朴素贝叶斯法(精品课件)

合集下载

朴素贝叶斯分类课件

朴素贝叶斯分类课件

缺点:对异常值和离散特征处理不佳。
01
02
03
04
01
多项式分布假设:朴素贝叶斯分类器假设特征符合多项式分布。
02
数学模型:基于多项式分布的朴素贝叶斯分类器使用以下数学模型进行分类
03
特征概率密度函数为多项式分布。
通过贝叶斯定理计算样本属于每个类别的概率。
缺点:对连续数值特征处理不佳,参数估计困难。
特征编码
03
对特征进行标准化、归一化等预处理,以提高分类器的性能。
特征预处理
根据任务需求和数据特性,调整朴素贝叶斯分类器的超参数,如平滑参数、先验概率等。
通过交叉验证来评估不同超参数组合下的分类器性能,以选择最佳参数组合。
调整分类器参数
使用交叉验证
利用多核CPU或GPU进行并行计算,以提高分类器的训练速度。
对噪声数据敏感
如果数据集中存在噪声或者异常值,朴素贝叶斯分类器的性能可能会受到影响。
对连续特征的处理
朴素贝叶斯分类器通常只能处理离散特征,对于连续特征需要进行离散化或者采用其他方法进行处理。
05
CHAPTER
朴素贝叶斯分类器的应用场景与实例
朴素贝叶斯分类器在文本分类任务中表现出色,例如垃圾邮件、情感分析、新闻分类等。
01
02
高斯朴素贝叶斯假定特征符合高斯分布(正态分布),而多项式朴素贝叶斯则假定特征服从多项式分布。
朴素贝叶斯算法可以分为两类:高斯朴素贝叶斯和多项式朴素贝叶斯。
它是一种基于概率的分类方法,对于缺失数据和异常值具有较好的鲁棒性。
朴素贝叶斯算法在文本分类、情感分析、图像分类等自然语言处理和计算机视觉领域都有广泛的应用。
定义
03
CHAPTER

朴素贝叶斯分类算法课件(英文)

朴素贝叶斯分类算法课件(英文)
with the following occurance: (A) dice 1 lands on side “3”, (B) dice 2 lands on side “1”, and (C) Two dice sum to eight. Answer the following questions:
• Bayesian Rule
P(C|X) P(X|C)P(C) Posterior Likelihood Prior
P(X)
Evidence
4
COMP24111 Machine Learning
Probability Basics
• Quiz: We have two six-sided dice. When they are tolled, it could end up
1) P(A) ? 2) P(B) ? 3) P(C) ? 4) P(A|B) ? 5) P(C|A) ? 6) P(A, B) ? 7) P(A,C) ? 8) Is P(A,C) equals P(A) P(C)?
5
COMP24111 Machine Learning
Probabilistic Classification
• Establishing a probabilistic model for classification
– Discriminative model
P(C|X) C c1,,cL , X (X1,,Xn)
P(c1|x) P(c2 |x)
P(cL |x)

Discriminative Probabilistic Classifier
x1 x2 xn
x (x1 , x2 ,, xn )

朴素贝叶斯分类及R语言实现精品PPT课件

朴素贝叶斯分类及R语言实现精品PPT课件
接下来看一个例子基于贝叶斯算法的手机垃圾短信过滤基本步骤提高模型的性能1清理和标准化文本数据评估模型的性能基于数据训练模型探索和准备数据4可视化文本数据词云2将文本档拆分成词语5为频繁出现的单词创建指示特征收3建立训练数据集和测试数据集朴素贝叶斯算法的优缺点优点缺点简单快速有效依赖于一个常用的错误假设即一样的重要性和独立特征能很好地处理噪声数据和缺失数据应用在含有大量数值特征的数据集时并不理想需要用来训练的案例相对较少但同样能很好地处理大量的案例概率的估计值相比预测的类儿言更不可靠很容易获得一个预测的估计概率值
垃圾邮件的条件概率:
非垃圾邮件的条件概率:
利用似然表中数据可得垃圾邮件的总似然: 非垃圾邮件的总似然: 因为0.012/0.002=6,所以认为该消息是垃圾邮件的可能性是非垃圾邮件可能 的6倍,即更有可能是垃圾邮件。
由于分母被忽视掉,所以还需在结果后除以分母:
垃圾邮件的概率=0.012/(0.012+0.002)=0.857
(2/84) ⅹ (15/84) ⅹ (9/84) ⅹ (24/84) ⅹ (80/100)=0.0001
这表明该消息是垃圾邮件的概率为80%,是非垃圾邮件的概率为20%,显然, 这个结果比由单词Groceries单独决定的结果更合理。
接下来看一个例子——基于贝叶斯算法的手机垃圾短信过滤
基本步骤
第1步: 收集数据
朴素贝叶斯分类及R语言实现
201721100219
朴素贝叶斯的理论基础
贝叶斯定理便是基于条件概率,通过P(A|B)来求P (B|A):
顺便提一下,上式中的分母P(A),可以根据全 概率公式分解为:
朴素贝叶斯的理论基础
分类过程如图所示:
似然 后验概率
先验概率 边际似然

第二章 朴素贝叶斯算法

第二章 朴素贝叶斯算法
朴素贝叶斯
Naive Bayes
朴素贝叶斯
主要内容 贝叶斯简介 朴素贝叶斯分类 基本决策规则 基于最小错误率 基于最小风险 总结扩展(了解) 贝叶斯与分类的简单应用
Company Logo
贝叶斯简介
贝叶斯(Thomas Bayes,1701—1761)英国牧 师、业余数学家。在《论机会学说中一个问题的求 解》中给出了贝叶斯定理。 具有讽刺意味的是,当初贝叶斯发明概率统计理论 是为了证明上帝的存在,而至死这个愿望都没有实 现,不过感谢伟大的贝叶斯,因为他的无心插柳, 才有了今天的贝叶斯公式,并列于数据挖掘十大经 典算法: P B , A
Compan女生,女生 穿裤子的人数和穿裙子的人数相等,所有男生穿裤子,一个人 在远处看到了一个穿裤子的学生。这个学生是女生的概率是多 少? 使用贝叶斯定理,事件A是看到女生,事件B是看到一个穿 裤子的学生。我们所要计算的是P(A|B) P(A)是忽略其它因素,看到女生的概率,在这里是0.4 P(A')是忽略其它因素,看到不是女生(即看到男生)的概率, 在这里是0.6 P(B|A)是女生穿裤子的概率,在这里是0.5 P(B|A')是男生穿裤子的概率,在这里是1 P(B)是忽略其它因素,学生穿裤子的概率,P(B) = P(B|A)P(A) + P(B|A')P(A'),在这里是0.5×0.4 + 1×0.6 = 0.8 根据贝叶斯定理,我们计算出后验概率P(A|B): P(A|B)=P(B|A)*P(A)/P(B)=0.25
Company Logo
基于最小错误率的贝叶斯决策
朴素贝叶斯算法: 步骤: 计算连续变量的均值、标准差的极大似然估计
1 ( j) j ,c Nc xi uj , c uj , c Nc , i 1 j 1,2,3,...,n; k 1,2,3,...,K

朴素贝叶斯方法PPT课件

朴素贝叶斯方法PPT课件
合,其中 i 是D中节点Xi的父节点集合。在一
个贝叶斯网络中,节点集合 XX1, ,Xn,则
其联合概率分布P(X)是此贝叶斯网络中所有条
件分布的乘积:PX n PXi |i i1
2020/11/12
知识管理与数据分析实验室
13
二、贝叶斯网络 定义
A P 1
PX1 |1 B
C PX2 |1
• 这是一个最简单的包含3个节点的贝叶斯网络。其
• 贝叶斯网络适用于表达和分析不确定性和 概率性事件,应用于有条件地依赖多种控 制因素的决策过程,可以从不完全、不精 确或不确定的知识或信息中做出推理。
2020/11/12
知识管理与数据分析实验室
9
二、贝叶斯网络 引言
• 贝叶斯网络由Judea Pearl于1988年提出, 最初主要用于处理人工智能中的不确定信 息。
2020/11/12
知识管理与数据分析实验室
6
一、贝叶斯法则 算例
• 利用贝叶斯公式建模:
– 前提条件:设M是高阻挠成本类型为X1,低阻挠 成本类型为X2;
– 结果:M对K进行阻挠为A; – 所求概率即为在已知结果 A的情况下,推断条
件为X1的后验概率 P X1 | A;
– 已知 PA| X1 为0.2,PA| X2 为1,P(X1) 为0.7,P(X2)为0.3。
• 即,根据实际市场的运作情况,企业K可判 断企业M为高阻挠成本类型的概率为0.32, 换句话说,企业M更可能属于低阻挠成本类 型。
2020/11/12
知识管理与数据分析实验室
8
二、贝叶斯网络 引言
• 贝叶斯网络又称为信度网络,是基于概率 推理的图形化网络。它是贝叶斯法则的扩 展,而贝叶斯公式则是这个概率网络的基 础。

十大经典算法朴素贝叶斯37页PPT

十大经典算法朴素贝叶斯37页PPT

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
十大经典算法朴素贝叶斯

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。
•Leabharlann 8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

朴素贝叶斯算法

朴素贝叶斯算法

• P(X | buys_computer = “yes”)
= 0.222×0.444×0.667×0.667 = 0.044
• P(X | buys_computer = “no”)
= 0.600×0.400×0.200×0.400 = 0.019
3. 对每个类Ci,计算P(X |Ci )P(Ci)
朴素贝叶斯分类例子
RID
age
1
<=30
2
<=30
3
31-40
4
>40
5
>40
6
>40
7
31-40
8
<=30
9
<=30
10
>40
11
<=30
income high high high
medium low low low
medium low
medium medium
student no no no no yes yes yes no yes yes yes
的概率。
朴素贝叶斯算法流程
• 1.设X {a1,a2,am}为一个待分类项,而每 个ai为 x的一个特征属性。且特征属性之间 相互独立(此处是朴素贝叶斯的假设)。
• 2.设C {y1, y2,, ym}为一个类别集合。 • 3.计算 P(y1|x),P(y2|x),P(y3|x),,P(ym|x)。 • 4.如果
P(student = “yes” | buys_computer =“no”)
=0.200
P(credit_rating = “fair” |buys_computer = “yes”) = 0.667

十大经典算法朴素贝叶斯讲解PPT

十大经典算法朴素贝叶斯讲解PPT


在人工智能领域,贝叶斯方法是一种非常具有 代表性的不确定性知识表示和推理方法。
贝叶斯定理:

P(A)是A的先验概率或边缘概率。之所以称为“先验”是因为它不考 虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称 作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称 作B的后验概率。 P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant).
购买电脑实例:

购买电脑实例:
P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019×0.357 = 0.007

因此,对于样本X,朴素贝叶斯分类预测 buys_computer =”yes” 特别要注意的是:朴素贝叶斯的核心在于它假设向量 的所有分量之间是独立的。
扩展:


该算法就是将特征相关的属性分成一组,然后假设不 同组中的属性是相互独立的,同一组中的属性是相互 关联的。 (3)还有一种具有树结构的TAN(tree augmented naï ve Bayes)分类器,它放松了朴素贝叶斯中的独 立性假设条件,允许每个属性结点最多可以依赖一个 非类结点。TAN具有较好的综合性能。算是一种受限 制的贝叶斯网络算法。
Thank you!
贝叶斯算法处理流程:
第二阶段——分类器训练阶段: 主要工作是计算每个类别在训练样本中出现 频率以及每个特征属性划分对每个类别的条件 概率估计。输入是特征属性和训练样本,输出 是分类器。 第三阶段——应用阶段:

Hale Waihona Puke 这个阶段的任务是使用分类器对待分类项进行分类 ,其输入是分类器和待分类项,输出是待分类项与类 别的映射关系。

朴素贝叶斯分类算法演示PPT文档161页

朴素贝叶斯分类算法演示PPT文档161页
演示
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

朴素贝叶斯-全

朴素贝叶斯-全

属性独立性的条件同时也是朴素贝叶斯分类器的不足之处。数据集属性的独立性在很多情况下是很难满足的, 因为数据集的属性之间往往都存在着相互关联,如果在分类过程中出现这种问题,会导致分类的效果大大降 低。
应用
文本分类
其他
分类是数据分析和机器学习领域的一个基本问题。文本分类已广泛应用于网络信息过滤、信息检索和信息推 荐等多个方面。数据驱动分类器学习一直是近年来的热点,方法很多,比如神经网络、决策树、支持向量机、朴 素贝叶斯等。相对于其他精心设计的更复杂的分类算法,朴素贝叶斯分类算法是学习效率和分类效果较好的分类 器之一。直观的文本分类算法,也是最简单的贝叶斯分类器,具有很好的可解释性,朴素贝叶斯算法特点是假设 所有特征的出现相互独立互不影响,每一特征同等重要。但事实上这个假设在现实世界中并不成立:首先,相邻 的两个词之间的必然联系,不能独立;其次,对一篇文章来说,其中的某一些代表词就确定它的主题,不需要通 读整篇文章、查看所有词。所以需要采用合适的方法进行特征选择,这样朴素贝叶斯分类器才能达到更高的分类 效率。
朴素贝叶斯基于各特征之间相互独立,在给定类别为的情况下,上式可以进一步表示为下式:
由以上两式可以计算出后验概率为:
由于的大小是固定不变的,因此在比较后验概率时,只比较上式的分子部分即可。因此可以得到一个样本数 据属于类别的朴素贝叶斯计算:
优缺点
优点
缺点
朴素贝叶斯算法假设了数据集属性之间是相互独立的,因此算法的逻辑性十分简单,并且算法较为稳定,当 数据呈现不同的特点时,朴素贝叶斯的分类性能不会有太大的差异。换句话说就是朴素贝叶斯算法的健壮性比较 好,对于不同类型的数据集不会呈现出太大的差异性。当数据集属性之间的关系相对比较独立时,朴素贝叶斯分 类算法会有较好的效果。

第4章 朴素贝叶斯

第4章 朴素贝叶斯

P(X ) 可以通过全概率公式计算。
4.1 数学基础
全概率公式:
k
P( X ) P( X | Y Yi )P(Yi ) i 1 k
其中事件Y1,Y2, ,Yk 构成一个完备事件组,即Yi 1,由以上公式可以得到贝叶 i 1
斯公式如下所示:
P(Yi X ) k P X Yi P Yi P( X Y Yi )P(Yi )
回顾贝叶斯公式构建分类器的数学模型:
P(Y Ci
X)
P( X Y Ci )P(Y Ci )
K
P(X Y Ci )P(Y Ci )
i1
其中上式的分子项,P(Y Ci )为先验概率(Prior probability),P(X Y Ci ) 为通过条件概
率(Conditional probability)计算出来的似然概率(Likelihood Probability)。而分母项为现象概
对于以上两个算式,发现 P(X Play No) 的乘积项中出现了0,这是因为训练数据集中 的 P(Outlook Overcast Play No) 这个条件概率为0而导致的,这时候如果增加有效的训练数 据,就需要采取拉普拉斯修正(Laplace correction)。
4.2朴素贝叶斯分类
P(True Play No) 3 5 P(False Play No) 2 5
4.2朴素贝叶斯分类
根据贝叶斯公式可以计算出新样本X的两个似然概率(Likelihood Probability)如下所示:
P( X Play Yes) P(Outlook Overcast Play Yes) * P(Temperature Mild Play Yes) * P(Humidity Normal Play Yes) * P(Windy False Play Yes) (4 9) *(4 9) *(6 9) *(6 9)

第四章 朴素贝叶斯法《统计学习方法》课件

第四章  朴素贝叶斯法《统计学习方法》课件
条件概率的贝叶斯估计:
先验概率的贝叶斯估计:
Q&A
基本方法
条件独立性假设:
“朴素”贝叶斯名字由来,牺牲分类准确性。 贝叶斯定理: 代入上式:
基本方法
贝叶斯分类器:
分母对所有ck都相同:
后验概率最大化的含义:
朴素贝叶斯法将实例分到后验概率最大的类中,等价于 期望风险最小化,
假设选择0-1损失函数:f(X)为决策函数
期望风险函数:
取条件期望:
后验学习与分类 2. 朴素贝叶斯法的参数估计
一、朴素贝叶斯法的学习与分类
基本方法 后验概率最大化的含义
基本方法
训练数据集:
由X和Y的联合概率分布P(X,Y)独立同分布产生
朴素贝叶斯通过训练数据集学习联合概率分布P(X,Y) ,
即先验概率分布: 及条件概率分布:
注意:条件概率为指数级别的参数:
训练数据集
第i个样本的第j个特征
第j个特征可能取的第l个值
输出:
x的分类
朴素贝叶斯法的参数估计
步骤
1、计算先验概率和条件概率
朴素贝叶斯法的参数估计
步骤
2、对于给定的实例 计算
3、确定x的类别
例子
例子
测试
例子
贝叶斯估计
考虑:用极大似然估计可能会出现所要估计的概率值为 0的情况,这时会影响到后 验概率的计算结果,使分类 产生偏差.解决这一问题的方法是采用贝叶斯估计。
只需对X=x逐个极小化,得:
推导出后验概率最大化准则:
二、朴素贝叶斯法的参数估计
应用极大似然估计法估计相应的概率: 先验概率P(Y=ck)的极大似然估计是:
设第j个特征x(j)可能取值的集合为: 条件概率的极大似然估计:

朴素贝叶斯分类算法课件(英文)

朴素贝叶斯分类算法课件(英文)

• Relevant Issues
• Conclusions
2
COMP24111 Machine Learning
Background
• There are three methods to establish a classifier
a) Model a classification rule directly
Play=No
2/9 4/9 3/9
3/5 0/5 2/5
2/9 4/9 3/9
Play=Yes
2/5 2/5 1/5
Play=No
Humidity
High
Normal
Play=Yes Play=No
Wind
Strong Weak
3/9 6/9
4/5 1/5
3/9 6/9
3/5 2/5
P(Play=Yes) = 9/14

Naï ve Bayes classification
– Assumption that all input attributes are conditionally independent!
P( X1 , X2 , , Xn |C ) P( X1 | X2 , , Xn ; C )P( X2 , , Xn |C ) P( X1 |C )P( X2 , , Xn |C ) P( X1 |C )P( X2 |C ) P( Xn |C )
P( X x |C ci )P(C ci ) P(C ci |X x) P( X x) P( X x |C ci )P(C ci ) fo r i 1,2 , , L
– Then apply the MAP rule

朴素贝叶斯分类ppt课件

朴素贝叶斯分类ppt课件
件是次品的概率是多少
解 设事件 A 为“任取一件为次品”,
事件 Bi 为" 任取一件为 i 厂的产品" ,i 1,2,3.
B1 B2 B3 , Bi Bj , i, j 1,2,3.
2021精选ppt
9
由全概率公式得
30% 2% A 1% 1%
B1
20% B3
50%
B2
P( A) P(B1)P( A B1) P(B2 )P( A B2 ) P(B3 )P( A B3 ). P(B1) 0.3, P(B2 ) 0.5, P(B3 ) 0.2, P( A B1) 0.02, P( A B2 ) 0.01, P( A B3 ) 0.01,
2021精选ppt
28
统计结果
天气 E1
温度 E2
湿度 E3
有风 E4
打网球
PN
PN
PN
P NP
N
晴 2/9 3/5 热 2/9 2/5 高 3/9 4/5 否 6/9 2/5 9/14 5/14
云 4/9 0/5 暖 4/9 2/5 正常 6/9 1/5 是 3/9 3/5
雨 3/9 2/5 凉 3/9 1/5
• P(x2|y):表示y的细胞异常的概率是0.18(后验概率)
2021精选ppt
22
22
朴素贝叶斯分类
• 朴素贝叶斯分类的工作过程如下:
• (1) 每个数据样本用一个n维特征向量X= {x1,x2,……, xn}表示,分别描述对n个属性A1,A2,……,An样本的n个
度量。
• (2) 假定有m个类C1,C2,…,Cm,给定一个未知的数据样 本X(即没有类标号),分类器将预测X属于具有最高后验

十大经典算法朴素贝叶斯全解37页PPT

十大经典算法朴素贝叶斯全解37页PPT
就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
十大经典算法朴素贝叶斯全解
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

贝叶斯算法PPT

贝叶斯算法PPT
有腿

类别 哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 非哺乳动物 非哺乳动物 哺乳动物 非哺乳动物 哺乳动物 非哺乳动物
类别

Q2 分类问题
税号 1 2 3 4 5 6 7 8 9 10 去年退税 是 否 否 是 否 否 是 否 否 否 婚姻状况 单身 婚姻中 单身 婚姻中 离婚 婚姻中 离婚 单身 婚姻中 单身 可征税收入 125k 100k 70k 120k 95k 60k 220k 85k 75k 90k 逃税 否 否 否 否 是 否 否 是 否 是
2、获取训练样本 这里使用运维人员曾经人工检测过的1万个账号作为训练样本。
3、计算训练样本中每个类别的频率 用训练样本中真实账号和不真实账号数量分别除以一万,得到:
P(C = 0) = 8900/10000 = 0.89 P(C = 1) = 1100/10000 = 0.11
4、计算每个类别条件下各个特征属性划分的频率 P(a1<=0.05| C = 0) = 0.3 P(0.05<a1<0.2|C = 0) = 0.5 P(a1>0.2| C = 0) = 0.2 P(a2<=0.1| C = 0) = 0.1 P(0.1<a2<0.8 | C=0) = 0.7 P(a2>0.8| C = 0) = 0.2 P(a3 = 0|C = 0) = 0.2 P(a3 = 0|C = 1) = 0.9 P(a1<=0.05| C = 1) = 0.8 P(0.05<a1<0.2| C = 1) = 0.1 P(a1>0.2| C = 1) = 0.1 P(a2<=0.1| C = 1) = 0.7 P(0.1<a2<0.8 | C=1) = 0.2 P(a2>0.8| C = 0) = 0.1 P(a3 = 1|C = 0) = 0.8 P(a3 = 1|C = 1) = 0.1

朴素贝叶斯方法处理缺失值ppt课件共22页PPT

朴素贝叶斯方法处理缺失值ppt课件共22页PPT

项所需的量小得多
概括地讲,朴素贝叶斯学习方法需要估计不同的P(cj)和P(ai|cj) 项,也就是它们在训练数据上的频率。然后使用公式(3)来分类新实 例。
P(c j )
|cj | |D|
| P(ai |cj)
Ai ai Ccj |Ccj |
|
举例说明
目标概念PlayTennis的训练样例
Day
后验概率P(cj |x)
即给定数据样本x时cj成立的概率,而这正是我们所 感兴趣的
P(cj|x )被称为C的后验概率(posterior
probability),因为它反映了在看到数据样本x后cj 成立的置信度
贝叶斯分类
我们现在计算 P(cMAP|x) = max P(cj|x)
j∈(1,|C|)
则P(cMAP|x)称为最大后验概率 然后我们就把x分到cMAP类中
朴素贝叶斯分类器一
设x = <a1,a2…am>,为一个有m个属性的 样例 P(cMAP|x)= max P(cj|x) j∈(1,|C|)
= max P(cj|a1,a2…am)
= max P(a1,a2…am|cj)P(cj)
Normal
Weak
D14
Rain
Mild
High
Strong
现在假设有一个样例x x = {Sunny,Hot,High,Weak}
PlayTenni sNo No Yes Yes Yes No Yes No Yes Yes Yes Yes Yes No
第一步统计个数 表1 类别为cj及在cj条件下Ai取ai的样例数
Outlook
Temperature
Humidity
Wind

朴素贝叶斯模型共22页PPT

朴素贝叶斯模型共22页PPT
朴素贝叶斯模型
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 贝叶斯推断:
我们把P(A)称为”先验概率”(Prior probability),即 在B事件发生之前,我们对A事件概率的一个判断。
P(A|B)称为”后验概率”(Posterior probability),即 在B事件发生之后,我们对A事件概率的重新评估。
P(B|A)/P(B)称为”可能性函数”(Likelyhood),这是 一个调整因子,使得预估概率更接近真实概率。
• 如果p1(x,y) > p2(x,y),那么类别为1 • 如果p1(x,y) < p2(x,y),那么类别为2
贝叶斯决策理论核心思想:选择高概率对应的类别。
5* 1.2
贝叶图斯形决绘策制论 图朴片素处贝叶理斯分图类表器设半计朴素贝典叶型斯案分例类器 程序
贝叶斯决策论还需了解:
1、条件概率:即B发生的情况下A发生的概率,用P(A|B)表示。
朴素贝 叶斯分 类器
半朴素 贝叶斯 分类器
西瓜程 序
2
3
过渡页
1
Transition Page
4
*
* 2.1
贝叶斯决策论 朴图素片贝处叶理斯分类器 半朴素贝叶斯分类器 程序
基于贝叶斯公式估计后验概率P(c|x)的主要困难在于: 类条件概率P(x|c)是所有属性上的联合概率,较难估计。为了避开这个障碍,提出了朴素贝叶斯分类器 (naïve Bayes classifier) “朴素”:采用属性条件独立性假设——假设用于分类的特征在类确定的条件下都是条件独立的。
4
*
* 3.1
贝叶斯决策论 朴素贝叶斯分类器 半朴素贝叶斯分类器 程序 独
1*5 3.2
贝图叶形斯绘决制策论 图朴素片贝处叶理斯分类图器表设半计朴素典贝型叶案斯例分类器 程序
1*6 3.2
贝图叶形斯绘决制策论 图朴素片贝处叶理斯分类图器表设半计朴素典贝型叶案斯例分类器 程序
1*7 3.2
贝图叶形斯绘决制策论 图朴素片贝处叶理斯分类图器表设半计朴素典贝型叶案斯例分类器 程序
*
图形绘制 图片处理 图表设计 典型案例
朴素贝叶斯分类法
By 戴非凡 Date 2018.4.4
*
图形绘制 图片处理 图表设计 典型案例
贝叶斯 决策论
朴素贝 叶斯分 类器
半朴素 贝叶斯 分类器
西瓜程 序
2
3
目录页
ቤተ መጻሕፍቲ ባይዱ
1
Contents Page
4
*
*
图形绘制 图片处理 图表设计 典型案例
贝叶斯 决策论
*
图形绘制 图片处理 图表设计 典型案例
贝叶斯 决策论
朴素贝 叶斯分 类器
半朴素 贝叶斯 分类器
西瓜程 序
2
3
过渡页
1
Transition Page
4
*
* 4.1 训练集及测试集
贝叶斯决策论 朴素贝叶斯分类器 半朴素贝叶斯分类器 程序
2* 0
图形绘制 图片处理 图表设计 典型案例
谢谢观赏
2
3
结束页
在1.1提到贝叶斯决策理论要求计算两个概率p1(x,y)和p2(x,y): • 如果p1(x,y) > p2(x,y),那么类别为1 • 如果p1(x,y) < p2(x,y),那么类别为2 p1,p2即为后验概率p1(c1|x,y),p2(c2|x,y)
*
图形绘制 图片处理 图表设计 典型案例
贝叶斯 决策论
1*0 2.2
贝叶图斯形决绘策论制 朴图素片贝处叶理斯分图类表器设计半朴素典贝型叶案斯例分类器 程序
1*1 2.3
For example: 数据集为:
贝叶图斯形决绘策论制 朴图素片贝处叶理斯分图类表器设计半朴素典贝型叶案斯例分类器 程序
测试集为: 青绿 蜷缩 浊响 清晰 凹陷 硬滑 0.697 0.460 ? 是
1
Trailer Page
4
*
21
图形绘制 图片处理 图表设计 典型案例
谢谢观看
精品PPT,下载后可编辑使用非常方便
2020/8/9
21
1*2 2.4
贝叶图斯形决绘策论制 朴图素片贝处叶理斯分图类表器设计半朴素典贝型叶案斯例分类器 程序
Python_programme: 朴素贝叶斯分类函数
*
图形绘制 图片处理 图表设计 典型案例
贝叶斯 决策论
朴素贝 叶斯分 类器
半朴素 贝叶斯 分类器
西瓜程 序
2
3
过渡页
1
Transition Page
6* 1.2
贝叶图斯形决绘策制论 图朴片素处贝叶理斯分图类表器设半计朴素贝典叶型斯案分例类器 程序
2、全概率公式:如果A和A’构成样本空间的一个划分,那么事件B的概率,就等于A和A’的概率分别乘以 B对这两个事件的条件概率之和。
7* 1.3
贝叶图斯形决绘策制论 图朴片素处贝叶理斯分图类表器设半计朴素贝典叶型斯案分例类器 程序
朴素贝 叶斯分 类器
半朴素 贝叶斯 分类器
西瓜程 序
2
3
过渡页
1
Transition Page
4
*
* 1.1
贝叶图斯形决绘策制论 朴素贝叶斯分类器 半朴素贝叶斯分类器 程序
① 贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。
用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的 概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示 的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则 来判断它的类别:
相关文档
最新文档