GPS接收机测试应用手册

合集下载

Keysight Technologies GPS 接收器验证测试指南说明书

Keysight Technologies GPS 接收器验证测试指南说明书

Application NoteKeysight TechnologiesTypical GPS Receiver Verification TestsUsing a GPS Signal SimulatorIntroductionThis paper describes a set of typical GPS receiver verification tests using a GPS signal simulator.These tests are used to verify the functionality of embedded GPS receivers in mobile consumer prod-ucts such as cellular phones and other handheld receivers. Using a metric grade GPS signal simulatorin a GPS receiver test environment provides regulated control, easy repeatability, and maximum flex-ibility. In this environment, the tests listed in this paper create a standard validation procedure for thetesting and verification of most GPS receivers. The flexibility of the signal source allows for testing ofnot only GPS receivers but other wireless formats and standards as well.Global Positioning System (GPS) receiver technology is now commonplace in our daily lives, havingpenetrated our electronicworld from cell phones, to personal navigation devices (PND), to cameras,to assimilation with RFID tags. The technology is rapidly expanding its reach into new areas, enlarging the ever-expanding role that GPS technology will play in our lives.But even as GPS technology becomes more common, GPS receiver manufactures, OEM integrators,and contract manufacturers struggle for standard tests to verify receiver performance. Verificationis required both to validate GPS receiver functionality and to objectively evaluate competing GPS ICperformance. Verification procedures require a controlled environment that facilitates precise repeat-ability. Using actual GPS satellite signals and receiving them through an antenna, in most cases, does not provide this type of environment. A realtime GPS signal simulation, generated by an RF signalsource, offers an excellent starting point for creating such an environment.As GPS receivers are incorporated into mobile consumer products such as cellular phones, it also be-comes important to have a flexible test environment. The source should be flexible enough to generate not only GPS signals, but also other wireless standards.The tests described in this paper will help in the evaluation of GPS receiver performance and will pro-vide a validation technique for GPS products in a controlled environment.The GPS personality (E4438C or E8267D Option 409) can provide up to 8 real-world GPS satellite signals. The satellite signals are generated based upon pre-configured scenario files. These signals, including Doppler shifts, aresynchronized with the actual satellite orbits so that they are consistent with the navigation message contained in the satellite signals. (See section below on scenario generation).The GPS receiver used in the test set-ups was the U-blox AEK-4T evaluation kit with U-center software. All U-center screen captures are used in this paper with written permission from U-blox.The user interface of the Option 409 GPS personality is shown below in Figure 2. The GPS signal simulator allows the following capabilities:–Multi-satellite GPS configuration (maximum 8 satellites)–Signal simulates real world scenarios (multiple scenarios available)– R eal satellite data (synchronized satellites with Doppler shifts and navigation messages) –Adjustable number of visible satellites between 1 and 8 –Automation of waveform playback through SCPI commands –10baseT LAN, GPIB, and RS-232 connectivityOption 409 GPSsimulation capabilitiesTest EquipmentFigure 1. E4438C ESG vector signal generatorFigure 2. Option 409 GPS personality user interfaceRF outConnection to PCGPS receiver50 dB attenuation and DC block PC running U-center software GPS inputFigure 3. Test configurationEach of the scenarios for the Option 409 application is generated by the NAVSYS Corporation GPS Signal Simulation Toolbox. A script was created to generate specific satellite information based upon a given location (longitude, latitude, and altitude), specific time and period, and corresponding Yuma almanac file. The satellite information includes satellite navigation data as well as power levels and Doppler shifts for each visible satellite during that time period.Verification of the accuracy of the scenario files was performed by NAVSYS Corporation. Actual measurements of carrier frequency and pseudo range were collected with the NAVSYS High Gain Advanced GPS Receiver (HAGR) over a period of 12 hours. A scenario file was generated using the Signal Simulation Toolbox over the same period for comparison. A comparison between simulated values and actual received signals is shown in Figure 4. The solid blue line is actual data from the HAGR. The red dashed line represents simulated data from the scenario generator. The comparisons were made for all visible satellites during the 12 hour period. Excellent accuracy between simulated and captured GPS signals was observed on all visible satellites.Test setupScenario generatorTypical Measurement TestsTime to first fix (TTFF)Figure 5. U-center softwareTest objective: Measure the time required by the GPS receiver to achieve a GPS navigation fix from a warm start.This is a similar test to the previous cold start TTFF. The receiver in this case contains current ephemeris data for all satellites in the simulation. Typically, this can be achieved by a receiver that had previously been on and then was turned off for a short period of time.The GPS simulation is first started on the E4438C. The GPS receiver is turned on and allowed to achieve a location fix. This assures current ephemeris data in the GPS receiver. The GPS receiver is then turned off for a short period of time and then on again. The time interval from this turn-on to a valid 3D location fix is the TTFF. At least 50 valid sample TTFF’s should be collected. The mean, minimum, and maximum values for these samples are analyzed and the standard deviation should be computed.Test objective: Establish the time required to reacquire a navigation fix follow-ing a short blockage of all GPS signals during normal operation.The method of blockage can be achieved in a number of ways. The two most common ways would be to attenuate the signal by inserting an attenuation of at least 60dB in the feed line or simply to disconnect the feed line from the simula-tor to the receiver. Measurement data is similar to the TTFF measurements.The GPS simulation is first started on the E4438C. The GPS receiver is turned on and allowed to achieve a location fix. The GPS signal (RF cable) is then discon-nected from the input of the GPS receiver to simulate a short blockage of the sig-nal. The signal is then reconnected. The reacquisition time is the interval between the reconnection of the GPS signal and first valid navigation data point derived from the simulation. At least 50 valid reacquisition samples should be collected. The mean, minimum, and maximum values for these samples are analyzed and the standard deviation should be computed.Warm start time to first fixReacquisition timeTest objective: Establish the accuracy of the receiver location fix with respect to the simulated location.In this test, a static (non moving) scenario is used as the GPS simulated signal.The GPS simulation is first started on the E4438C. The GPS receiver is turned on and allowed to achieve a location fix. Typical GPS evaluation software provides location fix information. This data, usually longitude, latitude, and altitude informa-tion, can be converted to Earth Centered Fixed Cartesian coordinates (ECEF) for evaluation of the simulated versus GPS receiver calculated locations. See Figure 5 for typical location information.Test objective: Establish the ability of the GPS receiver to operate in the pres-ence of interfering (jamming) signals that may be received through its input.In this test, the jamming signal power level is increased in 1 dB increments until the first degradation of the GPS receiver is noticed. This is typically a dropped satellite. The jamming signal power level is again slowly increased until the GPS receiver loses its 3D navigation fix. See Figure 6 for test setup.Figure 6. RF Interference Test ConfigurationThe GPS simulation is first started on the E4438C. The GPS receiver is turned on and allowed to achieve a location fix. The jamming signal is then added to the GPS signal at a level that is discernible to the GPS receiver. The jamming signal is increased in 1 dB steps. Typical data collected for this test are shown below in Table 1.Table 1. Data for interference testing1st satellite 3D navigation Jammer Jammer loss threshold (dB) loss threshold (dB) center frequency bandwidthStatic navigation accuracyRadio frequency interferencePC running U-center softwareTest objective: Verify receiver sensitivity by measuring signal strength (C/No) under various GPS signal power levels.To obtain an accurate power level for a GPS satellite signal, the number of visible satellites should be set to 1 on the E4438C-409 application. The power level on the front panel of the E4438C will then accurately reflect the total power in the single satellite signal.The GPS simulation is first started on the E4438C. The power level on the E4438C is set such that the GPS receiver can identify the single GPS satellite signal. The power level of the GPS satellite signal is then decreased until the GPS receiver loses tracking of the single satellite. This power level and the cor-responding GPS receiver C/No ratio should be collected as data.Another receiver sensitivity test is to measure the power level and C/No ratio level at which 3D location fix is lost. This requires a minimum of 4 satellite GPS simulation. In this test, the GPS simulation is started on the E4438C with all 8 satellites visible. The GPS receiver is turned on and allowed to achieve a location fix. The power level of the E4438C is then decreased until the 3D location fix is lost. Again the power level and the corresponding GPS receiver C/No ratio are collected as data.Note: For information on sample sizes, statistical data analysis, and specific test methodology see ION STD-101 “Recommended Test Procedures For GPS Receivers”, 27 January 1997.The ability to reproduce GPS signals easily and accurately with a high per-formance RF source allows great flexibility in creating a test environment for evaluating GPS receivers. Although the tests mentioned in this paper are not all-encompassing, they can be used as a basis for verification of GPS receivers. The characteristic performance information gathered from these tests will allow verification of GPS receiver performance and comparisons between them. The test equipment used is all standard Consumer off-the-shelf (COTS) equipment and is easily modified to suit changing test requirements.ION STD 101: Recommended Test Procedures for GPS Receivers, Revision C, Institute of Navigation, 1997 (ISBN: 0936406046)Keysight E4438C ESG Vector Signal Generator Configuration Guide, Literature number 5988-4085ENKeysight GPS Personality for the E4438C ESG and E8267D PSG Vector Signal Generators Option 409, Technical Overview, Literature number 5988-6256EN For more information, please visit:/find/gps /find/e4438c /find/e8267dReceiver sensitivitySummaryBibliography Reference LiteratureFor more information on KeysightTechnologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:/find/contactus Americas Canada (877) 894 4414Brazil 55 11 3351 7010Mexico001 800 254 2440United States (800) 829 4444Asia Pacific Australia 1 800 629 485China800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 180****8100Taiwan0800 047 866Other AP Countries (65) 6375 8100Europe & Middle East Austria 0800 001122Belgium 0800 58580Finland 0800 523252France 0805 980333Germany ***********Ireland 1800 832700Israel 1 809 343051Italy800 599100Luxembourg +32 800 58580Netherlands 0800 0233200Russia 8800 5009286Spain 0800 000154Sweden 0200 882255Switzerland0800 805353Opt. 1 (DE)Opt. 2 (FR)Opt. 3 (IT)United Kingdom0800 0260637For other unlisted countries:/find/contactus(BP-07-01-14)myKeysight/find/mykeysightA personalized view into the information most relevant to you.Three-Year Warranty/find/ThreeYearWarrantyKeysight’s commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.Keysight Assurance Plans/find/AssurancePlansUp to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements./quality Keysight Technologies, Inc.DEKRA Certified ISO 9001:2008 Quality Management SystemKeysight Channel Partners/find/channelpartnersGet the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.ATCA ®, AdvancedTCA ®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group./find/gps /find/e4438c /find/e8267dThis information is subject to change without notice.© Keysight Technologies, 2010 – 2014Published in USA, July 31, 20145989-8572EN09 | Keysight | Typical GPS Receiver Verification Tests using a GPS Signal Simulator – Application Note。

大学实验室GPS接收机操作规程

大学实验室GPS接收机操作规程

大学实验室GPS接收机操作规程在使用GPS接收机之前必须认真阅读该设备操作使用手册,掌握仪器的基本操作要领及注意事项。

在使用本仪器时,力求小心,轻拿轻放,勿磕勿碰,确保仪器的使用安全。

在使用接收机GPS接收机之前,请务必仔细阅读下列条款:一、GPS接收机充电接收机必须用外接充电器进行充电,充电器将用至少2A 电流和10-28V电压的直流电进行充电。

建议工作的前一晚上给接收机充电。

只需把充电器连接到接收机前面板上的PWR口上,并把充电器接到110/220V外接电源上就可以给接收机充电了。

4小时的充电将使内置锂电池的容量达到90%,6个小时则能达到完全充满。

在给接收机充电的过程中,接收机仍然可以开/关机。

但是必须确认接收机不是处在零功率模式。

假如接收机正处在零功率模式,则按RESET键大约1秒左右,就可以从零功率模式返回到正常状态。

因此,建议每次给接收机充电前,按一下RESET键,这样可确保接收机正确充电。

下面是将接收机设置到零功率模式的具体步骤:打开接收机,当接收机打开的状态下,按电源键在8-14秒之间;当两个灯都呈红色时松开电源键;此时,两个灯全部熄灭,接收机处在零功率模式下。

如果想使接收机返回正常模式,按RESET键一秒然后释放即可。

二、仪器的安置先将仪器的三脚架在地面安置稳妥,安置角架必须与地面点大致对中,架头大致水平,若为泥土地面,应将脚尖踩入土中,若为坚实地面,应防止脚尖有滑动的可能性,然后开箱取仪器。

仪器从箱中取出之前,应看清仪器在箱中的正确安放位置,以避免装箱时发生困难。

安装好仪器以后,随后关闭仪器箱盖,防止灰尘等进入箱内。

仪器安装在三脚架上之后,不论是否在观测,必须有人守护,禁止无关人员拨弄,避免路过行人、车辆碰撞。

三、仪器的使用使用GPS接收机时须在关机状态下正确连接电源线、通讯线及天线,连线时注意接口类型,将GPS天线整平对中并量取天线高。

开机时按下PWR键0.5秒并迅速放开,完成开机工作。

GPS北斗接收机说明书

GPS北斗接收机说明书

GPS/北斗接收机使用说明书北京华星北斗智控技术有限公司目录前言 (3)注意事项 (4)第一章产品介绍 (5)1.1 主要特点 (5)1.2 灵活的测量模式 (6)第二章性能参数 (7)2.1 技术参数 (7)2.2 电气参数 (8)第三章安装应用 (9)3.1 供电说明及设备安装 (9)3.2 网络的应用说明 (10)第四章硬件功能说明 (18)4.1 主机外观 (18)4.2 面板及接口说明 (19)4.3 SD/SIM 卡的安装 (22)第五章常见问题 (23)5.1 故障分析 (23)5.2 常见问题及其解决方法 (23)第2页前言关于本手册本手册对GPS/北斗的安装、使用方法及有关技巧进行了详细的介绍。

用户应该仔细阅读,并边读边用,以求达到最佳使用效果。

本手册版权归北京华星北斗智控技术有限公司。

在著作权保护的范围内,未经本公司书面同意,禁止对其进行翻印、改编等行为。

本产品符合国家认定的企标:Q/VCPV 1-2011《测地型GPS 接收机》。

第3页注意事项1 使用仪器前请认真阅读产品使用说明;2 用户不能自行拆卸仪器,若发生故障,请与供应商联系;3 请使用指定品牌稳压电源,并严格遵循仪器的标称电压,以免对电台和接收机造成损害;4 请使用原厂电池及附件,使用非专用电池、充电器可能引起爆炸、燃烧等意外情况,使用非原厂附件不享有保修资格;5 使用充电器进行充电时,请注意远离火源、易燃易爆物品,避免产生火灾等严重的后果;6 请勿将废弃电池随意丢弃,须根据当地的有关特殊废品的法规处理;7 电台在使用中可能产生高温。

使用时请注意防止烫伤;减少、避免电台表面不必要的遮蔽物,保持良好的通风环境;8 禁止边对蓄电池充电边对电台供电工作;9 请不要长时间在高增益天线下,长时间使用电台时应保持1-1.5 米以外,避免辐射伤害;10 雷雨天请勿使用天线和对中杆,防止因雷击造成意外伤害;11 请严格按照用户手册中的连线方法连接您的设备,各接插件要注意插接紧,电源开关要依次打开;12 不要在没有切断电源的情况下对各连线进行插拔;13 各连接线材破损后请不要再继续使用,请及时购买更换新的线材,避免造成不必要的伤害。

苏州一光SGS200 GPS接收机使用手册说明书

苏州一光SGS200 GPS接收机使用手册说明书

同济大学出版社
覃辉主编 《土木工程测量》第二版
一 概述
SGS200 GPS 接收机由苏州一光仪器有限公司和武汉大学 GPS 工程中心共同研 制 是一种用于静态测量的单频高精度接收机 其天线 OEM 板 液晶屏及采集器 中的芯片均为国外名厂产品 性能稳定 操作简单 携带方便 适用于各种施工 单位 测量部门做二等及二等以下的各级控制测量 导线测量 亦可用于二级及 二级以下的变形监测等
高程 5.024

PDOP 2.1
卫星数 8
卫星号 5 6 10 17 18 23 25 26
锁定* * * * * * * *
信噪比 96 103 117 92 85 46 77 140
F4: 星图
图 4-4
时间为北京时 纬度 经度 高程为设站点的概略坐标 是变化的 PDOP 为空间图形强度因子 其值越小越好 一般 PDOP 6 卫星数为跟踪到的卫星个数 卫星号为卫星的编号 锁定为 * 时 表示该卫星处于健康状态 若此时有 4 颗或 4 颗以上的卫星 处于健康状态 则可进行静态观测 信噪比为卫星信号与噪声之比
是否覆盖同名文件
图 4-8 此时 按 清除 可返回图 4-6 进行重新设置
同济大学出版社 5
覃辉主编 《土木工程测量》第二版
按 回车 进入静态观测 屏幕显示如下 图 4-9
静态观测
时间 13 30 16
纬度 31 18 13.118
经度 120 37 53.172
高程 5.035

PDOP 2.1
SGS200 GPS 接收机具有动态 RTD 的操作程序 只需配置相应的数据链和 动态软件 即可升级为动静合一的 GPS 接收机
注意 使用仪器前 请仔细阅读使用说明书 并妥善保存以备查阅

RTK操作手册正文

RTK操作手册正文
广州中海达测绘仪器有限公司
Haida RTK GPS 操作手册
简约操作步骤在第 60 页
目录
第一章 概述...............................................................1 §1.1 GPS 接收机与卫星信号...............................................1 §1.2 GPS 测量技术.......................................................1 §1.2.1 动态差分(RTK).................................................2 §1.2.2 伪距差分(DGPS)................................................2 §1.2.3 静态和快速静态..................................................2 §1.3 GPS 在测量工作中的应用..............................................2 §1.3.1 控制测量.......................................................2 §1.3.2 地形测量.......................................................2 §1.3.3 放样...........................................................3 §1.4 RTK 的局限性........................................................3 §1.4.1 最主要的局限性其实不在于 RTK 本身,而是源于整个 GPS 系统........3 §1.4.2 其次的局限性为数据传输技术.......................................4

GPS技术与应用实验指导书

GPS技术与应用实验指导书

《卫星导航定位》实验指导书罗德安编班级:姓名:学号:北京建筑工程学院测绘与空间信息学院实验一 GPS接收机的认识及使用一、实验目的、要求1.通过实验认识华测GPS、Topcom GPS、莱卡GPS1200型接收机并学会使用;2.通过实验加深理解全球定位系统—GPS的概念。

二、组织安排每班分一批,每批分6组,每组4-5人。

三、实验仪器设备每组仪器:1.华测GPS、Topcom GPS 、莱卡GPS1200型接收机一套2.脚架一个3.2米钢卷尺一把4.记录板及记录表格四、实验学时课内2学时。

五、实验内容1.认识莱卡GPS1200型等接收机的各个部件。

2.掌握GPS接收机各个部件之间的连接方法、接口的功用。

3. 熟悉GPS接收机前面板各个按键的功能。

4.学会使用GPS接收机查看天空GPS卫星的分布状况、PDOP值以及测站经纬度。

5.学会使用GPS接收机采集数据,并给采集的数据编辑文件名;学会GPS接收机天线高的输入方法。

六、上交资料每人上交一份实习报告(含下列内容):1.实习目的、内容、要求;2.仪器的基本操作步骤及方法;3.遇到的问题及解决办法、实习所得收获。

七、注意事项1.莱卡GPS1200型等接收机是目前技术先进、价格昂贵的测量型GPS接收机,在安置和使用时必须严格遵守操作规程,注意爱护仪器。

2.使用时仪器注意防潮、防晒。

3.GPS接收机后面板的电源接口具有方向性,接电缆线使注意红点对红点拔插,千万不能旋转插头。

4.所有操作,在不懂时,应先请教老师,切忌随意操作。

实习总结实验二 GPS接收机野外静态数据采集一、实验目的、要求1.掌握GPS接收机野外静态数据采集的测量方法;2.理解GPS控制网的同步环、异步环的构网思想。

3. 掌握GPS数据下载方法和步骤。

二、组织安排每班分一批,每批分3组,每组10人。

三、实验仪器设备每班实验仪器: 4台套华测GPS,或莱卡GPS1200接收机3台。

华测GPS接收机配置:1. GPS接收机一台2.脚架一个3.电池2块4.基座一个5. 2米钢卷尺一把莱卡接收机配置:1.莱卡1200型双频GPS接收机一台2.脚架一个(也可以采用测量墩)3.电池两块4.基座一个5.天线一个6.天线电缆一根7.供电电缆一根8. 2米钢卷尺一把四、实验学时课内2学时。

GPS接收机使用说明书

GPS接收机使用说明书
当测量结束时,接收机采集的数据可以下载到计算机里并使用后处理软件处理。详 见《BFPP 使用说明书》。
RTK 工作模式
RTK (Real Time Kinematic)是一种差分 GPS 数据处理方法。主要构成:基准站、移 动站、数据链、控制软件。基准站实时的将卫星观测数据和基准站坐标发送给移动站, 移动站通过电台或 GPRS/CDMA 接收差分数据,并在机进行处理,从而实时得到移动站 的高精度位置。
基准站若以自启动方式来启动,架设好仪器开机后,无需操作,差分数据自动发送, 此时基准站以获得的当前位置单点定位值来启动。基准站开机后默认的启动方式就是自 启动。建议启动基准站时,还是使用下面介绍的“手簿启动”方式,因为这样启动时, 保留了启动基准站时使用的点的坐标,方便将来可能继续使用当前的位置来启动基准站。
提示信息
电台在工作过程中,如果“RXD”灯闪烁,说明电台接受到外界信号了,并会对当 前工作中的电台产生干扰,此时需要按“CHANNEL”按钮切换信道,直到“RXD”灯 不亮为止(相应的也要更改移动站内置电台的信道,详见《博飞 RTK 手簿软件操作手 册》)。
8
3.3 仪器架设
3.3.1 架设要求
基准站应该选择视野开阔的地方,这样有利于卫星信号的接受。 基准站架设高度应避免过低,防止人为干扰。 基准站架设的脚架应整平,(如果基准站架设在已知点时,还要求进行对中)。 在有电台的情况下: 基准站脚架和天线脚架之间应该保持至少 3m 的距离,避免电台干扰 GPS 信号。基 准站应架设在地势较高的地方,以利于 UHF 无线信号的传送,如移动站距离较远,还需 要增设电台天线加长杆。
3 RTK 基准站工作模式....………………..……….………………..8 3.1 认识基准站接收机…………………….…….………………8 3.2 外置 PDL 电台的设置……………………..….…………….8 3.3 仪器架设…………….……………………………………….9 3.3.1 架设要求 .……………………………………………9 3.3.2 电台模式连接图示 .…………………………………9 3.4 启动基准站 …………………………….…………………..11 3.4.1 自启动……………………………..…………………11 3.4.2 手簿启动……………………………..……………….11

CMW GPS测试应用指南

CMW GPS测试应用指南

支持热线:
中国大陆: 800 810 8228-1 Customersupport.china@ USA & Canada USA: 1-888-TEST-RSA (1-888-837-8772) from outside USA: +1 410 910 7800 CustomerSupport@ East Asia +65 65 13 04 88 CustomerSupport@ Rest of the World +49 89 4129 137 74 CustomerSupport@
<黄静明>
罗德与施瓦茨中国有限公司产品支持部
5
CMW GSM 信令测试
<黄静明>
罗德与施瓦茨中国有限公司产品支持部
6
CMW GSM 信令测试
2 GPS 测试
在进行测试之前,需要将终端的 GPS 天线和仪表的产生 GPS 信号的射频端口进行 连接,用户可以采用传导连接和空中耦合方式,如果不明确终端 GPS 天线位置或者没 有 GPS 天线可以引出,用户可以用一个耦合器进行测试。
罗德与施瓦茨中国有限公司产品支持部
4
CMW GSM 信令测试
不带显示屏的CMW使用
不带显示屏的 CMW 前面板只有 DVI 显示器接口和其他外设接口,如果要对其进行手动 操作,主要有两种方式: 1. 外界显示器和 USB 键盘/鼠标 2. 通过 LAN 口进行远程控制 通过这两种方式中任一方法控制 CMW 时,在屏幕中会出现类似下图的操作软键盘面 板,通过鼠标或键盘即可对 CMW 进行控制,右边的一排功能键实现功能和带显示屏的 CMW 上按键面板中功能相同。
Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 | D - 81671 Mü nchen Phone + 49 89 4129 - 0 | Fax + 49 89 4129 – 13777 罗德与施瓦茨中国有限公司 北京 上海 深圳 广州 成都 西安

AshtechGPSZ-X接收机使用手册及参考手册Z-XRTK测量中文手册.doc

AshtechGPSZ-X接收机使用手册及参考手册Z-XRTK测量中文手册.doc

第一章引言第一节概述在 GPS 测量的早期,对一个点的数据采集需要数小时,所以每天只能测定几个点,完成一个大的项目需费时几个星期。

当天的工作结果要到几天后,数据处理完才知道。

工作所需仪器可装满一部吉普车,每套价值约十五万美元。

而且,至少需要两套设备。

那时的用户很难想象会有这么一天,数据采集只需几秒钟,每天可以测定几百个点,大的项目可在几个小时内完成,而且结果能在实地实时获得。

工作所需设备可由一人背负,两台套设备组成的系统只不过四万美元左右。

这就是八十年代早期和今日 GPS 测量的差异。

早期的 GPS 测量在本质上是静态的,用户在一个测站点要停留 1 到 3 个小时或更久。

如果时间允许,它才会在数据采集结束后,转去下一个测站点。

随后数据汇集在一起才能进行后处理。

数据处理完成,方可得到测量结果。

从那时起,GPS 测量开始向动态方向发展。

设备体积更小,便于携带。

由于 GPS 流动站与基准站之间的数据采用无线电链接,在数据采集的同时,即可对其进行实时处理。

数据处理的新技术使得在数秒钟之内测定精确位置解成为可能。

这些技术进步允许用户在测区往来行走,迅速确定有关目标的位置,即刻见到自己的劳动成果。

这就是实时动态测量(RTK )。

一、全球定位系统(GPS )让我们简捷地回顾一下使这一切成为现实的全球定位系统(GPS )。

GPS 系统包括三大部分:卫星、地面监控站和接收机。

监控站的主要目的是监测和维护卫星。

对用户来说,无须对监控站有过多了解,只要知道它们的功能是保障卫星的正常运转就行了。

卫星是 GPS 的第二个主要部分。

根据定义,全球星座有 24 颗卫星,不过在本文写成时有27 颗在运转中。

每颗卫星距离地球表面约 20,200 公里,轨道运行周期为11小时58分。

每颗卫星都装备有原子钟,无线电收发机及其它设备。

收发机从监控站取得并传输有关卫星身份、位置和时间等的信息和指令。

每颗卫星可用两个不同频率进行传输:L1 即 1575.42 MHz 和 L2 即 1227.60 MHz 。

GPS动态(RTK)测量操作手册

GPS动态(RTK)测量操作手册
根据以上所述基准站和流动站的运作,用户可携带流动站系统在测区往来行 走,又快又准地进行定位测量和放样测设工作。由于即时计算点位坐标,用户对 系统的正常工作可实时监察,心中有数。基准站传输原始数据时并不限制接受对 象,所以适配某一基准站工作的流动站数量不受限制。
三、RTK的应用
2
GPS 动态(RTK)测量操作手册
所处位置(是否存在多路径现象)将决定采用哪种天线较为合适。
1.Geodetic IV 天线 图 2.2 Geodetic IV GPS 天线(有“不带抑径盘”与“* 带抑径盘”两种供 选)
Geodetic IV 天线(图 2.2 )是基准站和流动站系统的标准天线。它体积 小、重量轻,满足大部分用户需要。流动站系统宜采用“不带抑径盘“的天线。 扼流圈天线和带抑径盘的天线因为太大 或/和 太重,并不适合流动站使用。
边角等。测点可以是原有的境界标记,或是需要首次定位的新标记。这一功能使
GPS RTK 最适合于测图应用。图 1.1 是GPS RTK 的测量的设备配置。
RTK 系统可用于地形测量、面积测量和建筑测量,也可以用于测量料场及土
石方工程量计算。
测设放样任务只能在 GPS 的 RTK 操作模式下完成。某一物体的放样包括对
有大型压缩机和空调机组的建筑物楼顶。 这些金属结构会反射可能被天线接 收的卫星信号。扼流圈天线的设计可在最严酷的多路径效应环境中使用。
二、电台 RTK 系统中基准站和流动站的 GPS 接收机通过电台进行通信联系。因此,基
准站系统和流动站系统都包括电台部件。如前所述,基准站 GPS 接收机必须向流 动站 GPS 接收机传输原始数据,流动站 GPS 接收机才能计算出基准站和流动站 之间的基线向量。
4
GPS 动态(RTK)测量操作手册

华测GPS操作

华测GPS操作

华测GPS操作手册GPS在测量中应用广泛,本仪器在本项目上主要对现场进行初样放样。

以下是本软件的使用方法及注意事项:第一步:仪器安装将两节杆进行对接,再讲信号接收机装上,将手持接受控制器固定在杆上托架处。

第二步:仪器操作(1)开机接收器和控制器同时开机。

如图:(2)连接网络、等开机稳定,点击“设置”进入设置之后会看到6个图标,点击最后一个“连接”●进入连接后,你会看到如下图所示的页面,选择“管理现有连接”❍点击之后,页面是下图状态,点击笔按住“Gprs…”2秒,会出现“连接(A)”⏹点击之后会出现“正在拨号:*99***1#”,这时网络图标在跳动,几秒钟之后就会连接成功(看信号情况,信号好就快,反之则差)连接上呈现下面的页面,点击右上角“OK”☐点击之后又会跳出一个页面,继续点右上角的“OK”❑看到下面的页面点击右上角“X”,进入主页面(即:初始页面)❒进入初始页面之后,点击“上海华测”,进入软件(3)软件操作点击“配置”,选中“移动站参数”,再选其中的“手薄网络(B)”进入“手薄网络(B)”,先选则“工作方式”-“手薄VRS”,再点击“设置”使之与卫星接收机连接,出现“停止”图标后,点“确定”●点击“设置”,然后“移动站参数”,再选择“移动站选项”,点击进入(查看格式是不是“RTCM3.0”),是的话点“接受”❍“接受”之后出现主页,点击“测量”,会出现“启动移动站接收机(B)”,点击此按钮,出现连接状态,连接好之后等待下面中部出现“单点H…V…RMS…”其中数据在变化,还有卫星数也在变化,等到字体出现红色就快了,直至“单点”变为“固定”(4)测量放样点击“测量”,选择“点放样(F)”,再选择“常规点放样(A)”进入“常规点放样(A)”,选着添加点的坐标,点“增加”,选则“键入点”后者其他(这就看你有没有把点导进去了),选好点后就可以根据提示放样了。

本次教程完毕,祝愿学的出色,谢谢!。

RFG-1000 GPS接收器用户手册说明书

RFG-1000 GPS接收器用户手册说明书
frequently.
6
Start-Up for RFG-1000( PDA)?
Getting Started
Step 1: Plug-in PDA connector to your PDA. Step 2: Connect the car cigarette adaptor to your car. Step 3 Run RoyalTek GPS Driver program.(for detail, please refer RoyalTek GPS
What’s Inside the Pac up, make sure your package includes the following items. If any item
is missing or damaged, contact your dealer immediately. Please refer to the contact
2
What is RFG-1000 ?
RFG-1000 introduces a First GPS module in G-mouse type. The RFG-1000 provides a GPS measurement platform that performs the processor-intensive GPS tracking and processing tasks and FirstGPS software. It enables the host CPU–based software to calculate the actual position, velocity and time (PVT) solutions at its own pace, without burdening the other applications running on the device.

GPS-RTK测量手册

GPS-RTK测量手册

GPS RTK测量技术规程Technical Specifications For GPS RTK Surveys1 总则1.1为了GPS RTK技术在治黄测绘及其它相关领域内推广应用,统一RTK作业方法、仪器使用要求、数据处理方法,特制定本规程。

1.2本标准参照与引用的标准1.2.1《全球定位系统(GPS)测量规范》(GB/T18314-2001);1.2.2《全球定位系统城市测量技术规程》(CJJ73-97);1.2.3《公路全球定位系统(GPS)测量规范》(JTJ/T066-98);1.2.4《全球定位系统(GPS)测量型接收机检定规程》(CH8016-1995)。

1.3本规程适用于四等平面以下、等外水准控制测量、放样测量、地形测量(包括水下地形测量)、断面测量,以及当采用RTK技术辅助水文测验、河道冲淤监测时亦可参照本规程。

2 术语2.1全球定位系统(GPS)Global Position SystemGPS是由美国研制的导航、授时和定位系统。

它由空中卫星、地面跟踪监控站、和用户站三部分组成,具有在海、陆、空进行全方位实时三维导航与定位能力。

GPS系统的特点是高精度、全天候、高效率、多功能、操作简便、应用广泛等。

2.2实时动态测量(RTK)Real Time KinematicRTK定位技术是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。

在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。

流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理。

流动站可处于静止状态,也可处于运动状态。

RTK技术的关键在于数据处理技术和数据传输技术。

2.3观测时段Observation测站上开始接收卫星信号到停止接收,连续观测的时间长度。

2.4同步观测Simultaneous Observation两站或两站以上接收机同时对同一组卫星进行观测。

GPS RTK测量手册

GPS RTK测量手册

GPS RTK测量技术规程Technical Specifications For GPS RTK Surveys1 总则1.1为了GPS RTK技术在治黄测绘及其它相关领域内推广应用,统一RTK作业方法、仪器使用要求、数据处理方法,特制定本规程。

1.2本标准参照与引用的标准1.2.1《全球定位系统(GPS)测量规范》(GB/T18314-2001);1.2.2《全球定位系统城市测量技术规程》(CJJ73-97);1.2.3《公路全球定位系统(GPS)测量规范》(JTJ/T066-98);1.2.4《全球定位系统(GPS)测量型接收机检定规程》(CH8016-1995)。

1.3本规程适用于四等平面以下、等外水准控制测量、放样测量、地形测量(包括水下地形测量)、断面测量,以及当采用RTK技术辅助水文测验、河道冲淤监测时亦可参照本规程。

2 术语2.1全球定位系统(GPS)Global Position SystemGPS是由美国研制的导航、授时和定位系统。

它由空中卫星、地面跟踪监控站、和用户站三部分组成,具有在海、陆、空进行全方位实时三维导航与定位能力。

GPS系统的特点是高精度、全天候、高效率、多功能、操作简便、应用广泛等。

2.2实时动态测量(RTK)Real Time KinematicRTK定位技术是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。

在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。

流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理。

流动站可处于静止状态,也可处于运动状态。

RTK技术的关键在于数据处理技术和数据传输技术。

2.3观测时段Observation测站上开始接收卫星信号到停止接收,连续观测的时间长度。

2.4同步观测Simultaneous Observation两站或两站以上接收机同时对同一组卫星进行观测。

静态GPS接收机

静态GPS接收机
3
第 1 章 接收机使用
1.1 入门篇
本用户手册适用于 F30 测量型 GPS 接收机。 使用范围:
广泛使用于在静态控制测量,工程测量,后差分测量,勘界测量,GIS 数据采集等领域。 系统特点:
F30 测量型 GPS 接收机采用智能一体化设计,让你充分享受休闲测量的快乐,主机、天线、电 缆、电池的充分集成内置,让你再也无须担心连接电缆的繁琐,开机即可工作的操作设计让你充分 感受科技的魅力。该测量系统适合不同层次用户使用。 技术参数:
测量准备 本篇将对 F30 型测量系统的具体施测过程进行详细的介绍。由于 GPS 测量工作的实施方法取决
于用户的具体工程设计要求,因此这里主要是对使用 F30 型 GPS 系统建立控制网的一般过程、作业 的方法和原则进行介绍。至于有特殊要求的用户还可参照国家有关部门颁发的测量规范。
GPS 测量工作与经典的测量工作相类似,可以分为外业和内业两大部分。其中,外业工作主要 包括:选点、建立测站标志、野外观测作业以及成果质量的检核等;内业工作主要包括:GPS 测量 的技术设计、测后资料的处理以及技术总结等。F30 型 GPS 测量系统测量的工作程序如图 1-1 所示:
第 4 章 静态基线处理
4.1 基线处理的过程 …………………………………………………………………24 4.1.1 设定基线解算的控制参数 ……………………………………………………24 4.1.2 外业输入数据的检查与修改 ……………………………………………………24 4.2 基线处理的设置 ……………………………………………………………………24 4.2.1 常用设置………………………………………………………………………25 4.2.2 对流层、电离层设置…………………………………………………………27 4.2.3 高级设置 ……………………………………………………………………27 4.3 基线处理 ………………………………………………………………………28 4.4 基线处理结果检验 …………………………………………………………………28 4.4.1 基线质量控制 ……………………………………………………………………28 4.4.2 闭合环路检验 ……………………………………………………………………30

多功能GPS接收器模块评测试试用套件说明书

多功能GPS接收器模块评测试试用套件说明书

MULTI SPIDER (ORG4572) GNSS RECEIVER MODULE EVALUATION KIT DatasheetO r i g i n G P S . c o mINDEX1. SCOPE (4)2. DISCLAIMER (4)3. SAFETY INFORMATION (4)4. ESD SENSITIVITY (4)5. CONTACT INFORMATION (4)6. RELATED DOCUMENTATION (4)7. REVISION HISTORY (5)8. ABOUT SPIDER FAMILY (5)9. ABOUT MULTI SPIDER MODULE (5)10. ABOUT ORIGINGPS (6)11. DESCRIPTION (6)12. SCHEMATICS (7)12.1. MAIN BOARD SCHEMATICS (7)12.2. INTERFACE ADAPTOR SCHEMATICS (8)13. BILL OF MATERIALS (9)13.1. MAIN BOARD BILL OF MATERIALS (9)13.2. INTERFACE ADAPTOR BILL OF MATERIALS (9)14. ASSEMBLY AND LAYOUT (10)14.1. MAIN BOARD PCB (10)14.2. INTERFACE ADAPTOR PCB (12)15. TTL-232R-3V3 USB-Serial CONVERTER CABLE (15)16. ORG9802 MINIATURE PASSIVE ANTENNA ASSEMBLY (16)16.1. GENERAL (16)16.2. MECHANICAL SPECIFICATIONS (16)16.3. ELECTRICAL SPECIFICATIONS (17)17. ORG9805 EXTERNAL ACTIVE ANTENNA (18)17.1. DESCRIPTION (18)17.2. FEATURES (18)17.3. BENEFITS (18)17.4. BLOCK DIAGRAM (18)17.5. ELECTRICAL SPECIFICATIONS (19)17.6. MECHANICAL SPECIFICATIONS (20)18. I-PEX MHFIII TO SMA-TYPE COAXIAL CABLE ADAPTOR (21)TABLE INDEXTABLE 1 – RELATED DOCUMENTATION (4)TABLE 2 – REVISION HISTORY (5)TABLE 3 – MAIN BOARD BILL OF MATERIALS (9)TABLE 4 – INTERFACE ADAPTOR BILL OF MATERIALS (9)TABLE 5 –USB-SERIAL CONVERTER CABLE HEADER PIN-OUT (15)TABLE 6 –USB-SERIAL CONVERTER CABLE OPERATING PARAMETERS (15)TABLE 7 –ORG9802 MECHANICAL SPECIFICATIONS (16)TABLE 8 –ORG9802 ELECTRICAL SPECIFICATIONS (17)TABLE 9 –ORG9805 ELECTRICAL SPECIFICATIONS (19)TABLE 10 – ORG9805 MECHANICAL SPECIFICATIONS (20)FIGURE INDEXFIGURE 1 – MAIN BOARD SCHEMATICS (7)FIGURE 2 – INTERFACE ADAPTOR SCHEMATICS (8)FIGURE 3 – MAIN BOARD COMPONENTS PLACEMENT (10)FIGURE 4 – MAIN BOARD SOLDER MASK (10)FIGURE 5 – MAIN BOARD TOP LAYER ROUTING (11)FIGURE 6 – MAIN BOARD BOTTOM LAYER ROUTING (11)FIGURE 7 –INTERFACE ADAPTOR BOARD COMPONENTS PLACEMENT (12)FIGURE 8 – INTERFACE ADAPTOR BOARD SOLDER MASK (12)FIGURE 9 – INTERFACE ADAPTOR BOARD TOP LAYER ROUTING (13)FIGURE 10 – INTERFACE ADAPTOR INNER LAYER 1 ROUTING (13)FIGURE 11 –INTERFACE ADAPTOR INNER LAYER 2 ROUTING (14)FIGURE 12 – INTERFACE ADAPTOR BOTTOM LAYER ROUTING (14)FIGURE 13 – PIN HEADER SOCKET BOTTOM VIEW (15)FIGURE 14 – ORG9802 MECHANICAL OUTLINE (16)FIGURE 15 –ORG9802 S11 LOG MAGNITUDE (17)FIGURE 16 –ORG9805 S11 LOG MAGNITUDE (18)FIGURE 17–ORG9805 BLOCK DIAGRA M (19)FIGURE 18– ORG9805 MECHANICAL OUTLINE (20)FIGURE 19– I-PEX MHFIII TO SMA-TYPE ADAPTOR MECHANICAL OUTLINE (21)1. SCOPEThis document describes the features and specifications of Multi Spider ORG4572 evaluation kit.2. DISCLAIMERAll trademarks are properties of their respective owners.Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance. OriginGPS assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document.OriginGPS assumes no liability or responsibility for unintentional inaccuracies or omissions in this document. OriginGPS reserves the right to make changes in its products, specifications and other information at any time without notice.OriginGPS reserves the right to conduct, from time to time, and at its sole discretion, firmware upgrades.As long as those FW improvements have no material change on end customers, PCN may not be issued. OriginGPS navigation products are not recommended to use in life saving or life sustaining applications.3. SAFETY INFORMATIONImproper handling and use can cause permanent damage to the product.4. ESD SENSITIVITYThis product is ESD sensitive device and must be handled with care.5. CONTACT INFORMATIONSupport - *********************or Online FormMarketing and sales - ***********************Web –w 6. RELATED DOCUMENTATIONTABLE 1 – RELATED DOCUMENTATION7. REVISION HISTORYTABLE 2 – REVISION HISTORY8. ABOUT SPIDER FAMILYOriginGPS GNSS receiver modules have been designed to address markets where size, weight, stand-alone operation, highest level of integration, power consumption and design flexibility - all are very important. OriginGP S’ Spider family breaks size barrier, offering the industry’s smallest fully-integrated, highly-sensitive GPS / GNSS modules.Spider family features OriginGPS' proprietary NFZ™ technology for high sensitivity and noise immunity even under marginal signal condition, commonly found in urban canyons, under dense foliage or when the receiv er’s position in space rapidly changes.Spider family enables the shortest TTM (Time-To-Market) with minimal design risks.Just connect an antenna and power supply on a 2-layer PCB.9. ABOUT MULTI SPIDER MODULEMulti Spider is a complete SiP featuring miniature LGA SMT footprint designed to commit unique integration features for high volume cost sensitive applications.Designed to support ultra-compact applications such as smart watches, wearable devices, trackers and digital cameras, ORG4572 module is a miniature multi-channel GPS/ GLONASS with SBAS, QZSS and other regional overlay systems receiver that continuously tracks all satellites in view, providing real-time positioning data in industry’s standard NMEA format.ORG4572 module offers superior sensitivity and outstanding performance, achieving rapid TTFF in less than one second, accuracy of approximately one meter, and tracking sensitivity of -165dBm.Sized only 7mm x 7mm the ORG4572 GNSS module is pin and footprint compatible with OriginGPS’ popular ORG4472 GPS module.ORG4572 module integrates LNA, SAW filter, TCXO, RTC crystal and RF shield with market-leading SiRFs tarV™ GNSS SoC.ORG4572 module is capable to decode extremely weak satellite signals simultaneously from GPS and GLONASS thereby offering best-in-class positioning availability, unparalleled accuracy and extremely fast fixes under challenging signal conditions, such as in built-up urban areas, dense foliage or even indoor.Internal GNSS SoC incorporating high-performance microprocessor and sophisticated GNSS firmware keeps positioning payload off the host allowing integration in embedded solutions even with low computing resources.Innovative architecture can detect changes in context, temperature, and satellite signals to achieve a state of near continuous availability by maintaining and opportunistically updating its internal fine time, frequency, and ephemeris data while consuming mere microwatts of battery power.10. ABOUT ORIGINGPSOriginGPS is a world leading designer, manufacturer and supplier of miniature positioning modules, antenna modules and antenna solutions.OriginGPS modules introduce unparalleled sensitivity and noise immunity by incorporating Noise Free Zone system (NFZ™) proprietary technology for faster position fix and navigation stability even under challenging satellite signal conditions.Founded in 2006, OriginGPS is specializing in development of unique technologies that miniaturize RF modules, thereby addressing the market need for smaller wireless solutions.11. DESCRIPTIONEvaluation Kit of the ORG4572 GNSS Module comprises the Demo Board, USB to UART Serial Converter Cable, ORG9802 Miniature Passive Antenna Assembly, I-PEX MHFIII to SMA-type Coaxial Cable Adaptor, ORG9805 External Active Antenna, support Disk-on-key with GPS simulator software for PC and documentation. The Demo Board assembly is built of Main Board, incorporating 3.3V LDO voltage regulator, UART connector, push-button tactile switch for Push-To-Fix™interrupt and various test points.The ORG4572 GNSS Module is soldered onto the Main Board through the Interface Adaptor.The Interface Adaptor includes a single-bit buffer for voltage level translation of TX line, 1.8V LDO voltage regulator, Load Switch for active antenna T-bias and a voltage supervisor for autonomous power-on pulse generation.TitleORG447X UART Demo BoardTitleORG447X Adaptor13. BILL OF MATERIALS13.1 MAIN BOARD BILL OF MATERIALSTABLE 3 - MAIN BOARD BILL OF MATERIALS13.2 INTERFACE ADAPTOR BILL OF MATERIALSTABLE 4 - INTERFACE ADAPTOR BILL OF MATERIALS14. ASSEMBLY AND LAYOUT14.1 MAIN BOARD PCBMain Board for the ORG4572 GNSS Module is 2-layer 1.6mm thickness FR4 PCB.FIGURE 3 - MAIN BOARD COMPONENTS PLACEMENTFIGURE 4 - MAIN BOARD SOLDER MASKFIGURE 5 – MAIN BOARD TOP LAYER ROUTINGFIGURE 6 – MAIN BOARD BOTTOM LAYER ROUTING14.2 INTERFACE ADAPTOR PCBInterface Adaptor Board for the ORG4572 GNSS Module is 17mm x 17mm 22 pads 4 layers 0.6mm thickness FR4 PCB.FIGURE 7 - INTERFACE ADAPTOR BOARD COMPONENTS PLACEMENTFIGURE 8 - INTERFACE ADAPTOR BOARD SOLDER MASKFIGURE 9 - INTERFACE ADAPTOR BOARD TOP LAYER ROUTINGFIGURE 10 - INTERFACE ADAPTOR INNER LAYER 1 ROUTINGFIGURE 11 - INTERFACE ADAPTOR INNER LAYER 2 ROUTINGFIGURE 12 - INTERFACE ADAPTOR BOTTOM LAYER ROUTING15. TTL-232R-3V3 USB-Serial CONVERTER CABLE*The TTL-232R-3V3 is a USB to Serial converter cable that provides a simple way to connect devices with UART interface to PC.The TTL-232R-3V3 uses an FTDI FT232RQ IC which is housed inside the USB Type 'A' connector and is terminated at the end of a 1.8 meter cable (6 ft.) with a 2.54mm (“0.1) pitch header socket which provides an access to UART standard Transmit Data (TxD) and Receive Data (RxD). These lines are operating at 3.3V LVTTL levels. Also brought out on the header are +5V and GND.FIGURE 13 - PIN HEADER SOCKET BOTTOM VIEWTABLE 5 - USB-SERIAL CONVERTER CABLE HEADER PIN-OUTTABLE 6 - USB-SERIAL CONVERTER CABLE OPERATING PARAMETERS*Note: For more information refer to FTDI Ltd. TTL-232R TTL To USB Serial Converter Range Of Cables Datasheet, Document Reference No.: FT_00005416. ORG9802 MINIATURE PASSIVE ANTENNA ASSEMBLY*16.1 GENERALORG9802 is a miniature antenna assembly, comprising four components: 1. Ceramic patch antenna element 2. Adaptor PCB 3. Coaxial cable 4. Connector16.2 MECHANICAL SPECIFICATIONSFIGURE 14 - ORG9802 MECHANICAL OUTLINETABLE 7 - ORG9802 MECHANICAL SPECIFICATIONS*Note: For more information refer to OriginGPS ORG9802 Patch Antenna Assembly Datasheet, Document number 30031116.3 ELECTRICAL SPECIFICATIONSTABLE 8 - ORG9802 ELECTRICAL SPECIFICATIONS TYPICAL S11FIGURE 15 - ORG9802 S11 LOG MAGNITUDE17. ORG9805 External Active Antenna*17.1 DESCRIPTIONThe ORG9805 External Active Antenna incorporates high-efficiency ceramic patch antenna element, high out- of-band rejection band-pass Surface Acoustic Wave (SAW) filter, low Noise Figure and high gain Low Noise Amplifier (LNA), enclosed in plastic case, with coaxial cable terminated by standard SMA-type plug. The ORG9805 Active Antenna with highest GNSS-band performance and notch filtering for out-ofband signals provides exceptional sensitivity, high selectivity and noise immunity. The ORG9805 Active Antenna is built of highest quality materials and components.The ORG9805 Active Antenna is the perfect match to the OriginGPS GNSS receiver modules.17.2 FEATURES∙ Antenna element with high efficiency for excellent coverage of GNSS satellites ∙ SAW filter for rejection of out-of-band signals∙ LNA with low Noise Figure and high gain for high sensitivity ∙ Plastic case with magnetic base∙ RG-174 flexible coaxial cable of 5m length ∙ SMA-type gold plated plug17.3 BENEFITS▪ High performance ▪ Compact size ▪ Easy integration17.4 BLOCK DIAGRAMFIGURE 16 - ORG9805 BLOCK DIAGRAMRF out DC in*Note: For more information refer to OriginGPS ORG9805 External Active Antenna Datasheet, Document number 160112TABLE 9 - ORG9805 ELECTRICAL SPECIFICATIONSFIGURE 17 - ORG9805 S11 LOG MAGNITUDETABLE 10 - ORG9805 MECHANICAL SPECIFICATIONSFIGURE 18 - ORG9805 MECHANICAL OUTLINEPage 21 of 21 June 14, 2015 Multi Spider - ORG4572 Evaluation Kit Datasheet Revision 2.018. I-PEX MHFIII TO SMA-TYPE COAXIAL CABLE ADAPTORFIGURE 19 - I-PEX MHFIII TO SMA-TYPE ADAPTOR MECHANICAL OUTLINE。

GPS测量说明

GPS测量说明

GPS测量说明测量方法:本次项目采用科力达风云K9 RTKGPS接收机,实时测量获得测量点的WGS 经纬度坐标,然后利用南方测绘坐标转换文件工程之星3.0,进行参数求解、坐标转换和精度评定。

一、控制网布置1、外业操作:A.测量设置:用手簿设置好天线高、参数系统名、椭球名称、投影方式、中央子午线、北加常数、东加常数、投影比例尺、投影高、基准维度、平行圈维度1、平行圈维度2,以上设置均在工程之星设置菜单下配置—工程设置、坐标转换参数设置里进行设置,设置方法:点击配置—工程设置—设置—确定,待读取完成后,提示设置成功后退出,待出现差分信号达到固定解即可测量。

B.架设仪器(量取仪器高)在施工区中间桩号上架设仪器。

C.数据采集a.设置数据采集模式:仪器架设完成后,用手簿蓝牙连接主机,打开手簿软件工程之星进入数据采集界面,工程设置中存储数据模式为“平滑存储”,存储间隔为1秒,采集次数为90次,软件每次存储完毕后自动求解平均值并保存,b.设置数据采集条件:解的类型:固定解;水平精度因子rmsh≤0.03米;高程精度因子rmsv≤0.06米;卫星限制角度:≥10°;POOP值≤4。

D.附现场测量文件如下:经纬度测量原始数据文件:卫运河二期.dat(含经纬度、椭球高、rmsv、POOP、卫星数、限制角)2、内业数据处理测量采用数据预处理用excel软件将外业采回来的经纬度数据卫运河二期.dat,每点测量三次取平均值,得到平均后的对应每个测量点的经纬度数据文件:卫运河二期.RTK,格式为:点名,经度,纬度,高程,其他。

B.求解参数及控制经度评定a.运行南方测绘坐标转换软件工程之星3.0,b.新建工程项目卫运河二期,输入相应椭球和投影条件:原椭球系:WGS84 目标椭球系:北京54,中央子午线117或114(参考设计交桩记录说明)c.已知点坐标经纬度转换:将控制点的已知坐标转化为经纬度坐标,并记录。

d.执行软件中“实用工具→计算四参数、高程拟合参数”求解四参数、高程拟合参数,在软件中输入转换前的对应WY01、WY02、WY03、WY06、WY08、WY09、WY10、WY12、WZ01、WZ02、WZ03、WZ04、WZ06、WZ09、WZ10、WY13、WY14、WY15、WY16、WY17、WY19、WY20、WY21、WY22、WY25、WY26、WY30、WZ11、WZ12、WZ13、WZ14、WZ17、WZ18、WZ20、WZ21、WZ22、WZ25、WZ36各点测量的WGS经纬度坐标(卫运河二期.RTK文件中),和转换后各点的已知经纬度坐标(上一步求解出),输入完毕后执行计算,这时软件对各个控制点自动进行精度评定,并计算出四参数、高程拟合参数,精度满足国家四等控制点要求最弱点要求位精度平面小于0.03米,若合格保存成文件:卫运河二期.cot。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GPS 接收机测试应用手册Issue 01 (2011-10-30)SpreadtrumCommunications Inc.iGPS 接收机测试应用手册Version: 1.0.0 Date: 2012-04-16S p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试DescriptioniiSpreadtrumCommunications Inc.Issue 01 (2011-10-30)Important NoticeCopyright NoticeCopyright © 2011, Spreadtrum Communications, Inc. All rights reserved.TrademarksSpreadtrum Communications, Inc. and Spreadtrum Communications, Inc.'s products are exclusively owned by Spreadtrum Communications, Inc. References to other companies andtheir products use trademarks owned by the respective companies and are for reference purpose only.Warranty DisclaimerSpreadtrum Communications, Inc. makes no representations or warranties, either expressed or implied, by or with respect to anything in this document, and shall not be liable for any implied warranties of merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.ConfidentialityThe information contained herein (including any attachments) is confidential. The recipienthereby acknowledges the confidentiality of this document, and except for specific purposes, this document shall not be disclosed to any third party.S p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试应用手册Issue 01 (2011-10-30)SpreadtrumCommunications Inc.iii Contents简介 .............................................................................................................................. 1-1 1 测试仪器及测试方法介绍 ....................................................................................... 1-21.1 E4438C-409 GPS 模拟器 .............................................................................................................. 1-2 1.2 测试环境....................................................................................................................................... 1-32 测试项目 .................................................................................................................. 2-42.1 载噪比(C/N0)测试 ........................................................................................................................ 2-4 2.2 Acquisition sensitivity —捕获灵敏度 .............................................................................................. 2-4 2.3 Tracking sensitivity —跟踪灵敏度 .................................................................................................. 2-5 2.4 Cold start time to first fix ................................................................................................................ 2-5 2.5 Warm start time to first fix .............................................................................................................. 2-63 简易测试流程 ........................................................................................................... 3-7S p r e a d t r u mC o n f i d e n ti a lS p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试应用手册Issue 01 (2011-10-30)SpreadtrumCommunications Inc.1-1简介文章主要描述了GPS 接收机的测试方法,这些测试主要用来确认手持设备上GPS 接收机的功能和RF 指标。

内容包括GPS 接收机测试的标准验证步骤。

GPS 全球卫星定位系统概念:GPS 全称是Global Position System ,直译为“全球定位系统”,是美国从上世纪70年代开始研制,历时20年,耗资200亿美元,于1994年建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。

GPS 能够实现数据采集,故障诊断、跟踪检测、卫星导航电文编辑等功能,用户端使用GPS 接受设备实现定位导航功能,用于获得地理位置信息以及准确的通用协调时间。

GPS 卫星由24颗高度约2.02万千米的卫星组成卫星星座,其中21颗导航卫星,3颗备用星,这24颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。

卫星的分布使得在全球的任何地方,任何时间都可以观测到四颗以上的卫星,具有提供在时间上连续的全球导航能力。

它可以在任何天气条件下、全球任何地方工作。

该系统由美国政府运营,且其精度和维护也由美国政府完全负责,是一种全球性、全天候、连续的卫星无线导航系统,可向用户提供连续、实时、高精度的位置、速度、时间信息。

S p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试Description1-2SpreadtrumCommunications Inc.Issue 01 (2011-10-30)1 测试仪器及测试方法介绍1.1 E4438C-409 GPS 模拟器测试使用的GPS 信号源为Agilent E4438C ESG --带有选件 Option 409GPS Personality (See Figure 1)。

E4438C Option 409可以提供多达 8颗真实环境的 GPS 卫星信号。

这些卫星信号有相应的scenario 文件做配置。

Figure 1. E4438C 信号发生器E4438C-409 GPS 所支持的特性:• 多星 GPS 配置(最多支持8 颗卫星) • 信号仿真实际场景 • 真实卫星数据• 卫星数量可调Figure 2. E4438C-409 GPS 用户界面S p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试应用手册Issue 01 (2011-10-30)SpreadtrumCommunications Inc.1-31.2 测试环境测试环境搭建如下图Figure 3所示。

实时GPS 信号由E4438C 产生并灌入DUT RF 口。

GPS 接收机可以由PC 通过USB 连接控制,也可以通过在手机上安装下面apk 文件来实现。

章节二中所有测试项目均有CSR Sirflive 软件完成,完成测试需要仪器E4438C (8颗卫星option ),Sirflive 软件环境,手机硬件飞线至CSR demo 板。

章节三中简易测试流程由GPSTestPlus 软件完成,仪器需要支持输出GPS 单星信号。

Figure 3. Test 环境搭建(衰减器用作灵敏度测试,-130dBm 以下的GPS 灵敏度超出E4438C 的动态范围)GPSTestPlus_1.1.3_android_zol.rarS p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试Description2-4SpreadtrumCommunications Inc.Issue 01 (2011-10-30)2 测试项目2.1 载噪比(C/N0)测试测试目的:测试GPS 接收信号的C/N0 测试方法:1. 设置E4438C 输出功率-130dBm 。

相关文档
最新文档