上海市2015嘉定区中考数学一模试卷(含答案)

合集下载

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)(2015•上海)下列实数中,是有理数的为()A.B.C.πD.0考点:实数.分析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.解答:解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.点评:此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(4分)(2015•上海)当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析:分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a=(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.3.(4分)(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=考点:正比例函数的定义.分析:根据正比例函数的定义来判断即可得出答案.解答:解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.点评:本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.(4分)(2015•上海)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.7考点: 多边形内角与外角.分析:根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.解答:解:这个多边形的边数是360÷72=5,故选:B.点评:本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.(4分)(2015•上海)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率考点:统计量的选择.分析:根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数据的离散程度或波动大小进行选择.解答:解:能反映一组数据波动程度的是方差或标准差,故选C.点评:本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.6.(4分)(2015•上海)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.A D=BD B.O D=CD C.∠CAD=∠CBD D.∠OCA=∠OCB考点: 菱形的判定;垂径定理.分析:利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.解答:解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.点评:此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.二、填空题7.(4分)(2015•上海)计算:|﹣2|+2=4.考点:有理数的加法;绝对值.分析:先计算|﹣2|,再加上2即可.解答:解:原式=2+2=4.故答案为4.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.8.(4分)(2015•上海)方程=2的解是x=2.考点:无理方程.分析:首先根据乘方法消去方程中的根号,然后根据一元一次方程的求解方法,求出x的值是多少,最后验根,求出方程=2的解是多少即可.解答:解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2.点评:此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.9.(4分)(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3.考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(4分)(2015•上海)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是m<﹣4.考点:根的判别式.分析:根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.解答:解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(4分)(2015•上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.考点:函数值.分析:把x的值代入函数关系式计算求出y值即可.解答:解:当x=25°时,y=×25+32=77,故答案为:77.点评:本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.12.(4分)(2015•上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3.考点:二次函数图象与几何变换.分析:设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b 的值.解答:解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.13.(4分)(2015•上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.考点:概率公式.分析:由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,直接利用概率公式求解即可求得答案.解答:解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015•上海)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)11 12 13 14 15人数 5 5 16 15 12那么“科技创新社团"成员年龄的中位数是14岁.考点: 中位数.分析:一共有53个数据,根据中位数的定义,把它们按从小到大的顺序排列,第27名成员的年龄就是这个小组成员年龄的中位数.解答:解:从小到大排列此数据,第27名成员的年龄是14岁,所以这个小组成员年龄的中位数是14.故答案为14.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)(2015•上海)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为﹣.考点:*平面向量.分析:由=,=,利用三角形法则求解即可求得,又由在△ABC中,D、E分别是边AB、边AC的中点,可得DE是△ABC的中位线,然后利用三角形中位线的性质求解即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D、E分别是边AB、边AC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识以及三角形中位线的性质.注意掌握三角形法则的应用.16.(4分)(2015•上海)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=22.5度.考点:正方形的性质;全等三角形的判定与性质.分析:根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.解答:解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.17.(4分)(2015•上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B 相交,且点B在⊙D内,那么⊙D的半径长可以等于14(答案不唯一).(只需写出一个符合要求的数)考点: 圆与圆的位置关系;点与圆的位置关系.专题:开放型.分析:首先求得矩形的对角线的长,然后根据点A在⊙B上得到⊙B的半径为5,再根据⊙D 与⊙B相交,得到⊙D的半径R满足8<R<18,在此范围内找到一个值即可.解答:解:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).点评:本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B的半径,然后确定⊙D的半径的取值范围,难度不大.18.(4分)(2015•上海)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC 的延长线于点E,那么线段DE的长等于4﹣4.考点: 解直角三角形;等腰三角形的性质.专题:计算题.分析:作CH⊥AE于H,根据等腰三角形的性质和三角形内角和定理可计算出∠ACB=(180°﹣∠BAC)=75°,再根据旋转的性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.解答:解:作CH⊥AE于H,如图,∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和旋转的性质.三、解答题19.(10分)(2015•上海)先化简,再求值:÷﹣,其中x=﹣1.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•﹣=﹣=,当x=﹣1时,原式==﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015•上海)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.(10分)(2015•上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.考点:反比例函数与一次函数的交点问题.分析:(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的坐标,根据反比例函数y=的图象经过点A,求出m的值;(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.解答:解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,∴点A的坐标为(3,4),∵反比例函数y=的图象经过点A,∴m=12,∴反比例函数的解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B的坐标为:(6,2),设直线AB的表达式为:y=kx+b,由题意得,,解得,,∴直线AB的表达式为:y=﹣x+6.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的解得的求法,注意数形结合的思想在解题中的应用.22.(10分)(2015•上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1。

2015上海数学各区一模试题归类

2015上海数学各区一模试题归类

2015 上海数学各区一模试题归类第一部分 选择题一、 二次函数1. (徐汇)将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为( )A. 22(1)2y x =--+;B. 22(1)2y x =---;C. 22(1)2y x =-++;D. 22(1)2y x =-+-;2. (徐汇)已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( )A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限;3. (六区)将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为( )A. 2(1)y x =+;B. 2(3)y x =-;C. 2(1)2y x =-+;D. 2(1)2y x =--;4. (六区)一个小球被抛出后,如果距离地面的高度h (米)和运行时间t (秒)的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是( )A. 1米;B. 3米;C. 5米;D. 6米;5. (崇明)如果二次函数2y ax bx c =++的图像如图1-1-1,那么下列判断中,不正确的是( )A. 0a >B. 0b >C. 0c <D. 240b ac ->6. (崇明)将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数 表达式为( )A. 2(1)1y x =++B. 2(1)1y x =+-C. 2(1)1y x =-+D. 2(1)1y x =--7. (长宁)抛物线22212,2,2y x y x y x ==-=共有的性质是( ) A. 开口向下; B. 对称轴是y 轴 C. 都有最低点 D. y 的值随x 的增大而减小8. (嘉定)对于抛物线2)2(-=x y ,下列说法正确的是( )A. 顶点坐标是)0,2(;B. 顶点坐标是)2,0(;C. 顶点坐标是)0,2(-;D. 顶点坐标是)2,0(-.9. (嘉定)已知二次函数bx ax y +=2的图像如图1-1-2所示,那么a 、b 的符号为( )A. 0>a ,0>b ;B. 0<a ,0>b ;C. 0>a ,0<b ;D. 0<a ,0<b .1-1-1 y x O O xy 1-1-2O x yO x y O x y O x y 10.(奉贤)抛物线221x y -=的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为( ) A .(0,-2) ; B . (0,2); C .(-2,0); D .(2,0).11.(虹口)已知点,均在抛物线上,下列说法中,正确的是( )A .若,则;B .若,则;C .若,则;D .若,则.12.(虹口)二次函数(a 为常数)的图像如图1-1-3所示,则的取值范围为( )A . ;B .;C . ;D ..13.(金山)抛物线122+=x y 的顶点坐标是( )A. )1,2(;B. )1,0(;C. )0,1(;D. )2,1(. 14.(金山)已知反比例函数)0(≠=a xa y ,当0 x 时,它的图像y 随x 的增大而减小,那么二次函数 ax ax y -=2 的图像只可能是( )A. B. C. D.15.(闸北)在下列y 关于x 的函数中,一定是二次函数的是 ( ) A. 2x y =; B. 21xy =; C. 2kx y =; D. x k y 2=. 16.(普陀)如果二次函数2y ax bx c =++(0a ≠)的图像如图1-1-4,那么() A. 0a <,0b >,0c >; B. 0a >,0b <,0c >;C. 0a >,0b <,0c <;D. 0a >,0b >,0c <;二、 比例线段1.(徐汇) 如图1-2-1,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是( )A. 2BE EC =;B. 13EC AD =;C. 23EF AE =;D. 23BF DF =; 2. (六区)如图1-2-2,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于( ) A. 2; B. 4; C. 24; D. 365;FA CB E1-2-1 1-2-3B C D E y x O 1-1-4yx O3. (崇明)已知52a b =,那么下列等式中,不一定正确的是 ( ) A. 25a b = B. 52a b = C. 7a b += D. 72a b b += 4. (宝山)如图1-2-3,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是( )A. AD AE DB EC =;B. AD DE DB BC =;C. AD AE AB AC =;D. AD DE AB BC=; 5. (嘉定)如图1-2-4,已知AB ∥CD ,AD 与BC 相交于点O , 2:1:=DO AO ,那么下列式子正确的是( )A. 2:1:=BC BO ;B. 1:2:=AB CD ;C. 2:1:=BC CO ;D. 1:3:=DO AD .6. (奉贤)已知y x 23=,那么下列等式一定成立的是( )A .3,2==y x ;B .23=y x ;C .32=y x ; D .023=+y x . 7. (闸北)如果点G 是△ABC 的重心,联结AG 并延长,交对边BC 于点D ,那么AG ︰AD 是( )A. 2︰3 ;B. 1︰2;C. 1︰3 ;D. 3︰4. 8. (闸北)已知点D 、E 分别在△ABC 的边AB 、AC 上,下列给出的条件中,不能判定DE ∥B C 的是( )A. BD ︰AB = CE ︰AC ;B. DE ︰BC = AB ︰AD ;C. AB ︰AC = AD ︰A E ;D. AD ︰DB = AE ︰EC .9. (普陀)如图1-2-5,直线1l ∥2l ∥3l ,两直线AC 和DF 与1l ,2l ,3l 分别相交于点A 、B 、C 和 点D 、 E 、F ,下列各式中,不一定成立的是( )A. AB DE BC EF =;B. AB DE AC DF =;C. AD BE BE CF =;D. EF BC FD CA=;三、 相似三角形1. (徐汇)如图1-3-1,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A B C D O 1-2-4 1-2-5 F E D C B A l 1l lA. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅;D. DC AB AC BC =; 2. (徐汇)如图1-3-2,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC , 如果:1:4AE EC =,那么:ADE BEC S S ∆∆=( )A. 1:24;B. 1:20;C. 1:18;D. 1:16;3. (六区)如图1-3-3,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交 于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论 中,不正确的是( )A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅;4. (崇明)如图1-3-4 ,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC∆的面积三等分,那么下列结论正确的是( )A. 14DE FG =B. 1DF EG FB GC ==C. 32AD FB =+D. 22AD DB = 5. (长宁)如果两个相似三角形的面积比是1:6,那么它们的相似比是( )A .1:36 B.1:6 C. 1:3 D. 1: 66. (长宁)如图1-3-5,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC (点D 和点A 对应,点B 和E 对应),则点M 对应是F 、G 、H 、K 四点中的( )A. FB. GC. KD. H7. (虹口)如图1-3-6,∠BAD =∠CAE ,添加下列一个条件后,仍不能确定△ABC ∽△ADE 的是( )A .∠B =∠D ; B .∠C =∠AED ; C .; D ..8. (虹口)如图1-3-7,在△ABC 中,D 、E 分别是边AB 、BC 上的点,且DE ∥AC ,若,则的值为( )A .;B .;C .;D ..9. (金山)已知ABC ∆∽DEF ∆,点A 、B 、C 对应点分别是D 、E 、F ,4:9:=DE AB ,那么1-3-1 A C B D A B C D E 1-3-2 1-3-3 S 3S 4S 2S 1O A C B D 1-3-4 A B C D E F G 1-3-5 A B C E D 1-3-6 AB C E D 1-3-7 ODEF ABC S S ∆∆:等于( )A. 3:2;B. 9:4;C. 16:81;D. 81:16.10.(闸北)如图1-3-8,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米. 他继续往前走3米到达点E 处(即CE =3米),测得自己影子EF 的长为2米.已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A. 4.5米;B. 6米;C. 7.2米;D. 8米.11.(普陀)用一个2倍放大镜照一个△ABC ,下面说法中错误的是( )A. △ABC 放大后,是原来的2倍;B. △ABC 放大后,各边长是原来的2倍;C. △ABC 放大后,周长是原来的2倍;D. △ABC 放大后,面积是原来的4倍;四、 直角三角形锐角比1. (徐汇)已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为( ) A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;2. (六区)如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值( )A. 都扩大到原来的2倍;B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;3. (六区)已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于( )A. 2sin m α⋅;B. 2cos m α⋅;C. 2tan m α⋅;D. 2cot m α⋅; 4. (崇明)在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定 成立的是( )A. tan b a B =B. cos a c B =C. sin ac A = D. cos a b A =5. (宝山)如图1-4-1,在直角△ABC 中,90C ∠=︒,1BC =,2AC =)A. 30A ∠=︒;B. 45A ∠=︒;C. 2cot 2A =;D. 2tan 2A =;1-4-11-3-8 AD6. (长宁)在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( )A .35 B. 45 C. 34 D. 437. (嘉定)在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是( )A. c a A =cos ;B. b c B =sin ;C. b a B =tan ;D. ab A =cot . 8. (奉贤)在Rt △ABC 中,∠ACB =90°,BC =1,AC =2,则下列结论正确的是( ) A .sin A =32; B .tan A =12; C .cos B =32; D .tan B =3. 9. (奉贤)一斜坡长为10米,高度为1米,那么坡比为( )A .1:3;B .1:31; C .1:10; D .1:1010. 10.(虹口)在Rt △ABC 中,,AC=5,BC=13,那么的值是( )A . ;B .;C .;D ..11.(金山)在ABC Rt ∆中, ︒=∠90C ,3,5==BC AB ,那么A sin 的值等于( )A. 43;B. 34;C. 53;D. 54. 12.(闸北)在直角△ABC 中,∠C =90°,∠A 、∠B 与∠C 的对边分别是a 、b 和c ,那么下列关系中, 正确的是( )A. cos A =c a ;B. tan A =a b ;C. sin A =c a ;D. cot A =ba . 13.(普陀)在Rt △ABC 中,已知90ACB ∠=︒,1BC =,2AB =,那么下列结论正确的是( )A. 3sin 2A =; B. 1tan 2A =; C. 3cos 2B =; D. 3cot 3B =;五、 平面向量1. (宝山)已知非零向量a 、b 、c ,下列命题中是假命题的是( )A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ; 2. (嘉定)已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是( )A. a =b 2-;B. c a =,c b 3=;C. c b a =+2,c b a -=-;D. b a =.3. (虹口)如果,,且,那么与是( )A .与是相等向量;B .与是平行向量;C .与方向相同,长度不同;D .与方向相反,长度相同.4. (闸北)下列有关向量的等式中,不一定成立的是( )A. AB =-BA ;B. ︱AB ︱=︱BA ︱;C. AB +BC =AC ;D. ︱AB +BC ︱=︱AB ︱+︱BC |.5. (普陀)下列判断错误的是( )A. 00a =;B. 如果12a b =(b 为非零向量),那么a ∥b ; C. 设e 为单位向量,那么||1e =; D. 如果||||a b =,那么a b =或a b =-;六、 圆1. (崇明)下列说法正确的是 ( )A. 相切两圆的连心线经过切点B. 长度相等的两条弧是等弧C. 平分弦的直径垂直于弦D. 相等的圆心角所对的弦相等2. (宝山)如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;3. (宝山)已知圆O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与圆O 的位置关系 为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;4. (长宁)已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( )A. 1或7B. 1C. 7D. 25. (嘉定)在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,半径为cm 3的圆记作 圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是( )A. 外离;B. 外切;C. 相交;D. 内切.6. (奉贤)在直角坐标平面中,M (2,0),圆M 的半径为4 ,点P (-2,3)与圆M 的位置关系是( )A .点P 在圆内;B .点P 在圆上;C .点P 在圆外;D .不能确定.7. (奉贤)在同圆或等圆中,下列说法错误的是( )A .相等弦所对的弧相等;B .相等弦所对的圆心角相等;C .相等圆心角所对的弧相等;D .相等圆心角所对的弦相等.8. (金山)正多边形的中心角是36º,那么这个正多边形的边数是( )A. 10;B. 8;C. 6;D. 5.9. (金山)已知⊙M 与⊙N 的半径分别为1和5,若两圆相切,那么这两圆的圆心距MN 的长等于( )A. 4;B. 6;C. 4或5;D. 4或610.(普陀)下列命题中,正确的个数是( )(1)三点确定一个圆; (2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形;A. 1个;B. 2个;C. 3个;D. 4个;七、 综合1. (宝山)如图1-7-1边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D. 2. (长宁)如图1-7-2,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的 过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图 象大致为图中的( )A. B. C. D.第二部分 填空题一、 二次函数1. (徐汇)抛物线2(1)2y x =-+的顶点坐标是 ;2. (徐汇)二次函数245y x x =--的图像的对称轴是直线 ;3. (徐汇)若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是 (填12y y >,12y y =或12y y <);4. (六区)二次函数2253y x x =--+的图像与y 轴的交点坐标为 ;5. (六区)如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值范围是 ;6. (六区)已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一 1-7-1A B C DE 1-7-2定经过除点(1,3)外的另一点,这点的坐标是 ; 7. (崇明)如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m = ;8. (崇明)抛物线221y x =-在y 轴右侧的部分是 (填“上升”或“下降”);9. (崇明)如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达 式为 ;10.(崇明)已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是 ;11.(宝山)抛物线2(3)4y x =--+的对称轴是 ;12.(宝山)不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;13.(宝山)已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>, 则1y 2y ;14.(长宁)抛物线23(1)2y x =--+的顶点坐标是________;15.(长宁)抛物线223y x =-向左移动3个单位后所得抛物线解析式是________;16.(长宁)已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________.17.(长宁)已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值 随x 的增大而减小,则实数a 的值为_________.18.(长宁)某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长 率都是x ,则该厂今年第三月新品研发资金y (元)关于x 的函数关系式为y =_________.19.(嘉定)如果函数2)1(x a y -=是二次函数,那么a 的取值范围是 ;20.(嘉定)在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的 表达式为 .21.(嘉定)已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称, 那么点N 的坐标是 .22.(嘉定)请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的 表达式可以是 .23.(奉贤)一个矩形的周长为16,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是 ;24.(奉贤)如果抛物线12-+=mx x y 的顶点横坐标为1,那么m 的值为 ;25.(奉贤)已知抛物线经过点(5,-3),其对称轴为直线x =4,则抛物线一定经过另一点的坐标是 ;26.(奉贤)已知抛物线2)1(2++=x a y 过(0,y 1)、(3,y 2),若y 1> y 2,那么a 的取值范围是 ;27.(虹口)抛物线与y 轴交点的坐标为 .28.(虹口)抛物线向左平移2个单位得到的抛物线表达式为 .29.(虹口)若抛物线的对称轴是直线,则 .30.(虹口)请你写出一个..b 的值,使得函数,在时,y 的值随着x 的值增大而增大,则b 可以是 ▲ .31.(金山)将抛物线11-22+=)(x y 向上平移3个单位,那么平移后得到的抛物线的解析式是 32.(闸北)如果抛物线2)1(x m y -=的开口向上,那么m 的取值范围是 .33.(闸北)将抛物线5)3(2+--=x y 向下平移6个单位,所得到的抛物线的顶点坐标为 .34.(闸北)已知抛物线经过A (0,-3)、B (2,-3)、C (4,5),判断点D (-2,5)是否在该抛物线 上.你的结论是: (填“是”或“否”).35.(普陀)二次函数223y x x =--的图像与y 轴的交点坐标是 ;36.(普陀)如果将抛物线22y x =-平移,使顶点移到点(3,1)P -的位置,那么所得新抛物线的表达式 是 ;37.(普陀)用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x 厘米,面积为y 平 方厘米,写出y 关于x 的函数解析式: ;二、 比例线段1. (徐汇)如果53a b =,那么a b a b-+的值等于 ; 2. (徐汇)如图2-2-1,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ;3. (徐汇)如图2-2-2,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为 ;4. (六区)已知4y =,那么22x y x y-=+; 5. (六区)已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于cm ;6. (六区)如图2-2-3,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =, 2-2-2 2-2-3要使DE ∥AB ,那么:BC CD 应等于 ;7. (六区)已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于 ;8. (崇明)已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm ; 9. (崇明)如图2-2-4,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H , 那么GH = 10.(宝山)线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ; 11.(长宁)已知线段a =2c m ,c =8c m ,则线段a 、c 的比例中项是_________c m ;12.(嘉定)已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b . 13.(奉贤)△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB = ;14.(奉贤)相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在要制 作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于 厘米; 15.(虹口)若,则 .16.(虹口)如图2-2-5,已知AB ∥CD ∥EF ,它们依次交直线、于点A 、D 、F 和点B 、C 、E ,如果 AD =6,DF =3,BC =5,那么BE = . 17.(金山)已知23x y =,那么=+-y x yx ; 18.(金山)如图2-2-6,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,若4=AD ,2=BD ,3=DE ,那么=BC19.(闸北)已知y x =25,则yyx -的值是 . 20.(闸北)如果点P 是线段AB 的黄金分割点,且AP >PB ,那么APBP的比值是 . 21.(闸北)如图2-2-7,在平行四边形ABC D 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于 点F ,若S △AFD =9,则S △EFC = .2-2-4 ABCH G·2-2-5B AC D EF2-2-6BCDE2-2-7A B CEF 2-2-822.(普陀)已知:5:2x y =,那么():x y y += ;23.(普陀)如图2-2-8,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E , 如果3AD =,4BD =,2AE =,那么AC = ;24.(普陀)已知线段MN 的长为2厘米,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长 是 厘米;三、 相似三角形1 . (徐汇)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m ;2. (崇明)如果两个相似三角形的面积比为1:4,那么它们的周长比为 ;3. (宝山)两个相似三角形的相似比为2:3,则它们的面积比为 ;4. (宝山)已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20, 则△DEF 的周长为 ;5. (宝山)如图2-3-1,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =, 则CE = ;6. (长宁)如图2-3-2,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联 结DE ,则S △ABC :S △GED 的值为_________.7. (嘉定)如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 .8. (嘉定)如图2-3-3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于F ,2=AB ,EC BE 3=,那么DF 的长为 .9. (奉贤)如图2-3-4,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,若△PEF 的 面积为3,那么△PDC 与△P AB 的面积和等于 ;10.(虹口)如图2-3-5,在Rt △ABC 中,∠C=90°,点G 是△ABC 的重心,如果AC=, AG =2, 那么AB= .11.(虹口)如图2-3-6,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上), 那么 的值为 .C 2-3-5D A B G 2-3-4 2-3-1 B DE 2-3-2 GED C B A A C DE 2-3-3C A B2-3-6E DF C A B D F G2-3-712.(闸北)如图2-3-7,正方形DEFG 内接于Rt △ABC ,∠C =90°,AE =4,BF =9 ,则tan A = . 13.(闸北)如图2-3-8,梯形ABCD 中,AD //BC ,AB =DC ,点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ⋅=2,则图中有 对相似三角形.14.(普陀)我们定义:如果一个图形上的点A '、B '、...、P '和另一个图形上的点A 、B 、...、P 分别 对应,且满足:(1)直线AA '、BB '、...、PP '都经过同一点O ;(2)...OA OB OP k OA OB OP'''====, 那么这两个图形叫做位似图形,点O 叫做位似中心,k 叫做位似比,如图2-3-9,在平面直角坐标系中, △ABC 和△A B C '''是以坐标原点O 为位似中心的位似图形,且OB BB '=,如果点5(,3)2A ,那么点A '的坐标为 ;四、直角三角形锐角比1. (徐汇)计算:cot30sin60︒-︒= ;2. (徐汇)如图2-4-1是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2, 则斜坡AB 的长为 米(保留根号);3. (徐汇)如图2-4-2,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM = ;4. (六区)在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC = ; 5. (六区)如图2-4-3,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度i = 1:2BDAEC2-4-1NPA M2-4-22-4-3ACB2-3-8ABDP2-3-9AC = 米(结论可保留根号)6. (六区)已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时(如图2-4-4),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH = 米7. (崇明)某飞机的飞行高度为1500m ,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制 点的距离为 m .8. (崇明)如图2-4-5,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒, 斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为 米.9. (宝山)在△ABC 中,3cot 3A =,3cos 2B =,那么C ∠= ; 10.(宝山)B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C 和A 之间的距离为 千米;11.(长宁)如图2-4-6所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为1:3,斜坡AB 的水平 宽度BE =33m ,则斜坡AB =_________m. 12.(嘉定)在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC . 13.(嘉定)小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰 的仰角是 度. 14.(奉贤)若α为锐角,已知cos α=21,那么tan α= ; 15.(虹口)在以O 为坐标原点的直角坐标平面内有一点A (2,4),如果AO 与x 轴正半轴的夹角为, 那么= .16.(虹口)如图2-4-7,在△ABC 中,AD ⊥BC ,sin B =,BC =13,AD =12,则tan C 的值 . 17.(金山)在ABC Rt ∆中,︒=∠90C ,如果4:3:=BC AC ,那么A cos 的值为 18.(金山)如图2-4-8,斜坡AB 的坡度3:1=i ,该斜坡的水平距离=AC 6米,那么斜坡AB 的长2-4-4BAHO BAHO2-4-5DAB C2-4-6C2-4-7DBA等于 米19.(金山)如图2-4-9,在ABC Rt ∆中,︒=∠90ACB ,CD ⊥AB ,CD =4,A cos =32,那么BC = 20.(闸北)如果α是锐角,且tanα =cot20°,那么α= 度. 21.(闸北)计算:2sin60°+tan45°= .22.(闸北)如果一段斜坡的坡角是30°,那么这段斜坡的坡度是 .(请写成1︰m 的形式). 23.(普陀)在地面上离旗杆20米处的地方用测角仪器测得旗杆顶端的仰角为α,如果测角仪的高为 1.5米,那么旗杆的高为 米(用含α的三角比表示);五、 平面向量1. (徐汇)如图2-5-1,正方形ABCD 被分割成9个全等的小正方形, P 、Q 是其中两个小正方形的 顶点,设AB a =,AD b =,则向量PQ = (用向量a 、b 来表示);2. (六区)计算:33()22a ab -+-= ; 3. (长宁)计算:3()3a b a --=_________;4. (奉贤)若→a 与→e 方向相反且长度为3,那么→a = →e ;5. (虹口)如图2-5-2,在△ABC 中,DE ∥BC , BD=2AD ,设,,用向量、表示 向量DE = .6. (金山)计算:()+-b a 22________313=⎪⎭⎫⎝⎛-b a ;7. (金山)如图2-5-3, 在ABC ∆中,BE AD 、分别是边AC BC 、上的中线,BE AD 、相交于点G .设=AB a →,=AD b → ,那么=BE (用 a →、b →的 式子表示) 8. (普陀)计算:523()3a ab --= ;2-5-1BA BCDE2-5-22-4-8C 2-4-9B2-5-3DB六、 综合题(第18题)1. (徐汇)如图2-6-1,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那BN = ;2. (六区)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为 ;3. (崇明)如图2-6-2,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH , 点C 落在Q 处,EQ 与BC 交于点G ,那么EBG ∆的周长是 cm4. (宝山)如图2-6-3直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分 别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;5. (长宁)如图2-6-4,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分 的面积是原正方形面积的14时,1sin '2B AD ∠ _________. 6. (嘉定)在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D (如图2-6-5), △ABD 沿直线AD 翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD . 7. (奉贤)已知在△ABC 中,∠C=90o ,AC=3,BC=4.在平面内将△ABC 绕B 点旋转,点A 落到A ’,2-6-1PBA CMN2-6-2ABCDFG H QE2-6-3EDBC MH2-6-4D 'C 'B 'DCBAABCD2-6-5C2-6-6ABFE点C 落到C ’,若旋转后点C 的对应点C ’和点A 、点B 正好在同一直线上,那么∠A ’AC ’的正切值 等于 ;8. (虹口)如图2-6-6,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,联结DE ,F 为线段DE 上一点,且∠AFE =∠B .若AB =5,AD =8,AE =4,则AF 的长为 .9. (金山)如图2-6-7,在ABC Rt ∆中,︒=∠90C ,4=AC ,3=BC .将ABC ∆绕着点C 旋转︒90, 点A 、B 的对应点分别是D 、E ,那么ADE ∠tan 的值为10. (闸北)如图2-6-8,在Rt △ABC 中,∠C =90°,点D 在边AB 上,线段D C 绕点D 逆时针旋转, 端点C 恰巧落在边AC 上的点E 处.如果m DB AD =,n ECAE=.那么m 与n 满足的关系式是: m = (用含n 的代数式表示m ).11.(普陀)如图2-6-9,已知△ABC 中,AB AC =,tan 2B =,AD ⊥BC 于点D ,G 是△ABC 的 重心,将△ABC 绕着重心G 旋转,得到△111A B C ,并且点1B 在直线AD 上,联结1CC ,那么11tan CC B 的值等于 ;七、圆与正多边形1. (崇明)已知正六边形的半径为2cm ,那么这个正六边形的边心距为 cm ;2. (崇明)半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm , 那么公共弦AB 的长为 cm ;3. (宝山)已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ;4. (宝山)如图2-7-1,圆O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,6CD =径AB 的长为 ;2-7-1MOB CD N MO C BA2-7-22-7-3OAB2-6-7B C ABD E C2-6-82-7-42-6-95. (长宁)已知⊙P 在直角坐标平面内,它的半径是5,圆心P (-3,4),则坐标原点O 与⊙P 的位置位置 关系是_________.6. (长宁)如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个.7. (嘉定)正九边形的中心角等于 度;8. (嘉定)如图2-7-2,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N , 如果6=BC ,那么=MN .9. (奉贤)正n 边形的边长与半径的夹角为75°,那么n= ;10.(奉贤)已知圆A 与圆B 内切,AB =10,圆A 半径为4,那么圆B 的半径为 ; 11.(金山)已知⊙O 的半径为5,点A 在⊙O 外,那么线段OA 的的取值范围是 12.(金山)如图2-7-3,已知直线AB 与⊙O 相交于A 、B 两点, 30=∠OAB ,半径2=OA , 那么弦AB =_________13.(金山)已知⊙A 与⊙B 的半径分别为3和2,若两圆相交,那么这两圆的圆心距AB 的取值 范围是14.(普陀)正八边形的中心角为 ;15.(普陀)如图2-7-4,已知圆O 的半径为5,圆O 的一条弦AB 长为8,那么以3为半径的同心圆与 弦AB 位置关系是 ;第三部分 基础解答题一、 二次函数1. (徐汇)已知二次函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)经过A 、B 、C 、D 四个点, 其中横坐标x 与纵坐标y 的对应值如下表: (1)求二次函数解析式; (2)求△ABD 的面积;2. (六区)已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0), 与y 轴相交于点C ; (1)求抛物线的表达式;(2)求△ABC 的面积;3. (宝山)已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以及该抛物线的顶点坐标;4. (嘉定)已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的 解析式,并求出它的图像的顶点坐标和对称轴.5. (虹口)(1)求该二次函数的解析式;(2)用配方法求出该二次函数图像的顶点坐标和对称轴.6. (金山)抛物线2(0)y ax bx c a =++≠向右平移2个单位得到抛物线1)3(2--=x a y ,且平移后的抛物线经过点)12(,A . (1)求平移后抛物线的解析式;(2)设原抛物线与y 轴的交点为B ,顶点为P , 平移后抛物线的对称轴与x 轴交于点M , 求BPM ∆的面积.xyO7. (闸北)已知二次函数c bx x y ++-=22的图像经过点A (0,4)和B (1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式; (2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.8. (普陀)如图,已知二次函数的图像与x 轴交于点(1,0)A 和点B ,与y 轴交于点(0,6)C ,对称轴为 直线2x =,求二次函数解析式并写出图像最低点坐标二、 比例线段1. (徐汇)MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ; (1)求证:DE ∥BC ;(2)联结DE ,如果1DE =,3BC =,求MN 的长;三、 相似三角形1. (徐汇)已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ;(1)求证:2AG GE GF =⋅; (2)如果12DG GB =,且AG BF ⊥,求cos F ;2. (六区)已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F , 使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:AE EGAC CG=; (2)如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅3. (崇明)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.4. (宝山)如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =23AE ;DABCEF5. (宝山)如图,正方形ABCD 中,(1)E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GFFH; (2)E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GFFH的值;6. (长宁)如图,在△ABC 中,AD 是BC 上的高,点G 在AD 上,过点G 作BC 的平行线分别与AB 、 AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F . 设AD =80,BC =120,当四 边形PEFQ 为正方形时,试求正方形的边长.7. (嘉定)已知:如图,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠. (1)求证:ACAGAB AD =; (2)当BC GC ⊥时,求证:︒=∠90BAC .8. (奉贤)如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =⋅FEDG C A E D BF1 2 G C A E FB(1)求证:∠DAC =∠DCE ;(2)若DE AC AD AB AD ⋅+⋅=2,求证:∠ACD =90o .9. (虹口)如图,在△ABC 中,点D 在边AC 上,AE 分别交线段BD 、边BC 于点F 、G ,∠1=∠2, .求证:.10.(虹口)如图,在Rt △CAB 与Rt △CEF 中,∠ACB=∠FCE=90°,∠CAB=∠CFE ,AC 与EF 相交于 点G ,BC =15,AC=20.(1)求证:∠CEF =∠CAF ; (2)若AE =7,求AF 的长.11.(金山)如图,ABC ∆中,PC 平分ACB ∠,PC PB = (1)求证:APC ∆∽ACB ∆;(2)若2=AP ,6=PC ,求AC 的长.ADE CBABCP12.(闸北)如图,已知等腰梯形ABCD 中,AD ∥BC ,AD =1,BC =3, AB =CD =2,点E 在BC 边上, AE 与BD 交于点F ,∠BAE =∠DBC , (1)求证:△ABE ∽△BCD ;(2)求tan ∠DBC 的值; (3)求线段BF 的长.13.(普陀)如图,已知在△ABC 中,90ACB ︒∠=,点D 在边BC 上,CE AB ⊥,CF AD ⊥,E 、F 分别是垂足(1)求证:2AC AF AD =⋅(2)联结EF ,求证:AE DB AD EF ⋅=⋅四、 直角三角形锐角比1. (徐汇)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线 杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米, 求拉线CE 的长; 【已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号】2. (六区)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米 的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°, 上端D 的仰角为45°,求旗杆CD 的长度;(结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)图8A BCDF3. (崇明)计算:2014cos301(cot 45)sin 60︒-+-︒+︒4. (六区)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题: (1)用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即填空:32= = = =…; (2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=5. (崇明)如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.(1)求AC 和AB 的长; (2)求sin BAD ∠的值.6. (崇明)如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北 偏东75︒的方向航行200海里到达了C 处. (1)求证:AC AB ⊥;(2)轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.DA BC北AB C东。

2015学年嘉定区数学试卷一模卷(文科答案)

2015学年嘉定区数学试卷一模卷(文科答案)

2015学年嘉定区高三年级第一次质量调研 数学试卷(文)参考答案及评分标准一.填空题(每题4分,满分56分) 1.21 2.},01{R ∈<≤-x x x (或)0,1[-) 3.314.2 5.510arccos 6.π337.54 8.20162015 9.43 10.10911.2-或11 12.4 13.1 14.6二.选择题(每题5分,满分20分)15.B 16.C 17.A 18.D三.解答题(共5题,满分74分)答案中的分数为分步累积分数19.本题12分,第1小题6分,第2小题6分.(1)如图③,当倾斜至上液面经过点B 时,容器内溶液恰好不会溢出,此时α最大. ………………………………………………………………(2分) 解法一:此时,梯形ABED 的面积等于400202=(2cm ), …………(3分) 因为α=∠CBE ,所以αtan 2030-=DE ,AD AB DE S ABED ⋅+=)(21, 即40020)tan 2060(21=⋅-⋅α,解得1tan =α,︒=45α. ………………(5分) 所以,要使倾斜后容器内的溶液不会溢出,α的最大值是︒45. ……………(6分) 解法二:此时,△BEC 的面积等于图①中没有液体部分的面积,即200=∆BEC S (2cm ), ………………………………………………(3分) 因为α=∠CBE ,所以αtan 21212⋅⋅=⋅⋅=∆BC CE BC S BEC ,即200tan 200=α, 解得1tan =α,︒=45α. …………………………………………(5分)所以,要使倾斜后容器内的溶液不会溢出,α的最大值是︒45. …………(6分)α ︒60 B C D CD③ ④E F(2)如图④,当︒=60α时,设上液面为BF ,因为︒<=∠6023arctanCBD , 所以点F 在线段AD 上, …………………………………………(1分) 此时︒=∠30ABF ,31030tan =︒⋅=AB AF ,=∆ABF S 315021=⋅⋅AF AB (2cm ), …………………………(3分) 剩余溶液的体积为33000203150=⨯(3cm ), …………………(4分) 由题意,原来溶液的体积为80003cm ,因为3000330008000<-,所以倒出的溶液不满30003cm . ……(5分)所以,要倒出不少于30003cm 的溶液,当︒=60α时,不能实现要求.…(6分)20.本题14分,第1小题7分,第2小题7分.(1)x x x x x x n m x f 2cos 2sin 3cos sin cos sin 32)(22-=-+=⋅=⎪⎭⎫ ⎝⎛-=62sin 2πx . ……………………………………(3分)所以)(x f 的最小正周期是π=T . ………………………(4分) 由226222πππππ+≤-≤-k x k ,Z ∈k , ……………………(6分)得函数)(x f 的单调递增区间是⎥⎦⎤⎢⎣⎡+-3,6ππππk k (Z ∈k ). ……(7分) (2)由2)(=C f ,得162sin =⎪⎭⎫⎝⎛-πC , …………………………(1分) 因为π<<C 0,所以611626πππ<-<-C , 所以262ππ=-C ,3π=C . ………………………………(3分)在△ABC 中,由余弦定理C ab b a c cos 2222-+=, …………(4分)得ab b a ab b a 3)(3222-+=-+=,即2=ab , ………………(5分)所以△ABC 的面积2323221sin 21=⨯⨯==C ab S . …………(7分)21.本题14分,第1小题6分,第2小题8分.(1)解法一:函数x x a a k x f --⋅=)(的定义域为R ,因为)(x f 是奇函数,所以01)0(=-=k f ,1=k .…………………………………………………………(3分)当1=k 时,x x a a x f --=)(,)()(x f a a x f x x -=-=--,)(x f 是奇函数. 所以,所求k 的值为1. …………………………………………………………(6分) 解法二:函数x x a a k x f --⋅=)(的定义域为R ,由题意,对任意R ∈x ,)()(x f x f -=-, …………………………………(2分) 即x x x xa k a a ak ⋅-=-⋅--,0))(1(=+--x x a a k , ………………………(4分)因为0>+-xxaa ,所以,1=k . ……………………………………………(6分)(2)由(1),x x a a x f --=)(,任取1x ,R ∈2x ,且21x x <,则⎪⎭⎫ ⎝⎛+-=---=-+--2121221111)()()()()(21x x x x x x x xa a a a a aa x f x f ,因为1>a ,21x x <,所以021<-xx a a ,又01121>++x x a,所以0)()(21<-x f x f ,即)()(21x f x f <,所以函数)(x f 在R 上是单调递增函数. ………………(4分)(注:也可以这样解答:1>a ,x a y =在R 上是增函数,xxa ay ⎪⎭⎫⎝⎛==-1在R 上是减函数,则x a y --=在R 上是增函数,所以x x a a x f --=)(在R 上是增函数.)由0)12()(2<-+x f x f ,得)12()(2--<x f x f ,即)21()(2x f x f -<, ……(6分) 所以x x 212-<,即0122<-+x x ,解得)21,21(+---∈x . …………(8分)22.本题16分,第1小题4分,第2小题6分,第3小题6分. (1)由题意,12-=-p,2=p , ………………………………………………(2分) 故抛物线方程为y x 42=. …………………………………………………………(4分) (2)设),(11y x A ,),(22y x B ,直线t kx y l +=:,则⎩⎨⎧-==+⇒=--⇒⎩⎨⎧=+=.4,40444,212122t x x k x x t kx x yx t kx y …………………………(2分) 于是,2212122121)()1(t x x kt x x k y y x x OB OA ++++=+=⋅t t 42-=, ……(4分) 因为点),0(t T 是定点,所以t 是定值,所以OB OA ⋅是定值,此定值为t t 42-.…(6分)(3))1,0(T ,设⎪⎪⎭⎫ ⎝⎛4,200x x B ,则⎪⎪⎭⎫ ⎝⎛-=14,20x x TB ,⎪⎪⎭⎫ ⎝⎛-⋅==λλλλ4,20x x TB AT ,故)41,(200x x A ⋅-+-λλλ, ………………(2分)因为点A 在抛物线y x 42=上,所以⎪⎪⎭⎫ ⎝⎛⋅-+=4142022x x λλλ,得λ420=x .……(4分) 又T 为抛物线的焦点,故24412||)(2020++⎪⎪⎭⎫ ⎝⎛⋅-+=++==x x y y AB f B A λλλ21++=λλ,即21)(++=λλλf (0>λ). ………………………………(6分)23.本题18分,第1小题4分,第2小题6分,第3小题8分.(1)i i i z 71)43)(1(2+-=++=,i z 683+-=,i z 2144--=.…………(4分) (算错一个扣1分,即算对一个得2分,算对两个得3分)(2)由已知1(1)n n z z +=+⋅i ,得11)1(z i z n n ⋅+=-, ………………(1分) 当14+=k n 时,k k n i i )4()1()1(41-=+=+-, ………………………(3分) 令k)4(-=λ,则1z z n ⋅=λ,即则存在非零实数k)4(-=λ(*N ∈k ),使得1n OZ OZ λ=. …………(5分)所以,当14+=k n (*N ∈k )时,n OZ ∥1OZ . ……………………(6分)(3)因为n n n z z i z 4)1(44-=+=+,故n n x x 44-=+,n n y y 44-=+, …………(2分) 所以n n n n y x y x 1644=++, …………………………………………………………(3分) 又1211=y x ,722-=y x ,4833-=y x ,2844=y x , …………………………(4分))()(8877665544332211100100332211y x y x y x y x y x y x y x y x y x y x y x y x +++++++=++++ )(100100999998989797y x y x y x y x +++++1002521161161)2848712(-=--⋅+--=, ……………………………………(7分)所以数列}{n n y x 的前100项之和为10021-. ……………………………………(8分)。

上海市2015年初中毕业统一学业考试数学试题(附答案)

上海市2015年初中毕业统一学业考试数学试题(附答案)

上海市2015年初中毕业统一学业考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,是有理数的为()A.B.C.πD.0答案:D 【解析】本题考查有理数的概念,难度较小.整数与分数统称有理数,0是整数,所以有理数为D,故选D.2.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a-1=-a C.(-a)2=-a2D.答案:A 【解析】本题考查幂的相关运算,解题关键在于理解相关运算法则,难度较小.a0=1(a≠0),;;(-a)2=a2;,所以正确的只有A,故选A.3.下列y关于x的函数中,是正比例函数的为()A.y=x2B.C.D.答案:C 【解析】本题考查正比例函数的概念,难度较小.A选项中,y是关于x的二次函数;B选项中,y是关于x的反比例函数;C选项中,y是关于x的正比例函数;D选项中,y是关于x的一次函数,故选C.4.如果一个正多边形的中心角为72°,那么这个正多边形的边数是()A.4 B.5 C.6 D.7答案:B 【解析】本题考查正多边形中角的相关计算,难度较小.360°÷72°=5,所以此多边形为正五边形,故选B.5.下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率答案:C 【解析】本题考查统计量的特征,难度较小.平均数、众数是表示数据集中趋势的统计量,方差是衡量一组数据的波动程度的量,频率是表示数据出现次数的统计量,故选C.6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D.要使四边形OACB为菱形,还需添加一个条件,这个条件可以是()A.AD=BDB.OD=CDC.∠CAD=∠CBDD.∠OCA=∠OCB答案:B 【解析】本题考查菱形的判定条件、圆中的相关概念及性质,难度较小.若使四边形为菱形,只需要证明两条对角线互相垂直平分即可.此题的条件中已有OC⊥AB,根据圆的性质可以证明AD=BD,只要添加的条件能够证明CD=OD即可,故选B.【易错分析】由于对菱形的判定方法掌握不准确而错选A,C,D.第Ⅱ卷(非选择题共126分)二、填空题(本大题共12小题,每小题4分,共48分.请把答案填在题中的横线上)7.计算:|-2|+2=________.答案:4 【解析】本题考查有理数的计算,解题的关键在于绝对值的化简,难度较小.原式=2+2=4.8.方程的解是________.答案:2 【解析】本题考查含二次根式的方程的解法,难度较小.两边平方化为整式方程3x-2=4,解得x=2,经检验x=2是方程的解.9.如果分式有意义,那么x的取值范围是________.答案:x≠-3 【解析】本题考查分式有意义的条件,难度较小.分式有意义的条件是分母不为0,所以x+3≠0,解得x≠-3.10.如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是__________.答案:m<-4 【解析】本题考查一元二次方程根的讨论,难度较小.一元二次方程没有实数根,则Δ=b2-4ac=42+4m<0,解得m<-4.11.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是,如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.答案:77 【解析】本题考查华氏温度与摄氏温度的换算,根据两者间的函数关系式代入计算即可,难度较小.把x=25代入函数解析式计算即可,.12.如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.答案:y=x2+2x+3 【解析】本题考查二次函数的图象的平移,难度较小.解题的关键在于确定二次函数与y轴交点的纵坐标,两个函数交点纵坐标的差即为平移的距离.原抛物线与y轴的交点为(0,-1),新交点坐标为(0,3),相差4个点,所以需要将原抛物线向上平移4个单位,所得到的关系式为y=x2+2x-1+4=x2+2x+3.13.某校学生会倡议双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是________.答案:【解析】本题考查概率的计算,难度较小.从50位同学中随机抽取7位同学,小杰被抽到的概率是.14.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:那么“科技创新社团”成员年龄的中位数是________岁.答案:14 【解析】本题考查中位数的确定,难度较小.中位数为一组数据从小到大排列位于最中间的一个数或两个数的平均数,”科技创新社团”共有53人,位于最中间的是第27人,年龄位于第27位的是14岁,所以成员年龄的中位数是14岁.15.如图,已知在△ABC中,D,E分别是边AB,边AC的中点,,那么向量用向量m,n表示为________.答案:【解析】本题考查用向量表示线段,难度中等.向量与向量的方向不同,所以D点的方向应为负,点D处于的中点,所以向量的起点是,点E处于的中点,所以向量的终点是,所以向量用向量m,n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.答案:22.5°【解析】本题考查正方形的性质及三角形全等的判定,难度中等.因为EF ⊥AC于点E,所以∠AEF=∠ADF=90°,因为AE=AD,AF=AF,所以△AEF≌△ADF,所以∠DAF=∠EAF.因为∠DAC=45°,所以∠DAF=22.5°.17.在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B 在⊙D内,那么⊙D的半径长可以等于________(只需写出一个符合要求的数).答案:14(答案不唯一,任意大于13且小于18的数均可)【解析】本题考查圆与圆,点与圆的位置关系,难度较大.由于⊙B过点A,所以⊙B的半径为5,由勾股定理得BD=13,DE=18.由于⊙D与⊙B相交,且点B在⊙D内,所以⊙D的半径r满足13<r<18.18.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于________.答案:【解析】本题考查三角形中长度的相关计算,难度中等.作DF⊥CE于点F,由题意知∠BAC=∠DAC=30°,因为AB=AC,所以∠B=∠ACB=∠ACD=75°,所以∠ECD=30°,所以∠E=45°,△ACE∽△CDE,设EF=DF=x,则,,CD=2x.所以,所以,解得,所以.三、解答题(本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)先化简,再求值:,其中.答案:(本小题满分10分)本题考查分式的化简求值,难度较小.解:.当时,.20.(本小题满分10分)解不等式组:并把解集在数轴上表示出来.答案:(本小题满分10分)本题考查一元一次不等式组的解法及在数轴上表示不等式组的解集,难度较小.解:由4x>2x-6得x>-3.由得x≤2,∴原不等式组的解集是-3<x≤2.21.(本小题满分10分)已知:如图:在平面直角坐标系xOy中,正比例函数的图象经过点A,点A的纵坐标为4,反比例函数的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.答案:(本小题满分10分)本题考查一次函数与反比例函数的应用,涉及数形结合思想及线段垂直平分线的性质,难度中等.解:(1)∵正比例函数的图象经过点A,点A的纵坐标为4,∴点A的坐标是(3,4).∵反比例函数的图象经过点A,∴m=12,∴反比例函数的解析式为.(2)∵AC=AB,∴点A在线段BC的中垂线上,∵BC∥x轴,点C在y轴上,点A的坐标是(3,4),∴点B的横坐标为6.∵点B在反比例函数的图象上,∴点B的坐标是(6,2).设直线AB的表达式为y=kx+b,∴∴直线AB的表达式为.22.(本小题满分10分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高架道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:)答案:(本小题满分10分)本题考查通过解直角三角形解决实际问题,解题的关键在于根据题意确定需要求解的直有三角形,难度中等.解:(1)连接AP,由题意得AH⊥MN,AH=15,AP=39.在Rt△APH中,由勾股定理得PH=36.答:此时汽车与点H的距离为36米.(2)由题意可知,PQ段高架道路旁需要安装隔音板,QC⊥AB,∠QDC=30°,QC=39.在Rt△DCQ中,DQ=2QC=78.在Rt△ADH中,.∴PQ=PH-DH+DQ≈114-15×1.7=88.5≈89.答:高架道路旁安装的隔音板至少需要89米长.23.(本小题满分12分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD·CE=CD·DE.答案:(本小题满分12分)本题考查平行四边形的性质及三角形相似的判定及性质,难度中等.证明:(1)∵OE=OB,∴∠OBE=∠OEB.∵平行四边形ABCD的对角线相交于点O,∴OB=OD.∴OE=OD,∴∠ODE=∠OED,在△BDE中,∵∠OBE+∠OEB+∠OED+∠ODE=180°,∴∠BED=90°,即DE⊥BE.(2)∵OE⊥CD,∴∠CDE+∠DEO=90°.又∵∠CEO+∠DEO=90°,∴∠CDE=∠CEO.∵∠OBE=∠OEB,∴∠OBE=∠CDE.∵∠BED=∠DEC,∴△DBE∽△CDE,∴,∴BD·CE=CD·DE.24.(本小题满分12分)已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,,点P在抛物线上,线段AP与y轴的正半轴相交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的表达式;(2)用含m的代数式表示线段CO的长;(3)当时,求∠PAD的正弦值.答案:(本小题满分12分)本题考查二次函数,相似三角形,三角函数的综合应用,解题关键在于根据题意确定相似三角形,难度较大.解:(1)由抛物线y=ax2-4与y轴相交于点B,得点B的坐标为(0,-4).∵点A在x轴的负半轴上,,∴点A的坐标为(-2,0).∵抛物线y=ax2-4与x轴相交于点A,∴a=1,∴这条抛物线的表达式为y=x2-4.(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为(m,m2-4).由题意,得点P在第一象限内,因此m>0,m2-4>0.过点P作PH⊥x轴,垂足为点H.∵CO∥PH,∴,∴,解得CO=2m-4.(3)过点P作PG⊥y轴,垂足为点G.∵OD∥PG,∴,∴,即,在Rt△ODC中,∵,∴,解得m=3或m=1(舍去),∴CO=2.在Rt△AOC中,,∴,即∠PAD的正弦值为.25.(本小题满分14分)已知:如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E,与弦CD相交于点F(点F与点C,D不重合),AB=20,.设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.答案:(本小题满分14分)本题考查圆与全等三角形,相似三角形,三角函数,直角三角形的判定及性质,涉及分类讨论,数形结合等多种思想方法,难度较大.解:(1)证明:连接OD.∵CD∥AB,∴∠C=∠AOP.∵OC=OD,∴∠C=∠D,∴∠AOP=∠D.又∵AO=OD,OP=DQ,∴△AOP≌△ODQ,∴AP=OQ.(2)∵CD∥AB,∴∠CFP=∠A.∵△AOP≌△ODQ,∴∠A=∠DOQ,∴∠CFP=∠DOQ.又∵∠C=∠D,∴△CFP∽△DOQ,∴.过点O作OH⊥CD,垂足为点H.∵,,∴CH=8,OH=6,CD=16.∴,∵CP=10-x,∴,∴所求函数的解析式为,即,定义域为.(3)∵CD∥AB,∴∠EOA=∠DQO.又∵∠A=∠DOQ,∴∠AEO=∠D≠90°.∴当△OPE是直角三角形时,只可能是∠POE=90°或∠OPE=90°.①∠POE=90°时,在Rt△OCQ中,,∴.∵CD=16,∴.∵,∴不合题意,舍去.②当∠OPE=90°时,得∠DQO=∠OPA=90°,∴点O为CD的中点,∴.综上所述,当△OPE是直角三角形时,线段OP的长是8.综评:本套试卷难度适中,知识覆盖面广,覆盖数与代数,空间与图形,统计与概率,综合与实践四大领域,能正确反映课程标准对考生“四基”“四能”的考查要求,试题多数为常规题,从而让不同的考生都能获得比较满意的成绩,个别试题具有一定的难度,用于区分不同层次考生对数学知识的掌握程度,具有较好的区分度.本卷中的特色题:反映函数与方程思想的题有第11,25题;反映数形结合思想的题有第15,16,17,21,22,24,25题;反映分类讨论思想的题有第25题;与实际生活联系紧密的试题有第11,13,14,22题;较难的题有第18,24,25题.。

2015年上海市各区数学一模18、23、24、25汇编-教师版

2015年上海市各区数学一模18、23、24、25汇编-教师版

2015年上海市各区一模数学18、23、24、25汇编2015崇明一模18、如图,将边长为6的正方形ABCD折叠,使得点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,那么△EBG的周长为。

C23、如图,在梯形ABCD中,AD∥BC,AD=AB,∠ABC=2∠C,E与F分别为边AD于DC上的两点,且有∠EBF=∠C。

(1)求证:BE:BF=BD:BC(2)当F为DC中点时,求AE:ED的比值。

24、如图,已知抛物线经过直线与坐标轴的两个交点A 、B ,点C 为抛物线上的一点,且∠ABC=90°。

(1)求抛物线的解析式;(2)求点C 坐标; (3)直线上是否存在点P ,使得△BCP 和△OAB 相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由。

yxB O A2015黄浦一模18、如图,在梯形ABCD 中,AD ∥BC ,BE ⊥CD ,垂足为点E ,连接AE ,∠AEB=∠C ,且cos ∠C=,若AD=1,则AE 的长为 。

A EC B D23、已知,如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且∠ABE=∠ACD ,BE 、CD 交于点G 。

(1)求证:△AED ∽△ABC;(2)如果BE 平分∠ABC ,求证:DE=CE 。

GDEA24、在平面直角坐标系中,将抛物线向下平移使之经过点A(8,0),平移后的抛物线交y轴与点B。

(1)求OBA的正切值;(2)点C在平移后的抛物线上且位于第二象限,其纵坐标为6,连接CA、CB,求△ABC 的面积;(3)点D在平移后抛物线的对称轴上且位于第一象限,连接DA、DB,当时,求点D的坐标。

yOx25、在矩形ABCD中,AB=8,BC=6,对角线AC、BD交于点O,点E在AB延长线上,连接CE,AF⊥CE,AF分别交线段CE、边BC、对角线BD与点F、G、H(点F不与点C、E 重合)。

(1)当点F是线段CE的中点时,求GF的长;(2)设BE=x,OH=y,求y关于x的定义域,并写出它的定义域;(3)当△BHG是等腰三角形时,求BE的长。

上海市嘉定区初三数学一模测验考试卷及答案

上海市嘉定区初三数学一模测验考试卷及答案

嘉定区2017学年第一学期九年级期终学业质量调研测试数学试卷(满分150分,考试时间100分钟)同学们注意:1.本试卷含三个大题,共25题;2.答题时,同学们务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知线段a 、b 、c 、d ,如果cd ab =,那么下列式子中一定正确的是 (▲) (A )d b c a =; (B )c b d a =; (C )b d c a =; (D )dc b a =. 2.在Rt △ABC 中,︒=∠90C ,6=AB ,b AC =,下列选项中一定正确的是(▲) (A )A b sin 6=; (B )A b cos 6=; (C )A b tan 6=; (D )A b cot 6=. 3.抛物线2)1(22-+=x y 与y 轴的交点的坐标是(▲)(A ))2,0(-; (B ))0,2(-; (C ))1,0(-; (D ))0,0(. 4.如图1,在平行四边形ABCD 中,点E 在边DC 上,联结AE 并延长交BC 的延长线于点F ,若CF AD 3=,那么下列结论中正确的是(▲)(A )3:1:=FB FC ; (B )3:1:=CD CE ; (C )4:1:=AB CE ; (D )2:1:=AF AE .5.已知矩形ABCD 的对角线AC 与BD 相交于点O ,如果=,=,那么等于(▲) (A ))(21-; (B ))(21+; (C ))(21-; (D )-. 6.下列四个命题中,真命题是 (▲)(A )相等的圆心角所对的两条弦相等; (B )圆既是中心对称图形也是轴对称图形; (C )平分弦的直径一定垂直于这条弦; (D )相切两圆的圆心距等于这两圆的半径之和. 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】7.已知点P 在线段AB 上,且3:2:=BP AP ,那么=PB AB : ▲ .图18. 计算:=-+a b a 4)64(21▲ . 9. 如果函数32)2(2++-=x x m y (m 为常数)是二次函数,那么m 取值范围是 ▲ . 10. 抛物线342++=x x y 向下平移4个单位后所得的新抛物线的表达式是▲ . 11. 抛物线2322-++=k x x y 经过点)0,1(-,那么=k ▲ . 12. 如果△ABC ∽△DEF ,且对应面积之比为4:1,那么它们对应周长之比为 ▲ .13. 如图2,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,四边形DEFB 是菱形,6=AB ,4=BC ,那么=AD ▲ .14. 在Rt △ABC 中,︒=∠90C ,如果32cos =∠A ,那么A ∠cot = ▲ . 15. 如果一个斜坡的坡度33:1=i ,那么该斜坡的坡角为 ▲ 度. 16. 已知弓形的高是1厘米,弓形的半径长是13厘米,那么弓形的弦长是 ▲ 厘米.17. 已知⊙1O 的半径长为4,⊙2O 的半径长为r ,圆心距621=O O ,当⊙1O 与⊙2O 外切时,r 的长为 ▲ .18. 如图3,在直角梯形ABCD 中,AD ∥BC ,︒=∠90B , 3=AD ,4=AB ,8=BC ,点E 、F 分别在边CD 、 BC 上,联结EF .如果△CEF 沿直线EF 翻折,点C与点A 恰好重合,那么ECDE的值是 ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot .20.(本题满分10分,每小题5分)已知二次函数c bx ax y ++=2的图像上部分点的坐标),(y x 满足下表:(1)求这个二次函数的解析式;(2)用配方法求出这个二次函数图像的顶点坐标和对称轴.图2DAB CEF 图321.(本题满分10分)如图4,某湖心岛上有一亭子A ,在亭子A 的正东方向上的湖边有一棵树B ,在这个湖心岛的湖边C 处测得亭子A 在北偏西︒45方向上,测得树B 在北偏东︒36方向上,又测得B 、C 之间的距离等于200米,求A 、B 之间的距离(结果精确到1米).(参考数据:414.12≈,588.036sin ≈︒,809.036cos ≈︒,727.036tan ≈︒,376.136cot ≈︒)22.(本题满分10分,每小题5分)如图5,在Rt △ABC 中,︒=∠90C ,5=AC ,52=BC ,以点C 为圆心,CA长为半径的⊙C 与边AB 交于点D ,以点B 为圆心,BD 长为半径的⊙B 与⊙C 另一个交点为点E .(1)求AD 的长;(2)求DE 的长.23.(本题满分12分,每小题6分) 如图6,已知梯形ABCD 中,AD ∥BC ,CD AB =,点E 在对角线AC 上,且满足BAC ADE ∠=∠.(1)求证:BC DE AE CD ⋅=⋅;(2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF .求证:CA CE AF ⋅=2.图6︒36 ︒45 AB C 图4A CB DE 图524.(本题满分12分,每小题4分)已知在平面直角坐标系xOy (如图7)中,已知抛物线c bx x y ++=22点经过)0,1(A 、)2,0(B .(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x 轴的交点为C , 第四象限内的点D 在该抛物线的对称轴上,如果 以点A 、C 、D 所组成的三角形与△AOB 相似, 求点D 的坐标;(3)设点E 在该抛物线的对称轴上,它的纵坐标是1, 联结AE 、BE ,求ABE ∠sin .25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在正方形ABCD 中,8=AB ,点P 在边CD 上,43tan =∠PBC ,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直.(1)如图8,当点R 与点D 重合时,求PQ 的长; (2)如图9,试探索:MQRM的比值是否随点Q 的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图10,若点Q 在线段BP 上,设x PQ =,y RM =,求y 关于x 的函数关系式,并写出它的定义域.图8图9图10嘉定区2017学年第一学期九年级期终学业质量调研测试数学试卷参考答案一、1.C ;2.B ;3.D ;4.C ;5.A ;6.B .二、7.3:5;8.23-;9. 2≠m ;10.142-+=x x y ;11.3;12.2:1;13.518; 14.552;15. ︒60;16. 10;17.2;18.52. 三、19.解:︒-︒+︒-︒45tan 30cos 2260sin 30cot12322233-⨯+-= ………………………8分 13223-+= 1323++= …………………………1分1233+=……………………………………………1分 20.解:(1)由题意,得 ⎪⎩⎪⎨⎧=++-=-=+-2,2,4c b a c c b a ……………………1+1分解这个方程组,得 1=a ,3=b ………………………………2分所以,这个二次函数的解析式是232-+=x x y . …………………1分(2)417)23(24949323222-+=--++=-+=x x x x x y …………1分顶点坐标为)41723(--; …………………………………………2分对称轴是直线23-=x . …………………………………………2分21.解:过点C 作AB CH ⊥,垂足为点H …………1分由题意,得 ︒=∠45ACH ,︒=∠36BCH ,200=BC在Rt △BHC 中,BCBH BCH =∠sin , ……1分 ∴20036sin BH=︒ ∵588.036sin ≈︒∴6.117≈BH ……………………1分 又BC HCBCH =∠cos ……………………1分∴20036cos HC =︒. ∵809.036cos ≈︒ ∴8.161≈HC ……………………1分︒36︒45 ABC 图4 H在Rt △AHC 中,HCAHACH =∠tan ……………………1分 ∵︒=∠45ACH ∴HC AH = ……………………1分 ∴8.161≈AH ……………………1分 又BH AH AB +=∴4.279≈AB ……………………1分 ∴279≈AB (米) ……………………1分答:A 、B 之间的距离为279米. 22.解:(1)过点C 作AB CH ⊥,垂足为点H ∵CH 经过圆心C∴AD HD AH 21== ……………1分 在Rt △ACB 中,︒=∠90ACB ,222AB BC AC =+∵5=AC ,52=BC ∴5=AB …………1分∵ABACAC AH A ==cos …………1分 ∴1=AH …………1分 ∴2=AD …………1分(2)设DE 与CB 的交点为F由题意,得CB DF ⊥,DE FE DF 21== …………1分∴︒=∠=∠90DFE ACB ∴AC ∥DF∴ABBD AC DF = …………1分∵2=AD ,5=AB ∴3=BD …………1分 ∴535=DF ∴553=DF …………1分∴556=DE …………1分23.证明(1)∵AD ∥BC ∴ACB DAE ∠=∠ ……1分∵BAC ADE ∠=∠∴△ADE ∽△CAB …1分 ∴BCAE AB DE =…………1分 ∴BC DE AE AB ⋅=⋅ ……1分∵CD AB =∴BC DE AE CD ⋅=⋅ ……2分(2)AD ∥BC ,CD AB =∴DAB ADC ∠=∠……………1分∵BAC ADE ∠=∠又CDE ADE ADC ∠+∠=∠, CAD BAC DAB ∠+∠=∠∴CAD CDE ∠=∠ ……………………1分 ∴△CDE ∽△CAD ……………………1分∴ CDCE CA CD = ∴CA CE CD ⋅=2……………………1分 由题意,得AF AB =,CD AB =∴CD AF = …………1分∴CA CE AF ⋅=2…………1分AC BDE 图5 HF 图624. 解:(1)∵抛物线c bx x y ++=232点经过)0,1(A 、)2,0(B ∴⎪⎩⎪⎨⎧==++2032c c b ……………………1+1分 ∴38-=b …………1分∴抛物线的表达式是238322+-=x x y …………1分(2)由(1)得:238322+-=x x y 的对称轴是直线2=x ……1分∴点C 的坐标为)0,2(,……………………1分 ∵第四象限内的点D 在该抛物线的对称轴上∴以点A 、C 、D 所组成的三角形与△AOB 相似有两种① 当DAC ABO ∠=∠时,CACDOB OA =, ∴121CD =,21=CD ∴点D 的坐标为)21,2(- …………1分② 当ADC ABO ∠=∠时,同理求出2=CD ∴点D 的坐标为)2,2(- …………1分综上所述,点D 的坐标为)21,2(-或)2,2(-(3)∵点E 在该抛物线的对称轴直线2=x 上,且纵坐标是1∴点E 坐标是)1,2(, …………1分又点)2,0(B ,∴5=BE设直线2=x 与x 轴的交点仍是点C ∴ACE ABO BOCE ABE S S S S ∆∆∆--=∴23112112212)12(21=⨯⨯-⨯⨯-⨯+=∆ABE S ……1分 过点E 作AB EH ⊥,垂足为点H ,5=AB∴2321=⨯⨯=∆EH AB S ABE∴553=EH ……………………1分 在Rt △BHE 中,︒=∠90BFE∴53sin ==∠BE EH ABE ……………………1分25.(1)解:由题意,得8====AD CD BC AB ,︒=∠=∠90A C在Rt △BCP 中,︒=∠90C∴BC PC PBC =∠tan ∵43tan =∠PBC∴6=PC ∴2=RP ……………………1分∴1022=+=BC PC PB∵BQ RQ ⊥ ∴︒=∠90RQP ∴RQP C ∠=∠ ∵RPQ BPC ∠=∠∴△PBC ∽△PRQ ……………………1分 ∴PQ PC RP PB = ……………………1分 ∴PQ6210= ∴56=PQ ……………………1分(2)答:MQRM 的比值随点Q 的运动没有变化 ………1分解:∵MQ ∥AB ∴ABP ∠=∠1,A QMR ∠=∠∵︒=∠=∠90A C∴︒=∠=∠90C QMR ……………………1分∵BQ RQ ⊥ ∴︒=∠+∠901RQM ︒=∠+∠=∠90PBC ABP ABC ∴PBC RQM ∠=∠……………………1分∴△RMQ ∽△PCB ……………………1分∴BC PC MQ RM = ∵6=PC ,8=BC ∴43=MQ RM …1分 ∴MQ RM 的比值随点Q 的运动没有变化,比值为43 (3)延长BP 交AD 的延长线于点N ∵PD ∥AB ∴NANDAB PD =∵ND AD ND NA +=+=8∴882+=ND ND ∴38=ND …………1分∴31022=+=ND PD PN ∵PD ∥AB ,MQ ∥AB ∴PD ∥MQ ∴NQ NPMQ PD =……………………1分 ∵43=MQ RM ,y RM = ∴y MQ 34= 又2=PD ,310+=+=x PN PQ NQ ∴310310342+=x y ……………………1分 ∴23209+=x y ……………………1分 它的定义域是5260≤<x ……………………1分图8图9图10。

上海中考数学一模2015年25题汇编(含答案)

上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。

2015年上海宝山嘉定初三数学二模试卷及答案word

2015年上海宝山嘉定初三数学二模试卷及答案word

页脚内容12015年宝山嘉定联合模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,属无理数的是(▲) (A)722; (B) 010010001.1; (C) 27; (D)︒60cos . 2.如果b a >,那么下列不等式一定成立的是(▲) (A) 0<-b a ; (B) b a ->-; (C)b a 2121<; (D) b a 22>. 3.数据6,7,5,7,6,13,5,6,8的众数是(▲)(A)5; (B)6; (C)7; (D)5或6或7.4.抛物线3)2(2-+-=x y 向右平移了3个单位,那么平移后抛物线的顶点坐标是(▲)(A) ),35(--; (B) )31(-,; (C) )31(--,; (D) )02(,-.页脚内容25.下列命题中,真命题是(▲)(A)菱形的对角线互相平分且相等; (B)矩形的对角线互相垂直平分;(C)对角线相等且垂直的四边形是正方形; (D) 对角线互相平分的四边形是平行四边形.6.Rt △ABC 中,已知︒=∠90C ,4==BC AC ,以点A 、B 、C 为圆心的圆分别记作圆A 、圆B 、圆C ,这三个圆的半径长都等于2,那么下列结论正确的是(▲) (A) 圆A 与圆B 外离; (B) 圆B 与圆C 外离; (C) 圆A 与圆C 外离; (D) 圆A 与圆B 相交.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.计算:=-2)21( ▲ .8.计算:=--)2(2x x ▲ .9.方程31=-x 的解是 ▲ . 10.函数xx y 241-+=的定义域是 ▲ .11.如果正比例函数k kx y (=是常数,)0≠k 的图像经过点)2,1(-,那么这个函数的解析式是 ▲ .12.抛物线222-++-=m x x y 与y 轴的交点为)4,0(-,那么=m ▲ .13.某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图1所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是 ▲ 元.页脚内容314.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是 ▲ . 15.如图2,在△ABC 中,点M 在边BC上,BM MC 2=,设向量a AB =,b AM =,那么向量=BC ▲ (结果用、表示).16.如图3,在平行四边形ADBO 中,圆O 经过点A 、D 、B ,如果圆O 的半径4=OA ,那么弦=AB ▲ .5 10 15 20 25图1ABCM图3AB C D图4图5页脚内容417. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD 中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 ▲ .18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x ②①21.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7.(1)求拐弯点B与C之间的距离;(2)在改造好的圆形(圆O)绿化地中,这个圆O过点A、C,并与原道路BC交于点D,如果点A 是圆弧(优弧)道路DC的中点,求圆O的半径长.22.(本题满分10分,每小题满分各5分)已知一水池的容积V(公升)与注入水的时间t(分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.注入水的时间t(分钟)10 (25)水池的容积V(公升)100300 (600)(1)求这段时间时V关于t的函数关系式(不需要写出函数的定义域);.页脚内容5页脚内容6(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE . (1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF . 求证:四边形CDFE 是等腰梯形.24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (图9),双曲线)0(≠=k xky 与直线2+=x y 都经过点),2(m A . (1)求k 与m 的值;(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;BCD图8(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为125.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M . (1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若EBM BAE ∠=∠,求斜边AB 的长.A CB (M )页脚内容82015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A . 二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.a b 33-;16.34;17.3;18.53. 三、19.解:原式xx x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分 x x x x x 121+---=………………………2分 x2=…………………………………………2分 把13-=x 代入x2得: 原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②①页脚内容9解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分 所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B ∴︒=∠45BAH …………………………1分 ∴BH AH =………………………………1分 ∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAHC =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分.H页脚内容10设圆O 的半径为r 米,则r OH -=16……1分 在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米. 22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分 答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形页脚内容11∴AE AD =,︒=∠60DAE ……………………1分∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分(2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分∵︒=∠=∠=∠60ACE ACB B∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分B C D页脚内容12∴四边形ECBF 是平行四边形 …………1分∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k x k y 经过点)4,2(A ∴24k =…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8= ∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n ∴点B 的坐标为)2,4(……………………………………1分页脚内容13∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y∴点C 的坐标为)2,0(-……………………………………1分 ∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D∴点D 的坐标为)2,0( ∴22=AD ,x CE 2=∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分当CAE ADC ∠=∠时,△ADC ∽△CAE ∴CEAC AC AD = ∴x 210210222=页脚内容14∴10=x∴点E 的坐标为)8,10( ……………………………………2分当CEA ADC ∠=∠时,△ADC ∽△CEA ∴ACAC EC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC =∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BCEBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠EBC ∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB ∴2==CB AC∴22=AB …………………………………1分∴2==DB DE∴222-=AD ……………………………1分 A C B (M )页脚内容15 ∴12cot -==∠DE AD BAE ………………1分 (2)设EM 与边AB 交点为G由题意可知:︒=∠+∠9021,︒=∠+∠903CBA又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDG BD ED =…………………………………………1分 ∵2==BD BC ,x ED AC == ∴xDG x =2,∴22x DG =…………………………1分 由题意可知:AB BC BG MB ABC ==∠cos42+=x AB ,242x GB -= ∴422422+=-x x y ……………………1分∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠ 设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H页脚内容16 ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC ∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAE HB AB =,又AB BE = AB HA HE AE -=-=4,∴ABAB AB -=44,∴522±-=AB (负值舍去) ∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠ ∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵ABBC CBA =∠cos ,2=BC ∴4=AB …………………………2分 综上所述:522+-=AB 或4.。

上海中考数学一模2015年25题汇编(含答案)

上海中考数学一模2015年25题汇编(含答案)

K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。

2015年上海市嘉定区中考一模数学试卷(解析版)

2015年上海市嘉定区中考一模数学试卷(解析版)

B.sinB=
4. (4 分)如图,已知 AB∥CD,AD 与 BC 相交于点 O,AO:DO=1:2,那么 下列式子正确的是( )
A.BO:BC=1:2 D.AD:DO=3:1
B.CD:AB=2:1 C.CO:BC=1:2
5. (4 分)已知非零向量 、 和 ,下列条件中,不能判定 ∥ 的是( A. =﹣2 C. +2 = , ﹣ =﹣ B. = , =3 D.| |=2| |

6. (4 分)在△ABC 中,∠C=90°,AC=3cm,BC=4cm.以点 A 为圆心,半
第 1 页(共 19 页)
径为 3cm 的圆记作圆 A,以点 B 为圆心,半径为 4cm 的圆记作圆 B,则圆 A 与圆 B 的位置关系是( A.外离 B.外切 ) C.相交 D.内切.
二、填空题: (本大题共 12 题,每小题 4 分,满分 48 分) 【请直接将结果填入 答题纸的相应位置】 7. (4 分)如果函数 y=(a﹣1)x2 是二次函数,那么 a 的取值范围是 .
第 2 页(共 19 页)
18. (4 分)在△ABC 中,AB=9,AC=5,AD 是∠BAC 的平分线交 BC 于点 D (如图) ,△ABD 沿直线 AD 翻折后,点 B 落到点 B1 处,如果∠B1DC= ∠ BAC,那么 BD= .
三、解答题: (本大题共 7 题,满分 78 分) 19. (10 分)计算:|1﹣sin30°|+ cot30°•tan60°+ .
第 4 页(共 19 页)
8. (4 分)在平面直角坐标系中,如果把抛物线 y=x2+2 向上平移 2 个单位,那 么所得抛物线的表达式为 .
9. (4 分)已知抛物线 y=x2+2x﹣1 的对称轴为 l,如果点 M(﹣3,0)与点 N 关于这条对称轴 l 对称,那么点 N 的坐标是 .

2015年宝山、嘉定区中考数学二模试卷及答案

2015年宝山、嘉定区中考数学二模试卷及答案

2015年宝山嘉定联合模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共 25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上.】1. 下列实数中,属无理数的是(▲)22 —(A);(B) 1.010010001;(C) .. 27 ;(D)cos60 .72. 如果a b ,那么下列不等式一定成立的是(▲)1 1 (A) a -b ::: 0 ;(B) -a -b ;(C) a b ;(D) 2a 2b .2 23•数据 6 , 7 , 5 , 7 , 6 , 13 , 5, 6 , 8 的众数是(▲) (A) 5 ;(B)6 ; (C)7 ;(D) 5 或 6 或7 .24.抛物线y =「(x - 2) -3向右平移了 3个单位,那么平移后抛物线的顶点坐标是(▲)(A) (-5, -3);(B) (1,;(C)(一1,—3);(D) (-2,0).6. Rt △ ABC 中,已知• C =90 , AC =BC =4,以点A 、B 、C 为圆心的圆分别记作圆A 、圆B 、圆C ,这三个圆的半径长都等于 2,那么下列结论正确的是(▲)二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】1 27•计算:(-一)2 二▲.28•计算:-2x(x-2)=▲.9. 方程:1-x =3的解是 ▲.X +110.函数y 的定义域是一▲5. 下列命题中,真命题是(▲)(A)菱形的对角线互相平分且相等;(C)对角线相等且垂直的四边形是正方形; (B)矩形的对角线互相垂直平分;(D)对角线互相平分的四边形是平行四边形.(A)圆A 与圆B 外离; (C)圆A 与圆C 外离;(B)圆B 与圆C 外离; (D)圆A 与圆B 相交.4 -2x11.如果正比例函数y =kx(k是常数,k=0)的图像经过点(-1,2),那么这个函数的解析式是▲.212.抛物线y = -x 2x - 2与y轴的交点为(0, -4),那么m二_▲17.我们把两个三角形的外心之间的距离叫做外心距. 如图4,在Rt △ ABC 和Rt A ACD 中,.ACB =/ACD = 90,点D 在边BC 的延长线上,如果 BC 二DC = 3,那么 △ ABC 和厶ACD 的外心距是 ▲ •18•在矩形ABCD 中,AD =15,点E 在边DC 上,联结AE ,△ ADE 沿直线AE 翻折 后点D落到点F ,过点F 作FG _ AD ,垂足为点G ,如图5,如果AD =3GD , 那么DE 二 ▲ • 三、解答题:(本大题共7题,满分78分) 佃.(本题满分10分)先化简,再求值x 2 -2x 1 x 2 -4 1----------------------- — ------------------- r —2 2几x -x x 2x x,其中 x = --3-1 .20.(本题满分10 分)解方程组:'x+2y=8, ①g 2 _5xy _6y 2 = 0.13•某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图1所示,根据图中所提供的信息,你认为这次捐款活动中 40个捐款额的中位数是 ▲ 元.14•在不透明的袋中装有 2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果 从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是 ▲ • 15.如图2,在厶ABC 中,点M 在边BC 上,MC =2BM ,设向量AB =a , AM = b ,那么向量BC = ▲ (结果用a 、b 表示).16•如图3,在平行四边形 ADBO 中,圆O 经过点A 、 那么弦AB 二 ▲•D 、B ,如果圆O 的半径OA = 4 ,图3图4DEC21.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB长为16.、2米,在点B的拐弯处道路AB与BC所夹的.B为45,在点C的拐弯处道路AC与BC所夹的N C的正切值为2 (即tan NC=2),如图7.(1 )求拐弯点B与C之间的距离;(2)在改造好的圆形(圆0)绿化地中,这个圆0过点A、C ,并与原道路BC交于点D , 如果点A是圆弧(优弧)道路DC的中点,求圆0的半径长.22.(本题满分10分,每小题满分各5分)已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.注入水的时间t (分钟)01025水池的容积V (公升)100300600(1)求这段时间时V关于t的函数关系式(不需要写出函数的定义域);(2)从t为25分钟开始,每分钟注入的水量发生变化了,到t为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.23.(本题满分12分,每小题满分各6分)如图8,已知△ ABC和厶ADE都是等边三角形,点D在边BC上,点E在边AD的右侧,联结CE .(1)求证:ACE =60 ;(2)在边AB上取一点F,使BF二BD,联结DF、EF . 求证:四边形CDFE是等腰梯形.图6E图824.(本题满分12分,每小题满分各4分)k已知平面直角坐标系xOy (图9),双曲线y= —(k式0)与直线y=x + 2都经过点xA(2,m).(1 )求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线^x 2平行交y轴于点C , 联结AB、AC,求△ ABC的面积;(3)在(2)的条件下,设直线y = x • 2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ ACD相似,且相似比不为1,求点E的坐标.y图925.(本题满分14分,第(1)小题满分4分,第⑵小题满分6分,第(3)小题满分4分) 在Rt△ ABC 中,.C =90 , BC =2 , Rt△ ABC绕着点B按顺时针方向旋转,使点C落在斜边AB上的点D,设点A旋转后与点E重合,联结AE ,过点E作直线EM与射线CB垂直,交点为M .(1)若点M与点B重合如图10,求cot・ BAE的值;(2)若点M在边BC上如图11,设边长AC =x , BM = y,点M与点B不重合,求y与x的函数关系式,并写出自变量x的取值范围;(3)若.BAE二/EBM,求斜边AB的长.E图112015年宝山嘉定联合模拟考试数学试卷 参考答案与评分标准一、1. C ; 1 二、 7.—; 4 32. D ;3. B ;4. B ;5. D ;6. A .2 8. — 2x 4x ; 9.x - -8 ; 10. x = 2 的一切实数;11. y - -2x ; 12. - 2 ; 13.15 ; 14 — ; 15.3B —35 ; 16.4J3 ; 17.3 ; 18. 3厉. 10 2 三、19.解:原式=(x ~1) a 2)(x -2).1 x(x _1) x -1 x -2 x x 2-- ---- + 一 x(x 2) x 1........x20. 2把x - •. 3 —d 代入一得: x 2原式 ................ 运-1 —3 1 ............................”2y=8,① x 2 -5xy -6y 2=0.② 解:由②得:(x -6y)(x • y)二 0 ....................... 即:x_6y = 0 或 x y = 0 .................. 所以原方程组可化为两个二元一次方程组:『X -6y = 0, x +2y =&x + y = 0,jX + 2y = 8; 分别解这两个方程组,得原方程组的解是x 1 = -8 x 2 = 8 x 2 = 6 X [ = 121.解:(1)过点A 作AH _BC ,垂足为点在 Rt △ AHB 中,v B =45 • BAH =45 .......................... •- AH 二 BH ............................ •/ AH 2 BH 2 = AB 2, AB =16 -2 • AH = BH =16 ............................... AH在 Rt △ AHC 中,tan C , v tan C HC 1分 1分 4分.1分 1分 1分 答:拐弯点B 与C 之间的距离为24米;1分••• HC =8 ••… ••• BC =24 … (2)联结OC•/ AH _ BC ,点A 是优弧CD 的中点• AH 必经过圆心O ............................ 设圆O 的半径为r 米,贝U OH =16 - r - 在 Rt △ OHC 中,OH 2 HC 2=OC 2 …r =8(16 - r) .............................•r =10 ............................................1分1分答:圆O 的半径长为10米.22.解:(1)设V 关于t 的函数解析式为: V = kt bb=100所以V 关于t 的函数解析式为: V =20t 100 .............. 1分(2)设这个百分率为 x ................................. 1分 由题意得:600(1 x)2 =726 ............................................ 2分 解此方程得:禺=0.1 =10% , X 2二-2.1 (不符合题意舍去)…… 1分 答这个百分率为10%. ....................................... 1分23.证明:(1)v^ ABC 是等边三角形 • AB=AC , . B —BAC "ACB =60 ……1 分•••△ ADE 是等边三角形••• AD = AE , DAE =60 ••• . BAC "DAE••• BAD —BAC - DAC CAE 二 DAE -DAC• BAD = CAE ABD 心 ACE • B ACE • ACE =60(2)••• BF =BD , B =60• △ BDF 是等边三角形 • BD =BF =FD •••△ ABD 心 ACE • BD =CE• BF = FD =CE••• B = ACB = ACE 二 60 •B ECB =180 • BF // CE•四边形ECBF 是平行四边形 • DC // EF又DF 与CE 不平行•四边形CDFE 是梯形 ...... 又 FD =CE•四边形CDFE 是等腰梯形…24.解:(1)•••直线 y =x • 2 经过点 A(2, m)••• m = 2 2 = 4 ....................................... 1 分 •••点A 的坐标为 A(2,4) ....................... 1分'b = 100八由题意得: 丿........................ 1分10k +b =300fk=20’解此方程组得:丿.......................... 2分1分 1分1分 1分1分 1分k•••双曲线y (k=0)经过点A(2,4)x• 4 = — ............................. 1 分2•- k =8 ................................................. 1 分(2)由(1)得:双曲线的表达式为y = —x8 8•••双曲线y 经过点B(n,2) , • 2 , • n = 2x n•••点B的坐标为(4,2) ............................................. 1分•••直线BC与直线y = x 2平行•••可设直线BC的表达式为:y = x • b••• 2 = 4 • b , • b = —2,•直线BC 的表达式为:y = x - 2•••点C的坐标为(0,_2) ........................................... 1分•AB =2._2 , BC =4.2 , AC = 2.10 , • AB2 BC2= AC2•. ABC =90 .............................................. 1 分1• △ ABC的面积为AB BC =8................................. 1分2(3)根据题意设点E的坐标为(x,x -2),这里的x 0•••直线y = x • 2与y轴交于点D•点D的坐标为(0,2)••• AD =2.2 , CE 二2x••• AD // BC二DAC "ACE当ADC 二CAE 时,△ ADC CAE•AD ACAC CE.2 2 2.102J0 2x•x =10•••点E的坐标为(10,8) .......................................... 2分当ADC CEA时,△ ADC CEA•AD _ ACEC 一AC•AD 二EC又DAC "ACE , AC 二CAADC ◎△ CEA又已知△ ADC与厶CEA的相似比不为1•••这种情况不存在................................. 1分综上所述点E的坐标为(10,8)25.解:(1)当点M 与点B 重合,由旋转得:CBA EBD , EDB C = 90 : ••• . CBA - EBD =45 ................ 1 分 ••• CAB =/CBA =45 • AC =CB =2 • AB =2、2 ............................................ :.DE 二 DB =2• AD =2^2 _2 ........................................AD k --cotBAE2 -1 ....................DE(2)设EM 与边AB 交点为G由题意可知:Z 1^2=90,乙3 /CE 又一 2 - 3,• ._ 1 _ CBA T EBD - . CBA , • . 1 二/EBD . EDG —BDE , •△ EDG BDE电二匹 ................................... 1分BD EDDGMB BC 由题意可知:cos ABC =■ BG AB2i 1 ~24 — xAB - . x 4 , GB 二2y /.........................4 -x 2 、x 2 42定义域为0 ::: x ::: 2 ......... 1分(3)当点M 在边BC 上时,由旋转可知: AB 二EB • AEB 二■ BAE设 CBA 二 x ,则 ABE 二 x ,: BAE =/EBM ,分别延长 EA 、BC 交于点 H • AEB "BAE —EMB =2x ,: ABE BAE AEB =180 • x = 36 易得: H =/ABH ABE = 36 , HBE 二 BAE =/AEB 二 72 • AH = AB = BE , HB =HE ,: ACB =90 , • HC =BC =2AB AF• HB 二 HE =4 , •△ BAE HBE , •少二竺,又 BE 二 AB HB BE AE 二 HE - HA = 4-AB , • AB = -22.5 ...............当点M 在边CB 的延长线上时,T AEB 二/BAE , •- AEB = EBM • AE // MC •- BAE = CBA T CBA —EBA • EBM "CBA "EBABC•- CBA =60 , T COS CBA , BC = 2 AB•AB =4 ................................. 2 分 综上所述:AB 二-2 ^.5或4.•/ BC 二 BD =2, AC = ED = x DGy ,「x 4 x 2 *x + 4 AB 4 - AB 4 AB...... 2分AB = -2 一 2、5 (负值舍1分BAE "EBMCBM。

上海市嘉定区2015届高三一模数学(理)试题含答案

上海市嘉定区2015届高三一模数学(理)试题含答案

上海市嘉定区2015届高三第一次质量调研(一模)数学(理)试题考生注意:1.答题前,务必在答题纸上将姓名、学校、班级等信息填写清楚,并贴好条形码.2.解答试卷必须在答题纸规定的相应位置书写,超出答题纸规定位置或写在试卷、草稿纸上的答案一律不予评分.3.本试卷共有23道试题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题编号的空格内直接填写结果,每个空格填对4分,否则一律得零分. 1.设i 是虚数单位,则=-+iii 123__________. 2.函数xx y -+-=21)1lg(的定义域是________________. 3.已知直线l 垂直于直线0532=+-y x ,则直线l 的一个法向量=n___________. 4.已知24=a,a x =lg ,则=x ____________.5.为了解300名学生的视力情况,采用系统抽样的方法从中抽取容量为20的样本,则分段的间隔为______________.6.若椭圆122=+y mx 的一个焦点与抛物线x y 42=的焦点重合,则=m __________.7.若圆锥的侧面积是底面积的4倍,则其母线与轴所成角的大小是____________(结果用反三角函数值表示). 8.将函数xx x f 2sin 12cos 3)(=的图像向左平移m (0>m )个单位,所得图像对应的函数为偶函数,则m 的最小值为______________.9.设无穷等比数列}{n a 的公比为q .若1242)(lim a a a a n n =+++∞→ ,则=q ________.10.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知A c C a cos 2cos 3=,31tan =A ,则=B ___________.11.甲、乙、丙三位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是___________.12.设正数a 、b 满足ab b a =+32,则b a +的最小值是____________.13.若函数)(x f 满足:①在定义域D 内是单调函数;②存在D b a ⊆],[(b a <),使)(x f 在],[b a上的值域为],[a b --,那么)(x f y =叫做对称函数.现有k x x f --=1)(是对称函数,则实数k 的取值范围是_______________.14.设数列}{n a 是等差数列,其首项11=a ,公差0<d ,}{n a 的前n 项和为n S ,且对任意n *N ∈,总存在m *N ∈,使得m n a S =.则=d _________.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“10<<x ”是“1)1(log 2<+x ”的…………………………………………………( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件16.设a 、b 是关于t 的方程0sin cos 2=-θθt t 的两个不相等实根,则过),(2a a A 、),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点个数是…………………( ) A .3 B .2 C .1 D .017.定义在区间),1[∞+上的函数)(x f 满足:①)(2)2(x f x f =;②当42≤≤x 时,|3|1)(--=x x f ,则集合)}34()({f x f x S ==中的最小元素是……………………( )A .2B .4C .6D .818.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在],0[π上的图像大致为………………………………………………………( )A .B .C .D .O AMP三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分满分7分.已知R ∈x ,向量)cos ,2(sin x x a = ,)cos 2,1(x b = ,b a x f⋅=)(.(1)求)(x f 的单调递增区间;(2)若α是第二象限角,12cos 4cos 5242+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛απααf ,求ααsin cos -的值.20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图,在直三棱柱111C B A ABC -中,︒=∠90BAC ,21===AA AC AB ,点E 、F 分别为棱AC 与11B A 的中点.(1)求三棱锥11EFC A -的体积;(2)求异面直线C A 1与EF 所成角的大小.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知点)2,0(-A ,椭圆E :12222=+by a x (0>>b a )的长轴长为4,F 是椭圆的右焦点,直线AF 的一个方向向量为)2,3(=d,O 为坐标原点.(1)求椭圆E 的方程;F C AE B A 1C 1B 1(2)设过点A 的动直线l 与椭圆E 相交于P 、Q 两点,当△OPQ 的面积S 最大时,求l 的方程. 22.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.已知函数x x k x f -⋅+=22)((R ∈x ). (1)判断函数)(x f 的奇偶性,并说明理由;(2)设0>k ,问函数)(x f 的图像是否关于某直线m x =成轴对称图形,如果是,求出m 的值;如果不是,请说明理由;(可利用真命题:“函数)(x g 的图像关于某直线m x =成轴对称图形”的充要条件为“函数)(x m g +是偶函数”)(3)设1-=k ,函数a a x h x x 3422)(1--⋅=-,若函数)(x f 与)(x h 的图像有且只有一个公共点,求实数a 的取值范围. 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列}{n a 、}{n b 的各项均为正数,且对任意*N ∈n ,都有n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且101=a ,152=a .(1)求证:数列}{n b 是等差数列; (2)求数列}{n a 、}{n b 的通项公式; (3)设n n a a a S 11121+++=,如果对任意*N ∈n ,不等式nn n a b S a -<⋅22恒成立,求实数a 的取值范围.2014学年嘉定区高三年级第一次质量调研数学试卷参考答案与评分标准一.填空题(每题4分,满分56分)1.1- 2.)2,1( 3.)2,3( 4.105.15 6.21 7.41arcsin 8.3π9.215- 10.43π11.4312.625+ 13.⎪⎭⎫⎢⎣⎡45,1 14.1-第14题详解:d n n n d n n na S n 2)1(2)1(1-+=-+=,因为对任意*N ∈n ,存在*N ∈m ,使得m n a S =,即d m d n n n )1(12)1(-+=-+,取2=n ,得d m d )1(1-=+,d m 12+=, 因为0<d ,所以2<m ,故1=m ,1-=d .二.选择题(每题5分,满分20分)15.A 16.D 17.C 18.B三.解答题(本大题满分74分)注:解答题评分标准所给的是各步骤的累加分,与参考答案不同的解法可酌情给分. 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分满分7分. (1)142sin 212cos 2sin cos 22sin )(2+⎪⎭⎫ ⎝⎛+=++=+=πx x x x x x f ,……(2分)由224222πππππ+≤+≤-k x k (Z ∈k ), …………(4分)得)(x f 的单调递增区间是⎥⎦⎤⎢⎣⎡+-8,83ππππk k (Z ∈k ). …………(5分)(2)由已知得,12cos 4cos 52414sin 2+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫⎝⎛+απαπα,…………(2分) 即απαπα2cos 4cos 544sin ⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+, ………………(3分)所以,)sin )(cos sin )(cos sin (cos 54cos sin αααααααα+--=+,………(4分)若0cos sin =+αα,则1tan -=α,所以2sin cos -=-αα;……………(5分)若0cos sin ≠+αα,则1)sin (cos 542=-αα,25sin cos -=-αα.…………(6分)综上,ααsin cos -的值为2-或25-. …………(7分)(分类得到2个答案,不写最后一步可不扣分) 20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分. (1)3221313111111111111=⋅⋅⋅⋅=⋅==∆--AA F A C A AA S V V FC A FC A E EFC A . ……(5分) (参考答案只给出最后结果,如果结果错误,可视中间步骤适当给分)(2)取1AA 中点G ,联结EG ,FG ,则EG ∥C A 1, ………(1分) 所以,FEG ∠是异面直线C A 1与EF 所成的角(或其补角), …………(2分) 在△EFG 中,2==FG EG ,6=EF , ………………………(4分)所以,232cos 222=⋅⋅-+=∠EG EF FG EF EG FEG ,故6π=∠FEG . ……(6分)所以,异面直线C A 1与EF 所成角的大小为6π. ………………………(7分)21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)设)0,(c F ,直线AF 的点方向式方程为223+=y x , ………………(2分)令0=y ,得3=x ,即3=c , ………………………………………(3分)由已知,2=a ,所以1222=-=c a b . ………………………………………(5分)所以椭圆E 的方程为1422=+y x . ………………………………………(6分) (2)由题意,设直线l 的方程为2-=kx y ,将2-=kx y 代入1422=+y x ,得01216)14(22=+-+kx x k , …………(1分) 当△0)34(162>-=k ,即432>k 时,直线l 与椭圆E 相交, ……………(2分)设),(11y x P ,),(22y x Q ,则1416221+=+k k x x ,1412221+=k x x , ………(3分) 所以]4))[(1())(1()()(||2122122212221221x x x x k x x k y y x x PQ -++=-+=-+-=34141414481416)1(2222222-⋅++=⎥⎥⎦⎤⎢⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⋅+=k k k k k k k , 又点O 到直线l 的距离122+=k d ,所以△OPQ 的面积14344||2122+-=⋅=k k d PQ S . 设t k =-342,则0>t ,tt t t S 44442+=+=, ………………(5分) 因为44≥+t t ,所以1≤S ,当且仅当2=t ,即27±=k 时,S 取最大值1.……(7分)所以,当△OPQ 的面积S 最大时,直线l 的方程为227-±=x y . ……………(8分)(直线方程用其他形式也可以) 22.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.(1)x x k x f 22)(⋅+=--,若)(x f 是偶函数,则)()(x f x f =-,即x x x xk k --⋅+=⋅+2222, …………(1分)所以0)22)(1(=---x x k 对任意实数x 成立,所以1=k ; …………………(2分) 若)(x f 是奇函数,则)()(x f x f -=-,即x x x xk k --⋅--=⋅+2222,………(3分)所以0)22)(1(=++-x x k 对任意实数x 成立,所以1-=k 。

2015学年嘉定区数学试卷一模卷(理科答案)

2015学年嘉定区数学试卷一模卷(理科答案)

2015学年嘉定区高三年级第一次质量调研 数学试卷(理)参考答案及评分标准一.填空题(每题4分,满分56分) 1.21 2.},01{R ∈<≤-x x x (或)0,1[-) 3.314.2 5.510arccos 6.π337.97 8.20162015 9.43 10.4111.3 12.4 13.100 14.),1()1,(∞+--∞二.选择题(每题5分,满分20分)15.B 16.C 17.A 18.C三.解答题(共5题,满分74分)答案中的分数为分步累积分数19.本题12分,第1小题6分,第2小题6分.(1)如图③,当倾斜至上液面经过点B 时,容器内溶液恰好不会溢出,此时α最大. …………………………………………………………………(2分) 解法一:此时,梯形ABED 的面积等于400202=(2cm ), ………………(3分) 因为α=∠CBE ,所以αtan 2030-=DE ,AD AB DE S ABED ⋅+=)(21, 即40020)tan 2060(21=⋅-⋅α,解得1tan =α,︒=45α. ………………(5分) 所以,要使倾斜后容器内的溶液不会溢出,α的最大值是︒45. ……………(6分) 解法二:此时,△BEC 的面积等于图①中没有液体部分的面积,即200=∆BEC S (2cm ), ……………………………………………………(3分) 因为α=∠CBE ,所以αtan 21212⋅⋅=⋅⋅=∆BC CE BC S BEC ,即200tan 200=α, 解得1tan =α,︒=45α. …………………………………………(5分)所以,要使倾斜后容器内的溶液不会溢出,α的最大值是︒45. …………(6分)α ︒60 B C D CD③ ④E F(2)如图④,当︒=60α时,设上液面为BF ,因为︒<=∠6023arctanCBD , 所以点F 在线段AD 上, ………………………………………………………(1分) 此时︒=∠30ABF ,31030tan =︒⋅=AB AF ,=∆ABF S 315021=⋅⋅AF AB (2cm ), ………………………………………(3分) 剩余溶液的体积为33000203150=⨯(3cm ), …………………………(4分) 由题意,原来溶液的体积为80003cm ,因为3000330008000<-,所以倒出的溶液不满30003cm . …………(5分)所以,要倒出不少于30003cm 的溶液,当︒=60α时,不能实现要求.……(6分)20.本题14分,第1小题7分,第2小题7分.(1)x x x x x x n m x f 2cos 2sin 3cos sin cos sin 32)(22-=-+=⋅=⎪⎭⎫ ⎝⎛-=62sin 2πx . ………………………………………………………(3分)当)(x f 取最小值时,162sin -=⎪⎭⎫⎝⎛-πx ,2262πππ-=-k x ,Z ∈k ,……(6分) 所以,所求x 的取值集合是⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,6ππ. …………………(7分) (2)由2)(=C f ,得162sin =⎪⎭⎫⎝⎛-πC , …………………………(1分) 因为π<<C 0,所以611626πππ<-<-C , 所以262ππ=-C ,3π=C . ……………………………………(3分)在△ABC 中,由余弦定理C ab b a c cos 2222-+=, ………………(4分) 得ab ab b a ≥-+=223,即3≤ab , …………………………(5分) 所以△ABC 的面积43323321sin 21=⨯⨯≤=C ab S , ……………(6分) 因此△ABC 的面积S 的最大值为433. ……………………(7分)21.本题14分,第1小题6分,第2小题8分.(1)解法一:函数x x a a k x f --⋅=)(的定义域为R ,因为)(x f 是奇函数,所以01)0(=-=k f ,1=k . …………………………………………………………(3分)当1=k 时,x x a a x f --=)(,)()(x f a a x f x x -=-=--,)(x f 是奇函数. 所以,所求k 的值为1. ………………………………………………………(6分) 解法二:函数x x a a k x f --⋅=)(的定义域为R ,由题意,对任意R ∈x ,)()(x f x f -=-, ……………………………………(2分) 即x x x xa k a a ak ⋅-=-⋅--,0))(1(=+--x x a a k , …………………………(4分)因为0>+-xxaa ,所以,1=k . ………………………………………………(6分) (2)由38)1(=f ,得381=-a a ,解得3=a 或31-=a (舍). …………(2分) 所以)33(233)(22x x x x m x g -----=,令xxt --=33,则t 是关于x 的增函数,38313=-≥t ,2222)(22)()(m m t mt t t h x g -+-=+-==,……………(2分) 当38<m 时,则当38=t 时,2238238)(2min -=+⨯-⎪⎭⎫⎝⎛=m x g ,解得1225=m ; ………………………………………………………………(5分) 当38≥m 时,则当m t =时,22)(2min -=-=m x g ,2±=m (舍去).……(8分) 综上,1225=m .(本行不写不扣分,每讨论一种情况正确得3分)22.本题16分,第1小题4分,第2小题6分,第3小题6分.(1)设),(y x P ,由题意,21|4|)1(22=+++x y x , ……………………………(2分) 化简得124322=+y x , ………………(3分)所以,动点P 的轨迹C 的方程为13422=+y x . ………………………………(4分) (2)设),(y x N ,则3241413)()(||2222222++-=⎪⎪⎭⎫ ⎝⎛-+-=+-=m mx x x m x y m x MN)1(3)4(4122m m x -+-=,22≤≤-x . ………………………………(2分) ①当240≤<m ,即210≤<m 时,当m x 4=时,2||MN 取最小值1)1(32=-m ,解得322=m ,36=m ,此时2364>=x ,故舍去. …………………(4分) ②当24>m ,即221<<m 时,当2=x 时,2||MN 取最小值1442=+-m m , 解得1=m ,或3=m (舍). …………………………………………………(6分) 综上,1=m .(3)解法一:设),(11y x A ,),(22y x B ,则由43-=⋅OB OA k k ,得432121-=x x y y ,(1分) 221221)()(||y y x x AB -+-=,因为点A 、B 在椭圆C 上,所以⎪⎪⎭⎫ ⎝⎛-=4132121x y ,⎪⎪⎭⎫ ⎝⎛-=4132222x y , 所以,22212221169y y x x =)4)(4(92221x x --=,化简得42221=+x x . …………(2分)①当21x x =时,则四边形11B ABA 为矩形,12y y -=,则432121=x y , 由⎪⎪⎭⎫ ⎝⎛-=4132121x y ,得⎪⎪⎭⎫ ⎝⎛-=413432121x x ,解得221=x ,2321=y , ||||4||||111y x B A AB S =⋅=34=. ……………………………………(3分)②当21x x ≠时,直线AB 的方向向量为),(1212y y x x d --=,直线AB 的方程为 0)()(21121212=-+---y x y x y x x x y y ,原点O 到直线AB 的距离为2122121221)()(||y y x x y x y x d -+--=所以,△AOB 的面积||21||211221y x y x d AB S AOB -=⋅⋅=∆, 根据椭圆的对称性,四边形11B ABA 的面积AOB S S ∆=4||21221y x y x -=,……(4分) 所以,)2(4)(4212221212221212212y x y y x x y x y x y x S +-=-=48)(124132341342221212222212221=+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=x x x x x x x x ,所以34=S . 所以,四边形11B ABA 的面积为定值34. ……………………………………(6分)解法二:设),(11y x A ,),(22y x B ,则),(111y x A --,),(221y x B --, 由43-=⋅OB OA k k ,得432121-=x x y y , …………………………………………(1分) 因为点A 、B 在椭圆C 上,所以⎪⎪⎭⎫ ⎝⎛-=4132121x y ,⎪⎪⎭⎫ ⎝⎛-=4132222x y , 所以,22212221169y y x x =)4)(4(92221x x --=,化简得42221=+x x . …………(2分)直线OA 的方程为011=-y x x y ,点B 到直线OA 的距离21211221||yx y x y x d +-=,△1ABA 的面积||||21122111y x y x d AA S ABA -=⋅⋅=∆, ……………………(3分) 根据椭圆的对称性,四边形11B ABA 的面积12ABA S S ∆=||21221y x y x -=,……(4分) 所以, )2(4)(4212221212221212212y x y y x x y x y x y x S +-=-=48)(124132341342221212222212221=+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=x x x x x x x x ,所以34=S .所以,四边形11B ABA 的面积为定值34. ………………………………(6分) 解法三:设),(11y x A ,),(22y x B ,则),(111y x A --,),(221y x B -- 由43-=⋅OB OA k k ,得432121-=x x y y , …………………………………………(1分) 因为点A 、B 在椭圆C 上,所以⎪⎪⎭⎫ ⎝⎛-=4132121x y ,⎪⎪⎭⎫ ⎝⎛-=4132222x y , 所以,22212221169y y x x =)4)(4(92221x x --=,化简得42221=+x x . …………(2分)△1ABA 的面积111211112111y x y x y x S ABA --=∆||1221y x y x -=, ……………………(3分)根据椭圆的对称性,四边形11B ABA 的面积12ABA S S ∆=||21221y x y x -=,……(4分) 所以,所以,)2(4)(4212221212221212212y x y y x x y x y x y x S +-=-=48)(124132341342221212222212221=+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=x x x x x x x x ,所以34=S .所以,四边形11B ABA 的面积为定值34. ……………………………………(6分)23.本题18分,第1小题4分,第2小题6分,第3小题8分.(1)i i i z 71)43)(1(2+-=++=,i z 683+-=,i z 2144--=.…………(4分) (算错一个扣1分,即算对一个得2分,算对两个得3分)(2)若n OZ ∥1OZ ,则存在实数λ,使得1n OZ OZ λ=,故1z z n ⋅=λ,即),(),(11y x y x n n λ=, ……………………(3分) 又n n z i z )1(1+=+,故11)1(z i z n n -+=,即λ=+-1)1(n i 为实数, ………………(5分)故1-n 为4的倍数,即k n 41=-,14+=k n ,N ∈k . ……………………(6分) (3)因为n n n z z i z 4)1(44-=+=+,故n n x x 44-=+,n n y y 44-=+, …………(2分) 所以n n n n y x y x 1644=++, ……………………………………………………………(3分) 又1211=y x ,722-=y x ,4833-=y x ,2844=y x ,)()(8877665544332211100100332211y x y x y x y x y x y x y x y x y x y x y x y x +++++++=++++ )(100100999998989797y x y x y x y x +++++1002521161161)2848712(-=--⋅+--=, …………………………………………(6分)而100112510110121216⨯==y x y x ,10022251021022716⨯-==y x y x , ………………(7分) 所以数列}{n n y x 的前102项之和为102100100100212721221+=⨯-⨯+-.………(8分)。

2015年上海市松江、青浦、静安区中考数学一模试卷

2015年上海市松江、青浦、静安区中考数学一模试卷

2015年上海市松江区中考数学一模试卷参考答案与试题解析一.选择题(本大题满分4&#215;6=24分)1.(4分)如果把Rt△ABC的三边长度都扩大2倍,那么锐角A的四个三角比的值()A.都扩大到原来的2倍B.都缩小到原来的C.都没有变化D.都不能确定【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】根据三角形三边扩大相同的倍数,可得边的比不变,根据锐角三角函数的定义,可得:如果把Rt△ABC的三边长度都扩大2倍,锐角A不变,锐角三角函数值不变,故选:C.【解答】C.【点评】本题考查了锐角三角函数,注意锐角不变,锐角三角函数值不变.2.(4分)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】M41A 函数图像的几何变换M442 二次函数的图象、性质【难度】容易题【分析】先根据二次函数的性质得到抛物线y=(x﹣1)2的顶点坐标为(1,0),再利用点平移的规律得到点(1,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后抛物线的表达式为y=(x+1)2.故选A.【解答】A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.(4分)一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米【考点】M443 求二次函数的关系式M444 二次函数的应用【难度】容易题【分析】直接利用配方法求出二次函数最值,即:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.【解答】D.【点评】此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.4.(4分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2 B.4 C.D.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】根据平行线分线段成比例得到=,即=,可计算出BC=,则CE=BE﹣BC=12﹣=.故选C.【解答】C.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.属于中考高频考点,考生要注意!5.(4分)已知在△ABC中,AB=AC=m,∠B=α,那么边BC的长等于()A.2m•sinαB.2m•cosαC.2m•tanαD.2m•cotα【考点】M339 等腰三角形的性质和判定M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】中等题【分析】过点A作AD⊥BC于点D,构建直角△ABD,通过解该直角三角形得到BD=m•cosα.然后利用等腰三角形“三线合一”的性质来求BC=2BD=2m•cosα.故选:B.【解答】B.【点评】此题主要考查了锐角三角函数的定义,正确区分正弦余弦三角函数是解决问题的关键.6.(4分)如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4【考点】M33O 三角形面积M33M 相似三角形性质、判定M345 梯形的概念【难度】较难题【分析】证三角形相似,再根据三角形的面积公式和相似三角形的面积比等于相似比的平方,以及三角形的面积公式即可得出:A、∵△ABD和△ACD同底、同高,则S△ABD=S△ACD,∴S1=S3,故命题正确;B、∵AD∥BC,∴△AOD∽△COB,又∵BC=2AD,∴=()2=,则S2=2S4正确.故命题错误;C、作MN⊥BC于点N,交AD于点M.∵△AOD∽△COB,又∵BC=2AD,∴==,即=,∴=,则设S△OBC=2x,则S△ABC=3x,则S△AOB=x,即S2=2S1,故命题正确;D、设AD=y,则BC=2y,设OM=z,则ON=2z,则S2=×2y×2z=2yz,S4=×y×z=yz,S△ABC=BC•MN=×2y•3z=3yz,则S1=S3=3yz﹣2yz=yz,则S1•S3=y2z2,S2•S4=y2z2,故S1•S3=S2•S4正确.故选B.【解答】B.【点评】本题考查了相似三角形的判定与性质,相似三角形面的比等于相似比的平方,高线的比等于相似比,正确表示出S1、S2、S3、S4,是解决本题的关键.二.填空题(本大题满分4&#215;12=48分)7.(4分)已知=,那么=.【考点】M33H 比例的性质M215 分式的基本性质【难度】容易题【分析】由比例的性质,得x=.当x=时,===,故答案为:.【解答】.【点评】本题考查了比例的性质,利用比例的性质用y表示x是解题关键.8.(4分)计算:=.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】先去括号,然后直接进行向量的加减运算即:原式=﹣+﹣=﹣﹣.故答案为:﹣﹣.【解答】﹣﹣.【点评】本题考查了平面向量的知识,属于基础题,掌握平面向量的运算是关键.9.(4分)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.【考点】M33H 比例的性质【难度】容易题【分析】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.【解答】6.【点评】本题要求理解比例中项的概念,这里注意线段不能是负数.10.(4分)二次函数y=﹣2x2﹣5x+3的图象与y轴的交点坐标为.【考点】M416 函数图像的交点问题M417 不同位置的点的坐标的特征M442 二次函数的图象、性质【难度】容易题【分析】根据y轴上点的坐标特征得到二次函数y=﹣2x2﹣5x+3的图象与y轴的交点的横坐标为0,则当x=0时,y=﹣2x2﹣5x+3=3,所以抛物线与y轴的交点坐标为(0,3).故答案为(0,3).【解答】(0,3).【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11.(4分)在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=.【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】容易题【分析】如图所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA==,则AC=AB=×6=4,故答案为:4.【解答】4.【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.(4分)如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】直接根据平行线分线段成比例进行计算.即:====.故答案为.【解答】.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.(4分)如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.【考点】M236 解一元一次不等式(组)M41B 平面直角坐标系M442 二次函数的图象、性质【难度】容易题【分析】根据抛物线y=(a+3)x2﹣5不经过第一象限可以确定不等式的开口向下,从而确定a+3<0,解得:a<﹣3,故答案为:a<﹣3.【解答】a<﹣3.【点评】考查了二次函数的性质,根据抛物线的开口方向,与y轴的交点,对称轴判断抛物线经过的象限.14.(4分)已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.【考点】M33O 三角形面积M33H 比例的性质M33L 三角形重心、内心、外心【难度】中等题【分析】首先根据题意画出图形,由三角形重心的性质得出AG:GD=2:1,则S△AGC=2S△CGD,S△AGC=S△ACD,又D为BC中点,则S△ACD=S△ABC,S△AGC=×S△ABC=S△ABC=×27=9(cm2).故答案为:9cm2.【解答】9cm2.【点评】此题考查了三角形的重心的性质:三角形的重心到顶点的距离是它到对边中点的距离的2倍.根据题意得出S△AGC=S△ABC是解题的关键.15.(4分)如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC=米.(可以用根号表示)【考点】M124 实数大小比较M241 一元二次方程的概念、解法M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】由坡度易得AC与BC的比为1:5,设AC为x,则BC为5x,利用勾股定理可得x2+(5x)2=262,又x>0,则x=.故答案为:.【解答】.【点评】本题考查了解直角三角形及勾股定理;理解坡度的意义是解决本题的关键.16.(4分)已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.【考点】M417 不同位置的点的坐标的特征M442 二次函数的图象、性质【难度】容易题【分析】先确定点(1,3)关于直线x=﹣1的对称点的坐标为(﹣3,3),然后根据抛物线的对称性求解得这个二次函数的图象一定点(﹣3,3).故答案为(﹣3,3).【解答】(﹣3,3).【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.17.(4分)已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB 与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH=米.【考点】M232 一元一次方程的概念、解法M362 特殊角的锐角三角函数值M364 解直角三角形【难度】中等题【分析】利用锐角三角函数关系以及特殊角的三角函数关系表示出AB的长,进而求出即可.具体为:设OH=x,∵当AB的一端点A碰到地面时,AB与地面的夹角为30°,∴AO=2xm,∵当AB的另一端点B碰到地面时,AB与地面的夹角的正弦值为,∴BO=3xm,则AO+BO=2x+3x=3m,解得;x=.故答案为:.【解答】.【点评】此题主要考查了解直角三角形的应用,正确用未知数表示出AB的长是解题关键.18.(4分)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.【考点】M33D 直角三角形的性质和判定M372 图形的旋转与旋转对称图形【难度】较难题【分析】根据题意判断△ABC为直角三角形,得到∠BAC=30°,根据T﹣变换角为60°,得到经过T﹣变换后点C所对应的点C′在x轴上,又T﹣变换比为,AC=3,则AC′=2,OC′=,∴经过T﹣变换后点C所对应的点的坐标为(﹣,0).【解答】(﹣,0).【点评】本题考查的是坐标与图形变化,理解新定义和旋转的概念是解题的关键,注意旋转中心、旋转方向和旋转角在旋转中的应用.三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.(10分)已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.【考点】M33O 三角形面积M414 用待定系数法求函数关系式M442 二次函数的图象、性质M443 求二次函数的关系式【难度】容易题【分析】(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6,即可得出抛物线的表达式y=x2﹣5x+6;(2)先求出A(2,0),B(3,0),C(0,6),再利用三角形面积公式求解即可.【解答】解:(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6得0=9+3b+6,解得b=﹣5, (3)所以抛物线的表达式y=x2﹣5x+6; (5)(2)∵抛物线的表达式y=x2﹣5x+6;∴A(2,0),B(3,0),C(0,6), (8)∴S△ABC=×1×6=3. (10)【点评】本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式.20.(10分)如图,已知在△ABC中,AD是边BC上的中线,设=,=;(1)求(用向量,的式子表示);(2)如果点E在中线AD上,求作在,方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量).【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】(1)由AD是边BC上的中线,=,可求得,然后由三角形法则,求得;(2)利用平行四边形法则,即可求得在,方向上的分向量.【解答】解:(1)∵AD是边BC上的中线,=,∴==, (3)∴=﹣=﹣; (5)(2)如图,过点E作EM∥BC,EN∥AB, (7)则、分别是在,方向上的分向量. (10)【点评】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.21.(10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【考点】M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】过点B作BF⊥DE于点F,可得四边形ABFE为矩形,先在△BCF中求出CF的长度,然后在△BDF中求出DF的长度,最后DF﹣CF可求得CD的长度.【解答】解:过点B作BF⊥DE于点F, (1)则四边形ABFE为矩形,在△BCF中,∵∠CBF=40°,∠CFB=90°,BF=AE=24m,∴=tan40°, (3)∴CF=0.84×24≈20.16(m), (5)在△BDF中,∵∠DBF=45°,∴DF=24m, (7)则CD=DF﹣CF=24﹣20.16=3.84≈3.8(m). (9)故旗杆CD的长为3.8m. (10)【点评】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.22.(10分)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:=== =…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=.【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M362 特殊角的锐角三角函数值【难度】容易题【分析】(1)根据30°、45°、60°这三个特殊角的三角比进行填空;(2)因为该等式的要求是:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,所以首先考虑到tan45°=cot45°=1.【解答】解:(1)∵sin60°=cos30°=,tan45°=1,∴=sin60°=cos30°=tan45°•sin60°=…;故答案是:=sin60°;cos30°;tan45°•sin60°; (5)(2)∵=sin30°=cos60°,tan45°=cot45°=1.∴该等式可以是1=(sin30°+cos60°)•tan45°÷cot45°.故答案是:(sin30°+cos60°)•tan45°÷cot45°(答案不唯一). (10)【点评】本题考查了特殊角的三角函数值.解决此类题目的关键是熟记特殊角的三角函数值.23.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE 至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.【考点】M323 平行线的判定、性质M33M 相似三角形性质、判定【难度】中等题【分析】(1)首先证明△ADE∽△ABC,△EFG∽△CBG,根据相似三角形的对应边的比相等,以及DE=EF即可证得;此问简单(2)首先证明△CFG∽△BFC,证得=,∠FCE=∠CBF,然后根据平行线的性质证明∠FEG=∠CEF,即可证得△EFG∽△ECF,则==,即可证得=,则所证结论即可得到.此问中等【解答】证明:(1)∵DE∥BC,∴△ADE∽△ABC,△EFG∽△CBG,∴=,=, (2)又∵DE=EF,∴=,∴=; (5)(2)∵CF2=FG•FB,∴=, (6)又∵∠CFG=∠CFB,∴△CFG∽△BFC,∴=,∠FCE=∠CBF, (8)又∵DF∥BC,∴∠EFG=∠CBF,∴∠FCE=∠EFG, (10)又∵∠FEG=∠CEF,∴△EFG∽△ECF,∴==,∴=,即CG•CE=BC•DE. (12)【点评】本题考查了相似三角形的判定与性质,正确理解相似三角形的判定方法,证明∠FEG=∠CEF,证得△EFG∽△ECF是解决本题的关键.24.(12分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.【考点】M233 二元一次方程(组)的概念、解法M252 特殊的高次方程(二项方程、双二次方程)M324 角平分线及其性质M33F 全等三角形概念、判定、性质M413 结合图像对函数关系进行分析M414 用待定系数法求函数关系式M41A 函数图像的几何变换M41B 平面直角坐标系M442 二次函数的图象、性质M443 求二次函数的关系式M444 二次函数的应用【难度】中等题【分析】(1)根据待定系数法,可得函数解析式;此问简单(2)根据顶点坐标公式,可得顶点坐标,根据图象的平移,可得M点的坐标;此问简单(3)根据角平分线的性质,可得全等三角形,根据全等三角形的性质,可得方程组,根据解方程组,可得答案.此问中等【解答】解:(1)由二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5),得, (1)解得. (3)二次函数的解析式y=x2﹣4x; (4)(2)y=x2﹣4x的顶点M坐标(2,﹣4), (5)这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,顶点M坐标向上平移m,即M(2,m﹣4); (7)(3)由待定系数法,得CP的解析式为y=x+m,如图:作MG⊥PC于G,设G(a,a+m).由角平分线上的点到角两边的距离相等,DM=MG. (9)在Rt△DCM和Rt△GCM中,Rt△DCM≌Rt△GCM(HL).CG=DC=4,MG=DM=2, (10),化简,得8m=36,解得m=. (12)【点评】本题属于二次函数综合题,属于中考常考题型;注意:(1)利用了待定系数法求函数解析式,(2)利用了二次函数顶点坐标公式,图象的平移方法;(3)利用了角平分线的性质,全等三角形的性质.均属于中考常考知识点,考生要注意掌握25.(14分)已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.【考点】M124 实数大小比较M232 一元一次方程的概念、解法M241 一元二次方程的概念、解法M323 平行线的判定、性质M339 等腰三角形的性质和判定M33E 勾股定理M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M361 锐角的三角比的概念(正切、余切、正弦、余弦)M711 数学综合与实践【难度】较难题【分析】(1)易证△ABM∽△APB,然后根据相似三角形的性质就可得到y关于x的函数解析式,由P是边AD上的一动点可得0≤x≤5,再由y>0就可求出该函数的定义域;此问简单(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正切值;此问中等(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有x﹣y=5﹣x,即y=2x﹣5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=EC﹣EP=BC﹣MP=5﹣y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.此问较难【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB. (2)又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣. (4)∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5; (5)(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2. (6)∵S△BMP=MP•AB=BP•MH,∴MH==,∴BH==,∴tan∠EBP==; (8)(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC. (9)在△AMB和△DPC中,,∴△AMB≌△DPC, (10)∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4; (11)②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y, (12)∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或. (14)【点评】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、勾股定理、解一元二次方程、三角函数等知识,证到△ABM∽△APB是解决第(1)小题的关键,把∠EBP放到直角三角形中是解决第(2)小题的关键,运用勾股定理建立x与y的等量关系是解决第(3)小题的关键.。

上海市嘉定区中考一模(即期末)(全科5套)上海市嘉定区

上海市嘉定区中考一模(即期末)(全科5套)上海市嘉定区

嘉定区2015届九年级第一学期期末考试化学部分考生注意:1.本试卷化学部分含三个大题。

2.答题时务必按要求在答题纸规定的位置上做答,在草稿纸、本试卷上答题一律无效。

可能用到的相对原子质量:H—1 C—12 O—16 Ca—40六.单项选择题(共20分)下列各题均只有一个正确选项,请将正确选项的代号用2B铅笔填涂在答题纸的相应位置上,更改答案时,用橡皮擦去,重新填涂。

27.生活中属于物理变化的是A.冰雪消融B.大米酿酒C.蜡烛燃烧D.动物呼吸28.氢氧化钙是一种建筑材料,它的俗名是A.生石灰B.石灰石C.大理石D.熟石灰29.潜水员在深水下呼吸所用的人造空气,由氦气和下列哪一种气体混合而成A.O2 B.H2 C.CO2 D.天然气30.属于氧化物的是A.H2SO4 B.Na2CO3 C.O2 D.ClO231. 物质的用途不是由化学性质决定的是A.稀有气体用作保护气B.活性炭作防毒面具C.用石灰石制取生石灰D.氧气用于焊接切割金属32.化学方程式书写正确,且属于分解反应的是A. 2H2O H2↑+O2↑B. Ca(OH)2+CO2→CaCO3↓+H2OC. 2H2O2 2H2O+O2↑D. 4P+5O22P2O533.C3N4是一种新型材料,它的硬度比金刚石还高,可做切割工具。

在C3N4中,C的化合价为+4,则N的化合价A.+5 B.+3 C.-4 D.-3 34.化学用语表达正确的是A.2个氢原子:H2 B.氦气:He2C.氯化亚铁:FeCl2 D.氢氧化铝 AlOH335.在化学方程式:C+2H2SO4 →2SO2+X↑+2H2O中,X的化学式是A.CO2 B.CO C.SO3 D.H2SO336.下列关于2mol H2O的说法中,错误的是A.含有1.204×1024个水分子B.质量为36克C.含有2mol 氢原子D.含有2mol氧原子37.化学反应:2Al + Fe2O3Al2O3 + 2Fe 中的还原剂是A.Fe2O3 B.Al2O3C.Al D.Fe38.二氧化碳在下列变化中肯定没有发生化学变化的是A.溶于水中 B.溶于澄清的石灰水中C.进行光合作用 D.制成“干冰”39. 将80℃时一定质量的硝酸钾饱和溶液冷却到30℃,下列有关叙述中正确的是①溶质的质量不变②溶剂的质量不变③溶质的质量分数不变④有一些硝酸钾晶体析出 ⑤30℃时所得硝酸钾溶液仍是饱和溶液A.①③B.②③C.②④⑤D.①③⑤ 40.某反应的微观示意图(右图),不同的球代表不同元素的原子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014学年嘉定区九年级第一次质量调研
数学试卷
一. 选择题
1. 对于抛物线2
)2(-=x y ,下列说法正确的是( )
A. 顶点坐标是)0,2(;
B. 顶点坐标是)2,0(;
C. 顶点坐标是)0,2(-;
D. 顶点坐标是)2,0(-;
2. 已知二次函数bx ax y +=2的图像如图所示,那么a 、b 的符号为( )
A. 0>a ,0>b ;
B. 0<a ,0>b ;
C. 0>a ,0<b ;
D. 0<a ,0<b ;
3. 在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是( ) A. c a A =cos ; B. b c B =sin ; C. b a B =tan ; D. a
b A =cot ; 4. 如图,已知AB ∥CD ,AD 与BC 相交于点O ,2:1:=DO AO ,那么下列式子正确的是( )
A. 2:1:=BC BO ;
B. 1:2:=AB CD ;
C. 2:1:=BC CO ;
D. 1:3:=DO AD ;
5. 已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是( )
A. a =b 2-;
B. a c =,3b c =;
C. 2a b c +=,a b c -=-;
D. ||2||a b =;
6. 在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,半径为cm 3的
圆记作圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是( )
A. 外离;
B. 外切;
C. 相交;
D. 内切;
二. 填空题
7. 如果函数2
)1(x a y -=是二次函数,那么a 的取值范围是 ;
8. 在平面直角坐标系中,如果把抛物线22
+=x y 向上平移2个单位,那么所得抛物线的表达式为 ;
9. 已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称,那么点N 的坐标是 ;
10. 请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可
以是 ;
11. 已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ;
12. 如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 ;
13. 如图,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,2=AB ,EC BE 3=,那么DF 的长为 ;
14. 在△ABC 中,︒=∠90C ,13
12sin =A ,12=BC ,那么=AC ; 15. 小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰的
仰角是 度;
16. 正九边形的中心角等于 度;
17. 如图,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N ,如果6=BC ,
那么=MN ;
18. 在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D (如图),
△ABD 沿直线AD 翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠2
11,那么=BD ;
三. 解答题
19. 计算: ︒
-+︒⋅︒+
︒-45cos 21260tan 30cot 2130sin 1;
20. 已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴;
21. 如图,已知AB 是圆O 的直径,10=AB ,弦CD 与AB 相交于点N ,︒=∠30ANC ,3:2:=AN ON ,CD OM ⊥,垂足为点M ;
(1)求OM 的长; (2)求弦CD 的长;
22. 如图,某地下车库的入口处有斜坡AB ,它的坡度为2:1=i ,斜坡AB 的长为56米,车库的高度为AH (BC AH ⊥),为了让行车更安全,现将斜坡的坡角改造为︒14(图中的︒=∠14ACB ).
(1)求车库的高度AH ;
(2)求点B 与点C 之间的距离(结果精确到1米);
【参考数据:24.014sin =︒,97.014cos =︒,25.014tan =︒,01.414cot =︒】
23. 已知:如图,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,CDG BAD ∠=∠;
(1)求证:AC
AG AB AD =;
(2)当BC GC ⊥时,求证:︒=∠90BAC ;
24. 如图,在平面直角坐标系xOy 中,点A 坐标为)0,8(,点B 在y 轴的正半轴上,且34cot =∠OAB , 抛物线c bx x y ++-=24
1经过A 、B 两点; (1)求b 、c 的值;
(2)过点B 作OB CB ⊥,交这个抛物线于点C ,以点C 为圆心,CB 为半径长的圆记作圆C ,以点A 为圆心,r 为半径长的圆记作圆A .若圆C 与圆A 外切,求r 的值;
(3)若点D 在这个抛物线上,△AOB 的面积是△OBD 面积的8倍,求点D 的坐标;
25. 已知在△ABC 中,8==AC AB ,4=BC ,点P 是边AC 上的一个动点,ABC APD ∠=∠,AD ∥BC ,联结DC ;
(1)如图1,如果DC ∥AB ,求AP 的长;
(2)如图2,如果直线DC 与边BA 的延长线交于点E ,设x AP =,y AE =,求y 关于x 的函数解析式,并写出它的定义域;
(3)如图3,如果直线DC 与边BA 的反向延长线交于点F ,联结BP ,当△CPD 与 △CBF 相似时,试判断线段BP 与线段CF 的数量关系,并说明你的理由;
2014学年嘉定区九年级第一次质量调研
数学试卷参考答案
一. 选择题
1. A
2. C
3. D
4. B
5. D
6. C
二. 填空题
7. 1a ≠ 8. 24y x =+ 9. (1,0) 10. 21y x =-+等
11. 2 12. 1:2 13. 83
14. 5 15. 36 16. 40° 17. 3 18. 6
三 解答题
19. -
20. 221y x x =--,顶点坐标为(1,2)-,对称轴:1x =;
21.(1)1OM =; (2)CD =
22.(1)6米; (2)12米;
23. 略;
24.(1)54b =,6c =; (2)5r =; (3)(1,7)D 或9(1,)2
-; 25.(1)2AP =; (2)82x y x =
-(02x <<); (3)12
BP CF =;。

相关文档
最新文档