最新八年级数学经典错题分析资料
数学八年级下册经典易错题集附答案解析
八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
人教版数学八年级上册易错题难题整理含答案+易错题及答案
人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题整理一、选择题3、正确说法的个数有(C)3个。
改写:在一组数据中,中位数只有一个;中位数可能是这组数据中的数,也可能不是;一组数据的众数可能有多个;众数是这组数据中出现次数最多的数据的次数;众数一定是这组数据中的数。
5、正确说法的个数有(D)4个。
改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号a的数都是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。
6、答案为(B)m2+1.改写:设自然数为n,则n的算术平方根为m,即m^2≤n<(m+1)^2,因此n的范围为m^2≤n≤m^2+2m,与n相邻的下一个自然数为m^2+2m+1=(m+1)^2.二、填空题11、样本容量为(240÷100)×=7500,正常视力的初中生人数为(0.16÷100)×=48.12、b(10+a)的值为(根号10-3)×(根号10+3)=10-9=1.13、-.36-1/2=-1.86.14、该图形的面积为∆ABC的面积减去∆ADC的面积,即(1/2)×12×5-(1/2)×3×4=21.15、根据勾股定理,BD=5,所以该图形的面积为(1/2)×12×5=30.16、解方程可得x=2.17、由不等式组得x>a且x>b,所以a<b。
18、甲管的注水速率为1/6,乙管的注水速率为1/x,两管同时开的注水速率为1/3,因此1/6+1/x=1/3,解方程可得x=9.三、解答题20、计算:1)因式分解题略。
2)已知$\frac{a-b}{a+b}=9$,$\frac{a-b}{a+b}=49$,求$a+b$和$ab$的值。
由$\frac{a+b}{a-b}=\frac{1}{9}$,得$a+b+2ab=9$(1)。
(新)八年级数学上册期中易错题复习汇总附答案解析
八年级上期中易错题复习1. 如图,在△ABD中,AC⊥BD于C,点E为AC上一点,连结BE、DE,DE的延长线交AB于F,已知DE=AB,∠CAD=45°.(1) 求证:DF⊥AB;(2) 利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求证:a2+b2=c2.2. 如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图②所示的“数学风车”,则这个风车的外围周长是_______.3. 代数式的最小值是.4. 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为 __________.5. 在△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )A. 14B. 4C. 14或4D. 以上都不对6. 已知△ABC为等腰三角形,由A点作BC边的高恰好等于BC边长的一半,则∠BAC的度数为()A. 75°B. 90°C. 75°或90°D. 15°或75°或90°7. 如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC边于点D,过点B作BE⊥AD,交AD 的延长线于点E,交AC的延长线于点F.有下列结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤EF:AD=1:2.其中正确结论的序号是___________.8. 在△ABC中,∠ACB=2∠B,BC=2AC,求证:∠A=90°.9. 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为 __________.10.11. 如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B向点B运动,设运动时间为t秒(t>0),苏州学慧家教网(/)(1)在AC上是否存在点P使得PA=PB?若存在,求出t的值;若不存在,说明理由;(2)若点P恰好在△ABC的角平分线上,请直接写出t的值.12. 如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,点D在AC上.(1)若F是BD的中点,求证:CF=EF;(2)将图1中的△AED绕点A顺时针旋转,使AE恰好在AC上(如图2).若F为BD上一点,且CF=EF,求证:BF=DF;(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3).若F是BD的中点.探究CE与EF的数量关系,并证明你的结论.13. 如图,点P,Q分别是边长为4cm的等边△ABC边AB,BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ,CP交于点M,则在P,Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)请求出何时△PBQ是直角三角形?14. 如图,在△ABC中,AD为边BC上的中线,延长AD到点E,使得ED=AD,连接BE若AB=5,AC=3.AD=2则△ABC的面积____________15.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 ______ 度.16. 一个直角三角形三边的长a、b、c都是整数,且满足a<b<c,a+c=49.则这个直角三角形的面积为______.参考答案1. --------------------------------------------------------------------------(1)解:∵△ABC≌△DEC,∴∠BAC=∠EDC,∵∠EDC+∠CED=90°,∠CED=∠AEF,∴∠AEF+∠BAC=90°,∴∠AFE=90°,∴DF⊥AB(2)解:∵S△BCE+S△ACD=S△ABD﹣S△ABE,∴ a2+ b2= •c•DF﹣•c•EF= •c•(DF﹣EF)= •c•DE= c2,∴a2+b2=c2【分析】(1)利用:“8字型”证明∠AFE=∠ECD=90°即可.(2)利用S△BCE+S△ACD=S△ABD﹣S△ABE,即可得出结论.2. --------------------------------------------------------------------------答案:76.解:依题意,可得“数学风车”中的四个大直角三角形的两条直角边长分别为5和12,根据勾股定理可得“数学风车”中的四个大直角三角形的斜边长为:=13,所以“数学风车”的周长是:(13+6)×4=76.本题主要考查了勾股定理的应用.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方,当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解,这个定理在几何的计算问题中是经常用到的,尤其是线段的长度,请同学们熟记并且能熟练地运用它.1、观察图形,回忆直角三角形的勾股定理;2、由题意知∠ACB为直角,又由AC延伸一倍,可得“数学风车”中的四个大直角三角形的两直角边长分别为5和12;3、根据勾股定理,求出“数学风车”中的四个大直角三角形的斜边长,进而求出“数学风车”的外围周长.3. --------------------------------------------------------------------------解:求代数式的最小值.可以转化为在x轴上求一点P(x,0),使得点P到点A(0,2),点B(12,3)的距离之和最小.如图,作点A关于x轴的对称点A′,连接BA′由x轴的交点即为点P,作BM⊥y轴于M,因为PA+PB的最小值=BA′===13.所以代数式的最小值为13.求代数式的最小值.可以转化为在x轴上求一点P(x,0),使得点P 到点A(0,2),点B(12,3)的距离之和最小.如图,作点A关于x轴的对称点A′,连接BA′由x轴的交点即为点P,作BM⊥y轴于M,利用勾股定理即可解决问题.4. --------------------------------------------------------------------------第1空:B【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC= =5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选B.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.5. --------------------------------------------------------------------------答案:C.解:根据题意画出图形,①当△ABC是锐角三角形时,高AD将△ABC分为两个直角三角形,即△ABD、△ACD.∵△ABD是直角三角形∴∵ AB=13,AD=12∴∵△ACD是直角三角形∴∵ AC=15,AD=12∴∵ BC=BD+CD,BD=5,CD=9∴ BC=14②当△ABC是钝角三角形时,高AD在△ABC外,且△ABD、△ACD是直角三角形.由①可知,BD=5,CD=9∵ BC=CD-BD,BD=5,CD=9∴ BC=4故BC的长为14或4.故选C.1、分析题意,由于△ABC的形状未知,故需要对其形状进行讨论;2、△ABC可能是锐角三角形、钝角三角形,锐角三角形的高线在三角形内,钝角三角形的高线在三角形外,你有思路吗?3、根据题意画出图形,当△ABC是锐角三角形时,BC=BD+CD,当△ABC是钝角三角形时,BC=CD-BD,结合“直角三角形勾股定理求值”,分别求解出两种情况下BD、CD的长,问题就迎刃而解了.6. --------------------------------------------------------------------------【解答】解:如下图,分三种情况:①AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°,∠C==75°,∴∠BAC=∠C=75°;②AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°=∠B+∠CAB,∵∠B=∠CAB,∴∠BAC=15°;③AC=BC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高与底边上中线,顶角的平分线重合知,点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°,∴∠BAC的度数为90°或75°或15°,故选D.【分析】本题要分情况讨论,根据等腰三角形的性质来分析:①当AD在三角形的内部,②AD在三角形的外部以,③BC边为等腰三角形的底边三种情况.7. --------------------------------------------------------------------------答案:①②③⑤解:①∵BC=AC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD平分∠BAC,∴∠BAE=∠EAF=22.5°,∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC,∵BC=AC,∠EAF=∠FBC,∠BCF=∠AEF,∴Rt△ADC≌Rt△BFC,∴AD=BF;故①正确;②∵①中Rt△ADC≌Rt△BFC,∴CF=CD,故②正确;③∵①中Rt△ADC≌Rt△BFC,∴CF=CD,AC+CD=AC+CF=AF,∵∠CBF=∠EAF=22.5°,∴在Rt△AEF中,∠F=90°﹣∠EAF=67.5°,∵∠CAB=45°,∴∠ABF=180°﹣∠F﹣∠CAB=180°﹣67.5°﹣45°=67.5°,∴AF=AB,即AC+CD=AB,故③正确;④由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BE=BF,∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF,故④错误;⑤由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BF=2EF,由①知AD=BF,∴AD=2EF,即EF:AD=1:2,故⑤正确.∴①②③⑤四项正确.【解题方法提示】①根据BC=AC,∠ACB=90°可知∠CAB=∠ABC=45°,再由AD平分∠BAC可知∠BAE=∠EAF=22.5°,在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,可求出∠EAF=∠FBC,由BC=AC可求出Rt△ADC≌Rt△BFC,进而求解;②运用①中Rt△ADC≌Rt△BFC即可直接判断;③由①中Rt△ADC≌Rt△BFC可知,CF=CD,故AC+CD=AC+CF=AF,∠CBF=∠EAF=22.5°,在Rt△AEF 中,∠F=90°﹣∠EAF=67.5°,根据∠CAB=45°可知,∠ABF=180°﹣∠EAF﹣∠CAB=67.5°,即可求出AF=AB,进而判断即可;④由③可知,△ABF是等腰三角形,由于BE⊥AD,故BE=BF,在Rt△BCF中,假设BE=CF,进而可得求出∠CBF的度数,进而判断即可;⑤由③可知,△ABF是等腰三角形,由于BE⊥AD,根据等腰三角形三线合一的性质以及①中的结论即可解答.8. --------------------------------------------------------------------------证明:如图,作∠ACB的平分线CD交AB于D,过点D作DE⊥BC于E,∵∠ACB=2∠B,∴∠B=∠BCD=∠ACB,∴BD=CD,∴BE=CE=BC,∵BC=2AC,∴AC=CE,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠A=∠CED=90°.作出图形,作∠ACB的平分线CD交AB于D,过点D作DE⊥BC于E,求出∠B=∠BCD,再根据等角对等边可得BD=CD,然后根据等腰三角形三线合一的性质可得BE=CE,再求出AC=CE,然后利用“边角边”证明△ACD和△ECD全等,根据全等三角形对应角相等可得∠A=∠CED=90°.9. --------------------------------------------------------------------------第1空:【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE= =5,∴BH= ,则BF= ,∵FE=BE=EC,∴∠BFC=90°,∴CF= = .故答案为:.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.10. --------------------------------------------------------------------------11. --------------------------------------------------------------------------解:(1)如图1,设存在点P,使得PA=PB,此时PA=PB=2t,PC=4-2t,在Rt△PCB中,PC2+CB2=PB2,即:(4-2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在点C或点B处时,一定在△ABC的角平分线上,此时t=2或t=3.5秒;当点P在∠ABC的角平分线上时,作PM⊥AB于点M,如图2,此时AP=2t,PC=PM=4-2t,∵△APM∽△ABC,∴AP:AB=PM:BC,即:2t:5=(4-2t):3,解得:t=;当点P在∠CAB的平分线上时,作PN⊥AB,如图3,此时BP=7-2t,PN=PC=(2t-4),∵△BPN∽△BAC,∴BP:BA=PN:AC,即:(7-2t):5=(2t-4):4,解得:t=,综上,当t=2、3.5、、秒时,点P在△ABC的角平分线上./(1)根据角平分线的性质得到PA=PB,从而分别表示出PC、BC、BP的长,利用勾股定理列出方程求解即可;(2)当点P在顶点处时就是在角平分线上,然后再分点P在AC和∠ABC的角平分线的交点处和点P 在BC和∠BAC的角平分线的交点处利用相似三角形列式求得t值即可.12. --------------------------------------------------------------------------(1)证明:如图1,连接CF,直角△DEB中,EF是斜边BD上的中线,∴EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,∴CF=EF,∵∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,∴∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,∴△EFC是等腰直角三角形,∴CF=EF;∴线段CE与FE之间的数量关系是CE=FE;(2)(1)中的结论仍然成立.如图2,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,又∵∠EFD=∠GFB,DF=BF,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;(3)(1)中的结论仍然成立.如图3,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF,∵DF=BF,∴FM∥AB,且FM=AB,∵AE=DE,∠AED=90°,∴AM=EM,∠AME=90°,∵CA=CB,∠ACB=90°,∴CN=AN=AB,∠ANC=90°,∴MF∥AN,FM=AN=CN,∴四边形MFNA为平行四边形,∴FN=AM=EM,∠AMF=∠FNA,∴∠EMF=∠FNC,∴△EMF≌△FNC,∴FE=CF,∠EFM=∠FCN,由MF∥AN,∠ANC=90°,可得∠CPF=90°,∴∠FCN+∠PFC=90°,∴∠EFM+∠PFC=90°,∴∠EFC=90°,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE.(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(2)通过证明△EFC是等腰直角三角形来求解.先证△EFC是等腰三角形,证明△DEF和△FGB全等.再说明△CFE是个直角三角形,因此就能得出结论了;(3)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出EM=PN AD,EC=MF=AB,得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.13. --------------------------------------------------------------------------解:(1)不变,∠CMQ=60°.∵△ABC是等边三角形,∴等边三角形中,AB=AC,∠B=∠CAP=60°又∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.∴AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(2)设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4-t=2t,t= ,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t= ,∴当第秒或第秒时,△PBQ为直角三角形.(1)先根据全等三角形的判定定理得出△ABQ≌△CAP,由全等三角形的性质可知∠BAQ=∠ACP,故∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,故可得出结论;(2)设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t 故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.14. --------------------------------------------------------------------------615. --------------------------------------------------------------------------解析解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC-∠ABO=63°-27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.故答案为:108.连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.答案 10816. --------------------------------------------------------------------------解析根据a<b<c,a+c=49和a2+b2=c2讨论a、b、c的值,计算符合题意的a、b、c的值,并求出三角形的面积.答案解:三边分别为a、b、c,且a<b<c,∴c为斜边,且满足c2=a2+b2,c=49-a,故b2=492-98a=49(49-2a),其中a<b<c,∴a<24,b=,由题意知a,b为整数,则a=12,b=35,c=37或a=20,b=21,c=29,∵a2+b2=c2,所以a=12,b=35,c=37或a=20,b=21,c=29均符合题意,这个直角三角形的面积为×12×35=210或×20×21=210.故答案为210.点评本题考查了直角三角形中勾股定理的运用,考查了三角形面积的计算,本题中求出符合题意的a、b、c的值是解题的关键.。
初二数学学习中常见的易错题分析
初二数学学习中常见的易错题分析数学作为一门理科学科,对于初中生而言,往往是一门让人又爱又恨的学科。
在学习数学的过程中,常常会遇到一些易错题,这些题目看似简单,却往往容易让学生犯错。
本文将对初二数学学习中常见的易错题进行深入分析,并给出相应的解题技巧,帮助同学们更好地应对这些题目。
一、整数的绝对值问题整数的绝对值题目属于初二数学中一个常见的易错点。
很多同学在解这类题目时容易混淆绝对值的概念。
例如,有一道题目如下:|-5| + |3| = ?在解这道题时,很多同学会将|-5|和|3|的值分别计算出来,然后进行相加,得出答案为8。
然而,这种做法是错误的,因为绝对值符号的作用是将其内部的值变为正数。
所以,正确的解题步骤应该是先计算|-5|和|3|的值,得到5和3,然后再进行相加,得到答案为8。
二、分数与小数的比较分数与小数的比较题目在初二数学中也很常见。
例如,有一道题目如下:将以下四个数按从小到大的顺序排列:0.5,1/4,0.3,2/5很多同学在解这类题目时容易混淆分数和小数的大小关系。
一种常见的错误做法是将分数转换成小数后再进行比较。
例如,将1/4转换成小数后是0.25,将2/5转换成小数后是0.4,然后再进行比较。
然而,这种做法是错误的,因为小数的计算结果可能会带来计算误差。
正确的做法是将所有的数都转换成相同的形式进行比较。
在这个例子中,可以将0.5转换成1/2,将0.3转换成3/10,然后再进行比较。
按照这种方法,从小到大的顺序排列为:1/4,3/10,2/5,1/2。
三、平方根和立方根的计算初二数学中经常会遇到一些关于平方根和立方根的计算题目,而这也是一些同学容易出错的地方。
例如,有一道题目如下:√(16 - 9) = ?在解这道题时,很多同学容易将16-9的结果计算出来,然后再求它的平方根,得出答案为1。
然而,这是一个错误的做法。
我们知道,平方根的运算优先于减法运算,所以正确的解题步骤应该是先计算√16和√9的值,得到4和3,然后再进行相减,得到答案为1。
八年级上册数学常见易错题(内含答案解析)
八年级数学上册常见易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
数学八年级下册经典易错题集附答案解析
八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
八年级数学上期中易错题精选习题及解析
一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB3.如图,D 为∠BAC 的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC 于E,DF⊥AB 交BA 的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )个B.2 个C.3 个D.4 个4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.35.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠ B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.410.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<1915.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5参考答案与试题解析一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS[解答]解:在△ABC 和△EDC 中,∴△ABC≌△EDC(ASA),她的依据是两角及这两角的夹边对应相等即ASA 这一方法.故选:A.2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB[解答]解:∵EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A 正确),∠EBM=∠NMC,∴MN ∥BE (故 B 正确),∴MN 和 BE 之间的距离处处相等,∴S △BEM =S △BEN (故 C 正确),∵∠MNB=∠EBN ,而∠EBN 和∠MBN 的关系不知,∴∠MBN 和∠MNB 的关系无法确定,故 D 错误,故选:D .3. 如图,D 为∠BAC 的外角平分线上一点并且满足 BD=CD ,∠DBC=∠DCB ,过 D 作 DE ⊥AC 于 E ,DF ⊥AB 交 BA 的延长线于 F ,则下列结论:①△CDE ≌△BDF ;②CE=AB +AE ;③∠BDC=∠BAC ;④∠DAF=∠CBD . 其中正确的结论有( )个B .2 个C .3 个D .4 个[解答]解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE=DF ,在 Rt △CDE 和 Rt △BDF 中,,∴Rt △CDE ≌Rt △BDF (HL ),故①正确;∴CE=AF ,在 Rt △ADE 和 Rt △ADF 中,,∴Rt △ADE ≌Rt △ADF (HL ),∴AE=AF ,∴CE=AB +AF=AB +AE ,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∴A、B、C、D 四点共圆,∴∠BDC=∠BAC,故③正确;∠DAE=∠CBD,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共 4个.故选:D.4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.3[解答]解:如图:分别以OA、OB、AB 为边作与Rt△ABO 全等的三角形各有3 个,则所有符合条件的三角形个数为9.故选:A.5.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°[解答]解:∵在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE= ∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个[解答]解:①有一条直角边和斜边上的高对应相等的两个直角三角形全等,正确; 有两边和其中一边上高对应相等的两个三角形不一定全等,所以②错误;③有两边和第三边上的高对应相等的两个三角形全等,错误;故选:A.7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对[解答]解:∵AB=AC,AD=AE,∴∠ABC=∠ACB,BD=EC.∵在△BDC 和△CEB 中, ,∴△BDC≌△CEB.∴∠EBC=∠DCB,∴∠ABO=∠ACO.在△DBO 和△ECO 中, ,∴△DBO≌△ECO.∵∠EBC=∠DCB,∴OB=OC.∵在△ABO 和△ACO 中, ,∴△ABO≌△ACO.∴∠DAO=∠EAO.∵在△DAO 和△EAO 中, ,∴△DAO≌△EAO.∵在△DAC 和△EAB 中, ,∴△DAC≌△EAB.故选:A.8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对[解答]解:由平行四边形的性质可知:△ABD≌△CDB,△ABO≌△CDO,△ADE≌△CBF,△AOE≌△CFO,△AOD≌△COB,△ABC≌△CDA,△ABE 和△CDF故选:B.9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.4[解答]解:以BC 为公共边的三角形有3 个,以AB 为公共边的三角形有0 个, 以AC 为公共边的三角形有1 个,共3+0+1=4 个,故选:D.10.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个[解答]解:如图所示可作 3 个全等的三角形.故选:C.11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.[解答]解:A、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;B、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE 和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意; D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=FC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角[解答]解:A、已知两角和夹边,满足ASA,可知该三角形是唯一的; B、已知两边和夹角,满足SAS,可知该三角形是唯一的;C、已知两角和其中一角的对边,满足AAS,可知该三角形是唯一的;D、已知两边和其中一边的对角,满足SSA,不能确定三角形是唯一的.故选:D.13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS[解答]解:在△ADC 和△ABC 中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC 就是∠DAB 的平分线.故选:A.14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19[解答]解:如图,延长AD 至E,使DE=AD,∵AD 是△ABC 的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,即9<AB<19.故选:D.15.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°[解答]解:在△ABC 中,∠C=180°﹣∠A﹣∠B=53°.∵△ABC 与△DEF 全等,∴当△ABC≌△DEF 时,∠E=∠B=37°,当△ABC≌△DFE 时,∠E=∠C=53°.∠E 的度数是37 度或53度.故选:D.16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5[解答]解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD 是∠ABE 的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C 可能不在同一直线上∴AB 可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C 不在同一直线上,则∠ABD+∠EBD+∠C≠90°, ∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE 是△BDC 的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C 不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.。
八年级下册数学错题集
八年级下册数学错题集一、二次根式部分(5题)1. 化简:√(18)- 错解:√(18)=√(9 + 9)=3 + 3 = 6- 正解:√(18)=√(9×2)=3√(2)。
解析:二次根式化简时,要将被开方数分解成完全平方数与其他数相乘的形式,而不是简单的数字相加分解。
2. 计算:√(8)+√(18)- 错解:√(8)+√(18)=2√(2)+3√(2)=5√(2)√(2)=5×2 = 10- 正解:√(8)+√(18)=2√(2)+3√(2)=5√(2)。
解析:在计算二次根式加法时,最后结果应保留最简二次根式形式,不能再对√(2)进行错误的乘法运算。
3. 若√(x - 1)+√(1 - x)=y + 4,求x,y的值。
- 错解:由√(x - 1)+√(1 - x)=y + 4,得x-1≥0且1 - x≥0,解得x≥1且x≤1,所以x = 1或x = 0,当x = 0时,y=-4;当x = 1时,y=-4。
- 正解:由√(x - 1)+√(1 - x)=y + 4,因为二次根式有意义的条件是被开方数非负,所以x - 1≥0且1 - x≥0,解得x = 1。
把x = 1代入原式得y+4 = 0,解得y=-4。
解析:在确定x的值时,根据二次根式有意义的条件,x只能取1,不能取0。
4. 比较大小:2√(3)和3√(2)- 错解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)>3√(2)。
- 正解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)<3√(2)。
解析:比较二次根式大小时,先将它们化为最简二次根式对应的被开方数,再比较被开方数大小。
5. 已知a=√(5)+2,b=√(5)-2,求a^2+b^2的值。
- 错解:- 先求ab=(√(5)+2)(√(5)-2)=5 - 4 = 1。
- 然后a + b=√(5)+2+√(5)-2 = 2√(5)。
八年级数学经典错题分析报告
八年级数学经典错题分析报告引言数学是一门需要逻辑思维和解题能力的学科,八年级学生在学习数学时常常会遇到一些经典错题。
这些错题往往涉及一些基础概念和解题方法,通过分析和解答这些错题,可以帮助学生更好地理解数学知识和提高解题能力。
本文将对八年级数学中常见的经典错题进行分析,以帮助学生对这些错题有一个清晰的认识,并指导学生在解题过程中避免类似错误的发生。
一、题目一:平方根的性质题目描述:已知正整数a和b,且a>b,若a是b的平方的平方根,求a/b的值。
分析:这道题主要考察对平方根性质的理解和运用。
我们知道,一个数的平方根是这个数的一个正实数解。
因此,如果a是b的平方的平方根,那么必有a=\sqrt{b^2}。
根据分式的性质,我们可以将a/b写成\frac{a}{b}。
代入已知条件a=\sqrt{b2},我们可以得到\frac{\sqrt{b2}}{b}。
根据平方根的性质sqrt{b^2} = b,我们可以简化分式为\frac{b}{b}。
根据分数化简规则,分子和分母相等时,其值为1,因此a/b=1。
二、题目二:关于比例的考查题目描述:在一条直线上有3个点,A、B、C,其中点B在点A、C之间且AB:AC=2:3,点C与点D的距离为5cm,求点B到点D的距离。
分析:这道题主要考察对比例的理解和运用。
我们可以通过设x表示点B到点D的距离,进一步分析比例关系。
根据题意,可以得到AB/AC=2/3,即AB=(2/3)AC。
又因为BC=AC-AB,所以BC=\frac{1}{3}AC。
根据相似三角形的性质,有BC/CD=AB/AD,代入已知条件,可以得到\frac{\frac{1}{3}AC}{5}= \frac{2}{AD}。
通过求解方程,可以得到AD=\frac{50}{3}。
因为BD=AB-AD,代入已知条件,可以得到BD=\frac{40}{3}。
三、题目三:三角形内角和的计算题目描述:已知三角形ABC,∠ABC=45°,∠BCA=60°,求∠CAB的度数。
八年级数学经典错题分析
八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。
错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。
错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。
同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。
正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。
2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。
A 、∠B =∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。
错解:选A 或B 或D 。
错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。
上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。
∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。
所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。
正解:选C 。
3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。
人教版八年级上册数学考题易错汇总及答案解析
人教版八年级上册数学考题易错汇总及答案解析1.下列各组线段中,能组成三角形的是() A.2,3,5B.3,4,8C.3,3,4D.7,4,2【考点】三角形三边关系.【解答】A、2+3=5,不能构成三角形;B、4+3<8,不能构成三角形;C、3+3>4,能够组成三角形;D、2+4<7,不能构成三角形.故选:C.2.如图,在四边形 ABCD 中,∠DAB 的角平分线与∠ABC 的外角平分线相交于点 P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°【考点】多边形内角与外角.【解答】如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=150°.又∵∠DAB 的角平分线与∠ABC 的外角平分线相交于点 P,∴∠PAB+∠ABP=∠DAB+∠ABC+ (180°﹣∠ABC)=90°+ (∠DAB+∠ABC)=165°,∴∠P=180°﹣(∠PAB+∠ABP)=15°.故选:B.3.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.720°D.900°【考点】三角形内角和定理;三角形的外角性质;多边形内角与外角.【解答】连接 DG,则∠1+∠2=∠F+∠E,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠AGF=∠A+∠B+∠C+∠1+∠2+∠CDE+∠AGF=(5﹣2)×180°=540°.故选:B.4.满足下列条件的三角形中,不是直角三角形的是() A.∠A﹣∠B=∠CB.∠A:∠B:∠C=3:4:7 C.∠A=2∠B=3∠CD.∠A=9°,∠B=81°【考点】三角形内角和定理.【解答】A.∵∠A﹣∠B=∠C,∴∠A=∠B+∠C=90°,∴该三角形是直角三角形;B.∵∠A:∠B:∠C=3:4:7,∴∠C=180°×=90°,∴该三角形是直角三角形;C.∵∠A=2∠B=3∠C,∴∠A=180°×>90°,∴该三角形是钝角三角形;D.∵∠A=9°,∠B=81°,∴∠C=90°,∴该三角形是直角三角形;故选:C.5.一个多边形的每个内角都等于 144°,那么这个多边形的内角和为()A.1980°B.1800°C.1620°D.1440°【考点】多边形内角与外角.【解答】∵180°﹣144°=36°,360°÷36°=10,即这个多边形的边数是 10,∴这个多边形的内角和为(10﹣2)×180°=1440°. 故选:D.6.若一个多边形的外角和等于 360°,那么它一定是()A.四边形B.五边形C.六边形D.无法确定【考点】多边形内角与外角.【解答】任何多边形的外角和等于 360°,故多边形的边数无法确定,故选:D.7.在数学课上,同学们在练习画边 AC 上的高时,出现下列四种图形,其中正确的是()A.B.C. D.【考点】三角形的角平分线、中线和高.【解答】AC 边上的高应该是过 B 作垂线段 AC,符合这个条件的是 C; A,B,D 都不过 B 点,故错误;故选:C.8.如图,一个正五边形和一个正方形都有一边在直线 l 上,且有一个公共顶点 B,则∠ABC 的度数是()A.120°B.142°C.144°D.150°【考点】多边形内角与外角.【解答】如图:由题意:∠ABE=108°,∠CBF=90°,∠BEF=72°,∠BFE=90°,∴∠EBF=180°﹣72°﹣90°=18°,∴∠ABC=360°﹣108°﹣18°﹣90°=144°,故选:C.9.如图,已知四边形 ABCD 中,AB∥DC,连接 BD,BE 平分∠ABD,BE⊥AD,∠EBC 和∠DCB 的角平分线相交于点 F,若∠ADC=110°,则∠F 的度数为()A.115°B.110°C.105°D.100°【考点】平行线的性质;多边形内角与外角.【解答】∵BE⊥AD,∴∠BED=90°,又∵∠ADC=110°,∴四边形 BCDE 中,∠BCD+∠CBE=360°﹣90°﹣110°=160°,又∵∠EBC 和∠DCB 的角平分线相交于点 F,∴∠BCF+∠CBF=×160°=80°,∴△BCF 中,∠F=180°﹣80°=100°,故选:D.10.如图,在四边形 ABCD 中,∠A=90°,AD=3,连接 BD,BD⊥CD,∠ADB=∠C.若 P 是 BC 边上一动点,则 DP 长的最小值为()A.1B.6C.3D.12【考点】角平分线的性质.【解答】过点 D 作 DH⊥BC 交 BC 于点 H,如图所示:∵BD⊥CD,∴∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°∠ADB=∠C,∠A=90°,∴∠ABD=∠CBD,∴BD 是∠ABC 的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,又∴点 D 是直线 BC 外一点,∴当点 P 在 BC 上运动时,点 P 运动到与点 H 重合时 DP 最短,其长度为DH 长等于 3,即 DP 长的最小值为 3.故选:C.11.如图,已知点 E、F 在线段 BC 上,BE=CF,DE=DF,AD⊥BC,垂足为点 D,则图中共有全等三角形()对.A.2B.3C.4D.5【考点】全等三角形的判定.【解答】∵BE=CF,DE=DF,AD⊥BC,∴AD 垂直平分 BC,AD 垂直平分 EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形 4 对,故选:C.12.如图,已知∠ABD=∠BAC,添加下列条件不能判断△ABD≌△BAC 的条件是()A.∠D=∠CB.AD=BCC.∠BAD=∠ABCD.BD=AC【考点】全等三角形的判定.【解答】由题意得,∠ABD=∠BAC,A、在△ABC 与△BAD 中,,∴△ABC≌△BAD(AAS),故 A 选项能判定全等;B、在△ABC 与△BAD 中,由 BC=AD,AB=BA,∠BAC=∠ABD,可知△ABC 与△BAD 不全等,故 B 选项不能判定全等;C、在△ABC 与△BAD 中,,∴△ABC≌△BAD(ASA),故 C 选项能判定全等;D、在△ABC 与△BAD 中,,∴△ABC≌△BAD(SAS),故 D 选项能判定全等;故选:B.13.已知△ABC 的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和△ABC 全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【解答】甲,不符合两边对应相等,且夹角相等,∴甲和已知三角形不全等;乙,符合两边对应相等,且夹角相等,乙和已知三角形全等;丙,符合 AAS,即三角形和已知图的三角形全等;故选:B.14.已知点 A(2,a)与点 B(b,3)关于 x 轴对称,则 a+b 的值为()A.﹣1B.1C.2D.3【考点】关于 x 轴、y 轴对称的点的坐标.【解答】∵点 A(2,a)与点 B(b,3)关于 x 轴对称,∴a=﹣3,b=2,∴a+b=﹣3+2=﹣1. 故选:A.15.如图,在△ABC 中,AB⊥AC,AB=3,BC=5,EF 垂直平分 BC,点 P为直线 EF 上的任意一点,则△ABP 周长的最小值是()A.8B.7C.6D.4【考点】线段垂直平分线的性质;轴对称﹣最短路线问题.【解答】∵EF 垂直平分 BC,∴B、C 关于 EF 对称,设 AC 交 EF 于 D,∴当 P 和 D 重合时,AP+BP 的值最小,最小值等于 AC 的长,由勾股定理得:AC===4,∴△ABP 周长的最小值是 AB+AC=3+4=7.故选:B.16.如图,在 Rt△ABC 中∠C=90°,AB>BC,分别以顶点 A、B 为圆心,大于AB 长为半径作圆弧,两条圆弧交于点 M、N,作直线 MN 交边 CB 于点D.若 AD=5,CD=3,则 BC 长是()A.7B.8C.12D.13【考点】线段垂直平分线的性质.【解答】由尺规作图可知,MN 是线段 AB 的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.17.如图,在△ABC 中,∠C=90°,∠B=15°,DE 垂直平分 AB,垂足是点E,若 AD=8cm.则 AC 的长是()A.4cmB.5cmC.4cmD.6cm【考点】线段垂直平分线的性质;含 30 度角的直角三角形.【解答】∵DE 垂直平分 AB,∴AD=BD=8cm,∴∠BAD=∠B=15°,∴∠ADC=∠BAD+∠B=15°+15°=30°,∵∠C=90°,∴Rt△ACD 中,AC= AD=×8=4(cm).故选:A.18.如图,已知 AD 是△ABC 的角平分线,AD 的中垂线交 AB 于点F,交 BC的延长线于点 E.以下四个结论:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠FDE=90°;(4)∠B =∠CAE.恒成立的结论有()A.(1)(2)B.(2)(3)(4)C.(1)(2)(4)D.(1)(2)(3)(4)【考点】平行线的判定;线段垂直平分线的性质.【解答】(1)∵EF 是 AD 的垂直平分线,∴EA=ED,∴∠EAD=∠EDA;(2)∵EF 是 AD 的垂直平分线,∴FA=FD,∴∠FDA=∠FAD,∵AD 平分∠BAC,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵FD 与 BE 不一定互相垂直,∴∠FDE=90°不成立;(4)由(1)(2)得:∠EAD=∠EDA,∠FAD=∠CAD,又∵∠EDA =∠B+∠FAD,∠EAD=∠CAD+∠CAE,∴∠B=∠CAE. 故选:C.19.如图,直线 l 表示一条河,点 A,B 表示两个村庄,想在直线l 上的某点P 处修建一个水泵站向 A,B 两村庄供水.现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设的管道最短的是()A.B.C.D.【考点】垂线段最短;轴对称﹣最短路线问题.【解答】作点 A 关于直线 l 的对称点 A′,连接 BA′交直线 l 于P.根据两点之间,线段最短,可知选项 D 铺设的管道最短. 故选:D.20.在下列各式中,计算正确的是()A.4x﹣7x=3xB.y4﹣y3=yC.5a2﹣2a2=3D.4m2﹣(2m)2=0【考点】合并同类项;幂的乘方与积的乘方.【解答】A.4x﹣7x═﹣3x,故本选项不合题意;B.y4 与 y3 不是同类项,所以不能合并,故本选项不合题意;C.5a2﹣2a2=3a2,故本选项不合题意;D.4m2﹣(2m)2=0,正确,故本选项符合题意.故选:D.21.给出下列关系式:(1)﹣22=4;(2)(﹣a2)3=﹣a5;(3)(0.5)2019×22020=2;(4)(a+b)(a2+b2)=a3+b3.其中一定成立的有()A.1个B.2 个C.3 个D.4 个【考点】幂的乘方与积的乘方;平方差公式.【解答】﹣22=﹣4,故(1)错误;(﹣a2)3=a6,故(2)错误;(0.5)2019×22020=2,故(3)正确;(a+b)(a2+b2)=a3+b3+ab2+a2b,故(4)错误.∴一定成立的有(3)共 1 个. 故选:A.22.(﹣0.5)99×2100 的计算结果正确的是()A.﹣1B.1C.﹣2D.2【考点】幂的乘方与积的乘方.【解答】(﹣0.5)99×2100=(﹣0.5)99×299×2=(﹣0.5×2)99×2=(﹣1)99×2=(﹣1)×2=﹣2. 故选:C.23.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图 1 可以得到(a+b)2=a2+2ab+b2,那么利用图2 所得到的数学等式是()A.(a+b+c)2=a2+b2+c2B.(a+b+c)2=a2+b2+c2+2ab+2ac+2bcC.(a+b+c)2=a2+b2+b2+ab+ac+bcD.(a+b+c)2=2a+2b+2c 【考点】完全平方公式的几何背景.【解答】∵正方形的面积=( a+b+c ) 2 ;正方形的面积=a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc. 故选:B.24.下列从左到右的变形,属于因式分解的是() A.(a+4)(a ﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1 C.8m2n3=2m2?4n2D.m2﹣2m+1=(m﹣1)2【考点】因式分解的意义.【解答】A、是整式乘法,不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.25.若分式在实数范围内有意义,则 x 的取值范围为()A.x>3B.x≠3C.x≥0D.x≠0 且 x≠3【考点】分式有意义的条件.【解答】∵分式在实数范围内有意义,∴x﹣3≠0,∴x≠3 故选:B.26.下列各式,,,,(x﹣y),中,分式的个数共有()A.2个B.3 个C.4 个D.5 个【考点】分式的定义.【解答】由题可得,是分式的有:,,(x﹣y),,共 4 个,故选:C.27.如果关于 x 的不等式组有且仅有四个整数解,且关于 y 的分式方程﹣=1 有非负数解,则符合条件的所有整数 m 的和是()A.13B.15C.20D.22【考点】分式方程的解;一元一次不等式组的整数解.【解答】原不等式组的解集为﹣<x≤,因为不等式组有且仅有四个整数解,所以 0≤<1,解得 2≤m<7.原分式方程的解为 y=,因为分式方程有非负数解,所以≥0,解得 m>1,且 m≠5,因为 m=5 时 y=2 是原分式方程的増根.所以符合条件的所有整数 m 的和是 2+3+4+6=15.故选:B.28.已知 a、b 为实数且满足 a≠﹣1,b≠﹣1,设,,则下列两个结论()①ab=1 时,M=N,ab>1 时,M>N;ab<1 时,M<N.②若 a+b =0,则M?N≤0.A.①②都对B.①对②错C.①错②对D.①②都错【考点】分式的加减法.【解答】∵,,∴M﹣N=﹣(),=,=,=,①当 ab=1 时,M﹣N=0,∴M=N,当 ab>1 时,2ab>2,∴2ab﹣2>0,当 a<0 时,b<0,(a+1)(b+1)>0 或(a+1)(b+1)<0,∴M﹣N>0 或 M﹣N<0,∴M>N 或 M<N;当 ab<1 时,a 和 b 可能同号,也可能异号,∴(a+1)(b+1)>0 或(a+1)(b+1)<0,而 2ab﹣2<0,∴M>N 或 M<N;∴①错②M?N=()?()=++,∵a+b=0∴原式===∵a≠﹣1,b≠﹣1,∴(a+1)2(b+1)2>0,∵a+b=0∴ab≤0,M?N≤0.∴②对. 故选:C.29.某服装制造厂要在开学前赶制 3000 套校服,为了尽快完成任务,厂领导合理调配加强第一线人力使每天完成的校服比原计划多 20%,结果提前 4 天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服 x 套,则可列出方程()A. B.C.D.【考点】由实际问题抽象出分式方程.【解答】设原来每天完成校服 x 套,则实际每天完成校服(1+20%)x 套,依题意,得:=4+ .故选:C.30.如图,五边形 ABCDE 的外角中,∠1=∠2=∠3=∠4=75°,则∠A 的度数是 .【考点】多边形内角与外角.【解答】∵∠1=∠2=∠3=∠4=75°,∴与∠A 相邻的外角=360°﹣75°×4=360°﹣300°=60°,∴∠A=180°﹣60°=120°.故答案为:120°.31.如图,在△ABC 中,AD 是 BC 边上的高,AE 平分∠BAC,∠B =∠BCA﹣70°,∠DAE 的度数为 .【考点】三角形内角和定理.【解答】∵AD 是 BC 边上的高,∴∠D=90°,∴∠BAD=90°﹣∠B,∵AE 平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠BCA),又∵∠B=∠BCA﹣70°,∴∠BCA=∠B+70°,∴∠DAE=∠BAD﹣∠BAE=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=90°﹣∠B﹣(180°﹣∠B﹣∠B﹣70°)=35°,故答案为:35°.32.如图,有一张矩形纸片 ABCD,将它沿 GH 折叠,点 C 落在点 Q 处,点D 落在 AB 边上的点E 处,若∠GHC=110°,则∠AGE 等于 .【考点】平行线的性质;多边形内角与外角.【解答】∵AD∥BC∴∠DGH+∠GHC=180°,且∠GHC=110°∴∠DGH=70°∵将长方形纸片 ABCD 沿 GH 折叠,∴∠EGH=∠DGH=70°∴∠AGE=180°﹣∠DGH﹣∠EGH=40°故答案为:40°.33.如图,AB=AC,AD=AE,点 B、D、E 在一条直线上,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=度.【考点】全等三角形的判定与性质.【解答】如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD 和△ACE 中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为 65.34.如图,CA⊥BC,垂足为 C,AC=2cm,BC=6cm,射线 BM⊥BQ,垂足为 B,动点 P 从 C 点出发以 1cm/s 的速度沿射线 CQ 运动,点 N 为射线 BM 上一动点,满足 PN=AB,随着 P 点运动而运动,当点 P 运动秒时,△BCA 与点 P、N、B 为顶点的三角形全等.【考点】全等三角形的判定.【解答】①当 P 在线段 BC 上,AC=BP 时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点 P 的运动时间为 4÷1=4(秒);②当 P 在线段 BC 上,AC=BN 时,△ACB≌△NBP,这时 BC=PN =6,CP=0,因此时间为 0 秒;③当 P 在 BQ 上,AC=BP 时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点 P 的运动时间为 8÷1=8(秒);④当 P 在 BQ 上,AC=NB 时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点 P 的运动时间为 12÷1=12(秒),故答案为:0 或 4 或 8 或12.35.如图,△ABC 中,AB=AC,BC=5,S△ABC=15,AD⊥BC 于点 D,EF 垂直平分 AB,交 AC 于点 F,在 EF 上确定一点 P,使 PB+PD 最小,则这个最小值为 .【考点】线段垂直平分线的性质;等腰三角形的性质;轴对称﹣最短路线问题.【解答】∵AB=AC,BC=5,S△ABC=15,AD⊥BC 于点 D,∴AD=6,∵EF 垂直平分 AB,∴点 P 到 A,B 两点的距离相等,∴AD 的长度=PB+PD 的最小值,即 PB+PD 的最小值为 6,故答案为:6.36.如图,已知△ABC 中,AB=AC=5,BC=8,将△ABC 沿射线 BC 方向平移 m 个单位得到△DEF,顶点 A,B,C 分别与 D,E,F 对应,若以 A,D,E 为顶点的三角形是等腰三角形,且 AE 为腰,则 m 的值是 .【考点】等腰三角形的性质;等腰三角形的判定;平移的性质.【解答】分 2 种情况讨论:①当 DE=AE 时,作 EM⊥AD,垂足为 M,AN⊥BC 于 N,则四边形 ANEM 是平行四边形,∴AM=NE,AM= AD= m,CN= BC=4,∴m+m=8﹣(4﹣m),∴m=8;②当 AD=AE=m 时,∵将△ABC 沿射线 BC 方向平移 m 个单位得到△DEF,∴四边形 ABED 是平行四边形,∴BE=AD=m,∴NE=m﹣4,∵AN2+NE2=AE2,∴32+(m﹣4)2=m2,∴m= .综上所述:当 m=8 或时,△ADE 是等腰三角形. 故答案为:8 或.37.如图,由四个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点.在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC 本身)共有个.【考点】轴对称的性质.【解答】如图所示:符合题意的有 3 个三角形.故答案为:3.38.若 a,b,c 分别是△ABC 的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC 的形状是 .【考点】因式分解的应用.【解答】∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c 分别是△ABC 的三条边,∴△ABC 是等边三角形,故答案为等边三角形.39.因式分解:ax3y﹣axy3= .【考点】提公因式法与公式法的综合运用.【解答】ax3y﹣axy3=axy(x2﹣y2)=axy(x+y)(x﹣y).故答案为:axy(x+y)(x﹣y).40.若关于 x 的方程+=无解,则 m= .【考点】分式方程的解.【解答】分式方程化简,得3(x﹣1)+6x=m(x+1)整理,得(9﹣m)x=3+m当 x=0 时,m=﹣3;当 x=1 时,m=3;当 9﹣m=0 时,m =9.故答案为:3 或﹣3 或 9.41.当 x=时,分式的值为 0.【考点】分式的值为零的条件.【解答】由题意得:x2﹣x﹣6=0,且|x|﹣3≠0,解得:x=﹣2,故答案为:﹣2.42.化简:?= .【考点】分式的乘除法.【解答】?=﹣故答案为﹣.43.如图,四边形 ABCD 中,AB∥CD,∠B=∠D,点 E 为 BC 延长线上一点,连接 AE.(1)如图 1,求证:AD∥BC(2)若∠DAE 和∠DCE 的角平分线相交于点 F,连接 AC.①如图 2,若∠BAE=70°,求∠F 的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)【考点】平行线的判定与性质;多边形内角与外角.【解答】(1)∵AB∥CD,∴∠B=∠DCE,而∠B=∠D,∴∠D=∠DCE,∴AD∥BC;(2)①如下图,设∠DAF=∠EAF CF=∠ECF=猓?∵AD∥BC,∴∠D=∠DCE=2猓?∵AB∥CD,∴∠BAE+∠EAD+∠D=180°,∵∠BAE=70°∴70+2?+2猓?180整理得:?+猓?55°,∵∠DHF=∠DAH+∠D=∠DCF+∠F 即:?+2猓健螰+猓?∴∠F=?+猓?55°;②如图 3,设∠CAG=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=2∠CAE=2x,∵AB∥CD,∴∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,△AHD 中,x+2y+2z=180①,△ACG 中,x+2x+y+z=180,3x+y+z=180,6x+2y+2z=360②,②﹣①得:5x=180,x=36°,∴∠CAE=36°.44.如图,AD 是△ABC 的角平分线,点 F、E 分别在边 AC、AB 上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当 AF+FD=AE 时,求证:∠AFD=2∠AED.【考点】全等三角形的判定与性质;角平分线的性质.【解答】证明:(1)过点 D 作 DM⊥AB 于 M,DN⊥AC 于 N,如图 1 所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD 平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB 和△DNF 中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在 AB 上截取 AG=AF,连接 DG.如图 2 所示,∵AD 平分∠BAC,∴∠DAF=∠DAG,在△ADF 和△ADG 中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD 又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED45.如图,已知等腰△ABC 中,AB=AC,∠BAC=120°,AD⊥BC 于D,点P 是 BA 延长线上一点,点 O 是线段 AD 上一点,OP=OC.(1)求∠APO+∠DCO 的度数;(2)求证:AC=AO+AP.【考点】全等三角形的判定与性质.【解答】(1)连接 BO,如图 1 所示:∵AB=AC,AD⊥BC,∴BD=CD,∠ODB=∠ODC,在△OBD 和△OCD 中,,∴△OBD≌△OCD(SAS),∴OB=OC,又∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,又∵∠BAC=120°,∠ABC=∠ACB=30°,又∵∠ABD=∠ABO+∠DBO=30°,∴APO+∠DCO=30°;(2)过点 O 作 OH⊥BP 于点 H,如图 2 所示:∵∠BAC=120°,AB=AC,AD⊥BC,∴∠HAO=∠CAD=60°,又∵OH⊥BP,∴∠OHA=90°,∴∠HOA=30°,∴AO=2AH,又∵BO=PO,OH⊥BP,∴BH=PH,又∵HP=AP+AH,∴BH=AP+AH,又∵AB=BH+AH,∴AB=AP+2AH,又∵AB=AC,AO=2AH,∴AC=AP+AO.46.如图 1,在锐角△ABC 中,∠ABC=45°,高线 AD、BE 相交于点 F.(1)判断 BF 与 AC 的数量关系并说明理由;(2)如图 2,将△ACD 沿线段 AD 对折,点 C 落在 BD 上的点 M,AM 与BE 相交于点 N,当 DE∥AM 时,判断 NE 与 AC 的数量关系并说明理由.【考点】全等三角形的判定与性质.【解答】(1)BF=AC,理由是:如图 1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD 是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC 和△BDF 中,∵,∴△ADC≌△BDF(ASA),∴BF=AC;(2)NE= AC,理由是:解法一:如图 2,由折叠得:MD=DC,AM=AC∴∠AMD=∠ACD,∵DE∥AM,∴∠EDC=∠AMD=∠ACD,∴DE=CE,同理得:AE=DE,∴AE=CE,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:∠DAC=∠DBF,∴∠ABC=2∠DBF=2∠DAC=∠MAC=45°,∴△ANE 是等腰直角三角形,∴EN=AE= AC.解法二:如图 2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:∠DAC=∠DBF,∴∠ABC=2∠DBF=2∠DAC=∠MAC=45°,∴△ANE 是等腰直角三角形,∴NE=AE= AC.47.如图,网格中的△ABC 和△DEF 是轴对称图形.(1)利用网格线,作出△ABC 和△DEF 的对称轴 l;(2)结合所画图形,在直线 l 上找点 G,使 GA+GC 最小;(3)如果每个小正方形的边长为 l,则△ABC 的面积为;(4)在图中到 EF、BC 的距离相等的格点有个.【考点】角平分线的性质;作图﹣轴对称变换;轴对称﹣最短路线问题.【解答】(1)如图所示,直线 l 即为△ABC 和△DEF 的对称轴;(2)如图所示,连接 CD,交 l 于 G,连接 AG,则 GA+GC 最小,点 G 即为所求;(3)△ABC 的面积=2×4﹣×1×2﹣×2×2﹣×1×4=3,故答案为:3;(4)如图,延长 EF,BC 交于点 H,根据角的轴对称性可得,到 EF、BC的距离相等的格点在∠BHE 的角平分线上,故符合题意的格点在直线 l 上,共 8 个.故答案为:8.48.如图,直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,l 与 m 分别交边 AB,BC 于点 D 和点 E.(1)若 AB=10,则△CDE 的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE 的度数.【考点】线段垂直平分线的性质.【解答】(1)△CDE 的周长为 10.∵直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,∴AD=CD,BE=CE,∴△CDE 的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线 l 与 m 分别是△ABC 边 AC 和 BC 的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.49.已知:如图,AF 平分∠BAC,BC 垂直平分 AD,垂足为 E,CF 上一点 P,连结 PB 交线段 AF 相交于点 M.(1)求证:AB∥CD;(2)若∠DAC=∠MPC,请你判断∠F 与∠MCD 的数量关系,并说明理由.【考点】平行线的判定与性质;线段垂直平分线的性质.【解答】(1)∵BC 垂直平分 AD,∴AC=CD,∠CAD=∠CDA,∵AF 平分∠BAC,∴∠CAD=∠BAD,∴∠CDA=∠BAD,∴AB∥CD;(2)结论:∠F=∠MCD,理由:∵∠DAC=∠CDA,∠DAC=∠MPC,∴∠CDA=∠MPC,又∵∠CDA+∠CDM=180°,∠MPC+∠MPF=180°,∴∠CDM=∠MPF;又∵AF 平分∠BAC,AE⊥BC,AE=AE.∴△ACE≌△ABE(ASA),∴AC=AB.又∵AF 平分∠BAC,AM=AM,∴△ACM≌△ABM(SAS),∴∠AMC=∠AMB,又∵∠AMB=∠PMF.∴∠AMC=∠PMF.又∵∠AMC+∠MCD+∠CDM=180°,∠PMF+∠MPF+∠F=180°,∴∠F=∠MCD.50.先化简:÷(﹣),再从﹣3<x<2 的范围内选取一个你最喜欢的整数代入,求值.【考点】分式的化简求值;一元一次不等式组的整数解.【解答】原式=÷=?=,∵x≠±1 且 x≠0,∴取 x=﹣2,则原式==﹣ .。
初二期中数学试卷错题分析
一、引言期中考试已经结束,作为一名初中生,我们应该认真分析自己在考试中的错题,找出错误的原因,以便在今后的学习中加以改进。
以下是我对初二期中数学试卷错题的分析。
二、错题分类1. 算术错误在本次期中考试中,我发现自己有一些算术错误。
例如,在计算乘法、除法、加减法时,由于粗心大意,导致计算结果错误。
这种错误主要是因为我在做题时没有认真审题,没有仔细检查计算过程。
2. 基础知识错误基础知识错误主要体现在对公式、定理、法则掌握不牢固。
例如,在解方程时,我忘记了将方程两边同时乘以或除以一个数,导致方程无法求解。
3. 思维方法错误在解决一些复杂问题时,我常常陷入思维定势,无法找到合适的解题方法。
例如,在解决几何问题时,我总是习惯性地使用代数方法,而忽略了图形性质。
4. 时间管理错误在考试过程中,我发现自己时间管理不当,导致部分题目没有完成。
这主要是因为我在审题、计算过程中浪费了太多时间。
三、错误原因分析1. 粗心大意粗心大意是导致算术错误的主要原因。
在平时的学习中,我应该养成良好的做题习惯,认真审题,仔细检查计算过程。
2. 基础知识不牢固基础知识是学好数学的基础。
我应该加强对公式、定理、法则的掌握,提高自己的数学素养。
3. 思维方法单一在解决数学问题时,应该灵活运用多种思维方法。
我应该尝试从不同角度思考问题,提高自己的解题能力。
4. 时间管理不当在考试过程中,我应该合理安排时间,确保在规定时间内完成所有题目。
四、改进措施1. 培养良好的做题习惯,认真审题,仔细检查计算过程。
2. 加强对基础知识的学习,提高自己的数学素养。
3. 灵活运用多种思维方法,提高解题能力。
4. 合理安排时间,确保在考试过程中完成所有题目。
五、总结通过对初二期中数学试卷错题的分析,我认识到自己在数学学习中还存在很多不足。
在今后的学习中,我将努力改进,提高自己的数学成绩。
初二数学中常见的易错题及解析
初二数学中常见的易错题及解析在初二数学学习中,常常会遇到一些易错的题目,这些题目可能会给学生带来困扰。
本文将针对初二数学中常见的易错题进行解析,帮助同学们更好地理解和掌握这些知识点。
一、整数运算类1. 题目:计算 (-2) × 3 + (-2) ÷ (-5)。
解析:首先,根据整数的乘除法运算规则,同符号相乘得正,异符号相乘得负,(-2) × 3 = -6。
然后,根据整数的除法运算规则,负数除以负数得正数,(-2) ÷ (-5) = 0.4。
最后,将两个结果加起来,-6 + 0.4 = -5.6。
二、代数式化简类2. 题目:化简表达式:2x + 3(x + 2) - 4(x - 1)。
解析:首先,根据分配律,3(x + 2) = 3x + 6,-4(x - 1) = -4x + 4。
化简后的表达式为:2x + 3x + 6 - 4x + 4。
接着,合并同类项,2x + 3x - 4x = x。
将结果代入化简后的表达式,x + 6 + 4 = x + 10。
三、图形与几何类3. 题目:已知三角形ABC中,∠B = 90°,AC = 5,BC = 12,请计算∠A的度数。
解析:根据直角三角形中的性质,直角的两条边的平方和等于斜边的平方,即AB² = AC² + BC²,代入已知数值,AB² = 5² + 12² = 25 +144 = 169。
由于AB为斜边,所以AB的长度为正数,因此AB = √169 = 13。
根据正弦函数sinA = opposite/hypotenuse,sinA = 5/13,通过查表或计算得知sin⁻¹(5/13) ≈ 23.58°。
因此,∠A的度数为23.58°。
四、比例与相似类4. 题目:已知两个图形相似,其中一个图形的周长为6cm,另一个图形的周长为15cm,它们的面积的比是多少?解析:由于两个图形相似,所以它们对应边的比相等,即周长的比等于对应边长的比。
八年级下学期数学解题常见错误分析——以勾股定理为例
八年级下学期数学解题常见错误分析——以勾股定理为例八年级下学期数学解题错误的类型较为复杂,具体分为书写错误、思路错误等。
对于初中生来说,要快速、精准地完成解题任务,必须提高审题准确性,锁定数学解题目标。
正确理解题意、合理选择解题方法,这是实现精准解题的基本前提条件。
勾股定理的数学问题并不复杂,但由于审题疏忽、计算错误,学生很容易解题出现错误。
合理调整数学解题方法,整合数学知识点,才能提升八年级下学期数学解题的精准度。
一、八年级下学期数学解题错误常见原因分析(一)曲解题意精准审题是解决数学问题的基本前提条件。
学生对于题干信息的理解反映了学生的基本信息搜集素养。
只有快速掌握解题要求,提出解题方向,学生才能有效应用数学知识解决问题。
但从教学情况来看,存在学生曲解题意的问题,部分学生在解题过程中,并没有正确理解相关信息,未能整合出具体的数学解题思路,对于问题产生错误理解,导致学生无法应用数学信息处理问题。
(二)方法不当数学经验可以帮助学生快速、准确地解决数学问题。
但需要强调的是,小学数学教学与中学数学教学之间存在着本质上的差别,从教学特点进行分析,小学数学强调的是学生基础计算能力、信息搜集能力的培养,解题方式较为单一;而在八年级下学期的数学解题活动中,学生需要对问题中的关键知识进行应用,形成逻辑性思维与数学推理能力。
受小学的计算经验影响,在解题的过程中,学生使用代入数值、假设猜测等错误的学习方法,解题效率低,学生形成思维惯性,数学解题误区也随之增多。
(三)产生前后知识冲突在解题的过程中,学生产生知识冲突,混淆数学概念与定理,导致学生无法精准解题。
以勾股定理的有关问题为例,其按照“勾三股四弦五”的基本思路设计问题,但受到其他数学知识的干扰,学生很容易将问题理解成“对三角形的探究”,从而形成错误思路导致解题方向上出现错误。
二、解决策略(一)预防错误,教师讲解要有针对性针对八年级下学期数学解题常见错误开展教学工作,要以“预防错误”为切入点,帮助学生在解题、学习的过程中掌握错误出现的原因、解决出错的有效方法,以此来提升初中生的数学解题能力。
八年级数学易错题20例(含解析)
八年级数学易错题20例1. 理解错误的题目:一些学生可能会误解题目的意思,从而得出错误的答案。
例如,题目要求求解一个方程,但是学生可能会误解为需要求解一个不同的方程。
2. 忘记变号:在进行等式运算时,有时会忘记在移项或者合并同类项时变号。
3. 计算错误:在进行复杂计算时,可能会出现计算错误,例如算错乘法、加法等。
4. 错误的应用公式:例如在使用勾股定理时,将直角三角形的边长错误地代入公式。
5. 忽视条件:在解决问题时,可能会忽视题目给出的某些条件,导致答案错误。
6. 图形理解错误:在几何问题中,可能会误解或错误地画出图形。
7. 错误的角度计算:在几何问题中,尤其是涉及角度的计算,容易出错。
8. 比例理解错误:在涉及比例的问题中,可能会对比例的概念理解错误。
9. 单位换算错误:在涉及单位换算的问题中,可能会换算错误。
10. 错误的概率计算:在概率问题中,可能会出现计算错误或者理解错误。
11. 忽视坐标系的方向:在平面直角坐标系中,有时会忽视坐标轴的方向,导致点的位置判断错误。
12. 函数理解不足:对于函数的理解不足,可能导致在解决与函数相关的问题时出错。
13. 三角形性质理解错误:例如,误将等边三角形的性质应用于等腰三角形等。
14. 分式运算错误:在进行分式的加减乘除运算时,可能会出现运算错误。
15. 错误的不等式解法:在解不等式时,可能会因为变号、计算等问题导致解答错误。
16. 数列求和公式使用不当:例如,等差数列和等比数列的求和公式混淆使用。
17. 根与系数的关系理解不清:对于二次方程的根与系数的关系理解不足,导致相关题目解答错误。
18. 圆的性质理解不足:例如,对圆心角、圆周角、弧长等性质理解不清,导致解题出错。
19. 忽视特殊情况:在一些数学问题中,可能存在特殊情况需要额外考虑,如果忽视这些特殊情况,可能会导致答案不完整或错误。
20. 不严谨的推理:在数学证明题中,推理过程不严谨,跳跃步骤或者逻辑不清晰,导致证明错误。
初二数学高频错题集(含答案)
数学八年级高频错题集一、选择题(本大题共1小题,共3.0分)1.下列四个不等式:(1)ac>bc;(2)-ma<mb;(3)ac2>bc2;(4)ab>1,一定能推出a>b的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)2.如果直线y=-2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .3.已知x+1x =√13,那么x-1x= ______ .4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为______.5.已知4y2+my+1是完全平方式,则常数m的值是______.6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.7.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是______ .三、解答题(本大题共3小题,共24.0分)8.如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm╱s的速度移动,点Q沿DA边从点D开始向点A以1cm╱s的速度移动,如果点P,Q同时出发,用t(s)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,说明是否与t的大小有关.9.如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.(1)求证:BE=DC;(2)求证:△AMN是等边三角形;(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.10.若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x3项且含x项的系数是-3,求a和b的值.答案和解析1.【答案】A【解析】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有-a<b,即a>-b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选A.根据不等式的性质逐个判断即可求得答案.本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.2.【答案】±6【解析】解:当x=0时,y=b,当y=0时,x=,则根据三角形的面积公式:,解得b=±6.故答案为±6.先求出直线y=-2x+b与两坐标轴的交点,再根据三角形的面积公式列出关于b的方程,求出b的值即可.本题考查了一次函数图象上点的坐标特征,求出函数与x轴、y轴的交点是解题的关键.3.【答案】±3【解析】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+-2=(x-)2=9,∴x-=±3.故答案为:±3.直接利用完全平方公式得出x2+=11,进而得出x-的值.此题主要考查了二次根式的化简求值以及完全平方公式的应用,正确应用完全平方公式是解题关键.4.【答案】2或√10【解析】【分析】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴B'E=AB=3,∴CE=4-3=1,∴Rt△B'CE中,.综上所述,BE的长为2或.故答案为2或.5.【答案】±4【解析】【分析】利用完全平方公式的结构特征确定出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.【解答】解:∵4y2+my+1是完全平方式,∴m=±4,故答案为±46.【答案】10【解析】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7.【答案】(21008,0)【解析】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(-2,2),同理可知OB 4=4,B 4点坐标为(-4,0),B 5点坐标为(-4,-4),B 6点坐标为(0,-8),B 7(8,-8),B 8(16,0)B 9(16,16),B 10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252 ∴B 2016的纵横坐标符号与点B 8的相同,横坐标为正值,纵坐标是0, ∴B 2016的坐标为(21008,0).故答案为:(21008,0).首先求出B 1、B 2、B 3、B 4、B 5、B 6、B 7、B 8、B 9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B 2016的坐标.本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍. 8.【答案】解:(1)∵点P 沿AB 边从点A 开始向点B 以2cm ╱s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm ╱s 的速度移动,∴AP =2t ,AQ =AD -DQ =6-t ,∵△QAP 为等腰直角三角形,∴AP =AQ ,∴2t =6-t ,解得t =2,∴t =2s 时,△QAP 为等腰直角三角形;(2)四边形QAPC 的面积=12×6-12×12•t -12×6•(12-2t )=36, 所以,四边形QAPC 的面积与t 无关.【解析】(1)表示出AP 、AQ ,然后根据等腰直角三角形两直角边相等列方程求解即可; (2)根据四边形QAPC 的面积等于矩形的面积减去Rt △CDQ 和Rt △BCP 的面积列式整理即可得解.本题考查了矩形的性质,等腰直角三角形的判定,四边形的面积,熟记性质是解题的关键.9.【答案】证明:(1)∵△ABD ,△AEC 都是等边三角形,∴AB =AD ,AC =AE ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE ,在△ABE 和△ADC 中,{AB =AD∠BAE =∠DAC AE =AC,∴△ABE ≌△ADC (SAS ),∴BE =DC ;(2)由(1)证得:△ABE ≌△ADC ,∴∠ABE =∠ADC .在△ABM 和△ADN 中,{AB =AD∠ABM =∠ADN ∠BAM =∠DAN,∴△ABM ≌△ADN (ASA ),∴AM =AN .∵∠DAE =60°,∴△AMN 是等边三角形;(3)∵△ABD ,△AEC 都是等边三角形,∴AB =AD ,AC =AE ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE ,在△ABE 和△ADC 中,{AB =AD∠BAE =∠DAC AE =AC,∴△ABE ≌△ADC (SAS ),∴BE =DC ,∠ABE =∠ADC ,∵∠BAC =90°∴∠MAN >90°,∵∠MAN ≠60°,∴△AMN 不是等边三角形,∴(1)的结论成立,(2)的结论不成立.【解析】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质、矩形的性质、等边三角形的判定与性质. (1)根据等边三角形的性质得到AB=AD ,AC=AE ,∠DAB=∠EAC=60°,则∠DAC=∠BAE ,根据“SAS”可判断△ABE ≌△ADC ,则BE=DC ; (2)由△ABE ≌△ADC 得到∠ABE=∠ADC ,根据“AAS”可判断△ABM ≌△ADN (ASA ),则AM=AN ;∠DAE=60°,根据等边三角形的判定方法可得到△AMN 是等边三角形.(3)判定结论1是否正确,也是通过证明△ABE ≌△ADC 求得.这两个三角形中AB=AD ,AE=AC ,∠BAE 和∠CAD 都是60°+∠ACB ,因此两三角形就全等,BE=CD ,结论1正确.将△ACE 绕点A 按顺时针方向旋转90°,则∠DAC >90°,因此三角形AMN 绝对不可能是等边三角形.10.【答案】解:∵(x 2+ax +8)(x 2-3x +b )=x 4+(-3+a )x 3+(b -3a +8)x 2-(-ab +24)x +8b , 又∵不含x 3项且含x 项的系数是-3,∴{a −3=0−ab +24=3, 解得{a =3b =7. 【解析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.根据结果中不含x 3项且含x 项的系数是-3,建立关于a ,b 等式,即可求出.本题考查了多项式乘以多项式,根据不含x 3项且含x 项的系数是-3列式求解a 、b 的值是解题的关键.。
八年级下册数学错题摘抄
八年级下册数学错题摘抄一、选择题错题。
题1。
- 题目:下列二次根式中,最简二次根式是()A. √(12)B. √(0.2)C. √(7)D. √(frac{1){3}}- 错选:A。
- 解析:- 对于选项A,√(12)=√(4×3)=2√(3),不是最简二次根式。
- 对于选项B,√(0.2)=√(frac{1){5}}=(√(5))/(5),不是最简二次根式。
- 对于选项C,√(7)不能再化简,是最简二次根式。
- 对于选项D,√(frac{1){3}}=(√(3))/(3),不是最简二次根式。
所以这题正确答案是C。
题2。
- 题目:若在实数范围内有意义,则x的取值范围是()A. x>5B. x≥5C. x≤5D. x≠5- 错选:A。
- 解析:- 要使二次根式√(x - 5)有意义,则被开方数x-5≥0,即x≥5。
所以正确答案是B。
题3。
- 题目:下列计算正确的是()A. √(2)+√(3)=√(5)B. 3√(2)-√(2)=3C. √(6)÷√(3)=√(2)D. √(3)×√(2)=√(5)- 错选:A。
- 解析:- 选项A,√(2)与√(3)不是同类二次根式,不能直接相加,所以A错误。
- 选项B,3√(2)-√(2)=(3 - 1)√(2)=2√(2),所以B错误。
- 选项C,√(6)÷√(3)=√(frac{6){3}}=√(2),C正确。
- 选项D,√(3)×√(2)=√(3×2)=√(6),所以D错误。
正确答案是C。
二、填空题错题。
题4。
- 题目:计算:√(18)-√(8)=___。
- 错误答案:√(10)- 解析:- 先将二次根式化简,√(18)=√(9×2)=3√(2),√(8)=√(4×2)=2√(2)。
- 则√(18)-√(8)=3√(2)-2√(2)=√(2)。
题5。
- 题目:若y=√(x - 3)+√(3 - x)+2,则x^y =___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。
错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。
错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。
同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。
正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。
2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。
A 、∠B =∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。
错解:选A 或B 或D 。
错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。
上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。
∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。
所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。
正解:选C 。
3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。
错误原因分析:生搬硬套“角的内部到角的两边的距离相等的点在角的平分线上”,而忽略了角平分线的实质是所分得的两个角相等,本题由OA=OB ,轮船到两灯塔的距离相等,再加上已行的航线,可构造出一对全等三角形,从而可得到已行航线把∠AOB 分成相等的两个角,即没有偏离指定航线。
正解:没有偏离指定航线,如图11-4,依题意可得:OA=OB ,AC=BC ,OC=OC ,AOC BOC ∆≅∆,∴∠AOC=∠BOC ,即OC 平分∠AOB ,∴没有偏离指定航线。
4、如图11-5,,CAB DBA C D ∠=∠∠=∠,E 为AC 和BD 的交点,ADB ∆与BCA ∆全等吗?说明理由。
错解:ADB BCA ∆≅∆。
理由如下:,,,()CAB DBA C D CBA DBA ADB BCA AAA ∠=∠∠=∠∴∠=∠∴∆≅∆错误原因分析:两个三角形全等是正确的,但说明的理由不正确,三个角对应相等不能作为三角形全等的判定方法。
在初中数学中,往往有较多同学会从自己错误的主观意识出发,自己去编造一些不正确的定理,用来证明和计算。
这就要求我们学生在学习的过程中,要准确地理解和掌握自己所学过的一些性质和判定定理。
另外,在书写的要求上也要养成严谨的习惯。
象上面问题中,三组对应角相等的两个三角形全等,这不是三角形全等的判定方法。
在书写上也没有按照全等三角形书写的形式来规范书写。
正解:ADB BCA ∆≅∆。
理由如下:(),,()DBA CAB D C AB BA ADB BCA AAS ∠=∠∠=∠=∴∆≅∆公共边5、已知,如图11-6,ABD AEC ∆∆和都是等边三角形,求证:BE=DC 。
错解:ABD AEC ∆∆和都是等边三角形,0060,120.,.,.BAD CAE CAD EAB AB AD AE AC ABE ADC BE DC ∴∠==∠∠==∠==∴∆≅∆∴=又 错误原因分析:只靠眼睛直观,主观臆断,误认为D 、A 、E 三点在同一直线上,是造成解题的错误的主要原因。
实际上由于BAC ∠的大小不确定,所以D 、A 、E 三点不一定在同一直线上,而应该寻找DAC BAE ∠∠和相等。
象这种错误在初中学生解答有关几何题时经常出现的,这要求我们学生在审题时一定要审清楚题目中的已知条件及隐含条件,题目中没有出现的,我们不能去编造。
正解:ABD AEC ∆∆和都是等边三角形,60,,.,.,.BAD CAE BAD BAC CAE BAC DAC BAE AB AD AE AC ABE ADC BE DC ∴∠==∠∴∠+∠=∠+∠∴∠=∠==∴∆≅∆∴=又6、到三角形三边所在的直线的距离相等的点有 个。
错解:1个。
错误原因分析:三角形的三个内角角平分线会相交于一点,且这个点到三角形三边的距离相等。
由于所求的点是到三边所在直线的距离相等,因此,相邻两个外角的角平分线的交点到三边所在直线的距离也相等,所以符合条件的点有4个。
正解:4个。
如图11-7,四个点分别是D 、E 、F 、G 。
7、写出下列各图形的对称轴。
(1)、角的对称轴是 ; (2)、等腰三角形的对称轴是 ; (3)、圆的对称轴是 。
错解:(1)角的平分线;(2)等腰三角形底边上的高; (3)圆的每一条直径。
错误原因分析:对对称轴的概念理解不准确,对称轴指的是一条直线,不能将它误认为是射线和线段。
象角平分线是射线而不是直线,所以它不是角的对称轴,等腰三角形底边上的高是线段,也不是直线,所以它也不是等腰三角形的对称轴,圆的直径是线段,也不是直线,所以它也不是圆的对称轴。
正解:(1)、角平分线所在的直线;(2)、等腰三角形底边上的高所在的直线;(3)、过圆心的每一条直线。
8、已知点A(1-a,5)与点B(3,b)关于y轴对称,求a-b的值。
错解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=3,b=-5,∴a=-2,∴a-b=-2-(-5)=3 。
错误原因分析:没有正确理解和掌握关于y轴对称的点的坐标特征,在平面直角坐标系中,关于x轴对称的两个点的横坐标相等,纵坐标互为相反数;关于y轴对称的两个点的纵坐标相等,横坐标互为相反数。
即点P(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)。
这题是将关于x轴对称点的坐标特征与关于y轴对称点的坐标特征搞混淆了。
正解:∵点A(1-a,5)与点B(3,b)关于y轴对称,∴1-a=-3,b=5,∴a=4,b=5 ,∴a-b=4-5=-1 。
9、等腰三角形的两边长分别为4cm和9cm,试求其周长。
错解:分情况讨论:①、当腰长为4cm时,底边长就为9cm。
∴等腰三角形的周长为4×2+9=17(cm)。
②、当腰长为9cm时,底边长就为4cm。
∴等腰三角形的周长为9×2+4=22 (cm)。
错误原因分析:本题分两种情况考虑了等腰三角形的特点(即腰长为4cm与9cm两种情况),但忽略了构成三角形的条件(三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边。
)。
因为4+4<9,所以4cm不能作为腰长。
只有9cm为腰长,4cm为底边一种情况成立。
正解:分情况讨论:①、当腰长为4cm时,底边长就为9cm。
∵4+4<9 ,∴这种情况不成立。
②、当腰长为9cm时,底边长就为4cm。
∴等腰三角形的周长为9×2+4=22 (cm)。
∴等腰三角形的周长为22cm 。
10、等腰三角形一腰上的高等于腰长的一半,求其顶角。
错解:如图12-1,AB=AC,B D⊥AC于D,且12BD AB,∴∠A=30°,即其顶角为30°。
错误原因分析:等腰三角形是比较特殊的三角形,它有许多特性和,在解决与等腰三角形有关的问题时,一定要全面地分析问题,不漏解,上题只考虑到腰上的高线在三角形的内部是产生错解的原因。
事实上,对于本题腰上的高线还可能在三角形的外部,应分两种情况进行求解。
正解:分两种情况来讨论:①、当高线在三角形内部时,如图12-1,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠A=30°,即其顶角为30°。
②、当高线在三角形外部时,如图12-2,AB=AC,B D ⊥AC 于D ,且12BD AB =, ∴∠BAD=30°,∴∠BAC=150°。
∴等腰三角形的顶角为30°或150°。
11、在一次数学课上,王老师在黑板上画出图12-3,并写下了四个等式: (1)A B D C =,(2)B E C E =,(3) B C ∠=∠,(4) B A E C D E ∠=∠。
要求同学从这四个等式中选出两个作为条件,推出A E D △是等腰三角形.请你试着完成王老师提出的要求,并说明理由。
(写出一种即可)已知:求证:A E D △是等腰三角形。
错解:已知:A B D C =,B E C E =,求证:A E D△是等腰三角形。
证明: ∵A B D C =,B E C E =,,DEC AEB ∠=∠∴.DCE ABE ∆≅∆∴.DE AE =∴A E D△是等腰三角形. 错误原因分析:受思维定势的影响,以为三个条件就可证两个三角形全等,思维混乱,,运用了不成立的命题“SSA ”去证明题目,即犯了“虚假理由”的错误。
说明对两个三角形全等的判定定理掌握不透,上课时没真正弄懂定理的运用。
中等偏下的学生易犯这种错误。
正解:如:已知:A B D C =,B C ∠=∠,求证:A E D△是等腰三角形。
BE D A C图-12-3证明:∵A B D C =,B C ∠=∠,,DEC AEB ∠=∠ ∴.DCE ABE ∆≅∆∴.DE AE =∴A E D △是等腰三角形。
12、下列说法正确的是 ( )。
A 、 如果线段AB 和''A B 关于某条直线对称,那么AB=''A B ;B 、 如果点A 和点'A 到直线l 的距离相等,则点A 与点'A 关于直线l 对称;C 、 如果AB=''A B ,且直线MN 垂直平分A 'A ,那么线段AB 和''A B 关于直线MN对称;D 、 如果在直线MN 两旁的两个图形能够完全重合,那么这两个图形关于直线MN对称。
错解:选B 或C 或D 。
错误原因分析:对轴对称的定义和性质理解不够准确是这题解题错误的主要原因,因为线段AB 和''A B 关于某直线对称,则沿着这条直线对折AB 与''A B 一定能够重合,所以AB=''A B 。