均器采用的积分时间间隔。
若()cos X t A t =,A 是(0, 1)内均匀分布的随机变量。
(1)求输入过程的均值和相关函数,问输入过程是否平稳? (2)证明输出过程()Y t 的表示式为sin 2()cos()22T T Y t A t T=⋅−.(3)证明输出的均值为sin 12[()]cos()222T T E Y t t T =−,输出相关函数为12(,)R t t = 2sin 1232T T12cos()cos()22T Tt t −−,问输出是否为平稳过程?6、甲、乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为R ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分。
随机过程习题
1. 一队同学顺次等候体验。
设每人体验所需要的时间服从均值为2min的指数分布并且与其他人所需时间是相互独立的,则1h内平均有多少同学接受过体检,在这1h内最多有40名同学接受过体检的概率是多少(设学生非常多,医生不会空闲)?2. 设某医院专家门诊,从早上8:00开始就已有无数患者等候,而每次专家只能为一名患者服务,服务的平均时间为20min,且每名患者的服务时间是独立的指数分布。
问8:00到12:00门诊结束时接受过治疗的患者平均在医院停留了多长时间?3. 设每天过某路口的车辆数为:早上7:00-8:00,11:00-12:00为平均每分钟2辆,其他时间平均每分钟1辆,则早上7:30到中午11:20平均有多少辆汽车经过此路口,这段时间经过路口的车辆超过500辆的概率是多少?4. 设今日有雨,则明日也有雨的概率为0.7,今日无雨明日有雨的概率为0.5。
求星期一有雨,星期三也有雨的概率?5. 某人有r把伞用于上下班,如果一天的开始他在家(一天的结束他在办公室)中而且天下雨,只要有伞可取到,他将拿一把到办公室(家)中。
如果天不下雨,那么他不带伞,假设每天的开始(结束)下雨的概率为p,且与过去情况独立。
(1)定义一个有r+1个状态的Markov链并确定转移概率;(2)计算极限分布;(3)他被淋湿的平均次数所占比率是多少(如果天下雨而全部伞在另一处,那么称他被淋湿)?6. 将两个红球4个白球分别放入甲乙两个盒子中。
每次从两个盒子中各取一球交换,以X(n)记第n次交换后甲盒中的红球数。
(1)说明{X(n), n≥0}是一Markov链并求转移矩阵P;(2)试证{X(n), n=0,1,2,…}是遍历的;(3)求它的极限分布。
7. 设有3个盒子装有红白两种颜色球,装球情况如下:做下面的抽取:在甲盒中随机抽取1个球,记下它的颜色,然后重新放回1个与它不同颜色的球,在乙盒中随机抽取后记下颜色再放回,在丙盒中随机抽取后只记颜色不放回。
随机过程试题及答案
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
随机过程复习题二及其答案
随机过程复习题二及其答案一、选择题1. 随机过程的定义是什么?A. 一系列随机变量的集合B. 一系列确定变量的集合C. 一个随机变量D. 一个确定变量2. 什么是马尔可夫链?A. 一个具有时间序列的随机过程B. 一个具有空间序列的随机过程C. 一个具有独立同分布的随机过程D. 一个具有时间依赖性的随机过程3. 随机过程的期望值定义为:A. \( E[X(t)] \)B. \( E[X] \)C. \( \int_{-\infty}^{\infty} x f(x,t) \, dx \)D. \( \sum_{i=1}^{\infty} x_i p_i \)4. 以下哪个不是随机过程的属性?A. 期望B. 方差C. 协方差D. 导数5. 什么是平稳随机过程?A. 随机过程的期望随时间变化B. 随机过程的方差随时间变化C. 随机过程的统计特性不随时间变化D. 随机过程的协方差随时间变化答案:1. A2. A3. A4. D5. C二、简答题1. 解释什么是遍历定理,并给出其在随机过程分析中的应用。
2. 描述什么是泊松过程,并解释其主要特点。
3. 简述什么是布朗运动,并解释其在金融领域中的应用。
三、计算题1. 给定一个随机过程 \( X(t) \),其期望 \( E[X(t)] = t \),方差 \( Var[X(t)] = t^2 \),计算 \( E[X^2(t)] \)。
2. 假设一个马尔可夫链 \( \{X_n\} \) 有状态空间 \( S = \{1, 2, 3\} \),转移概率矩阵 \( P \) 为:\[P = \begin{bmatrix}0.1 & 0.8 & 0.1 \\0.5 & 0.3 & 0.2 \\0.2 & 0.6 & 0.2\end{bmatrix}\]计算状态 1 在第 3 步的概率。
四、论述题1. 论述随机过程在信号处理中的应用,并举例说明。
随机过程试题及答案
随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。
随机过程复习试题
随机过程期中试题1、请解释齐次poisson过程与非齐次Poisson过程之间的关系。
2、请列举从Poisson过程与更新过程的相同点和不同点。
λ>的Poisson过程,随机变量X与3、设()()N t是参数为0Y t X N t=⋅,其中()N(t)相互独立,而{1}{1}1/2===-=,判断此过程是否是平稳过程。
P X P Xλ>的Poisson过程,随机变量X与4、设()=,其中()Y t X()N tN t是参数为0N(t)相互独立,而{1}{1}1/2===-=,判断此过程是否是平稳过程。
P X P X5、设()N t t≥是强度为λ的Poisson N t为在[0,)t内来到某商店的顾客数,{(),0}过程。
每个顾客购买某商品的概率为p,不购买某商品的概率为p1。
设个顾客是-否购买商品是相互独立的。
令)X为在[0,)t内购买商品的顾客数,证明{(),0}(tX t t≥为λ的Poisson过程。
强度为p5、设电话总机在[0,)t内接到电话呼叫次数是强度(每分钟)为λ的Poisson 过程,试求:(1)“2min内接到3次呼叫”的概率。
(2)“第3次呼叫是在第2分钟内接到”的概率。
7、设粒子按平均率为4个/min的Poisson过程到达计数器,()N t表示在[0,)t内到达计数器的粒子数,试求:(1)()N t均值、方差、自相关函数。
(2)在第3min到第5min之间到达计数器的粒子个数的概率分布。
'2设某医院收到的急诊病人数()N t组成Poisson流,平均每小时接到2个急诊病人,试求:(1)上午10:00~12:00没有急诊病人到来的概率。
(2)下午2:00以后第2位病人到达时间的分布。
λ=.8、设移民到某地区定居的户数是一Poisson过程,平均每周有2户定居,即2若每户的人数是随机变量,一户4人的概率是1/6,一户3人的概率是1/3,一户2人的概率是1/3,一户1人的概率是1/6,且每户的人数是相互独立的,试求在5周内移民到该地区定居的人数的数学期望与方差。
随机过程期末试题及答案
随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。
B. 具有随机变量。
C. 具有时间集合。
D. 具有马尔可夫性质。
答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。
B. 布朗运动。
C. 维纳过程。
D. 马尔可夫链。
答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。
B. 随机过程的均值不随时间变化。
C. 随机过程的方差不随时间变化。
D. 随机过程的偏度不随时间变化。
答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。
B. 指数分布过程。
C. 广义强度过程。
D. 随机驱动过程。
答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。
2. 在某一区间内,随机过程的均值是时间的(函数)。
3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。
4. 利用(随机过程)可以模拟无记忆的随机现象。
三、解答题1. 试述随机过程的定义及其要素。
随机过程是描述随机现象随时间演化的数学模型。
它由两个基本要素组成:时间集合和取值集合。
时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。
取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。
2. 什么是时间齐次随机过程?请举例说明。
时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。
即随机过程在任意两个时间点上的特性是相同的。
例如,离散时间的随机游走就是一个时间齐次随机过程。
在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。
3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。
《随机过程》第一章习题
第一章 随机过程及其分类1、 设随机向量),(Y X 的两个分量相互独立,且均服从标准正态分布)1,0(N 。
(a ) 分别写出随机变量Y X +和Y X -的分布密度(b ) 试问:Y X +与Y X -是否独立?说明理由。
2、 设1X 、2X 、3X 为独立同分布的随机变量,且服从标准正态分布。
令:233211X X X X Y ++=(a ) 试求随机变量Y 的分布密度函数;(b ) 试问有限个独立正态分布随机变量经过非线性变换是否可以服从正态分布?3、 设),0(~2σN X ,对于0>∀b ,试证明正态分布尾概率估计不等式:⎭⎬⎫⎩⎨⎧-⋅≤≥≤⎭⎬⎫⎩⎨⎧-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-222232ex p 21}{2ex p 21σσπσσσπb b b X P b b b 4、 设随机向量()()∑=,~,21μτN X X X ,其中:()()ττμμμ2,1,21==,⎪⎪⎭⎫ ⎝⎛=∑15/45/41,令随机向量()X Y Y Y ⎪⎪⎭⎫ ⎝⎛==3223,21τ。
(a ) 试求随机向量Y 的协方差矩阵、{}12Y Y E 及{}21Y Y E +; (b ) 试问{}122X X E X -与1X 是否独立?证明你的结论。
5、 设}0),({≥t t X 是一个实的均值为零,二阶矩存在的随机过程,其相关函数为t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,试求方差函数)]()([T t X t X D +-。
6、 考察两个谐波随机信号)(t X 和)(t Y ,其中:)cos()(),cos()(t B t Y t A t X c c ωφω=+=式中A 和c ω为正的常数;φ是[]ππ,-内均匀分布的随机变量,B 是标准正态分布的随机变量。
(a ) 求)(t X 的均值、方差和相关函数;(b ) 若φ与B 独立,求)(t X 与)(t Y 的互相关函数。
(完整版)随机过程习题
随机过程复习一、回答: 1、 什么是宽平稳随机过程?2、 平稳随机过程自相关函数与功率谱的关系?3、 窄带随机过程的相位服从什么分布?包络服从什么分布?4、什么是白噪声?性质?二、计算:1、随机过程t A t X ωcos )(=+t B ωsin ,其中ω是常数,A 、B 是相互独立统计的高斯变量,并且E[A]=E[B]=0,E[2A ]=E[2B ]=2σ。
求:)(t X 的数学期望和自相关函数?2、判断随机过程)cos()(φω+=t A t X 是否平稳?其中ω是常数,A 、φ分别为均匀分布和瑞利分布的随机变量,且相互独立。
πϕφ21)(=f πϕ20 ; 222)(σσa A eaa f -=0 a3、求随机相位正弦函数)cos()(0φω+=t A t X 的功率谱密度,其中A 、0ω是常数,φ为[0,2π]内均匀分布的随机变量。
4、求用)(t X 自相关函数及功率谱表示的)cos()()(0φω+=t t X t Y 的自相关函数及谱密度。
其中,φ为[0,2π]内均匀分布的随机变量,)(t X 是与φ相互独立的随机过程。
5、设随机过程}),cos()({0+∞<<-∞+=t Y t A t X ω,其中0ω是常数,A 与Y 是相互独立的随机变量,Y 服从区间)2,0(π上的均匀分布,A 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-000)(2222x x ex x f x A σσ试证明)(t X 为宽平稳过程。
解:(1))}{cos()()}cos({)(00Y t E A E Y t A E t m X +=+=ωω⎰⎰=+=∞+-πσωσ20002220)cos(22dy y t dx exx 与t 无关(2) )()}({cos )()}cos({)}({)(20222022A E Y t E A E Y t A E t X E t X≤+=+==ωωψ dt e tdx e xA E t x ⎰⎰∞+-∞+-==0222223222221)(σσσσσ,20222022|2|222σσσσσ=-=+-=∞+-∞+-∞+-⎰t t tedt ete所以+∞<=)}({)(22t X E t Xψ (3))]}cos()][cos({[),(201021Y t A Y t A E t t R X ++=ωω )}cos(){cos(][20102Y t Y t E A E ++=ωω dy t t y t t πωωωσπ21)](cos )[cos(2121202010202--++=⎰)(cos 1202t t -=ωσ 只与时间间隔有关,所以)(t X 为宽平稳过程。
随机过程试题及答案
随机过程试题及答案一、选择题(每题2分,共10分)1. 下列哪个是随机过程的数学定义?A. 一系列随机变量B. 一系列确定的函数C. 一系列随机函数D. 一系列确定的变量答案:C2. 随机过程的期望值函数E[X(t)]随时间t的变化特性是:A. 确定性B. 随机性C. 非线性D. 线性答案:A3. 马尔可夫链是具有以下哪个特性的随机过程?A. 无记忆性B. 有记忆性C. 独立性D. 相关性答案:A4. 泊松过程是一种:A. 连续时间随机过程B. 离散时间随机过程C. 连续空间随机过程D. 离散空间随机过程答案:A5. 布朗运动是:A. 一个确定的函数B. 一个随机过程C. 一个确定的变量D. 一个随机变量答案:B二、简答题(每题5分,共20分)1. 简述什么是平稳随机过程,并给出其数学特征。
答案:平稳随机过程是指其统计特性不随时间变化的随机过程。
数学上,如果一个随机过程的任意时刻的一维分布和任意两个时刻的二维分布都不随时间平移而改变,则称该过程为严格平稳过程。
2. 解释什么是遍历定理,并说明其在随机过程中的重要性。
答案:遍历定理是随机过程中的一个基本定理,它提供了时间平均与概率平均之间的联系。
在随机过程中,如果一个随机过程是遍历的,那么对于任意的观测时间点,其时间平均值将趋向于其期望值,这一点在统计推断和信号处理等领域具有重要应用。
3. 描述什么是随机过程的平稳增量,并给出其数学定义。
答案:随机过程的平稳增量是指在固定时间间隔内,随机过程增量的分布不随时间变化。
数学上,如果对于任意的非负整数n和任意的实数h,随机过程{X(t+h) - X(t)}与{X(h) - X(0)}具有相同的分布,则称该随机过程具有平稳增量。
4. 简述什么是马尔可夫性质,并给出一个实际应用的例子。
答案:马尔可夫性质是指一个随机过程的未来发展只依赖于当前状态,而与过去的状态无关。
具有马尔可夫性质的随机过程称为马尔可夫链。
例如,在天气预报中,明天的天气可能只与今天的天气有关,而与前几天的天气无关,这就是马尔可夫性质的一个实际应用。
随机过程试题及答案
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
随机过程复习题
随机过程复习题一、随机过程的数字特征及平稳性1、设随机过程Z (t ) =X sin t +Y cos t ,其中X 和Y 是相互独立的随机变量,它们都分别以2/3和1/3的概率取值-1和2,讨论Z(t)的平稳性。
2、设随机过程()Xt e t -=ξ (t >0),其中随机变量X 具有在区间(0,T )中的均匀分布。
试求随机过程ξ(t )的数学期望和自相关函数。
3、有随机过程{ξ(t ),-∞<t <∞}和{η(t ),-∞<t <∞},设ξ(t )=A sin(ω t +Θ),η(t )=B sin(ω t +Θ+φ), 其中A ,B ,ω,φ为实常数,Θ均匀分布于[0,2π],试求R ξη(s ,t )4、设有随机过程{ξ(t ),-∞<t <∞},ξ(t )=η cos t , 其中η为均匀分布于(0,1)间的随机变量,即()()112311212(a)=cos cos (b)C =cos cos 1212R t ,t t t t ,t t t ξξξξ试证:5、随机过程ξ(t )=sin(Ut ),其中U 是在[0,2π]上均匀分布的随机变量。
若t ∈T , 而T =[0,∞), 试分析ξ(t )的平稳性。
6、随机过程()()0=cos +t A t ξωθ;式中:A 、ω0是实常数;θ是具有均匀分布的随机变量:()2(0=20(f πθθπ⎧≤≤⎪⎨⎪⎩其他) 分析ξ(t )的平稳性。
7、随机过程ξ(t )=A cos(ωt +Φ ),-∞<t <+∞,其中A, ω,Φ 是相互统计独立的随机变量,E A =2, D A =4, ω 是在[-5, 5]上均匀分布的随机变量,Φ 是在[-π,π]上均匀分布的随机变量。
试分析ξ(t)的平稳性和各态历经性。
8、设(){}+∞<<∞-t t X ,的均值函数为m X (t ),协方差函数为C X (t ),而ϕ(t )是一个普通函数,令()()()t t X t Y ϕ+=,+∞<<∞-t ,试求(){}+∞<<∞-t t Y ,的均值函数和协方差函数。
应用随机过程考试题
一、选择题1.在随机过程中,若某一过程的所有可能状态及其概率在时间上保持不变,则称该过程为:A.平稳过程B.非平稳过程C.马尔可夫过程D.遍历过程2.下列哪个不是描述随机变量分布特性的重要参数?A.期望值(均值)B.方差C.协方差D.样本容量3.马尔可夫链中,若当前状态仅依赖于前一个状态,则称该链具有:A.一阶记忆性B.无记忆性C.高阶记忆性D.完全记忆性4.在随机游走模型中,若每一步的位移是独立同分布的随机变量,且均值为0,则该模型属于:A.布朗运动B.泊松过程C.几何布朗运动D.平稳独立增量过程5.泊松分布常用于描述:A.单位时间内某事件发生次数的概率分布B.连续型随机变量的概率分布C.样本均值的分布D.两个随机变量之间的线性关系6.若一个随机过程的任意两个时间点上的随机变量之间都存在线性关系,则称该过程具有:A.平稳性B.相关性C.正态性D.独立性7.在连续时间马尔可夫链中,状态转移率矩阵描述了:A.各状态间的直接转移概率B.各状态间的间接转移概率C.单位时间内从某状态转移到其他状态的概率D.所有状态的总转移概率8.布朗运动的一个关键性质是:A.路径可预测性B.路径连续但几乎处处不可导C.路径分段平滑D.路径与时间呈线性关系9.对于随机过程X(t),若对任意t,X(t)的概率分布函数与时间t无关,则X(t)是:A.平稳过程B.严格平稳过程C.弱平稳过程D.遍历过程10.下列哪个随机过程模型常用于金融市场中的股票价格模拟?A.几何布朗运动B.泊松过程C.平稳独立增量过程D.线性回归过程。
随机过程习题集
随机过程习题集
1. 设随机过程{X(t), t ≥ 0} 是一个马尔可夫过程,且满足转移概率 P{X(t+s) = j | X(t) = i} = P{X(s) = j | X(0) = i}。
证明该随机过程是齐次马尔可夫过程。
2. 设随机过程{X(t), t ≥ 0} 是一个连续时间马尔可夫链,其状态空间为非负整数集合。
设转移速率为λi>0,即
P{X(t+s) = i+1 | X(t) = i} = λi·s + o(s),其中 o(s) 表示当
s 趋于 0 时,o(s)/s 无界。
证明该随机过程是无记忆的。
3. 设随机过程{X(t), t ≥ 0} 是一个马尔可夫过程,其状态空间为有限集合 S = {1, 2, ..., n},转移概率矩阵为 P = [pij],即 P{X(t+s) = j | X(t) = i} = pij。
证明当 t 趋于无穷大时,P(t) = [Pij(t)] 是一个稳态过程,即其转移概率与时间 t 无关。
4. 设随机过程{X(t), t ≥ 0} 是一个马尔可夫过程,其状态空间为非负整数集合。
记τ0 = 0 且τ1 = inf{t > 0: X(t) = 0}。
证明条件P{τ1 < ∞ | X(0) = i} = 1 当且仅当 i > 0。
5. 设随机过程{X(t), t ≥ 0} 是一个服从泊松过程的随机过程,其到达速率为λ。
证明对于任意t ≥ 0,有P{X(t) ≥ 2} = 1 - e^(-λt) - λt e^(-λt)。
这是一些关于随机过程的习题,希望能对你有帮助!如果
你还有其他问题,可以继续提问。
随机过程试题及答案
一.填空题(每空2分,共20分)分)1.设随机变量X 服从参数为l 的泊松分布,则X 的特征函数为it (e -1)el 。
2.设随机过程X(t)=Acos( t+),-<t<w F ¥¥ 其中w 为正常数,A 和F 是相互独立的随机变量,且A 和F 服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2w w 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1l的同一指数分布。
的同一指数分布。
4.设{}n W ,n 1³是与泊松过程{}X(t),t 0³对应的一个等待时间序列,则n W 服从G 分布。
分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量ïîïíì=时取得白球如果时取得红球如果t t te tt X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33ìüíýîþ。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为(n)nP P =。
7.设{}n X ,n 0³为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p Î=×å。
8.在马氏链{}n X ,n 0³中,记中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=¹££==³ (n)ij ij n=1f f ¥=å,若ii f 1<,称状态i 为非常返的。
随机过程课后试题答案
随机过程课后试题答案一、选择题1. 随机过程的基本定义中,样本空间通常表示为:A. 一个集合B. 一个函数集合C. 一个概率空间D. 一个参数集合答案:A2. 若随机过程的样本轨迹几乎是连续的,则该过程是:A. 离散时间随机过程B. 连续时间随机过程C. 泊松过程D. 马尔可夫过程答案:B3. 马尔可夫性质的含义是未来的状态只依赖于当前状态,而与过去的状态无关。
这一性质不适用于:A. 泊松过程B. 布朗运动C. 马尔可夫链D. 所有随机过程答案:D4. 在随机过程中,如果两个随机变量的联合分布可以表示为它们各自的边缘分布的乘积,则这两个随机变量是:A. 独立的B. 相关的C. 正相关的D. 负相关的答案:A5. 随机游走的期望步长是:A. 1B. 2C. 依赖于起始点D. 依赖于步长分布答案:D二、填空题1. 一个随机过程的样本函数是定义在参数集合上的_________函数。
答案:实值或随机2. 在随机过程中,如果给定当前状态,下一状态的条件概率分布仅依赖于当前状态而不依赖于之前的状态,那么该过程是一个_________过程。
答案:马尔可夫3. 随机过程的均值函数(或称数学期望函数)是描述过程长期行为的重要工具,它是一个关于_________的函数。
答案:时间4. 布朗运动是一种连续时间随机过程,其样本轨迹具有_________性质。
答案:无处处可微5. 泊松过程是一种描述事件在时间上随机发生的随机过程,其特点是事件在任意两个不重叠时间区间内发生是_________的。
答案:相互独立三、计算题1. 假设有一个离散时间马尔可夫链,其状态转移矩阵为:\[P = \begin{bmatrix}0.7 & 0.3 \\0.4 & 0.6\end{bmatrix}\]求该马尔可夫链在第二时刻的状态概率分布,给定初始状态概率分布为:\\[\pi_0 = \begin{bmatrix}0.5 \\0.5\end{bmatrix}\]解:首先计算\( P^2 \),即状态转移矩阵的二次幂,然后利用\( \pi_0 \)和\( P^2 \)来计算第二时刻的状态概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程综合练习题一、填空题(每空3分)第一章1.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g ,则n X X X +++ 21的特征函数是 。
2.{}=)(Y X E E 。
3. X 的特征函数为)(t g ,b aX Y +=,则Y 的特征函数为 。
4.条件期望)(Y X E 是 的函数, (是or 不是)随机变量。
5.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g i ,则 n X X X +++ 21的特征函数是 。
6.n 维正态分布中各分量的相互独立性和不相关性 。
第二章7.宽平稳过程是指协方差函数只与 有关。
8.在独立重复试验中,若每次试验时事件A 发生的概率为)10(<<p p ,以)(n X 记进行到n 次试验为止A 发生的次数, 则},2,1,0),({ =n n X 是 过程。
9.正交增量过程满足的条件是 。
10.正交增量过程的协方差函数=),(t s C X 。
第三章11. {X(t), t ≥0}为具有参数0>λ的齐次泊松过程,其均值函数为 ;方差函数为 。
12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1λ,2λ,3λ且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是 ,汽车之间的不同到达时刻间隔的概率密度是 。
13.{X(t), t ≥0}为具有参数0>λ的齐次泊松过程,{}==-+n s X s t X P )()( 。
,1,0=n14.设{X(t), t ≥0}是具有参数0>λ的泊松过程,泊松过程第n 次到达时间W n 的数学期望是 。
15.在保险的索赔模型中,设索赔要求以平均2次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000元的正态分布,求一年中保险公司的平均赔付金额 。
16.到达某汽车总站的客车数是一泊松过程,每辆客车乘客数是一随机变量.设各客车乘客数独立同分布,且各辆车乘客数与车辆数N(t)相互独立,则在[0,t]到达汽车总站的乘客总数是 (复合or 非齐次)泊松过程.17.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2min 到达的顾客不超过3人的概率是 .第四章18. 无限制随机游动各状态的周期是 。
19.非周期正常返状态称为 。
20.设有独立重复试验序列}1,{≥n X n 。
以1=n X 记第n 次试验时事件A 发生,且p X P n ==}1{,以0=n X 记第n 次试验时事件A 不发生,且p X P n -==1}0{,若有1,1≥=∑=n X Y nk k n ,则}1,{≥n Y n 是 链。
答案一、填空题1.)(t g n ; 2.EX ; 3.)(at g e ibt 4.;Y 是 5.∏=ni i t g 1)(; 6.等价7.时间差; 8.独立增量过程;9.[][]{}0)()()()(3412=--t X t X t X t X E 10.}),(min{2t s X σ 11.t t λλ;; 12.⎩⎨⎧<≥=-000)(11t t e t f tλλ ⎩⎨⎧<≥++=++-000)()()(321321t t e t f tλλλλλλ13.t ne n t λλ-!)( 14.λn 15.240000 16.复合; 17.4371-e18.2; 19.遍历状态; 20.齐次马尔科夫链;二、判断题(每题2分)第一章1.)(t g i ),2,1(n i =是特征函数,∏=ni i t g 1)(不是特征函数。
( )2.n 维正态分布中各分量的相互独立性和不相关性等价。
( )3.任意随机变量均存在特征函数。
( )4.)(t g i ),2,1(n i =是特征函数,∏=ni i t g 1)(是特征函数。
( )5.设()1234X ,X ,X ,X 是零均值的四维高斯分布随机变量,则有1234123413241423()()()+()()+()()E X X X X E X X E X X E X X E X X E X X E X X =() 第二章6.严平稳过程二阶矩不一定存在,因而不一定是宽平稳过程。
( )7.独立增量过程是马尔科夫过程。
( )8.维纳过程是平稳独立增量过程。
( )第三章9.非齐次泊松过程是平稳独立增量过程。
( )第四章10.有限状态空间不可约马氏链的状态均常返。
( )11.有限齐次马尔科夫链的所有非常返状态集不可能是闭集。
( )12.有限马尔科夫链,若有状态k 使0lim )(≠∞→n ik n p ,则状态k 即为正常返的。
() 13.设S i ∈,若存在正整数n ,使得,0,0)1()(>>+n ii n ii p p 则i 非周期。
( )14.有限状态空间马氏链必存在常返状态。
( )15.i 是正常返周期的充要条件是)(lim n ii n p ∞→不存在。
( )16.平稳分布唯一存在的充要条件是:只有一个基本正常返闭集。
( )17.有限状态空间马氏链不一定存在常返状态。
( )18.i 是正常返周期的充要条件是)(lim n ii n p ∞→存在。
( )19.若i j ↔,则有i j d d =( )20.不可约马氏链或者全为常返态,或者全为非常返态.( )答案二、判断题1.× 2.√ 3.√ 4.√ 5.√6.√ 7.√ 8.√ 9.×10.√ 11.√ 12.√ 13.√ 14.√ 15.√16.√ 17.× 18.× 19.√ 20.√三、大题第一章1.(10分)—(易)设),(~p n B X ,求X 的特征函数,并利用其求EX 。
2.(10分)—(中)利用重复抛掷硬币的试验定义一个随机过程,+∞<<∞-⎩⎨⎧=t t t t X 出现反面出现正面,2,cos )(π 出现正面和反面的概率相等,求)(t X 的一维分布函数)2/1,(x F 和)1,(x F ,)(t X 的二维分布函数)1,2/1;,(21x x F 。
3.(10分)—(易)设有随机过程0,)(≥+=t Bt A t X ,其中A 与B 是相互独立的随机变量,均服从标准正态分布,求)(t X 的一维和二维分布。
第二章4.(10分)—(易)设随机过程X(t)=Vt+b ,t ∈(0,+∞), b 为常数,V 服从正态分布N(0,1)的随机变量,求X(t)的均值函数和相关函数。
5.(10分)—(易)已知随机过程X(t)的均值函数m x (t)和协方差函数B x (t 1, t 2),g(t)为普通函数,令Y(t)= X(t)+ g(t),求随机过程Y(t)的均值函数和协方差函数。
6.(10分)—(中)设}),({T t t X ∈是实正交增量过程,ξ,0)0(),,0[=∞=X T 是一服从标准正态分布的随机变量,若对任一)(,0t X t ≥都与ξ相互独立,求),0[,)()(∞∈+=t t X t Y ξ的协方差函数。
7.(10分)—(中)设},)({+∞<<∞-+=t Yt X t Z ,若已知二维随机变量),(Y X 的协方差矩阵为⎥⎦⎤⎢⎣⎡2221σρρσ,求)(t Z 的协方差函数。
8.(10分)—(难)设有随机过程}),({T t t X ∈和常数a ,试以)(t X 的相关函数表示随机过程T t t X a t X t Y ∈-+=),()()(的相关函数。
第三章9.(10分)—(易)某商店每日8时开始营业,从8时到11时平均顾客到达率线性增加.在8时顾客平均到达率为5人/时,11时到达率达到最高峰20人/时,从11时到13时,平均顾客到达率维持不变,为20人/时,从13时到17时,顾客到达率线性下降,到17时顾客到达率为12人/时。
假定在不相重叠的时间间隔到达商店的顾客数是相互独立的,问在8:30—9:30间无顾客到达商店的概率是多少?在这段时间到达商店的顾客数学期望是多少?10.(15分)—(难)设到达某商店的顾客组成强度为λ的泊松过程,每个顾客购买商品的概率为p ,且与其它顾客是否购买商品无关,求(0,t )无人购买商品的概率。
11.(15分)—(难)设X 1(t) 和X 2 (t) 是分别具有参数1λ和2λ的相互独立的泊松过程,证明:Y(t)是具有参数21λλ+的泊松过程。
12.(10分)—(中)设移民到某地区定居的户数是一泊松过程,平均每周有2户定居.即2=λ。
如果每户的人口数是随机变量,一户四人的概率为1/6,一户三人的概率为1/3,一户两人的概率为1/3,一户一人的概率为1/6,并且每户的人口数是相互独立的,求在五周移民到该地区人口的数学期望与方差。
13.(10分)—(难)在时间t 向总机呼叫k 次的概率为 ,2,1,0,!)(==-k e k k p kt λλ,其中0>λ为常数.如果任意两相邻的时间间隔的呼叫次数是相互独立的,求在时间2t 呼叫n 次的概率)(2n P t14.(10分)—(易)设顾客到某商场的过程是泊松过程,巳知平均每小时有30人到达,求下列事件的概率:两个顾客相继到达的时间间隔超过2 min15.(15分)—(中)设进入中国上空流星的个数是一泊松过程,平均每年为10000个.每个流星能以陨石落于地面的概率为0.0001,求一个月落于中国地面陨石数W 的EW 、varW 和P{W ≥2}.16.(10分)—(易)通过某十字路口的车流是一泊松过程.设1min 没有车辆通过的概率为0.2,求2min 有多于一辆车通过的概率。
17.(10分)—(易)设顾客到某商场的过程是泊松过程,巳知平均每小时有30人到达,求下列事件的概率:两个顾客相继到达的时间间隔短于4 min18.(15分)—(中)某刊物邮购部的顾客数是平均速率为6的泊松过程,订阅1年、2年或3年的概率分别为1/2、l /3和1/6,且相互独立.设订一年时,可得1元手续费;订两年时,可得2元手续费;订三年时,可得3元手续费. 以X(t)记在[0,t]得到的总手续费,求EX(t)与var X(t)19.(10分)—(易)设顾客到达商场的速率为2个/min ,求 (1) 在5 min 到达顾客数的平均值;(2) 在5min 到达顾客数的方差;(3) 在5min 至少有一个顾客到达的概率.20.(10分)—(中)设某设备的使用期限为10年,在前5年平均2.5年需要维修一次,后5年平均2年需维修一次,求在使用期限只维修过1次的概率.21.(15分)—(难)设X(t)和Y(t) (t ≥0)是强度分别为X λ和Y λ的泊松过程,证明:在X(t)的任意两个相邻事件之间的时间间隔,Y(t) 恰好有k 个事件发生的概率为kY X Y Y X X p ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=λλλλλλ。