“三线合一”性质的逆定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等腰三角形的“三线合一”性质的逆定理
“三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。
②如果三角形中任一角的角平分线和它所对边的高重合,那么
这个三角形是等腰三角形。
③如果三角形中任一边的中线和这条边上的高重合,那么这个
三角形是等腰三角形。
简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线,
求证:⊿ABC是等腰三角形。
分析:要证等腰三角形就是要证AB=AC,直接通过证明这两条线所在的三角形全等不行,那就换种思路,在有中点的几何证明题中常用的添辅助线
的方法是“延长加倍”,即延长AD到E点,使AD=ED,
由此问题就解决了。
证明:延长AD到E点,使AD=ED,连接CE
在⊿ABD和⊿ECD中
AD=DE
∠ADB=∠EDC
BD=CD
∴⊿ABD≌⊿ECD
∴AB=CE, ∠BAD=∠CED
∵AD是∠BAC的角平分线
∴∠BAD=∠CAD
∴∠CED=∠CAD
∴AC=CE
∴AB=AC
∴⊿ABC是等腰三角形。
三个逆定理中以逆定理②在几何证明的应用中尤为突出。
证明②:已知: ⊿ABC中,AD是∠BAC的角平分线,AD是BC边
上的高,
求证:⊿ABC是等腰三角形。
分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的全等,由此
推出AB=AC得出⊿ABC是等腰三角形
证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上
的高,
求证:⊿ABC是等腰三角形。
分析:AD就是BC边上的垂直平分线,用(SAS)的方法来
证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出
⊿ABC是等腰三角形。(即垂直平分线的定理)
二、“三线合一”的逆定理在辅助线教学中的应用
(1)逆定理②的简单应用
例题1
已知:如图,在⊿ABC中,AD平分∠BAC,CD⊥AD,D
为垂足,AB>AC。
求证:∠2=∠1+∠B
分析:由“AD平分∠BAC,CD⊥AD”推出AD所在的
三角形是等腰三角形,所以延长CD交AB于点E,
由逆定理②得出⊿AEC是等腰三角形由此就可得出
∠2=∠AEC,又∠AEC=∠1+∠B,所以结论得证。
(2)逆定理②与中位线综合应用
例题1
已知:如图,在⊿ABC中,AD平分∠BAC,交BC于点D,过点C作AD的垂线,交AD的延长线于点E,F为BC的中点,连结EF。
求证: EF∥AB,
EF=(AC-AB)
分析:由已知可知,线段AE既是∠BAC的角平分
线又是EC边上的高,就想到把AE所在的等腰三角形构造出
来,因而就可添辅助线“分别延长CE、AB交于点G”。
简单证明:由逆定理②得出⊿AGC是等腰三角形,
∴点E是GC的中点
∴EF是⊿BGC的中位线
∴得证。
例题2
如图,已知:在⊿ABC中,BD、CE分别平分∠ABC,
∠ACB,AG⊥BD于G,AF⊥CE于F,AB=14cm,AC=9cm,BC=18cm.
求: FG的长。
分析:通过已知条件可以知道线段CF和BG满足逆
定理②的条件,因此就想到了分别延长AG、A
F来构造等腰三角形。
简单证明:分别延长AG、AF交BC于点K、H由逆定理②得出⊿ABK是等腰三角形
∴点G是AK的中点
同理可得点F是AH的中点
∴FG是⊿AHK的中位线
由此就可解出FG的长。
(3)逆定理②与直角三角形的综合应用
例题1
已知,如图,AD为Rt⊿ABC斜边BC上的高,
∠ABD的平分线交AD于M,交AC于
P, ∠CAD的平分线交BP于Q。
求证:⊿QAD是等腰三角形。
分析:由直角三角形的性质可知道∠AQM=90°,
由此线段BQ满足了逆定理2的条件,所以
想到延长AQ交BC于点N。
简单证明:由添辅助线得出⊿ABN是等腰三角形
∴Q点是AN的中点
在Rt⊿AND中,Q是中点
∴QA=DQ,
∴得证。
例题2
如图,在等腰⊿ABC中,∠C=90°,如果点B到∠A的平分线AD的距离为5cm,求AD的长。分析:已知条件满足了逆定理2,所以延长BE和AC,交于
点F。
简单证明:由所添辅助线可知⊿ABF是等腰三角形
∴E点是BF的中点
∴BF=2BE=10
再由⊿ADC和⊿BFC的全等
得出AD=BF
结论求出。
对已知条件的合理剖析,找出关键语
句,满足定理条件,添加适当的辅助
线来构造等腰三角形,以达到解决问
题的目的。
(4)逆定理③的简单应用(即垂直平
分线的应用)
例题1 (2006年宝山区中考模拟题)
如图,已知二次函数y=ax2+bx的图像
开口向下,与x轴的一个交点为B,
顶点A在直线y=x上,O为坐标原点。
证明: ⊿AOB是等腰直角三角形
分析:由抛物线的对称性可添辅助线-----过点A作AD⊥x轴,垂足为D及直线y=x的性质,可以知道⊿AOB是等腰直角三角形。
例题2