搅拌摩擦焊
搅拌摩擦焊的特点及应用
![搅拌摩擦焊的特点及应用](https://img.taocdn.com/s3/m/8e989fe5f424ccbff121dd36a32d7375a417c695.png)
搅拌摩擦焊的特点及应用搅拌摩擦焊是一种利用摩擦加工热和塑性变形原理实现的焊接方法。
它的特点在于焊接过程中不使用传统的焊接热源,而是通过直接对工件施加摩擦力来产生焊接热量。
下面将分别从特点和应用两个方面对搅拌摩擦焊进行详细介绍。
搅拌摩擦焊的特点如下:1. 无熔化和溶合:搅拌摩擦焊不需要熔化焊接材料,而是通过摩擦热和塑性变形来实现焊接。
因此,焊接过程中没有熔化和溶合现象,可以避免焊接材料的氧化、烧损和变质。
同时,焊接接头的化学成分保持不变,焊接区域不会出现气孔和夹杂物。
2. 低热输入和变形小:搅拌摩擦焊的焊接热输入相对较低,对于焊接材料的热影响区域较小。
因此,焊接过程中产生的热应力和残余应力较小,可以有效控制焊接接头的变形。
此外,由于焊接过程中材料处于固态状态,不会出现晶粒长大和固溶体析出的问题。
3. 高焊接质量和可靠性:由于搅拌摩擦焊焊接过程中不会出现气孔、夹杂物和缺陷等问题,因此焊接接头的质量较高。
同时,由于焊接接头的机械性能与基材的一致性较好,焊缝区域的强度通常高于基材的强度。
对于特殊材料,如铝合金、镁合金等,搅拌摩擦焊能够实现高强度焊接,提高焊接接头的可靠性。
4. 适应范围广:搅拌摩擦焊适用于多种材料的焊接,包括金属和非金属材料。
金属材料如铝合金、镁合金、钢材等可以通过搅拌摩擦焊实现焊接。
非金属材料如塑料、复合材料、陶瓷等也可以进行搅拌摩擦焊。
这种特性使得搅拌摩擦焊在航空航天、汽车制造、轨道交通等领域具有广阔的应用前景。
搅拌摩擦焊的应用主要包括以下几个方面:1. 铝合金焊接:铝合金是航空航天和汽车等行业常用的材料,传统焊接方法在焊接铝合金时存在困难。
而搅拌摩擦焊能够实现高强度、无缺陷的铝合金焊接,因此被广泛应用于铝合金结构件的制造。
2. 钢材焊接:搅拌摩擦焊也可以用于焊接钢材。
虽然钢材的焊接温度较高,但由于搅拌摩擦焊的热输入较低,因此不会产生较大的热影响区域和热应力。
同时,焊接接头的力学性能较好,适用于特殊场合对焊接接头强度和可靠性要求较高的钢材焊接。
搅拌摩擦焊工艺研究
![搅拌摩擦焊工艺研究](https://img.taocdn.com/s3/m/91409d2da55177232f60ddccda38376baf1fe0e1.png)
搅拌摩擦焊定义
搅拌摩擦焊原理
搅拌摩擦焊特点
搅拌摩擦焊应用
搅拌摩擦焊的特点
焊接过程稳定
焊接接头强度高
焊接变形小
焊接接头质量好
Part Three
搅拌摩擦焊的设备 与工具
搅拌摩擦焊的设备
搅拌摩擦焊机:用于实现搅拌摩擦焊工艺的主要设备,包括主机、控制系统、搅拌头等部分。 搅拌头:用于产生摩擦热和压力的部件,通常由轴肩、搅拌针和针尖组成。 控制系统:用于控制搅拌摩擦焊机的运行,包括电源、电机、传动系统等。 辅助工具:包括夹具、支撑架等,用于固定和支撑工件,确保焊接过程的稳定性和精度。
润滑设备:定期对设备进行润 滑,减少磨损和摩擦
更换易损件:及时更换易损件, 保证设备正常运行
Part Four
搅拌摩擦焊的操作 流程
焊接前的准备
确定焊接材料:根据材料类型和厚度选择合适的搅拌摩擦焊工艺参数 清理表面:去除材料表面的油污、氧化物等杂质,保证焊接质量 装配定位:将待焊材料精确装配,确保焊接过程中的稳定性和精度 检查设备:确保搅拌摩擦焊设备处于良好状态,具备焊接条件
搅拌摩擦焊与其他焊接方法的结合
搅拌摩擦焊与激光焊接的结合 搅拌摩擦焊与电子束焊接的结合 搅拌摩擦焊与激光-MIG焊接的结合 搅拌摩擦焊与激光-TIG焊接的结合
搅拌摩擦焊在绿色制造领域的应用前景
搅拌摩擦焊在新能源汽车领 域的应用:电池托盘、电机 壳等部件的焊接
搅拌摩擦焊在航空航天领域 的应用:飞机机身、发动机
海洋工程领域:搅拌 摩擦焊可用于制造海 洋平台、船舶和潜艇 等结构件,提高结构 强度和耐腐蚀性
医疗器械领域:搅拌 摩擦焊可用于制造医 疗器械中的高精度零 部件,如手术器械、 植入物等
Part Seven
搅拌摩擦焊
![搅拌摩擦焊](https://img.taocdn.com/s3/m/bd85322bccbff121dd368336.png)
搅拌摩擦焊搅拌摩擦焊(Friction Stir Welding ,简称FSW )是由英国焊接研究所于1991年提出的一种固态连[1]接方法。
与传统的熔化焊接方法相比较,搅拌摩擦焊具有晶粒细小、力学性能良好、焊接时不需使用保护气体、焊接后残余应力和变形小等优[2]点。
搅拌摩擦焊自提出以来,引起了各国学者和研究机构的广泛重视,成为了国内外的研究热点。
经过十几年的发展,搅拌摩擦焊这种新型固相焊接方法已经从技术研究层面迈向高层次的工程化和工业化应用阶段,成为铝及铝合金首选的连接工艺。
目前,搅拌摩擦焊在航空航天工业、造船业、汽车业等工业领域有了广泛的应用。
近年来,国内轨道车辆制造技术快速改进,搅拌摩擦焊技术开始用于铝合金车体制造。
搅拌摩擦焊铝合金车体的成功试制,标志着搅拌摩擦焊技术在国内轨道车辆工程化应用的开始。
1、搅拌摩擦焊工艺及接头组织性能特点1.1 搅拌摩擦焊焊接工艺过程[3]搅拌摩擦焊的焊接工艺如图1-1所示。
置于垫板上的对接工件通过夹具夹紧,以防止对接接头在焊接过程中松开。
一个带有特型焊针的搅拌焊头旋转并缓慢插入两块对接板材之间的焊缝处。
焊针的长度接近焊缝的深度,当旋转的焊针接触工件表面时,与工件表面快速摩擦产生的摩擦热使接触点材料的温度升高,强度降低。
焊针在外力作用下不断顶锻和挤压接缝两边的材料,直至轴肩紧密接触工1-接缝;2-搅拌头前沿;3-前进侧;4-母材;5-搅拌针;6-搅拌头后沿;7-焊缝;8-搅拌头旋转方向;9-后退侧图1-1 搅拌摩擦焊焊接工艺过程件表面为止。
这时,由旋转轴肩和焊针产生的摩擦热在轴肩下面和焊针周围形成大量的塑化层。
当工件相对焊针移动或焊针相对工件移动时,在焊针侧面和旋转方向上产生的机械搅拌和顶锻作用下,焊针的前表面把塑化的材料移送到焊针后表面。
这样,焊针沿着接缝前进时,搅拌焊头前头的对接接头表面被摩擦加热至轴向压力 前进方向12 34 56789超塑性状态。
结果,焊针摩擦接缝,破碎氧化膜,搅拌焊头后方的磨碎材料。
搅拌摩擦焊
![搅拌摩擦焊](https://img.taocdn.com/s3/m/70ffbcde195f312b3169a5ee.png)
英国TWI的Nicholas认为,搅拌摩擦焊工艺是自激光焊接问世以来 最引人注目的焊接方法,它的出现将使铝合金等有色金属的连接技 术发生重大变革。
搅拌摩擦焊应用领域 船舶制造 海洋工业 宇航工业 铁路运输 公路运输 建筑工业 电器行业
定义:它是利用一种
搅拌摩擦焊的原理
搅拌摩擦焊焊接过程是由一 个圆柱体形状的焊头伸入工件的 接缝处,通过焊头的高速旋转, 使其与焊接工件材料摩擦,从而 使连接部位的材料温度升高软化。 同时对材料进行搅拌摩擦来完成 焊接的。焊接过程如图所示。在 焊接过程中 工件要刚性固定在 背垫上,焊头边高速旋转.边沿 工件的接缝与工件相对移动。焊 头的突出段伸进材料内部进行摩 擦和搅拌,焊头的肩部与工件表 面摩擦生热,并用于防止塑性状 态材料的溢出,同时可以起到清 除表面氧化膜的作用。
搅拌摩擦焊工艺简介
搅拌摩擦焊(Friction Stir Welding简称FSW)是英国焊接研究所90年代初发明的一种用 于低熔点合金板材焊接的固态连接方法。用该方法可以焊接通常熔焊方法难于焊接的铝合 金、钛合金等材料,不会在接头内形成气孔、裂纹、变形等缺陷。 无飞溅,烟尘
与普通摩擦 焊相比
搅拌摩擦焊工艺
与熔焊相比
无需添加剂和保护气
接头无裂纹和气孔
不 受 轴 类 零 件 限 制
可 焊 接 直 焊 缝
搅拌摩擦焊的红外温度及焊缝
搅拌摩擦焊的红 外扫描温度,红 色部分温度最高
搅拌摩擦焊相关产品
搅拌摩擦焊相关产品
搅拌摩擦焊相关产品
搅拌摩擦焊的特点
搅拌摩擦焊接过程中接头部位不存在金属的熔化,是一种固态焊接过程, 故焊接时不存在熔焊时的各种缺陷,可以焊接用熔焊方法难于焊接的材料,如LY、 LC系列的硬铝及超硬铝,并且可以在任意位置进行焊接。 由于不存在熔焊过程中接头部位大范围的热塑性变形过程,焊后接头的内 应力小、变形小,基本可实现板件的低应力无变形焊接。
搅拌摩擦焊焊接工装的故障分析与维修方法
![搅拌摩擦焊焊接工装的故障分析与维修方法](https://img.taocdn.com/s3/m/c5c2d9654a73f242336c1eb91a37f111f0850d5c.png)
搅拌摩擦焊焊接工装的故障分析与维修方法一、搅拌摩擦焊简介搅拌摩擦焊是一种高效的固态焊接工艺,适用于各种金属材料的接合。
在搅拌摩擦焊工艺中,焊接头与工件表面之间的摩擦力和挤压力产生摩擦热,达到材料塑性流动的温度,实现焊接。
然而,由于搅拌摩擦焊的复杂性,工装在使用过程中可能会出现故障,影响焊接质量。
二、故障分析1. 工装移动不灵活:工装在搅拌摩擦焊过程中需要进行多轴运动,如果工装的传动部件受损或润滑不良,可能导致工装移动不灵活。
2. 搅拌头异常:搅拌摩擦焊的关键部件是搅拌头,如果搅拌头受损或磨损过度,将严重影响焊接质量。
3. 温度控制不准确:搅拌摩擦焊需要控制焊接区域的温度,如果温度控制不准确,将导致焊接质量下降。
4. 焊接压力异常:焊接压力是影响焊接质量的重要参数,如果焊接压力异常,可能导致焊接头与工件之间的不良接触,影响焊接效果。
三、维修方法1. 定期保养:定期对搅拌摩擦焊工装进行保养,包括清洁、润滑和检查传动部件等,确保工装的正常运行。
2. 更换损坏部件:一旦发现工装的传动部件、搅拌头等关键部件损坏或磨损严重,应及时更换,确保焊接质量。
3. 调整温度控制:根据焊接工艺要求,调整搅拌摩擦焊设备的温度控制参数,确保焊接区域的温度稳定在合适的范围内。
4. 调整焊接压力:根据焊接工件的要求,调整搅拌摩擦焊设备的焊接压力参数,确保焊接压力稳定,保证焊接质量。
通过对搅拌摩擦焊工装故障的分析和相应的维修方法,可以有效提高焊接质量,延长设备使用寿命,确保生产过程的顺利进行。
只有在实践中不断总结经验,才能更好地发挥搅拌摩擦焊工艺的优势,为工件的制造提供更可靠的保障。
搅拌摩擦焊
![搅拌摩擦焊](https://img.taocdn.com/s3/m/fc5d57053069a45177232f60ddccda38376be160.png)
搅拌摩擦焊搅拌摩擦焊,是一种新型的焊接技术,也被称为搅拌摩擦联接。
它是通过在焊接区域旋转和挤压两个金属工件来产生热量和塑性变形,从而使两个工件达到联接的目的。
与传统的焊接技术相比,搅拌摩擦焊具有许多优点,如焊接速度快、焊缝质量高、金属变形小等。
本文将详细介绍搅拌摩擦焊的原理、应用和发展趋势。
一、搅拌摩擦焊的原理搅拌摩擦焊的原理是在两个金属工件之间施加旋转和挤压力,产生热量和塑性变形,从而使两个工件达到联接的目的。
搅拌摩擦焊的焊接区域主要由以下几个部分组成:1. 摩擦区:是指两个金属工件之间产生的热量和塑性变形的区域,也是焊接区域的主要部分。
在摩擦区,由于热量和挤压力的作用,金属工件的表面会产生摩擦热,从而使金属表面熔化和塑性变形。
在摩擦区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
2. 搅拌区:是指焊接区域中金属工件被挤压和旋转产生的区域。
在搅拌区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
3. 热影响区:是指焊接区域中受到热影响但未受到塑性变形的金属区域。
在热影响区,金属工件的晶粒也会受到影响,但不会产生细化和变形。
二、搅拌摩擦焊的应用搅拌摩擦焊的应用非常广泛,可以用于焊接各种金属材料,如铝合金、镁合金、钛合金、铜、钢等。
它在航空、汽车、船舶、铁路、电子、建筑等领域都有着广泛的应用。
1. 航空领域:搅拌摩擦焊可以用于制造航空器的结构件,如机翼、尾翼、机身等。
它可以提高焊缝质量,减少金属变形,从而提高航空器的性能和安全性。
2. 汽车领域:搅拌摩擦焊可以用于制造汽车的车身、底盘、发动机等部件。
它可以提高焊缝质量,减少金属变形,从而提高汽车的性能和安全性。
3. 船舶领域:搅拌摩擦焊可以用于制造船舶的船体、船舶设备等部件。
它可以提高焊缝质量,减少金属变形,从而提高船舶的性能和安全性。
4. 铁路领域:搅拌摩擦焊可以用于制造铁路车辆的车体、车轮等部件。
它可以提高焊缝质量,减少金属变形,从而提高铁路车辆的性能和安全性。
搅拌摩擦焊工艺及其应用
![搅拌摩擦焊工艺及其应用](https://img.taocdn.com/s3/m/aebed2f19fc3d5bbfd0a79563c1ec5da50e2d6a3.png)
搅拌摩擦焊工艺及其应用1 搅拌摩擦焊的定义与原理搅拌摩擦焊是一种非常新颖的金属连接技术,其原理是将金属材料在高速旋转的条件下不断挤压与摩擦热而使金属材料发生塑性变形进而在次冷却时形成均匀的焊缝。
搅拌摩擦焊是一种采用振荡摩擦进行的钎焊技术。
摩擦过程中,金属材料被强制变形,形成皱纹和复杂的微细组织结构,这就是焊接区域。
这一过程不需要额外的附加材料,因此也被称为固态钎焊。
搅拌摩擦焊的原理是通过搅拌和摩擦的相互作用,为金属轴套表面提供局部加热来处理金属本身。
在摩擦过程中,摩擦产生的热量会使金属材料温度升高,而旋转工具逐渐伸进焊缝,在相对运动的作用下,产生了强烈的塑性变形以及显著的变形应变。
在形成初期焊缝时,相对运动引起的压力会把材料从环形清隙中抽出,形成时生成混味均匀的焊接界面。
这些过程中摩擦加热导致局部熔化,接长和冷却会使金属变形,并形成一个均匀的、与母材相似的焊缝。
2 搅拌摩擦焊的工艺流程及其特点2.1 搅拌摩擦焊的工艺流程(1)工件准备:首先需要准备待焊接的工件。
工件通常是板材、管材、棒材等形状,可以是相同材质,也可以是不同材质。
(2)夹紧工件:将工件夹紧在专用的工件夹具中,以保证工件在搅拌摩擦焊过程中不会移动或震动。
(3)起始摩擦:在工件接头处的摩擦面上施加旋转摩擦力,使工件表面熔融并形成可焊接的状态。
(4)搅拌摩擦:在不断施加旋转摩擦力的情况下,摩擦头沿着工件的接合面移动,搅拌工件的金属组织,从而形成焊接。
(5)升温保压:在搅拌摩擦焊完成后,保持摩擦头的位置不动,使焊缝部位升温到一定程度,再施加一定的保压力,使焊缝固化。
(6)退火处理:对焊接完成后的工件进行退火处理,可以进一步提高焊接质量和性能。
2.2 搅拌摩擦焊的特点(1)搅拌摩擦焊是一种无焊接接头凸出、无端部凸出的焊接方法,焊缝起伏很小,对焊接部件外观和尺寸精度要求较高的场合比较适用。
(2)搅拌摩擦焊过程中没有明显的电弧和喷溅现象,不需要额外的保护气体,易于操作。
搅拌摩擦焊介绍
![搅拌摩擦焊介绍](https://img.taocdn.com/s3/m/248b41e75a8102d277a22fc4.png)
0
• 第一节 搅拌摩擦焊的基本原理 • 第二节 搅拌摩擦焊的焊接过程及特点 • 第三节 搅拌摩擦焊工艺 • 第四节 搅拌摩擦焊设备 • 第五节 搅拌摩擦焊的应用
LEE MAN (SCETC)
搅拌摩擦焊
1
一、搅拌摩擦焊原理
搅拌摩擦焊(Frictim Stir Welding,简称FSW)-利用一种特殊形式的搅拌头边旋转边前进,通过搅拌头 与工件的摩擦产生热量,摩擦热使该部位金属处于热塑 性状态,并在搅拌头的压力作用下从其前端向后部塑性 流动,从而使待焊件压焊为一个整体。
LEE MAN (SCETC)
搅拌摩擦焊
5
LEE MAN (SCETC)
搅拌摩擦焊
6
实验结果表明,搅拌摩擦焊对接接头的疲劳性能大都超过相应熔焊 接头的设计推荐值。总之,对于铝合金材料,其FSW接头的抗拉强度 均能达到母材的70%以上。接头性能的具体数值,除了与母材本身的 性能有关外,在很大程度上还取决于FSW的焊接参数。
LEE MAN (SCETC)
搅拌摩擦焊
8
优点:
焊件尺寸精度高
由于搅拌摩擦焊为固相焊接,其加热过程具有能量密度高、热 输入速度快等特点,因而焊接变形小,焊后残余应力小。在保 证焊接设备具有足够大的刚度、焊件装配定位精确以及严格控 制焊接参数的条件下,焊件的尺寸精度高。
绿色焊接方法
搅拌摩擦焊焊接过程不产生弧光辐射、烟尘和飞溅,噪声低,实现 了焊接过程的环保化。因而搅拌摩擦焊被称为“绿色焊接方法”。
目前,国内外关于搅拌摩擦焊的研究及应用主要集中在铝合金、镁
合金以及纯铜等软质、易于成形的材料上,对于钛合金、不锈钢、铝 基复合材料等的研究和应用也取得了较大的进展。
喷气客机的搅拌摩擦焊
摩擦焊的类型
![摩擦焊的类型](https://img.taocdn.com/s3/m/3df49223640e52ea551810a6f524ccbff121caa0.png)
摩擦焊的类型摩擦焊是一种常见的金属焊接方法,利用摩擦热来实现金属的连接。
根据焊接过程中的不同情况,摩擦焊可以分为多种类型,包括摩擦搅拌焊、摩擦搅拌摩擦焊、摩擦摩擦焊和摩擦摩擦搅拌焊等。
本文将依次介绍这些类型的摩擦焊方法。
1. 摩擦搅拌焊摩擦搅拌焊是一种通过摩擦热和机械搅拌来实现金属焊接的方法。
在摩擦搅拌焊过程中,焊接材料被加热至可塑状态,然后通过机械搅拌使焊接面处于良好的接触状态,从而实现焊接。
这种焊接方法适用于焊接材料的塑性较好的情况,可以实现高强度的焊接接头。
2. 摩擦搅拌摩擦焊摩擦搅拌摩擦焊是在摩擦搅拌焊的基础上进一步改进的焊接方法。
在摩擦搅拌摩擦焊过程中,除了利用摩擦热和机械搅拌来实现焊接外,还引入了摩擦热对焊接面进行加热,从而提高焊接接头的质量。
这种焊接方法适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头。
3. 摩擦摩擦焊摩擦摩擦焊是一种通过摩擦热和摩擦力来实现金属焊接的方法。
在摩擦摩擦焊过程中,焊接材料被加热至可塑状态,然后通过摩擦力使焊接面处于良好的接触状态,从而实现焊接。
这种焊接方法适用于焊接材料的塑性较好的情况,可以实现高效率的焊接。
4. 摩擦摩擦搅拌焊摩擦摩擦搅拌焊是在摩擦摩擦焊的基础上进一步改进的焊接方法。
在摩擦摩擦搅拌焊过程中,除了利用摩擦热和摩擦力来实现焊接外,还引入了机械搅拌来提高焊接接头的质量。
这种焊接方法适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头。
摩擦焊的不同类型在实际应用中具有各自的特点和优势。
摩擦搅拌焊适用于焊接材料的塑性较好的情况,可以实现高强度的焊接接头;摩擦搅拌摩擦焊适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头;摩擦摩擦焊适用于焊接材料的塑性较好的情况,可以实现高效率的焊接;摩擦摩擦搅拌焊适用于焊接材料的热导率较低的情况,可以实现高质量的焊接接头。
摩擦焊的不同类型都是通过利用摩擦热和力学作用来实现金属焊接的方法。
这些方法在焊接过程中具有各自的特点和优势,可以根据具体的焊接需求选择合适的类型。
一文读懂搅拌摩擦焊
![一文读懂搅拌摩擦焊](https://img.taocdn.com/s3/m/5b73479d3086bceb19e8b8f67c1cfad6185fe953.png)
1搅拌摩擦焊概览搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,在1991年由英国焊接研究所(The Welding Institute, TWI)发明。
与传统熔化焊相比,FSW无需添加焊丝、不需要保护气体,焊接过程无污染、无烟尘、无辐射,焊接接头残余应力低,因此具有焊接效率高、焊接变形小、能耗低、设备简单、焊接过程安全等一系列优点。
经过20多年的发展,FSW已经在航空航天、轨道交通、舰船等领域得到了广泛应用。
搅拌摩擦焊的原理如图1所示。
高速旋转的搅拌头扎入被焊工件内,旋转的搅拌针与被焊材料发生摩擦并使其发生塑化,轴肩与工件表面摩擦生热并用于防止塑性状态的材料溢出。
在焊接过程中,工件要刚性固定在背部垫板上,搅拌头边高速旋转边沿工件的接缝与工件相对移动,在搅拌头锻压力的作用下形成焊缝,最终实现被焊工件的冶金结合。
图1 搅拌摩擦焊接原理搅拌摩擦焊广泛适用于各类材料,目前已成功实现了铝、镁等低熔点金属及合金、铜合金、钛合金、钢铁材料、金属基复合材料以及异种金属(铝/铜、铝/镁、铝/钢等)的焊接。
在传统技术的基础上,搅拌摩擦焊有了五大创新发展:双轴肩搅拌摩擦焊、静轴肩搅拌摩擦焊、搅拌摩擦点焊、复合能场搅拌摩擦焊、搅拌摩擦增材制造。
双轴肩搅拌摩擦焊(Bobbin Tool Friction Stir Welding,BT-FSW)与传统FSW相比,其搅拌头为上、下轴肩结构,两个轴肩通过搅拌针连接,下轴肩取代了传统FSW的背部刚性支撑垫板,对工件进行自支撑,实现中空部件的焊接。
其焊接原理如图2所示。
上、下双轴肩的结构在焊接过程中降低了接头厚度方向的温度梯度,减小了接头组织不均匀性,可实现根部全焊透的焊接。
图2 双轴肩搅拌摩擦焊接原理1.上轴肩2.前进侧3.熔合线4.后退侧5.工件6.搅拌针7.下轴肩静轴肩搅拌摩擦焊(Stational Shoulder Friction Stir Welding,SS-FSW)采用轴肩与搅拌针分体式设计,在焊接过程中内部搅拌针处于旋转状态,而外部轴肩不转动,仅沿焊接方向行进。
搅拌摩擦焊
![搅拌摩擦焊](https://img.taocdn.com/s3/m/b535e5fc0242a8956bece41b.png)
搅拌摩擦焊(Friction Stir Welding,简称FSW)是英国焊接研究所(The Welding Institute)于1991年发明的专利焊接技术。
搅拌摩擦焊除了具有普通摩擦焊技术的优点外,还可以进行多种接头形式和不同焊接位置的连接。
挪威已建立了世界上第一个搅拌摩擦焊商业设备,可焊接厚3—15mm、尺寸6×16的Al船板;1998年美国波音公司的空间和防御实验室引进了搅拌摩擦焊技术,用于焊接某些火箭部件;麦道公司也把这种技术用于制造Delta运载火箭的推进剂贮箱。
下面主要介绍搅拌摩擦焊的方法、过程、特点以及搅拌摩擦焊在中国的发展现状。
2.搅拌摩擦焊的原理搅拌摩擦焊方法与常规摩擦焊一样.搅拌摩擦焊也是利用摩擦热作为焊接热源。
不同之处在于.搅拌摩擦焊焊接过程是由一个圆柱体形状的焊头(welding pin)伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化.同时对材料进行搅拌摩擦来完成焊接的。
焊接过程如图所示。
在焊接过程中工件要刚性固定在背垫上,焊头边高速旋转.边沿工件的接缝与工件相对移动。
焊头的突出段伸进材料内部进行摩擦和搅拌,焊头的肩部与工件表面摩擦生热,并用于防止塑性状态材料的溢出,同时可以起到清除表面氧化膜的作用。
在焊接过程中,焊头在旋转的同时伸入工件的接缝中,旋转焊头与工件之问的摩擦热,使焊头前面的材料发生强烈塑性变形,然后随着焊头的移动,高度塑性变形的材料流向焊头的背后,从而形成搅拌摩擦焊焊缝。
搅拌摩擦焊对设备的要求并不高,最基本的要求是焊头的旋转运动和工件的相对运动,即使一台铣床也可简单地达到小型平板对接焊的要求。
但焊接设备及夹具的刚性是极端重要的。
焊头一般采用工具钢制成,焊头的长度一般比要求焊接的深度稍短应该指出,搅拌摩擦焊缝结束时在终端留下个匙孔。
通常这个匙孔可以切除掉,也可以用其它焊接方法封焊住。
关于在搅拌摩擦过程中界面原子的运动现在仍处于研究阶段。
谈搅拌摩擦焊技术研究与应用
![谈搅拌摩擦焊技术研究与应用](https://img.taocdn.com/s3/m/969fe17beffdc8d376eeaeaad1f34693dbef1059.png)
CATALOGUE 目录•搅拌摩擦焊技术简介•搅拌摩擦焊技术研究现状•搅拌摩擦焊技术在不同领域的应用•搅拌摩擦焊技术的前景展望与发展趋势•结论搅拌摩擦焊是一种新型的焊接方法,其核心是利用搅拌头与工件之间的摩擦热和塑性变形热,使工件局部加热至塑性状态,并在搅拌头的强烈搅拌作用下实现材料的连接。
与传统的熔焊方法不同,搅拌摩擦焊过程中不涉及熔化,因此可以避免熔焊过程中出现的元素烧损、接头组织性能恶化等问题。
高效节能接头质量高适用范围广操作简单ABCD航空航天领域汽车制造领域其他领域轨道交通领域搅拌摩擦焊技术的应用范围搅拌摩擦焊技术的研究进展搅拌摩擦焊技术自发明以来,经过多年的研究和发展,已经在多个领域得到广泛应用。
在科研方面,研究者们不断探索新的搅拌摩擦焊技术,提高其焊接质量和效率。
在应用方面,搅拌摩擦焊技术已经应用于航空、航天、汽车、船舶等领域,取得了良好的效果。
010203搅拌摩擦焊技术的优势与局限搅拌摩擦焊技术的研究热点与挑战总结词搅拌摩擦焊技术在航空航天领域的应用具有广泛性和重要性。
要点一要点二详细描述搅拌摩擦焊技术在该领域主要用于制造飞机和火箭等关键部件,如铝合金和钛合金的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得飞机和火箭等关键部件的寿命更长、安全性更高。
航空航天领域总结词搅拌摩擦焊技术在汽车制造领域的应用日益增多,成为汽车制造的重要焊接方法之一。
详细描述搅拌摩擦焊技术在该领域主要用于制造汽车车身、底盘和发动机等关键部件,如低碳钢、铝合金和不锈钢的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得汽车的关键部件更加可靠、耐用。
总结词搅拌摩擦焊技术在船舶制造领域的应用具有广泛性和重要性。
搅拌摩擦焊的原理及其特点
![搅拌摩擦焊的原理及其特点](https://img.taocdn.com/s3/m/97aacee0cf2f0066f5335a8102d276a2002960b0.png)
搅拌摩擦焊的原理及其特点搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种固态焊接技术,其原理是通过在焊接接头处施加搅拌力和摩擦热来实现焊接。
它的特点是焊接过程中无熔化,无焊接热源,不需要填充材料,能够实现高强度、高质量的焊接。
搅拌摩擦焊的原理是利用焊接工具的自旋和推进运动,在焊接接头上施加搅拌力,使接头处的金属材料发生塑性变形,并通过摩擦热使金属材料的温度升高到可塑性范围内。
在高温和高压的作用下,金属材料发生塑性流动,形成焊接接头。
搅拌摩擦焊的特点主要体现在以下几个方面:1. 无熔化:搅拌摩擦焊是一种固态焊接技术,焊接过程中不产生熔化现象。
相比传统的熔化焊接方法,它避免了焊接接头处的液态金属流动和凝固过程中的缺陷产生,能够得到更好的焊接质量。
2. 无焊接热源:搅拌摩擦焊的焊接热源是通过焊接工具的自旋和推进运动产生的摩擦热。
相比传统的焊接方法,它不需要额外的焊接热源,能够节约能源。
3. 无需填充材料:搅拌摩擦焊的焊接接头是通过金属材料的塑性流动形成的,不需要使用填充材料。
这样可以避免填充材料与基材之间的界面问题,提高了焊接接头的强度和密封性。
4. 高强度焊接:搅拌摩擦焊由于焊接过程中金属材料的塑性流动和细化效应,能够得到高强度的焊接接头。
与传统的焊接方法相比,搅拌摩擦焊能够实现更高的焊接接头强度。
5. 适用范围广:搅拌摩擦焊适用于多种金属材料的焊接,包括铝合金、镁合金、铜合金等。
与传统的焊接方法相比,它能够实现不同种类和不同厚度金属材料的焊接。
6. 焊接过程稳定:搅拌摩擦焊的焊接过程中,焊接工具的自旋和推进运动能够使焊接接头处的金属材料均匀受热和塑性变形,使得焊接过程更加稳定。
同时,焊接工具的设计和控制技术的发展,使得搅拌摩擦焊的焊接过程能够实现自动化和精确控制。
搅拌摩擦焊是一种无熔化、无焊接热源、无需填充材料的固态焊接技术。
它具有高强度焊接、适用范围广和焊接过程稳定等特点。
搅拌摩擦焊资料
![搅拌摩擦焊资料](https://img.taocdn.com/s3/m/21fa4ddcd5bbfd0a79567359.png)
搅拌摩擦焊一、搅拌摩擦焊的定义及原理搅拌摩擦焊(Friction Stir Welding,简称FSW)是基于摩擦焊技术的基本原理,由英国焊接研究所(TWI)于1991年发明的一种新型固相连接技术。
与常规摩擦焊相比,其不受轴类零件的限制,可进行板材的对接、搭接、角接及全位置焊接。
与传统的熔化焊方法相比,搅拌摩擦焊接头不会产生与熔化有关的如裂纹、气孔及合金元素的烧损等焊接缺陷;焊接过程中不需要填充材料和保护气体,使得以往通过传统熔焊方法无法实现焊接的材料通过搅拌摩擦焊技术得以实现连接;焊接前无须进行复杂的预处理,焊接后残余应力和变形小;焊接时无弧光辐射、烟尘和飞溅,噪音低;因而,搅拌摩擦焊是一种经济、高效、高质量的“绿色”焊接技术,被誉为“继激光焊后又一次革命性的焊接技术”。
搅拌摩擦焊方法与常规摩擦焊一样,搅拌摩擦焊也是利用摩擦热作为焊接热源。
不同之处在于搅拌摩擦焊焊接过程是由一个圆柱体形状的焊头(伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化同时对材料进行搅拌摩擦来完成焊接的。
二.搅拌摩擦焊焊接过程搅拌摩擦焊是利用摩擦热作为焊接热源的一种固相连接方法,但与常规摩擦焊有所不同。
在进行搅拌摩擦焊接时,首先将焊件牢牢地固定在工作平台上,然后,搅拌焊头高速旋转并将搅拌焊针插入焊件的接缝处,直至搅拌焊头的肩部与焊件表面紧密接触,搅拌焊针高速旋转与其周围母材摩擦产生的热量和搅拌焊头的肩部与焊件表面摩擦产生的热量共同作用,使接缝处材料温度升高而软化,同时,搅拌焊头边旋转边沿着接缝与焊件作相对运动,搅拌焊头前面的材料发生强烈的塑性变形。
随着搅拌焊头向前移动,前沿高度塑性变形的材料被挤压到搅拌焊头的背后。
在搅拌头轴肩与焊件表层摩擦产热和锻压共同作用下,形成致密的固相连接接头。
搅拌摩擦焊接过程如图所示:三.搅拌摩擦焊工艺(一)、搅拌摩擦焊接头形式搅拌摩擦焊可以实现棒材一棒材、板材一板材的可靠连接,接头形式可以设计为对接、搭接、角接及T形接头,可进行环形、圆形、非线性和立体焊缝的焊接。
搅拌摩擦焊介绍
![搅拌摩擦焊介绍](https://img.taocdn.com/s3/m/b6b5c9826bec0975f565e20a.png)
7
喷气客机的搅拌摩擦焊
LEE MAN (SCETC)
镁合金的搅拌摩擦焊
搅拌摩擦焊 (三)搅拌摩擦焊的特点
8
优点:
焊缝是在塑性状态下受挤压完成的,属于固相焊接,因而其接头 不会产生与冶金凝固有关的一些如裂纹、夹杂、气孔以及合金元 素的烧损等熔焊缺陷和脆化现象,焊缝性能接近母材,力学性能 优异。适于焊接铝、铜、铅、钛、锌、镁等非铁金属及其合金以 及钢铁材料、复合材料等,也可用于异种材料的连接。 不受轴类零件的限制,可进行平板的对接和搭接,可焊接 直焊缝、角焊缝及环焊缝,可进行大型框架结构及大型筒 体制造、大型平板对接等,扩大了应用范围。 搅拌摩擦焊利用自动化的机械设备进行焊接,避免了对 操作工人技术熟练程度的依赖,质量稳定,重复性高。 焊接时无需填充材料、保护气体,焊前无需对焊件表面预处 理,焊接过程中无需施加保护措施,厚大焊件边缘不用加工 坡口,简化了焊接工序。· 焊接铝合金材料不用去氧化膜,只 需去除油污即可。
LEE MAN (SCETC)
搅拌摩擦焊 2.接头力学性能
焊态下,FSW焊缝焊核的强度要大于热影响区的强度。
5
对于退火状态的铝合金,拉伸实验时首先发生破坏的部位通常在远离 焊缝和热影响区的母材上。对于形变强化和热处理强化的铝合金,FSW 接头的不同区域发生了软化,但可以通过控制热循环,尤其是通过降低 焊缝热机影响区的退火效应和过时效的影响来改善接头的性能,也可以 通过焊后热处理的方式提高热处理强化铝合金FSW接头的性能。
• 它可以焊接所有牌号的铝合金以及用熔焊方法难以焊接的材料,并 突破了普通摩擦焊对轴类零件的限制,可进行板材的对接、搭接、角 接及全位置焊接。由于搅拌摩擦焊是固态焊接,所以没有熔化焊时的 气孔、裂纹及合金元素烧损等缺陷。搅拌摩擦焊的接头性能普遍
搅拌摩擦焊和熔焊对比优劣
![搅拌摩擦焊和熔焊对比优劣](https://img.taocdn.com/s3/m/2ac7f3270640be1e650e52ea551810a6f524c8bd.png)
搅拌摩擦焊和熔焊对比优劣
搅拌摩擦焊和熔焊对比优劣
FSW(搅拌摩擦焊)的特点
搅拌摩擦焊(FSW)实践证明是非铁金属连接工艺,它没有母材熔化、填充金属和保护
气体。
因为它是固态连接工艺,搅拌摩擦焊消除了传统熔焊本身存在的大多数与再凝固相关
的副作用。
该工艺同时也能应用于全位置焊。
FSW的优点
三个重要特征展现了搅拌摩擦焊较之传统熔焊工艺的优势:高效率,低成本和有效连接
铝合金。
用传统熔焊法连接铝合金很难,或者几乎是不可能的。
FSW的优势
搅拌摩擦焊是一种快速工艺,变形小,没有气孔,无热裂纹,能在单焊道内焊接厚铝板。
这些都是效率高,生产成本低的原因。
表1显示的数据在焊接2in.厚铝型材时对FSW和GMAW两种焊接工艺作了比较。
虽然FSW投资成本要高些,但由于焊接速度快,焊接准备工作成本低,所以每段长度的成本
更少。
对焊接厚铝板来说,由于搅拌摩擦焊不熔化铝,所以不需要多焊道来限制线能量。
它有
足够的热来塑化铝,很像热压时的情况。
双重焊头设置也可用,能让用户同时焊接厚铝板的正反面,或同时焊接夹层板,从而进
一步减少了线能量。
同时,由于每个焊头负责材料厚度的一半,焊接总速度实质上加了倍。
使用搅拌摩擦焊的一个缺陷可能是焊接夹具投资成本,尤其是在更为复杂的焊接应用中。
每边必须有足够的侧边和向下夹紧压力,以夹紧它们不离原位。
这一方法可能需要用到液压传动装置。
这一压力可能很大,但很合理。
减少生产成本。
搅拌摩擦焊接资料
![搅拌摩擦焊接资料](https://img.taocdn.com/s3/m/cab94ba75fbfc77da269b1bd.png)
R/V /(r/mm)
R/V与接头抗拉强度之间的关系
搅拌摩擦焊接工艺
Micro-hardness/HV
1.0 1.0
4
1
retreating side
advancing side
top
A
2
B
3
C
4
-12
-8
-4
0
4
center bottom
8
12
65
B 60
55CBiblioteka A50 45A: top B: center C: bottom
AA2219铝合金与AZ91镁合金的搅拌摩擦焊接
北京赛福斯特技术有限公司(中国搅拌摩擦焊中心)
成功实现了3mm的紫铜板搅拌摩擦焊对接(如图1所 示)。
搅拌摩擦焊接设备
采用3轴数控的搅拌摩擦焊接设备
搅拌摩擦焊接设备
可以焊接大型工件的FSW 设备
搅拌摩擦焊接设备
国内搅拌摩擦焊接设备
母材微观组织
-
-
10
5
0
dis tance f rom w eld center /
1 top 2 bottom 3 center 4 center line
5 × 0.5mm
10
显微硬度曲线
搅拌摩擦焊接工艺
搅拌摩擦焊接接头
焊缝横截面材料流动情况 ×37.5
搅拌摩擦焊接工艺
TMAZ HAZ
R d TMAZ a
• 由于最高温度不会超过母材熔点的80%,故搅
拌摩擦焊接不存在熔焊的焊接缺陷。焊后接头 的厚度一般比母材薄3~6%。
搅拌摩擦焊接工艺特点:
• 搅拌摩擦焊接的温度相对较低,可以得到高质
目前最先进的焊接工艺-搅拌摩擦焊
![目前最先进的焊接工艺-搅拌摩擦焊](https://img.taocdn.com/s3/m/283467478f9951e79b89680203d8ce2f00666529.png)
目前最先进的焊接工艺-搅拌摩擦焊
焊,你知道原理吗
搅拌摩擦焊是由英国焊接技术研究所于1991年发明的新型焊接技术,其原理如下图所示。
一根安装在主轴上的形状为蜗杆形式的搅拌针在一定压力下被插入焊
缝位置,搅拌针的长度一般要比焊缝深度略浅,以此来保证主轴的轴肩能
紧贴被焊接的工件表面。
当工件与搅拌针和轴肩摩擦生热,焊缝附近的材料会因受热产生严重的塑性变形,但是,并不是熔化,只是成为一种“半流体”的状态,随着主轴带动搅拌针沿着焊缝的走向进给,搅拌针不
断把已经处于“半流体”状态的材料搅拌到身后,当主轴离开后,这些材
料将冷却固化,从而形成一条稳定的焊缝。
其次,相较于传统熔焊工艺在焊缝附近形成重新铸造形态,搅拌摩擦
焊由于主轴会给被焊接的工件部位施加一个很大的压力,所以在焊缝附近
得到的是锻造形态,这种锻造形态组织比铸造形态组织致密得多,因而焊
接后零件的机械性能也比传统熔焊工艺做出来的好得多。
此外,搅拌摩擦焊不需要焊料,这节约了不少成本,因为高端焊料往
往都是非常昂贵的。
当然,搅拌摩擦焊也有自身不少的局限性,比如,只适合焊接熔点相
对较低的材料(如铝合金、镁合金或者铜合金);工件需要承受很大的紧固
力固定在工作台上,并以很大的压紧力压紧,这可能造成额外的变形;对
于不规则的异形焊缝的焊接速度较慢,搅拌针和轴肩材料损耗速度较快等。
总之,搅拌摩擦焊做为一种新兴的焊接工艺正在应用于高端的焊接领域,相信随着技术的发展这个焊接工艺的应用会越来越广。
搅拌摩擦焊接
![搅拌摩擦焊接](https://img.taocdn.com/s3/m/16a5032e793e0912a21614791711cc7931b77887.png)
搅拌摩擦焊(FSW)一、原理搅拌摩擦焊(Friction Stir Welding)是基于摩擦焊接技术一种固相焊接技术,1991 年由英国焊接研究所(TWI)发明。
其原理是一个非耗损的搅拌头旋转扎入焊接工件的连接界面,当搅拌头向前沿着焊缝移动时,塑化金属在机械搅拌和顶锻作用下形成致密的固相联接。
纵截面 顶截面搅拌摩擦焊示意图二、优点1. 高度一致的焊接质量,无需高的操作技能和训练;2. 单面焊接的厚度为1.6~15 mm;3. 焊接接口部位只需去油处理,无需打磨或洗刷;4. 不需焊丝和保护气氛;5. 节省能源,单面焊12.5 mm深度所需动力仅为3 KW;6. 焊接表面平整,不变形,无焊缝凸起和焊滴,无需后续处理;7.无电弧、无磁冲击、闪光、辐射、烟雾和异味,不影响其它电器设备使用,绿色环保;8.焊接温度低于合金的熔点,焊缝无孔洞、裂纹和元素烧损。
飞火汽船搅拌摩擦焊在宇航、船舶、高速列车、汽车等制造领域具有广阔的技术应用前景。
焊接实验室2006年8月FSW-3LM-002龙门式数控搅拌摩擦焊机一、设备简介江苏科技大学是中国搅拌摩擦焊中心(CFSWC)和英国焊接研究所(TWI)共同授权的搅拌摩擦焊学术研究二级许可单位,拥有中国第一台商业专用搅拌摩擦焊设备——FSW-3LM-002。
整套设备包括精密主轴单元、三坐标数控移动工作台、龙门式机架、机头滑枕、平板及筒形件的纵、环缝夹具,人机控制界面、4坐标控制系统、先进焊接参数传感、控制、记录系统等。
该焊机可以焊接厚度为3~15mm所有牌号的铝合金板材和直径小于Ф800mm的筒形件,以及铝基复合材料,镁及镁合金,锌及锌合金,铜及铜合金,钛及钛合金,铅及铅合金,碳钢和不锈钢等,还可实现异种材料的连接。
能完成对接、搭接、丁字等多种接头方式,并大大提高焊接接头的力学性能,排除熔焊缺陷产生的可能性。
二、教学和科研应用教学方面,可利用该设备进行本科和研究生教育,开设“焊接方法与设备”课程的相关实验教学,为本科毕业生提供毕业设计课题和实验条件,吸引大三学生开展学生科研活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LEE MAN (SCETC)
搅拌摩擦焊
9
优点:
焊件尺寸精度高
由于搅拌摩擦焊为固相焊接,其加热过程具有能量密度高、热 输入速度快等特点,因而焊接变形小,焊后残余应力小。在保 证焊接设备具有足够大的刚度、焊件装配定位精确以及严格控 制焊接参数的条件下,焊件的尺寸精度高。
绿色焊接方法
搅拌摩擦焊焊接过程不产生弧光辐射、烟尘和飞溅,噪声低,实现 了焊接过程的环保化。因而搅拌摩擦焊被称为“绿色焊接方法”。
焊缝形式: 环形、圆形、非线性 和立体焊缝。
焊接位置: 全位置焊接。
LEE MAN (SCETC)
搅拌摩擦焊
11
(二)搅拌摩擦焊的热输入与焊接参数
焊接热源主体
搅拌针与接合面间的摩擦热 轴肩与焊件材料上表面的摩擦热
搅拌针附近材料发生塑性变形和流体流动,从而导致形变生热, 这部分热量相对较小。因此,搅拌摩擦焊本质上是以摩擦热作为焊 接热源的焊接方法,所以摩擦生热是影响焊接质量的关键因素。
• 它可以焊接所有牌号的铝合金以及用熔焊方法难以焊接的材料,并 突破了普通摩擦焊对轴类零件的限制,可进行板材的对接、搭接、角 接及全位置焊接。由于搅拌摩擦焊是固态焊接,所以没有熔化焊时的
气孔、裂纹及合金元素烧损等缺陷。搅拌摩擦焊的接头性能普遍 优于熔化焊的。
• 目前,搅拌摩擦焊技术已在飞机制造、机车车辆和船舶制造等领 域得到广泛的应用,主要用于铝及其合金、铜合金、镁合金、钛合金、 铅、锌等非铁金属材料的焊接,也可用于焊接钢铁金属。
成形及质量均较差。
只有当n/v在一定范围内,即焊接速度与搅拌焊头的转速匹配合 理时,才能获得合适的焊接热输入,得到成形美观、性能优良的焊 缝。
LEE MAN (SCETC)
搅拌摩擦焊
14
图4-23是Al-5Mg合金采用 搅拌摩擦焊接,旋转速度 n=1000 r/min时,不同n /v比值对抗拉强度的影响。 从图中可知,随着n/v值 的增加,强度和塑性都增加, 最大抗拉强度达到310 MPa, 与母材的实测值相同,伸长 率为17%,是母材实测值 的 63%。在达到最大强度 值后,继续增加n/v的数值, 强度和塑性反而下降。
目前,国内外关于搅拌摩擦焊的研究及应用主要集中在铝合金、镁
合金以及纯铜等软质、易于成形的材料上,对于钛合金、不锈钢、铝 基复合材料等的研究和应用也取得了较大的进展。
喷气客机的搅拌摩擦焊
LEE MAN (SCETC)
镁合金的搅拌摩擦焊
搅拌摩擦焊
8
(三)搅拌摩擦焊的特点
优点:
焊缝质量好
焊缝是在塑性状态下受挤压完成的,属于固相焊接,因而其接头 不会产生与冶金凝固有关的一些如裂纹、夹杂、气孔以及合金元 素的烧损等熔焊缺陷和脆化现象,焊缝性能接近母材,力学性能 优异。适于焊接铝、铜、铅、钛、锌、镁等非铁金属及其合金以 及钢铁材料、复合材料等,也可用于异种材料的连接。
搅拌摩擦焊
18
四、搅拌摩擦焊设备
搅拌摩擦焊接工具 搅拌焊头
按设备功能结构不同 搅拌摩擦焊机
机械转动部分 行走部分 控制部分 工件夹紧机构 刚性机架
LEE MAN (SCETC)
搅拌摩擦焊
19
(一)搅拌摩擦焊接工具
搅拌焊头是搅拌摩擦焊的关键和核心部件,其主要 由轴肩和搅拌针两部分构成。
搅拌焊头一般需要具有如下特性: 热强性、耐磨性、抗蠕变性、耐冲 击性、材料惰性、易加工性、良好 的摩擦效果和合理的热传导性能。
LEE MAN (SCETC)
搅拌摩擦焊
4
(二)搅拌摩擦焊的焊接接头
1.接头的分区
根据塑性变形程度和热作用的不同, 将搅拌摩擦焊接头分为4个区域。
母材区
图中,d区为接头中无热作用也无塑性变形的母材区
热影响区(HAZ)
c区该区域的材料因受焊接热循环的影响,微观组织和力学性能 均发生了改变,但该区域材料没有产生塑性变形,其组织与母村 组织无明显的区别,只是消除了方向性很强的柱状晶结构,热影 响区的宽度比熔焊时窄很多。
LEE MAN (SCETC)
搅拌摩擦焊
17
焊接压力
焊接压力除了影响搅拌摩擦生热以外,还对搅拌后的塑性金属起到压紧作 用。试验表明,当焊接压力不足时,表面热塑性金属“上浮”,溢出焊缝 表面,焊缝内部由于缺少金属填充而形成孔洞。当焊接压力过大时,轴肩 与焊件表面摩擦力增大,摩擦热将使轴肩平台发生粘附现象,使焊缝两侧 出现飞边和毛刺,焊缝中心下凹量较大,不能形成良好的焊接接头,表面 成形较差。
LEE MAN (SCETC)
搅拌摩擦焊
12
搅拌摩擦焊的热功率可表示为:
由于搅拌摩擦焊稳态焊接时,摩擦因数和焊接压力均为定值,因此可将其与 形状因子结合为新的常量系数Km,则搅拌摩擦焊热输入的大小可以用n/v表征。
LEE MAN (SCETC)
搅拌摩擦焊
13
对于给定的搅拌焊头和焊接压力,其热输入主要取决于n/v。
LEE MAN (SCETC)
搅拌摩擦焊
16
2.搅拌焊头旋转速度 若焊接速度保持一定,即当焊接速度为定
值时,若搅拌焊头的旋转速度较低时,焊接 热输入较低,搅拌焊头前方不能形成足够的 热塑性材料填充搅拌针后方所形成的空腔, 焊缝内易形成孔洞、沟槽等缺陷,从而弱化 接头强度。随着旋转速度的增加,沟槽的宽 度减小,当旋转速度提高到一定数值时,焊 缝外观良好,内部的孔洞也逐渐消失。在适 宜的旋转速度下接头才可获得最佳强度值。
LEE MAN (SCETC)
搅拌摩擦焊
6
LEE MAN (SCETC)
搅拌摩擦焊
7
实验结果表明,搅拌摩擦焊对接接头的疲劳性能大都超过相应熔焊 接头的设计推荐值。总之,对于铝合金材料,其FSW接头的抗拉强度 均能达到母材的70%以上。接头性能的具体数值,除了与母材本身的 性能有关外,在很大程度上还取决于FSW的焊接参数。
缺点:
焊接时的机械力较大,需要焊接设备具有很好的刚性 与弧焊相比,缺少焊接操作的柔性 搅拌焊头的磨损相对较高 焊缝末端通常有“匙孔”存在(目前已可以实现无孔焊接)等
LEE MAN (SCETC)
搅拌摩擦焊
10
三、搅拌摩擦焊工艺
(一)搅拌摩擦焊接头形式
构件形状: 圆形、板状等
接头形式: 对接、搭接、 角接及T形接头。
搅拌摩擦焊
0
搅拌摩擦焊
LEE MAN (SCETC)
搅拌摩擦焊
1
• 第一节 搅拌摩擦焊的基本原理 • 第二节 搅拌摩擦焊的焊接过程及特点 • 第三节 搅拌摩擦焊工艺 • 第四节 搅拌摩擦焊设备 • 第五节 搅拌摩擦焊的应用
LEE MAN (SCETC)
搅拌摩擦焊
2
一、搅拌摩擦焊原理
搅拌摩擦焊(Frictim Stir Welding,简称FSW)-利用一种特殊形式的搅拌头边旋转边前进,通过搅拌头 与工件的摩擦产生热量,摩擦热使该部位金属处于热塑 性状态,并在搅拌头的压力作用下从其前端向后部塑性 流动,从而使待焊件压焊为一个整体。
不受轴类零件限制
不受轴类零件的限制,可进行平板的对接和搭接,可焊接 直焊缝、角焊缝及环焊缝,可进行大型框架结构及大型筒 体制造、大型平板对接等,扩大了应用范围。
无需高的操作技能和训练
搅拌摩擦焊利用自动化的机械设备进行焊接,避免了对 操作工人技术熟练程度的依赖,质量稳定,重复性高。
不需焊丝和保护气氛
焊接时无需填充材料、保护气体,焊前无需对焊件表面预处 理,焊接过程中无需施加保护措施,厚大焊件边缘不用加工 坡口,简化了焊接工序。·焊接铝合金材料不用去氧化膜,只 需去除油污即可。
LEE MAN (SCETC)
LEE MA接参数的选择
搅拌摩擦焊接参数主要包括焊接速度(搅拌焊头沿焊缝方向的行进 速度)、搅拌焊头转速、焊接压力、搅拌焊头结构参数(倾角θ)、搅 拌焊头插入速度和保持时间等。
1.焊接速度 图4-24为焊接速度对铝锂合金搅拌摩擦焊 接头抗拉强度的影响。由图可见,接头强度 与焊接速度的关系并非简单的线性比例关系, 而是呈曲线变化。当焊接速度小于 160mm/min时,接头强度随焊接速度的提 高而增大。从焊接热输入计算公式可知,当 转速为定值,焊接速度较低时,搅拌焊头/ 焊件界面的整体摩擦热输入较高。如果焊接 速度过高,热输入不足,热塑性材料填充搅 拌针行走所形成的空腔的能力变弱,热塑 性材料填充空腔能力不足,则焊缝内易形成 疏松孔洞缺陷,严重时焊缝表面形成一条 狭长且平行于焊接方向的隧道沟,导致接头 强度大幅度降低。
搅拌焊头倾角
搅拌焊头的倾角影响塑性流体的运动状态,从而对焊核的形成过程产 生影响
搅拌焊头插入速度 搅拌焊头的形状
搅拌焊头的插入速度决定搅拌摩擦焊起始阶段预热温度的高低 及能否产生足够的塑性变形和流体的流动
搅拌焊头的形状决定了搅拌摩擦焊过程的生热及焊缝金属的 塑性流动,最终影响焊缝的成形及焊缝性能。
LEE MAN (SCETC)
LEE MAN (SCETC)
搅拌摩擦焊
3
二、搅拌摩擦焊的焊接过程及特点
(一)搅拌摩擦焊焊接过程 搅拌摩擦焊是利用摩擦热作为焊接热源的一 种固相焊接方法,但与常规摩擦焊有所不同。 在进行搅拌摩擦焊接时,首先将焊件牢牢地固 定在工作平台上,然后,搅拌焊头高速旋转并 将搅拌焊针插入焊件的接缝处,直至搅拌焊头 的肩部与焊件表面紧密接触,搅拌焊针高速旋 转与其周围母材摩擦产生的热量和搅拌焊头的 肩部与焊件表面摩擦产生的热量共同作用,使 接缝处材料温度升高且软化,同时,搅拌焊头 边旋转边沿着接缝与焊件作相对运动,搅拌焊 头前面的材料发生强烈的塑性变形。随着搅拌 焊头向前移动,前沿高度塑性变形的材料被挤 压到搅拌焊头的背后。在搅拌焊头与焊件表面 摩擦生热和锻压共同作用下,形成致密牢固的 固相焊接接头。搅拌摩擦焊接过程如动画所示。
热机影响区