导数在处理不等式的恒成立问题(一轮复习教案)
高考数学第一轮高效复习导学案-导数
![高考数学第一轮高效复习导学案-导数](https://img.taocdn.com/s3/m/baf6e6a449649b6648d747e2.png)
高考数学第一轮高效复习导学案导数及其应用1.了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2. 熟记八个基本导数公式(c,m x (m 为有理数),x x a e x x a x x log ,ln ,,,cos ,sin 的导数);掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.导数的应用价值极高,主要涉及函数单调性、极大(小)值,以及最大(小)值等,遇到有关问题要能自觉地运用导数.第一课时 导数概念与运算【学习目标】1.了解导数的定义、掌握函数在某一点处导数的几何意义——图象在该点处的切线的斜率;2.掌握幂函数、多项式函数、正弦函数、余弦函数、指数函数、对数函数的导数公式及两个函数的和、差、积、商的导数运算法则及简单复合函数的求导公式,并会运用它们进行求导运算;【考纲要求】导数为B 级要求【自主学习】1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的 ,即)(x f '= = . 2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ;)('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a =)(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u =])(['x Cf = )('uv = ,)('vu = )0(≠v 【基础自测】1.在曲线y=x 2+1的图象上取一点(1,2)及附近一点(1+Δx ,2+Δy ),则xy ∆∆为 . 2.已知f(x)=sinx(cosx+1),则)(x f '= .3.设P 为曲线C :y=x 2+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 .4.曲线在y=53123+-x x 在x=1处的切线的方程为 . 5.设曲线y ax e =在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .[典型例析]例1.求函数y=12+x 在x 0到x 0+Δx 之间的平均变化率.例2. 求下列各函数的导数:(1);sin 25x xx x y ++= (2));3)(2)(1(+++=x x x y (3);4cos 212sin 2⎪⎭⎫ ⎝⎛--=x x y (4).1111x x y ++-=例3. 已知曲线y=.34313+x (1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3. (1)求)(x f 的解析式;(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.[当堂检测]1. 函数y =ax 2+1的图象与直线y =x 相切,则a =2.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+△x ,2+△y ),则xy ∆∆为 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为4.设f (x )、g(x )分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(3)=0.则不等式f (x )g(x )<0的解集是________________5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数有 个。
【高中数学】 利用导数研究不等式的恒成立问题 学案
![【高中数学】 利用导数研究不等式的恒成立问题 学案](https://img.taocdn.com/s3/m/9d7f8b84195f312b3169a5b3.png)
第4课时 利用导数研究不等式的恒成立问题策略一:分离参数法(2020·南昌质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2. (1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围. 【解】 (1)因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e,所以f (x )的减区间是⎝⎛⎭⎪⎫0,1e.令f ′(x )>0,得ln x+1>0,解得x >1e ,所以f (x )的增区间是⎝ ⎛⎭⎪⎫1e ,+∞.综上,f (x )的减区间是⎝ ⎛⎭⎪⎫0,1e ,增区间是⎝ ⎛⎭⎪⎫1e ,+∞.(2)因为g ′(x )=3x 2+2ax -1,由题意得2x ln x ≤3x 2+2ax +1恒成立.因为x >0,所以a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍). 当x 变化时,h ′(x ),h (x )的变化情况如下表:x (0,1) 1 (1,+∞)h ′(x ) +0 -h (x )极大值所以当x =1max ,所以若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,即a ≥-2,故实数a 的取值范围是[-2,+∞).(1)分离参数法解含参不等式恒成立问题的思路用分离参数法解含参不等式恒成立问题是指在能够判断出参数的系数正负的情况下,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,只要研究变量表达式的最值就可以解决问题.(2)求解含参不等式恒成立问题的关键是过好“双关” 转化关通过分离参数法,先转化为f (a )≥g (x )(或f (a )≤g (x ))对任意的x ∈D 恒成立,再转化为f (a )≥g (x )max (或f (a )≤g (x )min )求最值关 求函数g (x )在区间D 上的最大值(或最小值)问题(2020·石家庄质量检测)已知函数f (x )=ax e x-(a +1)(2x -1).(1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程; (2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 解:(1)若a =1,则f (x )=x e x-2(2x -1). 即f ′(x )=x e x+e x-4, 则f ′(0)=-3,f (0)=2, 所以所求切线方程为3x +y -2=0. (2)由f (1)≥0,得a ≥1e -1>0,则f (x )≥0对任意的x >0恒成立可转化为aa +1≥2x -1x e x对任意的x >0恒成立. 设函数F (x )=2x -1x e x(x >0),则F ′(x )=-(2x +1)(x -1)x 2e x .当0<x <1时,F ′(x )>0; 当x >1时,F ′(x )<0,所以函数F (x )在(0,1)上是增加的,在(1,+∞)上是减少的, 所以F (x )max =F (1)=1e .于是aa +1≥1e ,解得a ≥1e -1. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫1e -1,+∞. 策略二:等价转化法设f (x )=a x+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 【解】 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x ⎝ ⎛⎭⎪⎫x -23.令g ′(x )>0得x <0或x >23,令g ′(x )<0得0<x <23,又x ∈[0,2],所以g (x )在区间⎣⎢⎡⎭⎪⎫0,23上是减少的,在区间⎝ ⎛⎦⎥⎤23,2上是增加的, 所以g (x )min =g ⎝ ⎛⎭⎪⎫23=-8527,又g (0)=-3,g (2)=1, 所以g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,等价于在区间⎣⎢⎡⎦⎥⎤12,2上,函数f (x )min≥g (x )max ,由(1)可知在区间⎣⎢⎡⎦⎥⎤12,2上,g (x )的最大值为g (2)=1. 在区间⎣⎢⎡⎦⎥⎤12,2上,f (x )=a x +x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,令m (x )=x ln x ,由m ′(x )=ln x +1>0得x >1e.即m (x )=x ln x 在⎝ ⎛⎭⎪⎫1e ,+∞上是增函数, 可知h ′(x )在区间⎣⎢⎡⎦⎥⎤12,2上是减函数, 又h ′(1)=0,所以当1<x ≤2时,h ′(x )<0; 当12≤x <1时,h ′(x )>0. 即函数h (x )=x -x 2ln x 在区间⎣⎢⎡⎭⎪⎫12,1上是增加的,在区间(1,2]上是减少的,所以h (x )max =h (1)=1, 所以a ≥1,即实数a 的取值范围是[1,+∞).(1)“恒成立”“存在性”问题一定要正确理解其实质,深刻挖掘内含条件,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离参数的方法,转化为求函数的最值问题.已知函数f (x )=a x+x 2-x ln a (a >0,a ≠1).(1)求函数f (x )的极小值;(2)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 是自然对数的底数),求实数a 的取值范围.解:(1)f ′(x )=a xln a +2x -ln a =2x +(a x-1)ln a .因为当a >1时,ln a >0,函数y =(a x-1)ln a 在R 上是增函数, 当0<a <1时,ln a <0,函数y =(a x-1)ln a 在R 上也是增函数, 所以当a >1或0<a <1时,f ′(x )在R 上是增函数,又因为f ′(0)=0,所以f ′(x )>0的解集为(0,+∞),f ′(x )<0的解集为(-∞,0),故函数f (x )的增区间为(0,+∞),减区间为(-∞,0),所以函数f (x )在x =0处取得极小值1.(2)因为存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1成立, 所以只需f (x )max -f (x )min ≥e -1即可.由(1)可知,当x ∈[-1,1]时,f (x )在[-1,0]上是减函数,在(0,1]上是增函数, 所以当x ∈[-1,1]时,f (x )min =f (0)=1,f (x )max 为f (-1)和f (1)中的较大者.f (1)-f (-1)=(a +1-ln a )-⎝ ⎛⎭⎪⎫1a +1+ln a =a -1a -2ln a ,令g (a )=a -1a-2ln a (a >0),因为g ′(a )=1+1a2-2a =⎝ ⎛⎭⎪⎫1-1a 2>0,所以g (a )=a -1a-2ln a 在(0,+∞)上是增函数.而g (1)=0,故当a >1时,g (a )>0,即f (1)>f (-1); 当0<a <1时,g (a )<0,即f (1)<f (-1). 所以当a >1时,f (1)-f (0)≥e -1, 即a -ln a ≥e -1.由函数y =a -ln a 在(1,+∞)上是增函数,解得a ≥e ; 当0<a <1时,f (-1)-f (0)≥e -1,即1a+ln a ≥e -1,由函数y =1a +ln a 在(0,1)上是减函数,解得0<a ≤1e.综上可知,所求实数a 的取值范围为⎝ ⎛⎦⎥⎤0,1e ∪[e ,+∞). [基础题组练]1.已知函数f (x )=x +4x ,g (x )=2x+a ,若对任意的x 1∈⎣⎢⎡⎦⎥⎤12,1,存在x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( )A .a ≤1B .a ≥1C .a ≤2D .a ≥2解析:选A.由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min=4+a ,所以5≥4+a ,即a ≤1,故选A.2.(2020·吉林白山联考)设函数f (x )=e x ⎝⎛⎭⎪⎫x +3x-3-a x,若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x(x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x(x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程;(2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 解:(1)因为f ′(x )=1x,所以f ′(1)=1.又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1.(2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x );②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x );③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1x-a ,令φ′(x )=0,得x =1a,当x 变化时,φ′(x ),φ(x )的变化情况下表:所以φ(x )max =φ⎝ ⎛⎭⎪⎫a >φ(1)=0,不满足不等式.综上,实数a 的取值范围为[1,+∞). 4.已知函数f (x )=ax -e x(a ∈R ),g (x )=ln x x.(1)求函数f (x )的单调区间;(2)存在x ∈(0,+∞),使不等式f (x )≤g (x )-e x成立,求a 的取值范围. 解:(1)因为f ′(x )=a -e x,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上是减少的; 当a >0时,令f ′(x )=0得x =ln a .由f ′(x )>0得f (x )的增区间为(-∞,ln a ); 由f ′(x )<0得f (x )的减区间为(ln a ,+∞). (2)因为存在x ∈(0,+∞),使不等式f (x )≤g (x )-e x, 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln x x2,则问题转化为a ≤⎝ ⎛⎭⎪⎫ln x x 2max,由h ′(x )=1-2ln xx3,令h ′(x )=0,则x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )的变化情况如下表:由上表可知,当x =e 时,函数h (x )有极大值,即最大值为2e .所以a ≤2e .5.(2020·河南郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).因为f ′(x )=1x-a ,所以f ′(1)=1-a =0,所以a =1,所以f ′(x )=1x -1=1-xx,令f ′(x )>0得0<x <1,令f ′(x )<0得x >1,所以f (x )的 增区间为(0,1),减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1).令g (x )=ln x-x 22+x -12-k (x -1)(x >1),则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x ,令h (x )=-x 2+(1-k )x +1,x >1,h (x )的对称轴为x =1-k 2.①当1-k 2≤1时,即k ≥-1,易知h (x )在(1,x 0)上是减少的,所以h (x )<h (1)=1-k ,若k ≥1,则h (x )≤0,所以g ′(x )≤0,所以g (x )在(1,x 0)上是减少的,所以g (x )<g (1)=0,不合题意.若-1≤k <1,则h (1)>0,所以必存在x 0使得x ∈(1,x 0)时,g ′(x )>0,所以g (x )在(1,x 0)上是增加的,所以g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1时,即k <-1,易知必存在x 0,使得h (x )在(1,x 0)上是增加的.所以h (x )>h (1)=1-k >0,所以g ′(x )>0,所以g (x )在(1,x 0)上是增加的.所以g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围是(-∞,1). 6.设f (x )=x e x,g (x )=12x 2+x .(1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解:(1)因为F (x )=f (x )+g (x )=x e x+12x 2+x ,所以F ′(x )=(x +1)(e x+1),令F ′(x )>0,解得x >-1,令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上是减少的,在(-1,+∞)上是增加的. 故F (x )min =F (-1)=-12-1e.(2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立.令h (x )=mf (x )-g (x )=mx e x-12x 2-x ,x ∈[-1,+∞),即只需证h (x )在[-1,+∞)上是增加的即可.故h ′(x )=(x +1)(m e x-1)≥0在[-1,+∞)上恒成立, 故m ≥1e x ,而1e x ≤e ,故m ≥e ,即实数m 的取值范围是[e ,+∞).。
高考数学复习考点知识专题讲解课件第18讲 导数与不等式 第2课时 利用导数研究恒成立问题
![高考数学复习考点知识专题讲解课件第18讲 导数与不等式 第2课时 利用导数研究恒成立问题](https://img.taocdn.com/s3/m/614739dd0d22590102020740be1e650e52eacf37.png)
1<x≤e时,f'(x)>0,此时f(x)单调递增.∴f(x)的单调递减区间为(0,1),单调递增区间
为(1,e],f(x)的极小值为f(1)=1,无极大值.
课堂考点探究
变式题1 已知f(x)=ax-ln
ln
x,x∈(0,e],g(x)= ,x∈(0,e],其中e是自然对数的底数,
a∈R.
1
1
上的最大值为- ,f(x)在 ,2
2
2
上的最小值为ln 2-2.
课堂考点探究
变式题2 [2021·重庆八中模拟] 已知函数f(x)=ln
1 2
x- x .
2
(2)若不等式f(x)>(2-a)x2有解,求实数a的取值范围.
解:原不等式即为ln
1 2
ln
1
ln
1
x- x >(2-a)x2,可化简为2-a< 2 - .记g(x)= 2 - ,则原不等式
用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结
构特征构造一个可导函数是用导数证明不等式的关键.
课堂考点探究
(2)可化为不等式恒成立问题的基本类型:
类型1:函数f(x)在区间[a,b]上单调递增,只需f'(x)≥0在[a,b]上恒成立.
类型2:函数f(x)在区间[a,b]上单调递减,只需f'(x)≤0在[a,b]上恒成立.
值的过程中常用的放缩方法有函数放缩法、基本不等式放缩法、叠加不等式
放缩法等.
课堂考点探究
探究点一
恒成立与能成立问题
例1 [2022·南京调研] 设函数f(x)=(x2-a)ex,a∈R,e是自然对数的底数.
不等式恒成立问题教案
![不等式恒成立问题教案](https://img.taocdn.com/s3/m/9c0d7251f90f76c660371a7f.png)
e
e
①错误;令 g( x) f ( x) - x x ln x x ,所以 g '( x) ln x ,可知 g (x) 在( 0,1)上递减,( 1, +∞)上递增,故②错;令
f ( x) h( x)
x
h' ( x)
x ln x x x ln x x2
1 ,所以 h(x)在(0,+∞)上递增,所以 f ( x1 )
f ( x) 0在x [ , ] 上恒成立
b 2a 或 f( ) 0
b 2a 0
b ,
或 2a f ( ) 0.
注: f (x) 0 恒成立
f ( x)min 0(注:若 f (x) 的最小值不存在, 则 f ( x) 0 恒成立
f (x) 的下界大于 0);f ()x 0
恒成立 f ( x)max 0 (注:若 f ( x) 的最大值不存在,则 f (x) 0 恒成立 f ( x) 的上界小于 0).
可以通过画图直接判断得出结果.尤其对于选择题、填空题这种方法更显方便、快捷.
学习好资料
欢迎下载
考点 5 不等式能成立问题的处理方法
若在区间 D 上存在实数 x 使不等式 f x k 成立,则等价于在区间 D 上 f x max k ; 若在区间 D 上存在实数 x 使不等式 f x k 成立,则等价于在区间 D 上的 f x min k . 注意不等式能成立问题(即不等式有解问题)与恒成立问题的区别.从集合观点看,含参不等式
m0 0 或 16m2 16m
0
由此能求出 m 的取值范围,解得 1 m 0 .
学习好资料
欢迎下载
考点二 分离参数法 —— 极端化原则
例 2 已知函数 f (x) x ln x ,当 x2 x1 0 时,给出下列几个结论:
导数在处理不等式的恒成立问题(一轮复习教案)
![导数在处理不等式的恒成立问题(一轮复习教案)](https://img.taocdn.com/s3/m/2eac1e37d15abe23492f4d19.png)
学习过程一、复习预习考纲要求:1.理解导数和切线方程的概念。
2.能在具体的数学环境中,会求导,会求切线方程。
3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。
4.灵活应用建立切线方程与其它数学知识之间的内在联系。
5. 灵活应用导数研究函数的单调性问题二、知识讲解1.导数的计算公式和运算法那么几种常见函数的导数:0'=C (C 为常数);1)'(-=n n nx x (Q n ∈);x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '=; 1(log )log a a x e x'=, ()x x e e '= ; ()ln x x a a a '= 求导法那么:法那么1 [()()]()()u x v x u x v x ±'='±'.法那么2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法那么3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭复合函数的导数:设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',那么复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'2.求直线斜率的方法〔高中范围内三种〕(1) tan k α=〔α为倾斜角〕; (2) 1212()()f x f x k x x -=-,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= 〔在0x x =处的切线的斜率〕;3.求切线的方程的步骤:〔三步走〕〔1〕求函数()f x 的导函数()f x ';〔2〕0()k f x '= 〔在0x x =处的切线的斜率〕;〔3〕点斜式求切线方程00()()y f x k x x -=-;4.用导数求函数的单调性:〔1〕求函数()f x 的导函数()f x ';〔2〕()0f x '>,求单调递增区间;〔3〕()0f x '<,求单调递减区间;〔4〕()0f x '=,是极值点。
2024届新高考一轮总复习人教版 第三章 重难突破系列(一) 利用导数解决不等式恒成立、有解 课件
![2024届新高考一轮总复习人教版 第三章 重难突破系列(一) 利用导数解决不等式恒成立、有解 课件](https://img.taocdn.com/s3/m/0329be4a178884868762caaedd3383c4bb4cb435.png)
[对点练] 1.已知曲线 f(x)=bex+x 在 x=0 处的切线方程为 ax-y+1=0. (1)求 a,b 的值; (2)当 x2>x1>0 时,f(x1)-f(x2)<(x1-x2)(mx1+mx2+1)恒成立,求实数 m 的取值范围.
解:(1)由 f(x)=bex+x 得,f′(x)=bex+1, 由题意得在 x=0 处的切线斜率为 f′(0)=b+1=a, 即 b+1=a,又 f(0)=b,可得-b+1=0,解得 b=1,a=2.
(2)由 f(1)≥0,得 a≥e-1 1>0,则 f(x)≥0 障碍点:不能把a+a 1看做整体,分离出来
对任意的 x>0 恒成立可转化为a+a 1≥2xx-ex 1对任意的 x>0 恒成立.················6 分
2x-1 设函数 F(x)= xex (x>0), ··································································7 分
于是a+a 1≥1e,解得 a≥e-1 1.故实数 a 的取值范围[e-1 1,+∞). ··················12 分
【点拨】 利用分离参数法确定不等式 f(x,λ)≥0(x∈D,λ 为参数)恒成立问题中参 数范围的步骤:
(1)将参数与变量分离,化为 f1(λ)≥f2(x)或 f1(λ)≤f2(x)的形式; (2)求 f2(x)在 x∈D 时的最大值或最小值; (3)解不等式 f1(λ)≥f2(x)max 或 f1(λ)≤f2(x)min,得到 λ 的取值范围.
(2)由(1)知,f(x)=ex+x,所以 f(x1)-f(x2)<(x1-x2)(mx1+mx2+1), 即为 f(x1)-mx21-x1<f(x2)-mx22-x2, 由 x2>x1>0 知,上式等价于函数 φ(x)=f(x)-mx2-x=ex-mx2 在(0,+∞)为增函数, φ′(x)=ex-2mx≥0,即 2m≤exx, 令 h(x)=exx(x>0),h′(x)=ex(xx-2 1), 当 0<x<1 时,h′(x)<0 时,h(x)单调递减; 当 x>1 时,h′(x)>0,h(x)单调递增,h(x)min=h(1)=e, 则 2m≤e,即 m≤2e,所以实数 m 的范围为(-∞ 若不等式 2x ln x≥-x2+ax-3 在区间(0,e]上恒成立,求实数 a 的取值范围. 解:不等式 2x ln x≥-x2+ax-3 在区间(0,e]上恒成立等价于 2ln x≥-x+a-3x, 令 g(x)=2ln x+x-a+3x,x∈(0,e],则 g′(x)=2x+1-x32=x2+x22x-3=(x+3x)(2x-1), 则在区间(0,1)上,g′(x)<0,函数 g(x)为减函数; 在区间(1,e]上,g′(x)>0,函数 g(x)为增函数. 由题意知 g(x)min=g(1)=1-a+3≥0,得 a≤4,所以实数 a 的取值范围是(-∞,4].
高考数学一轮复习 第三章 导数及其应用 3.4 利用导数证明不等式教学案 苏教版-苏教版高三全册数学
![高考数学一轮复习 第三章 导数及其应用 3.4 利用导数证明不等式教学案 苏教版-苏教版高三全册数学](https://img.taocdn.com/s3/m/885cc554f11dc281e53a580216fc700abb6852db.png)
第四节 利用导数证明不等式考点1 单变量不等式的证明 单变量不等式的证明方法(1)移项法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x );(2)构造“形似〞函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构〞构造辅助函数;(3)最值法:欲证f (x )<g (x ),有时可以证明f (x )max <g (x )min .直接将不等式转化为函数的最值问题 函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=〔x +1〕〔2ax +1〕x.当a ≥0,那么当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 当a <0,那么当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.(2)证明:由(1)知,当a <0时,f (x )在x =-12a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a.所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0.设g (x )=ln x -x +1,那么g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,即f (x )≤-34a-2. 将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 直接证得不等式.转化为两个函数的最值进行比较f (x )=x ln x .(1)求函数f (x )在[t ,t +2](t >0)上的最小值; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.[解] (1)由f (x )=x ln x ,x >0,得f ′(x )=ln x +1, 令f ′(x )=0,得x =1e.当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. ①当0<t <1e <t +2,即0<t <1e时,f (x )min =f ⎝ ⎛⎭⎪⎫1e=-1e; ②当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t .所以f (x )min=⎩⎪⎨⎪⎧-1e ,0<t <1e ,t ln t ,t ≥1e.(2)证明:问题等价于证明x ln x >x e x -2e(x ∈(0,+∞)).由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e时取到.设m (x )=x e x -2e(x ∈(0,+∞)),那么m ′(x )=1-xex ,由m ′(x )<0得x >1时,m (x )为减函数, 由m ′(x )>0得0<x <1时,m (x )为增函数, 易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),x ln x ≥-1e ≥x e x -2e ,两个等号不同时取到,即证对一切x ∈(0,+∞)都有ln x >1e x -2e x成立.在证明的不等式中,假设对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明.构造函数证明不等式函数f (x )=e x -3x +3a (e 为自然对数的底数,a ∈R ).(1)求f (x )的单调区间与极值;(2)求证:当a >ln 3e ,且x >0时,e xx >32x +1x-3a .[解] (1)由f (x )=e x-3x +3a ,x ∈R ,知f ′(x )=e x-3,x ∈R . 令f ′(x )=0,得x =ln 3,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 3)ln 3 (ln 3,+∞)f ′(x ) - 0 + f (x )↘极小值↗故f (x )单调递增区间是[ln 3,+∞),f (x )在x =ln 3处取得极小值,极小值为f (ln 3)=e ln 3-3ln 3+3a =3(1-ln 3+a ).无极大值.(2)证明:待证不等式等价于e x>32x 2-3ax +1,设g (x )=e x-32x 2+3ax -1,x >0,于是g ′(x )=e x-3x +3a ,x >0.由(1)及a >ln 3e =ln 3-1知:g ′(x )的最小值为g ′(ln 3)=3(1-ln 3+a )>0.于是对任意x >0,都有g ′(x )>0,所以g (x )在(0,+∞)上单调递增. 于是当a >ln 3e =ln 3-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x>32x 2-3ax +1,故e xx >32x +1x-3a .假设证明f (x )>g (x ),x ∈(a ,b ),可以构造函数h (x )=f (x )-g (x ),如果能证明h (x )在(a ,b )上的最小值大于0,即可证明f (x )>g (x ),x ∈(a ,b ).函数f (x )=a e x-b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =⎝ ⎛⎭⎪⎫1e -1x +1.(1)求a ,b ; (2)证明:f (x )>0.[解] (1)函数f (x )的定义域为(0,+∞).f ′(x )=a e x -b x ,由题意得f (1)=1e ,f ′(1)=1e-1,所以⎩⎪⎨⎪⎧a e =1e,a e -b =1e-1,解得⎩⎪⎨⎪⎧a =1e2,b =1.(2)证明:由(1)知f (x )=1e 2·e x-ln x .因为f ′(x )=ex -2-1x在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2).当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取极小值,也是最小值. 由f ′(x 0)=0,得e x 0-2=1x 0,那么x 0-2=-ln x 0.故f (x )≥f (x 0)=e x 0-2-ln x 0=1x 0+x 0-2>21x 0·x 0-2=0,所以f (x )>0.考点2 双变量不等式的证明破解含双参不等式证明题的3个关键点(1)转化,即由条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式.(2)巧构造函数,再借用导数,判断函数的单调性,从而求其最值.(3)回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.函数f (x )=ln x -ax (x >0),a 为常数,假设函数f (x )有两个零点x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2.[证明] 不妨设x 1>x 2>0, 因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2. 因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2, 所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2〔x 1-x 2〕x 1+x 2,令c =x 1x 2(c >1),那么不等式变为ln c >2〔c -1〕c +1.令h (c )=ln c -2〔c -1〕c +1,c >1,所以h ′(c )=1c -4〔c +1〕2=〔c -1〕2c 〔c +1〕2>0, 所以h (c )在(1,+∞)上单调递增, 所以h (c )>h (1)=ln 1-0=0,即ln c -2〔c -1〕c +1>0(c >1),因此原不等式x 1x 2>e 2得证.换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:联立消参 利用方程f (x 1)=f (x 2)消掉解析式中的参数a 抓商构元 令c =x 1x 2,消掉变量x 1,x 2构造关于c 的函数h (c ) 用导求解 利用导数求解函数h (c )的最小值,从而可证得结论 函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)假设a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. [解] (1)当a =0时,f (x )=ln x +x ,那么f (1)=1,所以切点为(1,1),又因为f ′(x )=1x+1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0). 由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0, 从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 考点3 证明与正整数有关的不等式问题函数中与正整数有关的不等式,其实质是利用函数性质证明数列不等式,证明此类问题时常根据的函数不等式,用关于正整数n 的不等式替代函数不等式中的自变量,通过多次求和达到证明的目的.假设函数f (x )=e x -ax -1(a >0)在x =0处取极值.(1)求a 的值,并判断该极值是函数的最大值还是最小值; (2)证明:1+12+13+ (1)>ln(n +1)(n ∈N *).[解] (1)因为x =0是函数极值点,所以f ′(0)=0,所以a =1.f (x )=e x -x -1,易知f ′(x )=e x -1.当x ∈(0,+∞)时,f ′(x )>0, 当x ∈(-∞,0)时,f ′(x )<0, 故极值f (0)是函数最小值. (2)证明:由(1)知e x≥x +1.即ln(x +1)≤x ,当且仅当x =0时,等号成立, 令x =1k(k ∈N *),那么1k >ln ⎝ ⎛⎭⎪⎫1+1k ,即1k >ln 1+k k,所以1k>ln(1+k )-ln k (k =1,2,...,n ), 累加得1+12+13+ (1)>ln(n +1)(n ∈N *).函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),要注意指、对数式的互化,如e x ≥x +1可化为ln(x +1)≤x 等.函数f (x )=ln(x +1)+ax +2.(1)假设x >0时,f (x )>1恒成立,求a 的取值X 围; (2)求证:ln(n +1)>13+15+17 +…+12n +1(n ∈N *).[解] (1)由ln(x +1)+ax +2>1,得a >(x +2)-(x +2)ln(x +1).令g (x )=(x +2)[1-ln(x +1)], 那么g ′(x )=1-ln(x +1)-x +2x +1=-ln(x +1)-1x +1. 当x >0时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减. 所以g (x )<g (0)=2,故a 的取值X 围为[2,+∞). (2)证明:由(1)知ln(x +1)+2x +2>1(x >0), 所以ln(x +1)>xx +2.令x =1k (k >0),得ln ⎝ ⎛⎭⎪⎫1k +1>1k 1k+2,即lnk +1k >12k +1. 所以ln 21+ln 32+ln 43+…+ln n +1n >13+15+17+…+12n +1,即ln(n +1)>13+15+17+…+12n +1(n ∈N *).课外素养提升③ 逻辑推理——用活两个经典不等式逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程.(1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x>x +1>x >1+ln x (x >0,且x ≠1).[例1] (1)函数f (x )=1ln 〔x +1〕-x,那么y =f (x )的图象大致为( )(2)函数f (x )=e x,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.(1)B [因为f (x )的定义域为⎩⎪⎨⎪⎧x +1>0,ln 〔x +1〕-x ≠0,即{x |x >-1,且x ≠0},所以排除选项D. 当x >0时,由经典不等式x >1+ln x (x >0), 以x +1代替x ,得x >ln(x +1)(x >-1,且x ≠0),所以ln(x +1)-x <0(x >-1,且x ≠0),即x >0或-1<x <0时均有f (x )<0,排除A ,C ,易知B 正确.](2)证明:令g (x )=f (x )-⎝ ⎛⎭⎪⎫12x 2+x +1=e x -12x 2-x -1,x ∈R ,那么g ′(x )=e x-x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立, 所以g (x )在R 上为单调递增函数,且g (0)=0. 所以函数g (x )有唯一零点,即两曲线有唯一公共点. [例2] (2017·全国卷Ⅲ改编)函数f (x )=x -1-a ln x . (1)假设f (x )≥0,求a 的值;(2)证明:对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e.[解] (1)f (x )的定义域为(0,+∞),①假设a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意. ②假设a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0;所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )≥0,故a =1. (2)证明:由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n.从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e.[例3] 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x<x .[解] (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增; 当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,x -1ln x>1.①因此ln 1x <1x-1,即ln x >x -1x ,x -1ln x<x .② 故当x ∈(1,+∞)时恒有1<x -1ln x<x .。
高二数学(选修人教A版)利用导数研究恒成立问题1教案
![高二数学(选修人教A版)利用导数研究恒成立问题1教案](https://img.taocdn.com/s3/m/eaa77246dd3383c4ba4cd2ab.png)
教案教学基本信息课题利用导数研究恒成立问题学科数学学段:高中年级高二教材书名:普通高中课程标准实验教科书数学选修2-2 (A版)出版社:人民教育出版社出版日期:2007 年1 月教学目标及教学重点、难点1.通过从不同角度分析,理解恒成立问题等价转化的实质,形成有效利用导数解决恒成立问题的方法,并能学以致用解决有关问题.2.在恒成问题的解决中,体会特殊与一般、化归与转化、分类讨论、数形结合等数学思想方法.3.通过一题多解,学习、归纳、提炼,不同的解题方法,体验、积累不同的解题经验,提高方法识别与选择的能力.重点:会用导数确定函数最值进而解决不等式恒成立问题.难点:构建恰当的函数解决不等式恒成立问题.教学过程(表格描述)教学环节主要教学活动设置意图知识点回顾【回顾】如何利用导数确定函数的最值?复习回顾导数确定函数最值得方法,为本节课做好知识铺垫.思考探究【思考1】你能确定函数2()21f x x x=--在[2,3]上的最大值和最小值吗?【预设】1、求导函数'()22f x x=-'()0f x>在[2,3]上恒成立,所以()f x在[2,3]上单调递增,所以max()(3)2f x f==,min()(2)1f x f==-.2、对于二次函数2()21f x x x=--,其对称轴1x=,所以在对称轴右侧的区间[2,3]上()f x单调递增,所以max()(3)2f x f==,min()(2)1f x f==-.【探究】试判断下列说法是否正确?①对于任意的[2,3]x∈都有()0f x≤成立.②对于任意的[2,3]x∈都有()2f x≤成立.恒成立问题尤其是根据恒成立的条件确定参数问题是高考的热点,是利用导数研究函数的一种重要题型.有必要引导学生探究、归纳、积累这类问题的解决方法思考 探究【探究】若对于任意的[2,3]x ∈都有()f x c ≤成立,你能确定实数c 的取值范围吗? 【预设】1、 一方面实数c 不小于()f x 在[2,3]的 所有函数值,c 大于等于()f x 在[2,3]上 的最大值即可;2、另一方面可以看成函数()y f x =与常数函数y c =函数值的大小关系,借助函数图象可以看出c 的取值范围.【思考2】对于函数2()21f x x x =-- .【探究】试判断下列说法是否正确?③对于任意的[2,3]x ∈都有()0f x ≥成立.④对于任意的[2,3]x ∈都有()-1f x ≥成立.【探究】若对于任意的[2,3]x ∈都有()f x m ≥成立,你能确定实数m 的取值范围吗? 【预设】1、一方面实数m 不大于()f x 在[2,3]上的所有函数值,m 小于等于()f x 在[0,2]上的最小值即可;2、另一方面,可以看成函数()y f x =与常数函数y m =函数值的大小关系,同样借助函数图象可以看出m 的取值范围.【思考3】已知函数31()3f x x x =-.下面两个说法是否正确?①对于任意的[0,2]x ∈,都有()0f x ≥成立? ②对于任意的[0,2]x ∈,都有()1f x ≤成立?【分析】判断两个说法是否正确的关键点是的什么? 利用导数确定函数()f x 在[0,2]上的最值,借助函数图象,做出判断.【预设】31()3f x x x =-,[0,2]x ∈,2'()1f x x =-,令'()0f x =,解得11x =,21x =-当x 变化时,'()f x ,()f x 的变化情况如下表:x0 (0,1)1 (1,2)2 '()f x -0 +()f x极小值23因为(0)0f =,2(2)3f =,所以max 2()3f x =,min 2()(1)3f x f ==-.【探究】从学生熟悉的简单的二次函数入手,再到三次函数复习巩固确定函数最值的方法,通过设问让学生思考判断一些结论是否正确,逐步帮助学生理解恒成立问题的本质,体会恒成立问题与函数最值的关系。
人教版导数如何解决含参数不等式恒成立问题
![人教版导数如何解决含参数不等式恒成立问题](https://img.taocdn.com/s3/m/52b7c317a45177232e60a21e.png)
如何解决含参数“不等式恒成立”问题(1)分离参数法分离参数法一定要搞清谁是变量,谁为参数,一般知道谁的范围谁就是变量。
求谁的范围,谁就是参数,利用分离参数法,常用到函数的单调性,基本不等式求最值。
例如:设2)1ln()(ax x x x f --+=,当a 满足什么条件时,)(x f 在⎥⎦⎤⎢⎣⎡--31,21单调递减?解:由题意)(x f 的定义域为),1(+∞-得x x a ax ax x x f ++--=--+=1)12(22111)(2'⇔0)12(22≤+--x a ax ,∈x ⎥⎦⎤⎢⎣⎡--31,21恒成立⇔0122≤++a ax 法一:(分离参数法)0122≤++a ax x a x a +-≤⇒-≤+⇒1121)1(2,又因为11+-=x y 在⎥⎦⎤⎢⎣⎡--31,21单调递增。
2max -=y ,1-≤a 。
(2)分类讨论法有的不等式恒成立问题,参数与变量不是那么容易分离或分离后根本求不出最值(或极限值)那么就需分类讨论法。
上面的习题也可以用分类讨论法:法二(分类讨论法)令122)(++=a ax x g ,∈x ⎥⎦⎤⎢⎣⎡--31,21由题意得00)21({<≤-⇒a g 或00)31({>≤-a g 或1)(0{==x g a 1-≤⇒a 。
例2函数ax x a x x f +-=22ln )(,若函数)(x f 在),1(+∞为单调递减,求实数a 的取值范围。
分析:要求a 的范围,我们就把a 作为参数,优先考虑分离参数法,但是对于这题a 参数没有办法分离,我们只能选择分类讨论法。
解:)(x f 的定义域为),0(+∞xax ax a x a x x f )1)(12(21)(2'-+-=+-=(因式分解是关键)0)1)(12()(≥-+=ax ax x g当0=a 时,1)(-=x g ,不合题意当0>a 时,)(x g y =是开口向上的抛物线,由图象分析可得,若0)(≥x g 在1>x 恒成立,则111≥⇒≤a a当0<a 时,同理分析可得21121-≤⇒≤-a a 。
高考数学复习知识点讲解教案第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题
![高考数学复习知识点讲解教案第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题](https://img.taocdn.com/s3/m/d35fd1db8662caaedd3383c4bb4cf7ec4bfeb664.png)
3 ≥ 3 ,
3
4
解得 ln
4
3
≤<
2ln 2
,
3
3
4 2ln 2
故实数的取值范围为[ ln ,
).
4
3
3
探究点二 分类讨论法求参数范围
例2
(1)
[2023·厦门一中模拟] 已知函数 = ln + 1.
若 = 2, > 0,讨论函数 =
使得 0 < 0,则的取值范围是(
3 1
A.[− , )
4e 2
3 1
B.[ , )
4e 2
B
)
3 3
C.[− , )
2e 4
3
D.[ , 1)
2e
[思路点拨] 构造函数 = e 2 − 1 ,ℎ = 2 − 2,原问题转化为存在
唯一的整数0 ,使得 0 < ℎ 0 ,结合导数及图象求解即可.
设 = 2ln 2 − ln ,则′ = 2ln 2 − ln − 1 =
令′ > 0,即
令′ <
4
ln
e
4
0,即ln
e
− ln > 0,得0 < <
− ln < 0,得 >
4
,
e
4
ln
e
即当 ∈
4
,即当
e
∈
当 → 0时, → 0,当 → +∞ 时, → −∞ .
若存在0 ≥ 1,使得ℎ 0 <
2 +2−1
即
2 −1
,则只需ℎ
专题12 利用导数研究不等式恒成立问题(解析版)
![专题12 利用导数研究不等式恒成立问题(解析版)](https://img.taocdn.com/s3/m/5a45015124c52cc58bd63186bceb19e8b8f6ec20.png)
专题12利用导数研究不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x )或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.典例1.已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.【解析】法一:构造函数法设g (x )=x e 2x -ax -ln x -1(x >0),对任意的x >0,f (x )≤x e 2x 恒成立,等价于g (x )≥0在(0,+∞)上恒成立,则只需g (x )min ≥0即可.因为g ′(x )=(2x +1)e 2x -a -1x ,令h (x )=(2x +1)e 2x -a -1x (x >0),则h ′(x )=4(x +1)e 2x +1x2>0,所以h (x )=g ′(x )在(0,+∞)上单调递增,因为当x ―→0时,h (x )―→-∞,当x ―→+∞时,h (x )―→+∞,所以h (x )=g ′(x )在(0,+∞)上存在唯一的零点x 0,满足(2x 0+1)e2x 0-a -1x 0=0,所以a =(2x 0+1)e2x 0-1x 0,且g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0e2x 0-ax 0-ln x 0-1=-2x 20e2x 0-ln x 0,则由g (x )min ≥0,得2x 20e2x 0+ln x 0≤0,此时0<x 0<1,e2x 0≤-ln x 02x 20,所以2x 0+ln(2x 0)≤ln(-ln x 0)+(-ln x 0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x>0,所以函数S (x )在(0,+∞)上单调递增,因为S (2x 0)≤S (-ln x 0),所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2].法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x在(0,+∞)上恒成立.令m (x )=e 2x-ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln x x 2,再令g (x )=2x 2e 2x +ln x (x >0),则′(x )=4(x 2+x )e 2x +1x>0,所以g (x )在(0,+∞)上单调递增,因为=e 8-2ln 2<0,g (1)=2e 2>0,所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0,所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0,所以ln 2+2ln x 0+2x 0=ln(-ln x 0),即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0),设s (x )=ln x +x (x >0),则s ′(x )=1x+1>0,所以函数s (x )在(0,+∞)上单调递增,因为s (2x 0)=s (-ln x 0),所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2].典例2.设函数f (x )=ln x +k x ,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.【解析】(1)由条件得f ′(x )=1x -k x2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,∴f ′(e)=0,即1e -k e 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -e x2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e ,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增.当x =e 时,f (x )取得极小值,且f (e)=ln e +e e=2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立,设h (x )=f (x )-x =ln x +k x-x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -k x2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x +14恒成立,∴k ≥14.故k 的取值范围是14,+典例3.已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x ex ,对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】(1)由题设知f ′(x )=x 2+x a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在12,2上单调递增,∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-x e x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈12,2时,g (x )max =g (1)=1e .由8+a ≤1e ,得a ≤1e-8,∴实数a ∞,1e -8.典例4.已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1,所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0.(2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈13,12,所以-6x +1∈[-3,-2],所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ).因为a <0,所以当x ∈[1,2]时,g ′(x )<0,所以g (x )在[1,2]上单调递减,故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3,即g (x )在[1,2]上的值域为-3,-32a -12.因为对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),所以[0,1]⊆-3,-32a -12,所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].专项突破练一、单选题1.若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是()A .27a <-B .25a >-C .29a ≥D .29a >【解析】43322()4,()4124(3)f x x x f x x x x x '=-=-=-,当3x <时,()0f x '<,当3x >时,()0f x '>,()f x 的递减区间是(,3)-∞,递增区间是(3,)+∞,所以3,()x f x =取得极小值,也是最小值,min ()(3)27f x f ==-,不等式4342x x a ->-对任意实数x 都成立,所以272,29a a ->->.故选:D.2.已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是()A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-【解析】函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0≤f x ,当[]1,2x ∈时,()0≤f x 即220ax x a -+≤,即为()221a x x +≤,可化为()212x a x ≤+令()22()1x g x x +=,则()()22'22221)22((12(212))x x x x g x x x -++-++==当[]1,2x ∈时,'()0g x <,单调递减.因此()min 2224()(2)152g x g ⨯==+=,所以min 4()5a g x ≤=故实数a 的取值范围是4,5⎛⎤-∞ ⎥⎝⎦,故选B 3.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是()A .[)2ln 2,++∞B .[)3,∞-+C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞【解析】()()()26824f x x x x x '=-+=--,当()0,2x ∈时,()0f x '>,()f x 单调递增,当()2,3x ∈时,()0f x '<,()f x 单调递减,所以()f x 在()0,3上的最大值是()24f =.()111x g x x x-'=-=,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,3x ∈时,()0g x '>,()g x 单调递增,所以()g x 在()0,3上的最小值是()11g =,若1x ∀,()20,3x ∈,()()12g x k f x +≥恒成立,则()()max min g x k f x +≥⎡⎤⎣⎦,即14k +≥,所以3k ≥,所以实数k 的取值范围是[)3,+∞.故选:D .4.已知不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立,则实数a 的最小值为()A .1ln 22-B .113ln 622--C .13-D .113ln 622+【解析】设()()()23ln 11=-+>-f x x x x ,则()321211-'=-=++x f x x x ,当102x <<时,()0f x '<,()f x 单调递减,当112x <<时,()0f x '>,()f x 单调递增,()003ln10=-=f ,()123ln 20=-<f ,不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立可转化为对任意[]0,1x ∈时()()max 231+≥a f x ,所以()2310+≥a ,解得13a ≥-.故选:C.5.若关于x 的不等式sin x x ax -≥,对[]0,x π∈恒成立,则实数a 的取值范围是()A .(],1-∞-B .(],1-∞C .4,π⎛⎫-∞- ⎪⎝⎭D .4,∞π⎛⎤- ⎥⎝⎦【解析】因为不等式sin x x ax -≥,对[]0,x π∈恒成立,当0x =时,显然成立,当(0,]x π∈,sin 1xa x ≤-恒成立,令()sin 1x f x x =-,则()2cos sin x x xf x x -'=,令()cos sin g x x x x =-,则()sin 0g x x x '=-≤在(0,]π上成立,所以()g x 在(0,]π上递减,则()()00g x g <=,所以()0f x '<在(0,]π上成立,所以()f x 在(0,]π上递减,所以()()min 1f x f π==-,所以1a ≤-,故选:A 6.若关于x 的不等式()()22e 222ln 1x a x a a x -+-+>+-在()2,+∞上恒成立,则实数a 的取值范围为()A .1,e ⎡-+∞⎫⎪⎢⎣⎭B .()1,-+∞C .[)1,-+∞D .[)2,-+∞【解析】依题意,()()()22e 221ln 1x a x x a x -+->-+-,则()()222e ln e 21ln 1x x a x a x --+>-+-(*).令()2ln g t t a t =+(1)t >,则(*)式即为()()2e 1x g g x ->-.又2e 11x x ->->在()2,+∞上恒成立,故只需()g t 在()1,+∞上单调递增,则()20ag t t '=+≥在()1,+∞上恒成立,即2a t ≥-在()1,+∞上恒成立,解得2a ≥-.故选:D.7.已知函数()2sin f x x x =+,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则实数a 的取值范围为()A .[)1,+∞B .[)2,+∞C .[]1,2D .()1,+∞【解析】由题意,函数()2sin f x x x =+的定义域为R ,其满足()()f x f x -=-,所以函数()f x 为奇函数,且()2cos 0f x x =+>',所以函数()f x 为R 上的增函数,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则ln (1)a f x f x ⎛⎫+≥ ⎪⎝⎭对(]0,2x ∈恒成立,即ln 1a x x+≥对(]0,2x ∈恒成立,即ln a x x x ≥-对(]0,2x ∈恒成立,设()(]ln 0,2,h x x x x x ∈=-,可得()ln h x x '=-,当01x <<时,()0h x '>;当12x <≤时,()0h x '<,所以()h x 在(0,1)上单调递增,在(1,2]单调递减,所以()max (1)1h x h ==,所以1a ≥,即实数a 的取值范围为[1,)+∞.故选:A.8.已知不等式22ln 0ax x +-≥恒成立,则a 的取值范围为()A .21,e ⎡⎫+∞⎪⎢⎣⎭B .22,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤ ⎥⎝⎦D .220,e ⎛⎤ ⎥⎝⎦【解析】由题设,可知:,()0x ∈+∞,问题转化为2(ln 1)x a x -≥在,()0x ∈+∞上恒成立,令ln 1()x f x x -=,则22ln ()x f x x-'=,当20e x <<时()0f x '>,即()f x 递增;当2e x >时()0f x '<,即()f x 递减;所以2max 21()(e )e f x f ==,故22e a ≥.故选:B 9.若函数()ln f x x =,g (x )=313x 对任意的120x x >>,不等式112212()()()()x f x x f x m g x g x ->-恒成立,则整数m 的最小值为()A .2B .1C .0D .-1【解析】因为31()3g x x =单调递增,120x x >>,所以12()()0g x g x >>,即12()()0g x g x ->,原不等式恒成立可化为122211())((())x m f x x f g x mg x x -->恒成立,即120x x >>时,111222()()()()mg x x f x mg x x f x ->-恒成立,即函数3())ln ((3)m xf x x x x h x mg x ==--在(0,)+∞上为增函数,所以2ln 10()mx h x x '--≥=在(0,)+∞上恒成立,即2ln 1x m x +≥,令2ln )1(k x x x +=,则32l (n )1x k x x '+=-,当120e x -<<时,()0k x '>,()k x 单调递增,当12e x ->时,()0k x '<,()k x 单调递减,故当12e x -=时,函数2ln )1(k x x x +=的最大值为e2,即e2m ≥恒成立,由m ∈Z 知,整数m 的最小值为2.故选:A二、多选题10.已知函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值可以是()A .-B .CD .【解析】因为函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,当0x <时,22x ax +≥恒成立,即2a x x ≥+恒成立,因为2x x +≤-2x x =,即x =时取等号,所以a ≥-.当0x =时,00e ≥恒成立.当0x >时,x e ax ≥恒成立,即xe a x ≤恒成立,设()x e g x x =,()()221xx x e x xe e g x x x --'==,()0,1x ∈,()0g x '<,()g x 为减函数,()1,x ∈+∞,()0g x '>,()g x 为增函数,所以()()min 1g x g e ==,所以a e ≤,综上所述:a e -≤≤.故选:ABC 11.设函数()()e 1x f x ax a +=-+∈N ,若()0f x >恒成立,则实数a 的可能取值是()A .1B .2C .3D .4【解析】()x f x e a '=-,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.所以ln x a =时,函数取得最小值ln 1a a a -+,因为()0f x >恒成立,所以ln 10a a a -+>恒成立,且a +∈N ,可得实数a 的所有可能取值1,2,3,故选:ABC.12.已知函数()312x f x x +=+,()()42e x g x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是()A .6eB .(2eC .(2e +D .2e【解析】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增,所以对[0,)x ∀∈+∞,()()102f x f ≥=;()()42e x g x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=-,当1x >时,()'0g x <;当01x <<时,()'0g x >,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t 的取值范围为()2e,⎡+∞⎣;6e 与(2e 均在区间()2⎡+∞⎣内,(2e +与2e 均不在区间()2e,⎡+∞⎣内;故选:AB .13.已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为()A .B .1-C .1D【解析】设1ln (1)y x x x =-->,则110y x '=->,所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->,所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-,∴110ln 1x x >>-.又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211e x xa --≥恒成立.令111(),()e e x x x xg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=,∴211a -≥,解得a ≥或a ≤a 的值可以为AD.三、填空题14.已知函数2()2ln f x x x a =--,若()0f x ≥恒成立,则a 的取值范围是________.【解析】由2()2ln f x x x a =--,得()21(1)2()2x x f x x x x-+'=-=,又函数()f x 的定义域为(0,)+∞,令()01f x x =⇒=',当01x <<时,()0f x '<,函数()f x 单调递减;当1x >时,()0f x '>,函数()f x 单调递增;故1x =是函数()f x 的极小值点,也是最小值点,且(1)1f a =-,要使()0f x ≥恒成立,需10a -≥,则1a ≤.15.当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.【解析】根据题意,当(]0,1x ∈时,分离参数a ,得23143a x x x ≥--恒成立.令1t x=,∴1t ≥时,2343t t a t --≥恒成立.令()2343t t g t t =--,则()()()2189911t t t t g t '=--=-++,当1t ≥时,()0g t '<,∴函数()g t 在[)1,+∞上是减函数.则()()16g t g ≤=-,∴6a ≥-.∴实数a 的取值范围是[)6-+∞,.16.已知函数()2f x x a =+,(ln 2g x x x =-,如果对任意的1x ,2122x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,则实数a 的取值范围是_________.【解析】由()ln 2g x x x =-,可得()112'2x g x x x-=-=,当122x ⎡⎤∈⎢⎥⎣⎦,()'0g x ≤,所以()g x 在122⎡⎤⎢⎥⎣⎦,单调递减,()min ()2ln24g x g ∴==-,()2f x x a =+ ,()f x ∴在122⎡⎤⎢⎥⎣⎦上单调递增,()max ()24f x f a ∴==+, 对任意的12122x x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,4ln24a ∴+≤-,ln28a ∴≤-17.已知不等式[]1ln(1)x e x m x x -->-+对一切正数x 都成立.则实数m 的取值范围是___________.【解析】设()()ln 1f x x x =-+,则()11x x f e e x -=--,故()()1x f e mf x ->对一切正数x 都成立,()()110011x f x x x x '=-=>>++,故()f x 在()0,∞+上单调递增,()()0ln 010f x -+=>,()()1x f e m f x -∴<恒成立,由()1x h x e x =--,()1xh x e '=-在()0,∞+上恒大于零,所以()h x 在()0,∞+上单调递增,所以()()00h x h >=,1x e x ∴->在()0,∞+上恒成立,()()1xf e f x ∴->,()()11x f e f x -∴>,1m ∴≤.四、解答题18.设()()32114243f x x a x ax a =-+++,其中a R ∈.(1)若()f x 有极值,求a 的取值范围;(2)若当0x ≥,()0f x >恒成立,求a 的取值范围.【解析】(1)由题意可知:()()´2214f x x a x a =-++,且()f x 有极值,则()´0f x =有两个不同的实数根,故()()224116410a a a ∆=+-=->,解得:1a ≠,即()(),11,a ∈-∞⋃(2)由于0x ≥,()0f x >恒成立,则()0240f a =>,即0a >,由于()()()()´221422f x x a x a x x a =-++=--,则①当01a <<时,()f x 在2x a =处取得极大值、在2x =处取得极小值,当02x a £<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x a ≥时,()()422803min f x f a ==->,解得:121a >;②当1a =时,()0f x ¢³,即()f x 在[)0,+∞上单调递增,且()0240f =>,则()()00f x f ³>恒成立;③当1a >时,()f x 在2x =处取得极大值、在2x a =处取得极小值,当02x ≤<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x ≥时,()()3243min 24240f x f a a a a ==-++>,解得36a -<<,综上所述,a 的取值范围是1216a <<.19.已知函数()ln 32af x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()310xf x x +-≥对任意[)1,x ∞∈+恒成立,求实数a 的取值范围.【解析】(1)函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x-'=-=①当0a >时,令()0f x '>,可得12x >,此时函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭②当0a <时,令()0f x '>,可得102x <<,此时函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭综上所述:当0a >时,函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0a <时,函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭(2)()310xf x x +-≥在[)1,x ∞∈+恒成立,则2ln 12aax x x -≥在[)1,x ∞∈+恒成立,即21ln 12a x x x ⎛⎫-≥ ⎪⎝⎭在[)1,x ∞∈+恒成立。
2024届高考一轮复习数学教案(新人教B版):利用导数证明不等式
![2024届高考一轮复习数学教案(新人教B版):利用导数证明不等式](https://img.taocdn.com/s3/m/e93fd16776232f60ddccda38376baf1ffc4fe3dc.png)
§3.6利用导数证明不等式考试要求导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.题型一将不等式转化为函数的最值问题例1(2023·潍坊模拟)已知函数f (x )=e x -ax -a ,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,令g (x )=2f (x )x2.证明:当x >0时,g (x )>1.(1)解函数f (x )=e x -ax -a 的定义域为R ,求导得f ′(x )=e x -a ,当a ≤0时,f ′(x )>0恒成立,即f (x )在(-∞,+∞)上单调递增,当a >0时,令f ′(x )=e x -a >0,解得x >ln a ,令f ′(x )<0,解得x <ln a ,即f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,所以当a ≤0时,f (x )在(-∞,+∞)上单调递增,当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)证明当a =1时,g (x )=2(e x -x -1)x 2,当x >0时,2(e x -x -1)x 2>1⇔e x >1+x +x 22⇔12x 2+x +1e x <1,令F (x )=12x 2+x +1e x -1,x >0,F ′(x )=-12x 2e x<0恒成立,则F (x )在(0,+∞)上单调递减,F (x )<F (0)=1e 0-1=0,因此12x 2+x +1e x<1成立,所以当x >0时,g (x )>1,即原不等式得证.思维升华待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.跟踪训练1设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解由f (x )=e x -2x +2a (x ∈R )知,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2,当x <ln 2时,f ′(x )<0,函数f (x )在区间(-∞,ln 2)上单调递减;当x >ln 2时,f ′(x )>0,函数f (x )在区间(ln 2,+∞)上单调递增,所以f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )的极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a ,无极大值.(2)证明要证当a >ln 2-1且x >0时,e x >x 2-2ax +1,即证当a >ln 2-1且x >0时,e x -x 2+2ax -1>0,设g (x )=e x -x 2+2ax -1(x >0),则g ′(x )=e x -2x +2a ,由(1)知g ′(x )min =2-2ln 2+2a ,又a >ln 2-1,则g ′(x )min >0,于是对∀x ∈(0,+∞),都有g ′(x )>0,所以g (x )在(0,+∞)上单调递增,于是对∀x >0,都有g (x )>g (0)=0,即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.题型二将不等式转化为两个函数的最值进行比较例2(2023·苏州模拟)已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,证明f (x )-e x x+2e ≤0.(1)解函数的定义域为(0,+∞),∵f ′(x )=e x -a =e -ax x(x >0),∴当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,故函数f (x )在区间(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <e a ,由f ′(x )<0,得x >e a,即函数f (x )综上,当a ≤0时,f (x )在区间(0,+∞)上单调递增;当a >0时,f (x )(2)证明证明f (x )-e x x +2e ≤0,只需证明f (x )≤e x x-2e ,由(1)知,当a =e 时,函数f (x )在区间(0,1)上单调递增,在(1,+∞)上单调递减,∴f (x )max =f (1)=-e.令g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x2,∴当x ∈(0,1)时,g ′(x )<0,函数g (x )单调递减;当x ∈(1,+∞)时,g ′(x )>0,函数g (x )单调递增,∴g (x )min =g (1)=-e ,∴当x >0,a =e 时,f (x )-e x x+2e ≤0.思维升华若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.跟踪训练2(2023·合肥模拟)已知函数f (x )=e x +x 2-x -1.(1)求f (x )的最小值;(2)证明:e x +x ln x +x 2-2x >0.(1)解由题意可得f ′(x )=e x +2x -1,则函数f ′(x )在R 上单调递增,且f ′(0)=0.由f ′(x )>0,得x >0;由f ′(x )<0,得x <0.则f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,故f (x )min =f (0)=0.(2)证明要证e x +x ln x +x 2-2x >0,即证e x +x 2-x -1>-x ln x +x -1.由(1)可知当x >0时,f (x )>0恒成立.设g (x )=-x ln x +x -1,x >0,则g ′(x )=-ln x .由g ′(x )>0,得0<x <1;由g ′(x )<0,得x >1.则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )≤g (1)=0,当且仅当x =1时,等号成立.故f (x )>g (x ),即e x +x ln x +x 2-2x >0.题型三适当放缩证明不等式例3已知函数f (x )=a e x -1-ln x -1.(1)若a=1,求f(x)在(1,f(1))处的切线方程;(2)证明:当a≥1时,f(x)≥0.(1)解当a=1时,f(x)=e x-1-ln x-1(x>0),f′(x)=e x-1-1x,k=f′(1)=0,又f(1)=0,∴切点为(1,0).∴切线方程为y-0=0(x-1),即y=0. (2)证明∵a≥1,∴a e x-1≥e x-1,∴f(x)≥e x-1-ln x-1.方法一令φ(x)=e x-1-ln x-1(x>0),∴φ′(x)=e x-1-1 x,令h(x)=e x-1-1 x,∴h′(x)=e x-1+1x2>0,∴φ′(x)在(0,+∞)上单调递增,又φ′(1)=0,∴当x∈(0,1)时,φ′(x)<0;当x∈(1,+∞)时,φ′(x)>0,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=0,∴φ(x)≥0,∴f(x)≥φ(x)≥0,即f(x)≥0.方法二令g(x)=e x-x-1,∴g′(x)=e x-1.当x∈(-∞,0)时,g′(x)<0;当x∈(0,+∞)时,g′(x)>0,∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴g(x)min=g(0)=0,故e x≥x+1,当且仅当x=0时取“=”.同理可证ln x≤x-1,当且仅当x=1时取“=”.由e x≥x+1⇒e x-1≥x(当且仅当x=1时取“=”),由x-1≥ln x⇒x≥ln x+1(当且仅当x=1时取“=”),∴e x-1≥x≥ln x+1,即e x-1≥ln x+1,即e x-1-ln x-1≥0(当且仅当x=1时取“=”),即f(x)≥0.思维升华导数方法证明不等式中,最常见的是e x和ln x与其他代数式结合的问题,对于这类问题,可以考虑先对e x和ln x进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x≥1+x,当且仅当x=0时取等号;(2)ln x≤x-1,当且仅当x=1时取等号.跟踪训练3(2022·南充模拟)已知函数f(x)=ax-sin x.(1)若函数f(x)为增函数,求实数a的取值范围;(2)求证:当x>0时,e x>2sin x.(1)解∵f(x)=ax-sin x,∴f′(x)=a-cos x,由函数f(x)为增函数,则f′(x)=a-cos x≥0恒成立,即a≥cos x在R上恒成立,∵y=cos x∈[-1,1],∴a≥1,即实数a的取值范围是[1,+∞).(2)证明由(1)知,当a=1时,f(x)=x-sin x为增函数,当x>0时,f(x)>f(0)=0⇒x>sin x,要证当x>0时,e x>2sin x,只需证当x>0时,e x>2x,即证e x-2x>0在(0,+∞)上恒成立,设g(x)=e x-2x(x>0),则g′(x)=e x-2,令g′(x)=0解得x=ln2,∴g(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,∴g(x)min=g(ln2)=e ln2-2ln2=2(1-ln2)>0,∴g(x)≥g(ln2)>0,∴e x>2x成立,故当x>0时,e x>2sin x.课时精练1.已知函数f(x)=ax+x ln x,且曲线y=f(x)在点(e,f(e))处的切线与直线4x-y+1=0平行.(1)求实数a的值;(2)求证:当x >0时,f (x )>4x -3.(1)解f (x )的定义域为(0,+∞),f ′(x )=ln x +1+a ,由题意知,f ′(e)=2+a =4,则a =2.(2)证明由(1)知,f (x )=2x +x ln x ,令g (x )=f (x )-(4x -3)=x ln x -2x +3,则g ′(x )=ln x -1,由ln x -1>0得x >e ,由ln x -1<0得0<x <e ,故g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增,∴g (x )min =g (e)=3-e>0,即g (x )>0,即f (x )>4x -3.2.(2023·淄博模拟)已知函数f (x )=e x -x -1.(1)求函数f (x )的单调区间和极值;(2)当x ≥0时,求证:f (x )+x +1≥12x 2+cos x .(1)解易知函数f (x )的定义域为R ,∵f (x )=e x -x -1,∴f ′(x )=e x -1,令f ′(x )>0,解得x >0,f (x )在(0,+∞)上单调递增,令f ′(x )<0,解得x <0,f (x )在(-∞,0)上单调递减,即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0),∴函数f (x )的极小值为f (0)=0,无极大值.(2)证明要证f (x )+x +1≥12x 2+cos x ,即证e x -12x 2-cos x ≥0,设g (x )=e x -12x 2-cos x ,要证原不等式成立,即证g (x )≥0成立,∵g ′(x )=e x -x +sin x ,sin x ≥-1,∴g ′(x )=e x -x +sin x ≥e x -x -1x =-π2+2k π,k ∈Z 由(1)知,e x -x -1≥0(x =0时等号成立),∴g ′(x )>0,∴g (x )在(0,+∞)上单调递增,∴在区间[0,+∞)上,g (x )≥g (0)=0,∴当x ≥0时,f (x )+x +1≥12x 2+cos x 得证.3.已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值;(2)证明:对一切x ∈(0,+∞),都有ln x +1>1e x +1-2e 2x 成立.(1)解函数f (x )=x ln x -ax 的定义域为(0,+∞),当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2,由f ′(x )=0,得x =1e2,当0<x <1e2时,f ′(x )<0;当x >1e2时,f ′(x )>0,所以f (x )0,1e 2上单调递减,在1e 2,+∞因此f (x )在x =1e 2处取得最小值,即f (x )min =f 1e 2=-1e2,无最大值.(2)证明当x >0时,ln x +1>1ex +1-2e 2x ,等价于x (ln x +1)>x ex +1-2e 2,由(1)知,当a =-1时,f (x )=x ln x +x ≥-1e 2,当且仅当x =1e2时取等号,设G (x )=x ex +1-2e 2,x ∈(0,+∞),则G ′(x )=1-x e x +1,易知G (x )max =G (1)=-1e 2,当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1e x +1-2e 2x .4.(2022·新高考全国Ⅱ)已知函数f (x )=x e ax -e x .(1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围;(3)设n ∈N +,证明:112+1+122+2+…+1n 2+n >ln(n +1).(1)解当a =1时,f (x )=(x -1)e x ,x ∈R ,则f ′(x )=x e x ,当x <0时,f ′(x )<0,当x >0时,f ′(x )>0,故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解设h (x )=x e ax -e x +1,则h (0)=0,又h ′(x )=(1+ax )e ax -e x ,设g (x )=(1+ax )e ax -e x ,则g ′(x )=(2a +a 2x )e ax -e x ,若a >12,则g ′(0)=2a -1>0,因为g ′(x )为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x )>0,故g (x )在(0,x 0)上单调递增,故g (x )>g (0)=0,故h (x )在(0,x 0)上单调递增,故h (x )>h (0)=0,与题设矛盾.若0<a ≤12,则h ′(x )=(1+ax )e ax -e x =e ax +ln(1+ax )-e x ,下证:对任意x >0,总有ln(1+x )<x 成立,证明:设S (x )=ln(1+x )-x ,x >0,故S ′(x )=11+x -1=-x 1+x<0,故S (x )在(0,+∞)上单调递减,故S (x )<S (0)=0,即ln(1+x )<x 成立.由上述不等式有e ax +ln(1+ax )-e x <e ax +ax -e x =e 2ax -e x ≤0,故h ′(x )≤0总成立,即h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=0,满足题意.若a ≤0,则h ′(x )=e ax -e x +ax e ax <1-1+0=0,所以h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=0,满足题意.综上,a ≤12.(3)证明取a =12,则∀x >0,总有12ex x -e x +1<0成立,令t =12e x ,则t >1,t 2=e x ,x =2ln t ,故2t ln t <t 2-1,即2ln t <t -1t对任意的t >1恒成立.所以对任意的n ∈N +,有2ln n +1n <n +1n -n n +1,整理得ln(n +1)-ln n <1n 2+n ,故112+1+122+2+…+1n 2+n>ln 2-ln 1+ln 3-ln 2+…+ln(n +1)-ln n =ln(n +1),故不等式成立.。
利用导数研究不等式恒(能)成立问题 高考数学大一轮复习(新高考地区)(解析版)
![利用导数研究不等式恒(能)成立问题 高考数学大一轮复习(新高考地区)(解析版)](https://img.taocdn.com/s3/m/e452966df342336c1eb91a37f111f18583d00cc8.png)
3.6利用导数研究不等式恒(能)成立问题【题型解读】【知识储备】1.恒成立与能成立问题的解决策略大致分四类:①构造函数,分类讨论;②部分分离,化为切线;③完全分离,函数最值;④换元分离,简化运算;在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界. 一般地,不等式恒成立、方程或不等式有解问题设计独特,试题形式多样、变化众多,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养起到了积极的作用,成为高考的一个热点.【题型精讲】【题型一 端点效应处理不等式求参】例1 (2022·山东济南历城二中高三月考)已知函数f (x )=e x -12x 2-ax -1,g (x )=cos x +12x 2-1. (1)当a =1时,求证:当x ≥0时,f (x )≥0;(2)若f (x )+g (x )≥0在[0,+∞)上恒成立,求a 的取值范围.【解析】 (1)当a =1时,f (x )=e x -12x 2-x -1, ∴f ′(x )=e x -x -1,令u (x )=e x -x -1,则u ′(x )=e x -1≥0在[0,+∞)上恒成立,故f ′(x )在[0,+∞)上单调递增,∴f ′(x )≥f ′(0)=0,∴f (x )在[0,+∞)上单调递增,∴f (x )≥f (0)=0,从而原不等式得证.(2)∵f (x )+g (x )=e x +cos x -ax -2,令h (x )=e x +cos x -ax -2,则h ′(x )=e x -sin x -a ,令t (x )=e x -sin x -a ,则t ′(x )=e x -cos x ,∵e x ≥1,-1≤cos x ≤1,故t ′(x )≥0,∴h′(x)在[0,+∞)上单调递增,∴h′(x)≥h′(0)=1-a,①当1-a≥0,即a≤1时,h′(x)≥0,故h(x)在[0,+∞)上单调递增,故h(x)≥h(0)=0,满足题意;②当1-a<0,即a>1时,∵h′(0)<0,又x→+∞时,h′(x)→+∞,∴∃x0∈(0,+∞),使得h′(x0)=0,∴当x∈(0,x0)时,h′(x)<0,∴h(x)在(0,x0)上单调递减,此时h(x)<h(0)=0,不符合题意.综上所述,实数a的取值范围是(-∞,1].【题型精练】1.(2022·天津·崇化中学期末)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.【解析】(1)f′(x)=(1-2x-x2)e x,令f′(x)=0,得x=-1±2,当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)e x-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)e x-a,g′(0)=1-a,又g′′(x)=-(x2+4x+1)e x,g′′(x)<0,g′(x)在[0,+∞)上单调递减,①当1-a≤0时,即a≥1,则g′(x)≤g′(0)=1+a≤0,g(x)在[0,+∞)上单调递减,所以g(x) ≤g(0)=0.②当1-a>0时,即a<1,x→+∞时,g′(x)→-∞,所以必存在唯一的x0∈(0,+∞),使得g′(x0)=0,当0<x<x0时,g′(x)>0,g(x)单调递增;当x>x0时,g′(x)<0,g(x)单调递减.所以当x∈(0,x0)时,g(x)>g(0)=0,(*)式不恒成立.综上所述,实数a的取值范围是[1,+∞).2.(2022·山东济南高三期末)设函数f (x)=(1+x-x2)e x(e=2.718 28…是自然对数的底数).(1)讨论f (x)的单调性;(2)当x≥0时,f (x)≤ax+1+2x2恒成立,求实数a的取值范围.【解析】(1)f ′(x)=(2-x-x2)e x=-(x+2)(x-1)e x.当x<-2或x>1时,f ′(x)<0;当-2<x<1时,f ′(x)>0.所以f (x)在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增.(2)设F(x)=f (x)-(ax+1+2x2),F(0)=0,F′(x)=(2-x-x2)e x-4x-a,F′(0)=2-a,当a≥2时,F′(x)=(2-x-x2)e x-4x-a≤-(x+2)·(x-1)e x-4x-2≤-(x+2)(x-1)e x-x-2=-(x+2)[(x-1)e x+1],设h(x)=(x-1)e x+1,h′(x)=x e x≥0,所以h(x)在[0,+∞)上单调递增,h(x)=(x-1)e x+1≥h(0)=0,即F ′(x )≤0在[0,+∞)上恒成立,F (x )在[0,+∞)上单调递减,F (x )≤F (0)=0,所以f (x )≤ax +1+2x 2在[0,+∞)上恒成立.当a <2时,F ′(0)=2-a >0,而函数F ′(x )的图象在(0,+∞)上连续且x →+∞,F ′(x )逐渐趋近负无穷, 必存在正实数x 0使得F ′(x 0)=0且在(0,x 0)上F ′(x )>0,所以F (x )在(0,x 0)上单调递增,此时F (x )>F (0)=0,f (x )>ax +1+2x 2有解,不满足题意.综上,a 的取值范围是[2,+∞).【题型二 分离参数法处理不等式求参】方法技巧 分离参数法解决恒(能)成立问题的策略(1)分离变量.构造函数,直接把问题转化为函数的最值问题.(2)a ≥f (x )恒成立⇔a ≥f (x )max ;a ≤f (x )恒成立⇔a ≤f (x )min ;a ≥f (x )能成立⇔a ≥f (x )min ;a ≤f (x )能成立⇔a ≤f (x )max .例2 (2022·山东青岛高三期末)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.【解析】 (1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e,∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e,∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞. 综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x在x ∈(0,+∞)上恒成立. 设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2. 令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x ∈(0,1)时,h ′(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h ′(x )<0,h (x )单调递减.∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=e x +ax 2-x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【解析】 (1)当a =1时,f (x )=e x +x 2-x ,f ′(x )=e x +2x -1,由于f ″(x )=e x +2>0,故f ′(x )单调递增,注意到f ′(0)=0,故当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减,当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.(2)由f (x )≥12x 3+1,得e x +ax 2-x ≥12x 3+1,其中x ≥0, ①当x =0时,不等式为1≥1,显然成立,符合题意;②当x >0时,分离参数a 得a ≥-e x -12x 3-x -1x 2, 记g (x )=-e x -12x 3-x -1x 2,g ′(x )=-(x -2)⎝⎛⎭⎫e x -12x 2-x -1x 3, 令h (x )=e x -12x 2-x -1(x ≥0),则h ′(x )=e x -x -1,h ″(x )=e x -1≥0, 故h ′(x )单调递增,h ′(x )≥h ′(0)=0,故函数h (x )单调递增,h (x )≥h (0)=0,由h (x )≥0可得e x -12x 2-x -1≥0恒成立, 故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增;当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减.因此,g (x )max =g (2)=7-e 24, 综上可得,实数a 的取值范围是⎣⎡⎭⎫7-e 24,+∞. 2. (2022·安徽省江淮名校期末)已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围.【解析】 (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1,则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1),即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -e x +x ln x x 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝⎛⎭⎫e x +e -2e x x -ln x , 令G (x )=e x+e -2e x x -ln x , 则G ′(x )=e x-2(x e x -e x )x 2-1x =e x (x -1)2+e x -x x 2>0对任意的x ∈(0,+∞)恒成立. ∴G (x )=e x+e -2e x x -ln x 在(0,+∞)上单调递增,且G (1)=0, ∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0,∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].【题型三 最值法处理不等式求参】方法技巧 最值法处理不等式求参根据不等式恒成立构造函数转化成求函数的最值问题,一般需讨论参数范围,借助函数单调性求解. 例3 (2022·河南高三期末)已知函数f (x )=e x (e x -a )-a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0恒成立,求a 的取值范围.【解析】 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.②若a >0,则由f ′(x )=0得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0得x =ln ⎝⎛⎭⎫-a 2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0;当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. (2)①若a =0,则f (x )=e 2x ,所以f (x )≥0.②若a >0,则由(1)得,当x =ln a 时,f (x )取得最小值,最小值为f (ln a )=-a 2ln a ,从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f (x )≥0.③若a <0,则由(1)得,当x =ln ⎝⎛⎭⎫-a 2时,f (x )取得最小值,最小值为f ⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2=a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2, 从而当且仅当a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2≥0,即-2e 34≤a <0时,f (x )≥0. 综上,a 的取值范围是[-2e 34,1].【题型精练】1.(2022·广东·高三期末)已知a ∈R ,设函数f (x )=a ln(x +a )+ln x .(1)讨论函数f (x )的单调性;(2)若f (x )≤2e a x +ln x a -1恒成立,求实数a 的取值范围. 【解析】 (1)f ′(x )=a x +a +1x =(a +1)x +a x (x +a ),x >0且x >-a , ①当a ≥0时,f ′(x )>0,f (x )单调递增;②当a ≤-1时,f ′(x )<0,f (x )单调递减;③当-1<a <0时,-a a +1>-a >0, x ∈⎝⎛⎭⎫-a ,-a a +1时,f ′(x )<0,f (x )单调递减;x ∈⎝⎛⎭⎫-a a +1,+∞时,f ′(x )>0,f (x )单调递增. (2)f (x )=a ln(x +a )+ln x ≤2e a x +ln x a -1, 即a ln(x +a )+ln x ≤2e a x +ln x -ln a -1,a >0,即a ln(x +a )+ln a ≤2e a x -1,令g (x )=e x -x -1(x >0),则g ′(x )=e x -1>0,∴g (x )在(0,+∞)上单调递增,∴g (x )>g (0)=0,即e x -x -1>0,即e x -1>x ,∴e 2e a x -1>a 2x ,则原不等式等价为a ln(x +a )+ln a ≤a 2x ,即a ln(x +a )-a 2x +ln a ≤0,令h (x )=a ln(x +a )-a 2x +ln a ,则h ′(x )=a x +a -a 2=-a 2x +a -a 3x +a ,令h ′(x )=0,可得x =1-a 2a , 当a ≥1时,h ′(x )≤0,则h (x )在(0,+∞)上单调递减,则只需满足h (0)=a ln a +ln a ≤0,∴ln a ≤0,解得0<a ≤1,∴a =1;当0<a <1时,可得h (x )在⎝⎛⎭⎫0,1-a 2a 上单调递增,在⎝⎛⎭⎫1-a 2a ,+∞上单调递减, 则h (x )max =h ⎝⎛⎭⎫1-a 2a =a ln 1a -a (1-a 2)+ln a ≤0,整理可得ln a -a 2-a ≤0, 令φ(a )=ln a -a 2-a ,则φ′(a )=1a -2a -1=-(a +1)(2a -1)a, 则可得φ(a )在⎝⎛⎭⎫0,12上单调递增,在⎝⎛⎭⎫12,1上单调递减, 则φ(a )max =φ⎝⎛⎭⎫12=-ln 2-34<0,故0<a <1时,h (x )≤0恒成立, 综上,0<a ≤1.【题型四 同构法处理不等式求参】例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.【解析】 (1)当a =e 时,f (x )=e x -ln x +1,∴f ′(x )=e x -1x,∴f ′(1)=e -1. ∵f (1)=e +1,∴切点坐标为(1,1+e),∴曲线y =f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)·(x -1),即y =(e -1)x +2, ∴切线与两坐标轴的交点坐标分别为(0,2),⎝⎛⎭⎪⎫-2e -1,0, ∴所求三角形面积为12×2×⎪⎪⎪⎪⎪⎪-2e -1=2e -1. (2)同构后参变分离f (x )=a e x -1-ln x +ln a =e ln a +x -1-ln x +ln a ≥1等价于e ln a +x -1+ln a +x -1≥ln x +x =e ln x +ln x , 令g (x )=e x +x ,上述不等式等价于g (ln a +x -1)≥g (ln x ),显然g (x )为单调递增函数,∴又等价于ln a +x -1≥ln x ,即ln a ≥ln x -x +1,令h (x )=ln x -x +1,则h ′(x )=1x -1=1-x x, 在(0,1)上h ′(x )>0,h (x )单调递增;在(1,+∞)上h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=0,ln a ≥0,即a ≥1,∴a 的取值范围是[1,+∞).【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=e ax -x .(1)若曲线y =f (x )在点(0,f (0))处切线的斜率为1,求f (x )的单调区间;(2)若不等式f (x )≥e ax ln x -ax 2对x ∈(0,e]恒成立,求a 的取值范围.【解析】 (1)f ′(x )=a e ax -1,则f ′(0)=a -1=1,即a =2.∴f ′(x )=2e 2x -1,令f ′(x )=0,得x =-ln 22. 当x <-ln 22时,f ′(x )<0;当x >-ln 22时,f ′(x )>0. 故f (x )的单调递减区间为⎝⎛⎭⎫-∞,-ln 22,单调递增区间为⎝⎛⎭⎫-ln 22,+∞.(2)(同构后参变分离) 由f (x )≥e ax ln x -ax 2,即ax 2-x ≥e ax (ln x -1),有ax -1e ax ≥ln x -1x, 故仅需ln e ax -1e ax ≥ln x -1x即可. 设函数g (x )=ln x -1x ,则ln e ax -1e ax ≥ln x -1x等价于g (e ax )≥g (x ). ∵g ′(x )=2-ln x x 2,∴当x ∈(0,e]时,g ′(x )>0,则g (x )在(0,e]上单调递增,∴当x ∈(0,e]时,g (e ax )≥g (x )等价于e ax ≥x ,即a ≥ln x x恒成立. 设函数h (x )=ln x x ,x ∈(0,e],则h ′(x )=1-ln x x 2≥0,即h (x )在(0,e]上单调递增, ∴h (x )max =h (e)=1e ,则a ≥1e即可,∴a 的取值范围为⎣⎡⎭⎫1e ,+∞. 【题型五 双变量不等式求参】例5 (2022·辽宁省实验中学分校高三期末)已知函数f (x )=a +1x+a ln x ,其中参数a <0. (1)求函数f (x )的单调区间;(2)设函数g (x )=2x 2f ′(x )-xf (x )-3a (a <0),存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,求a 的取值范围.【解析】 (1)∵f (x )=a +1x +a ln x ,定义域为(0,+∞).∴f ′(x )=-a +1x 2+a x =ax -(a +1)x 2. ①当-1<a <0时,a +1a<0,恒有f ′(x )<0.∴函数f (x )的单调减区间是(0,+∞). ②当a =-1时,f ′(x )=-1x<0,∴f (x )的减区间是(0,+∞). ③当a <-1时,x ∈⎝⎛⎭⎫0,a +1a ,f ′(x )>0,∴f (x )的增区间是⎝⎛⎭⎫0,a +1a ;x ∈⎝⎛⎭⎫a +1a ,+∞, f ′(x )<0,∴f (x )的减区间是⎝⎛⎭⎫a +1a ,+∞. (2)g (x )=2ax -ax ln x -(6a +3)(a <0),因为存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,∴2g (x )min <g (x )max .又g ′(x )=a (1-ln x ),且a <0,∴当x ∈[1,e)时,g ′(x )<0,g (x )是减函数;当x ∈(e ,e 2]时,g ′(x )>0,g (x )是增函数.∴g (x )min =g (e)=a e -6a -3,g (x )max =max{g (1),g (e 2)}=-6a -3.∴2a e -12a -6<-6a -3,则a >32e -6.又a <0,从而32e -6<a <0, 即a 的取值范围是⎝⎛⎭⎫32e -6,0. 【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设f (x )=a x+x ln x ,g (x )=x 3-x 2-3. (1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.【解析】 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x ⎝⎛⎭⎫x -23.由g ′(x )<0,解得0<x <23; 由g ′(x )>0,解得x <0或x >23.又x ∈[0,2], 所以g (x )在区间⎣⎡⎦⎤0,23上单调递减,在区间⎣⎡⎦⎤23,2上单调递增,又g (0)=-3,g (2)=1, 故g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527. 所以[g (x 1)-g (x 2)]max =g (x )max -g (x )min =1+8527=11227≥M ,则满足条件的最大整数M =4. (2)对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,等价于在区间⎣⎡⎦⎤12,2上,函数f (x )min ≥g (x )max . 由(1)可知在区间⎣⎡⎦⎤12,2上,g (x )的最大值为g (2)=1.在区间⎣⎡⎦⎤12,2上,f (x )=a x+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立. 设h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,则h ′(x )=1-2x ln x -x ,易知h ′(x )在区间⎣⎡⎦⎤12,2上是减函数, 又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0. 所以函数h (x )=x -x 2ln x 在区间⎣⎡⎦⎤12,1上单调递增,在区间[1,2]上单调递减,所以h (x )max =h (1)=1,所以实数a 的取值范围是[1,+∞).2. (2022·山东·历城二中期末)设函数f (x )=e(x 2-ax +a )e x(a ∈R ). (1)若曲线y =f (x )在x =1处的切线过点M (2,3),求a 的值;(2)设g (x )=x +1x +1-13,若对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立,求a 的取值范围. 【解析】 (1)因为f (x )=e(x 2-ax +a )e x ,所以f ′(x )=e·(2x -a )e x -(x 2-ax +a )e x e 2x =-(x -2)(x -a )e x -1. 又f (1)=1,即切点为(1,1),所以k =f ′(1)=1-a =3-12-1,解得a =-1. (2)“对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立”,等价于“在[0,2]上,f (x )的最大值大于或等于g (x )的最大值”.因为g (x )=x +1x +1-13,g ′(x )=x 2+2x (x +1)2≥0,所以g (x )在[0,2]上单调递增,所以g (x )max =g (2)=2. 令f ′(x )=0,得x =2或x =a .①当a ≤0时,f ′(x )≥0在[0,2]上恒成立,f (x )单调递增,f (x )max =f (2)=(4-a )e -1≥2,解得a ≤4-2e ; ②当0<a <2时,f ′(x )≤0在[0,a ]上恒成立,f (x )单调递减,f ′(x )≥0在[a ,2]上恒成立,f (x )单调递增,f (x )的最大值为f (2)=(4-a )e -1或f (0)=a e ,所以(4-a )e -1≥2或a e≥2. 解得:a ≤4-2e 或a ≥2e ,所以2e≤a <2; ③当a ≥2时,f ′(x )≤0在[0,2]上恒成立,f (x )单调递减,f (x )max =f (0)=a e≥2,解得a ≥2e,所以a ≥2. 综上所述:a ≤4-2e 或a ≥2e.。
第04讲 利用导数研究不等式恒成立问题 (精讲+精练)(学生版)
![第04讲 利用导数研究不等式恒成立问题 (精讲+精练)(学生版)](https://img.taocdn.com/s3/m/8f0279c980c758f5f61fb7360b4c2e3f572725ab.png)
第04讲 利用导数研究不等式恒成立问题 (精讲+精练)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析 高频考点一:分离变量法 高频考点二:分类讨论法 高频考点三:等价转化法 第四部分:高考真题感悟第五部分:第04讲 利用导数研究不等式恒成立问题(精练)1、分离参数法用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式; 步骤:①分类参数(注意分类参数时自变量x 的取值范围是否影响不等式的方向)②转化:若()a f x >)对x D ∈恒成立,则只需max ()a f x >;若()a f x <对x D ∈恒成立,则只需min ()a f x <. ③求最值.2、分类讨论法如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(0a >,0∆<或0a <,0∆<)求解.3、等价转化法当遇到()()f x g x ≥型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数()()()F x f x g x =-或者“右减左”的函数()()()H x g x f x =-,进而只需满足min ()0F x ≥,或者max ()0H x ≤,将比较法的思想融入函数中,转化为求解函数的最值的问题.1.(2022·全国·高二)设a 为正实数,函数322()34f x x ax a =-+,若(,2)x a a ∀∈,()0f x <,则a 的取值范围是( )A .[2,)+∞B .(2,)+∞C .(0,2]D .2(0,)32.(2022·全国·高二)若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是( ) A .27a <-B .25a >-C .29a ≥D .29a >3.(2022·全国·高二)已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是( )A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-高频考点一:分离变量法1.(2022·全国·高三专题练习)设a R ∈,若不等式ln ax x >在()1,x ∞∈+上恒成立,则实数a 的取值范围是( ) A .()0,∞+B .1,e ⎛⎫+∞ ⎪⎝⎭C .()1,∞+D .()e,+∞2.(2022·内蒙古乌兰察布·高二期末(文))已知函数2()ln 2a f x x x =+,若对任意两个不等的正数1x ,2x ,都有1212()()4f x f x x x -≥-恒成立,则a 的取值范围为( )A .[)4∞+,B .()4.∞+C .(]4∞-,D .()4∞-,3.(2022·全国·高三专题练习)已知对(0,)x ∀∈+∞,不等式ln 1ax x ≥-恒成立,则实数a 的最小值是( ) A .eB .2eC .21e D .1e4.(2022·河南·高二阶段练习(理))已知当0x >时,()21e 1x x a x -≤--恒成立,则实数a 的取值范围是( )A .(],e 1-∞-B .(],1-∞C .(]2,e 1--D .(],2-∞-5.(2022·湖南·临澧县第一中学高二阶段练习)已知函数()ln af x x x=+(a 为常数) (1)讨论函数()f x 的单调性; (2)不等式()1f x ≥在2(]0,x ∈上恒成立,求实数a 的取值范围.6.(2022·重庆市育才中学高二阶段练习)已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.7.(2022·四川省泸县第一中学高二阶段练习(理))已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围.8.(2022·河南·三模(文))已知函数()e x f x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-. (1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.高频考点二:分类讨论法1.(2022·广西柳州·三模(文))已知函数()ln f x ax x =-. (1)讨论函数()f x 的单调性;(2)若1x =为函数()f x 的极值点,当[)e,x ∞∈+,不等式()()()1e x f x x m x -+≤-恒成立,求实数m 的取值范围.2.(2022·陕西西安·二模(文))已知函数()()1ln f x a x a x=+∈R . (1)当1a =时,求函数()f x 的单调减区间;(2)若不等式()f x x ≥对(]0,1x ∈恒成立,求实数a 的取值范围.3.(2022·河南·高二阶段练习(文))已知曲线()ln f x m x =+在1x =处的切线方程为()y h x =,且210e f ⎛⎫= ⎪⎝⎭.(1)求()h x 的解析式;(2)若0x ≥时,不等式()20e x ax h x --≥恒成立,求实数a 的取值范围.4.(2022·全国·高三专题练习)已知函数()e xf x =,曲线()y f x =在点()00,x y 处的切线为()yg x =.(1)证明:对于x R ∀∈,()()f x g x ≥; (2)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.5.(2022·四川·树德中学高三开学考试(文))已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围.6.(2022·贵州黔东南·一模(文))已知函数()22ln f x x a x =-.(1)讨论()f x 的单调性;(2)当x >1时,()1f x >恒成立,求a 的取值范围.高频考点三:等价转化法1.(2022·河南·民权县第一高级中学高三阶段练习(文))已知函数()1ln f x a x x=+,()()1e 1,x g x x mx a m x =+--∈R . (1)讨论f (x )的单调性;(2)当a =1时,若不等式()()f x g x ≤恒成立,求m 的取值范围.2.(2022·江苏·高二课时练习)已知函数()ln f x ax x =+,()()220g x a x a =>.若()()f x g x ≤对一切正实数x 都成立,求实数a 的取值范围.3.(2022·全国·高三专题练习)已知函数()()2ln f x x a x =+,()2g x ax x =+.(1)当0a =时,求函数()f x 的最小值;(2)当0a ≤时,若对任意1≥x 都有()()f x g x ≥成立,求实数a 的取值范围.4.(2022·江西·南昌市实验中学高二阶段练习(理))已知函数()2ln f x x a x =+,()2g x x x =+.(1)若()y f x =在点()()1,1M f 处的切线方程为30x y b -+=,求实数a 、b 的值; (2)若对任意1x >,都有()()f x g x ≤成立,求实数a 的取值范围.5.(2022·山东日照·高三期末)已知函数()ln f x x ax b =-+,中,a b ∈R . (1)当0a >时,求()f x 的单调区间;(2)若[]()1,0,2,ln 1a b x kx x x ϕ=∈=--,对任意实数[]()()1,e ,x f x x ϕ∈≥恒成立,求2k b -的最大值.高频考点四:最值法1.(2022·重庆市朝阳中学高二阶段练习)已知函数321()22f x x x x m =--+,其中.m R ∈(1)若函数()f x 的极小值为0,求实数m 的值; (2)当[1,2]x ∈-时,1()2f x 恒成立,求实数m 的取值范围.2.(2022·重庆市长寿中学校高二阶段练习)已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值3.(2022·江西·模拟预测(文))已知函数()222(0)exmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224ef x f x -≤恒成立,求实数m 的取值范围.4.(2022·河南·高二阶段练习(文))已知函数()32f x x ax bx c =+++在23x =-与1x =处都取得极值.(1)求a ,b 的值;(2)若对任意[]1,2x ∈-,不等式()23f x c <恒成立,求实数c 的取值范围.5.(2022·全国·高三专题练习)已知函数()()()221n l 0f x ax a x a x=-+->. (1)讨论函数()f x 的单调性;(2)若对[]2,3a ∀∈,[]12,1,2x x ∀∈,不等式()()12ln 2m f x f x +>-恒成立,求实数m 的取值范围.6.(2022·全国·高三专题练习)已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.1.(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2.(2020·海南·高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.4.(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.一、单选题1.(2022·河南南阳·高二期末(文))若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( ) A .[1,)+∞ B .(1,)+∞ C .[2,)+∞ D .(,2)-∞-2.(2022·全国·高二)函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域均为[1,+∞),并且函数f (x )的图象始终在函数g (x )图象的上方,那么a 的取值范围是( ) A .(0,+∞)B .(-∞,0)C .4,3⎛-+∞⎫ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭3.(2022·全国·高三阶段练习(理))已知()xae f x x x =-,()0,x ∈+∞,且1x ∀,()20,x ∈+∞,且12x x <,()()12210f x f x x x -<恒成立,则a 的取值范围是( )A .12,e ∞-⎛⎤- ⎥⎝⎦B .2,e ⎡⎫+∞⎪⎢⎣⎭C .(2,e ⎤-∞⎦D .13,e ⎛⎫+∞ ⎪⎝⎭4.(2022·全国·高二)已知函数()()e 10xx a f a x =--≠在[]1,2上是减函数,则实数a 的取值范围是( )A .21,e ⎛⎤-∞ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤⎥⎝⎦D .211,e e ⎡⎤⎢⎥⎣⎦5.(2022·重庆市清华中学校高二阶段练习)已知函数()()31e 1x f x x kx =--+,若对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()()()11222112x f x x f x x f x x f x +>+,则实数k 的取值范围是( ) A .e ,3∞⎛⎫- ⎪⎝⎭B .e ,3⎛⎤-∞ ⎥⎝⎦C .1,3⎛⎫-∞ ⎪⎝⎭D .1,3⎛⎤-∞ ⎥⎝⎦6.(2022·山西临汾·二模(理))已知函数22,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩,若()0f x ≥恒成立.则a 的取值范围为( )A .[0,1]B .[0,2e]C .[1,2]D .[2,2e]7.(2022·浙江·义乌市商城学校高二阶段练习)已知m ,n 为实数,不等式ln 0x mx n --≤恒成立,则nm的最小值为( ) A .1-B .2-C .1D .28.(2022·宁夏中卫·一模(理))已知定义域为(0,)+∞的函数()f x 满足2()1()f x f x x x'+=,且2(e)e f =,e 为自然对数的底数,若关于x 的不等式()20f x a x x x--+≤恒成立,则实数a 的取值范围为( ) A .[1,)+∞B .[2,)+∞C .2,e e +⎡⎫+∞⎪⎢⎣⎭D .322,e e e ⎡⎫-+++∞⎪⎢⎣⎭二、填空题 9.(2022·全国·高二课时练习)当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.10.(2022·上海交大附中高二阶段练习)已知()2ln f x x ax a =-+,若对任意1≥x ,都有()0f x ≤,则实数a 的取值范围是______.11.(2022·江苏省石庄高级中学高二阶段练习)已知函数()ln x f x x =.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.12.(2022·河南·民权县第一高级中学高三阶段练习(文))设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x =++在定义域内为严格的凹函数,则实数m 的取值范围为___________. 三、解答题13.(2022·福建省厦门集美中学高二阶段练习)已知函数()ln f x x x =,(1)求过点(0,1)-的函数()f x 的切线方程(2)若对任意0x >,都有ln()x ax x a ≥-成立,求正数a 的取值范围.14.(2022·四川·成都外国语学校高二阶段练习(文))已知函数()()1ln f x x x =+(1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值.15.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知函数()()e ln 1x f x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.16.(2022·四川达州·二模(文))已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.。
2020年高三一轮复习数学教案第11讲《导数的分类讨论思想与恒成立问题》(学生版)
![2020年高三一轮复习数学教案第11讲《导数的分类讨论思想与恒成立问题》(学生版)](https://img.taocdn.com/s3/m/204120aa998fcc22bcd10da6.png)
个性化教学辅导教案1.(2016·青岛模拟)若函数f(x)=x3+bx2+cx+d的单调减区间为(-1,3),则b+c=________.2.(2016·衡水中学模拟)已知函数f(x)(x∈R)满足f(1)=1,f(x)的导数f′(x)<12,则不等式f(x2)<x22+12的解集为________________.3、已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18 B.11C.18 D.17或181、已知函数f (x )=x -alnx ,当x >1时,f (x )>0恒成立,则实数a 的取值范围是( ) A .(1,+∞) B .(-∞,1) C .(e ,+∞) D .(-∞,e )2、已知函数f (x )=(2-a )lnx+x1+2ax(Ⅰ)当a=2时,求函数f (x )的极值; (Ⅱ)当a <0时,讨论f (x )的单调性3、定义在R 上的奇函数y=f (x )满足f (3)=0,且当x >0时,不等式f (x )>﹣xf′(x )恒成立,则函数g (x )=xf (x )+lg|x+1|的零点的个数为( )A .1B .2C .3D .44、已知函数f (x )=x 3+3x 对任意的m∈[-2,2],f (mx -2)+f (x )<0恒成立,则x∈ 。
学科分析:从近五年的考查情况来看,该讲一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查,一般出现在选择题和填空题的后两题中以及解答题的第21题,难度较大,复习备考的过程中应引起重视. 学生分析:1、学习风格(动觉型、视觉型、听觉型)2、知识点分析:(1)导数的分类讨论思想 (2)导数的恒成立问题【精准突破一】学习目标:分类讨论思想在求函数单调区间中的运用 目标分解:分类讨论思想在求函数单调区间中的运用 【目标:分类讨论思想在求函数单调区间中的运用 】利用导数求函数单调区间基本方法是先求导数'()0f x >,再解'()0f x >或'()0f x <得到单调递增或递减区间.纵观近几年的高考题,不难发现求函数单调区间问题是屡屡出现,它以导数为研究工具不断的出现在每年的高考题中,常考常新,试题类型也由最初的直接求单调区间问题逐步发展为要利用分类讨论思想才能完成的问题,也即利用分类讨论思想解决求单调区间问题已成为近几年高考的热点问题,这类试题出现频率高、函数类型变化大,对学生的综合能力要求高,但纵观其解题规律则不难看出其分类讨论的依据主要可分为三类:一、根据最高次项系数来分类:在解'()0f x >或'()0f x <得到单调递增或递减区间时,如果最高次项系数带有参数,且参数的取值不确定,则需要对参数的取值进行分类讨论,以此来确定导数在各区间上的符号,从而确定单调区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习过程一、复习预习考纲要求:1.理解导数和切线方程的概念。
2.能在具体的数学环境中,会求导,会求切线方程。
3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。
4.灵活应用建立切线方程与其它数学知识之间的内在联系。
5. 灵活应用导数研究函数的单调性问题二、知识讲解1.导数的计算公式和运算法则几种常见函数的导数:0'=C (C 为常数);1)'(-=n n nx x (Q n ∈);x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '=; 1(log )log a a x e x '=,()x x e e '= ; ()ln x x a a a '=求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法则3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭复合函数的导数:设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅' 2.求直线斜率的方法(高中范围内三种)(1) tan k α=(α为倾斜角); (2) 1212()()f x f x k x x -=-,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率);3.求切线的方程的步骤:(三步走)(1)求函数()f x 的导函数()f x ';(2)0()k f x '= (在0x x =处的切线的斜率);(3)点斜式求切线方程00()()y f x k x x -=-;4.用导数求函数的单调性:(1)求函数()f x 的导函数()f x ';(2)()0f x '>,求单调递增区间;(3)()0f x '<,求单调递减区间;(4)()0f x '=,是极值点。
考点一 函数的在区间上的最值【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。
【答案】:最大值为18,最小值为-2.【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y ,取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。
所以最大值为18,最小值为-2.【例题2】:求曲线3231y x x =-+在)5,2(-上的最值范围 。
【答案】:)51,19(-【解析】:由2,0,063)(212===-='x x x x x f ,该函数在),2()0,(+∞-∞ 上单增,在)2,0(上单减,当1,0==y x ;3,2-==y x ;19,2-=-=y x ;51,5==y x 。
曲线3231y x x =-+在)5,2(-上的最值范围为)51,19(-。
考点二 用导数研究函数的单调性【例题3】:已知函数5)(23-+-=x x ax x f 在R 上是单调递增函数,求a 的取值范围。
【答案】:31≥a 【解析】:123)(2+-='x ax x f ,因为)(x f 在R 上单调递增,所以,0)(≥'x f ,即:01232≥+-x ax 在R 上恒成立,即:⎩⎨⎧≤∆>00a ,所以,⎩⎨⎧<->01240a a 所以,31≥a 。
【例题4】:设函数()(0)kx f x xe k =≠.求函数()f x 的单调区间;【答案】:若0k <,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减。
【解析】:由()()'10kx f x kx e =+=,得()10x k k =-≠, 若0k >,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()'0f x <,函数()f x 单调递减, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,若0k <,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减。
考点三 用导数证明不等式【例题5】:设函数()1x f x e -=-,证明:当x >-1时,()1x f x x ≥+ 【答案】:如下【证明】:当1->x 时,1)(+≥x x x f 当且仅当,令1x g x e x =--(),则 1.x g x e =-,()当0≥x 时0g x '≥(),)(x g 在[)∞+.0是增函数:当0≤x 时()0g x '≤,)(x g 在(]0.∞-是减函数,于是)(x g 在0=x 处达到最小值,因而当R x ∈时,)0()(g x g ≥,即1,x e x ≥+所以当1->x 时,.1)(+≥x x x f 【例题6】:设函数2()ln(1)2x f x x x =+-+,证明:当x >0时,()f x >0; 【答案】:如下【证明】:22212(2)2()0,(1)1(2)(1)(2)x x x f x x x x x x +-'=-=≥>-++++,(仅当0x =时()0f x '=) 故函数()f x 在(1,)-+∞单调递增,当0x =时,()0f x =,故当0)(,0>>x f x 。
考点四 函数中含参数的问题【例题7】:设21)(ax e x f x+=,其中a 为正实数,若()f x 为R 上的单调函数,求a 的取值范围 【答案】:.10≤<a【解析】:对)(x f 求导得.)1(1)(222ax ax ax e x f x+-+=' ①若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合①与条件a>0,知0122≥+-ax ax ,在R 上恒成立,因此,0)1(4442≤-=-=∆a a a a由此并结合0>a ,知.10≤<a【例题8】:已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 【答案】:34παπ≤≤ 【解析】:因为'2441(1)2x x x x e y e e e --==≥-+++,即0tan 1α>≥-,所以34παπ≤≤。
考点五 导数的综合问题【例题9】:设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性.【答案】:如下【解析】:函数()f x 的定义域为(0,)+∞,212(1)2(1)1()2(1)2(1)a a x a x f x a a x a x x---+'=+---= 令2()2(1)2(1)1g x a a x a x =---+,224(1)8(1)121644(31)(1)a a a a a a a ∆=---=-+=--① 当103a <<时,0∆>,令()0f x '=,解得x =则当0x <<或x >时,()0f x '>x <<()0f x '<则()f x 在,)+∞上单调递增,在上单调递减 ② 当113a ≤≤时,0∆≤,()0f x '≥,则()f x 在(0,)+∞上单调递增③ 当1a >时,0∆>,令()0f x '=,解得x =∵0x >,∴x =,则当0x <<时,()0f x '>当x >时,()0f x '<,则()f x 在上单调递增,在)+∞上单调递减 【例题10】:设函数ax x x a x f +-=22ln )(,0>a(Ⅰ)求)(x f 的单调区间;(Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.【答案】:()f x 的增区间为(0,)a ,减区间为(,)a +∞【解析】:(1)因为22()ln .0f x a x x ax x =-+>其中,所以2()(2)()2a x a x a f x x a x x -+'=-+=- 由于0a >,所以()f x 的增区间为(0,)a ,减区间为(,)a +∞(Ⅱ)证明:由题意得,(1)11,f a c a c =-≥-≥即,由(Ⅰ)知()[1,]f x e 在内单调递增,要使21()[1,]e f x e x e -≤≤∈对恒成立,只要222(1)11,()f a e f e a e ae e =-≥-⎧⎨=-+≤⎩,解得.a e =四、课堂练习【基础型】1若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围答案:),29(+∞解析:记F (x )=x 4﹣4x 3∵x 4﹣4x 3>2﹣a 对任意实数x 都成立,∴F (x )在R 上的最小值大于2﹣a 求导:F ′(x )=4x 3﹣12x 2=4x 2(x ﹣3),当x ∈(﹣∞,3)时,F ′(x )<0,故F (x )在(﹣∞,3)上是减函数;当x ∈(3,+∞)时,F ′(x )>0,故F (x )在(3,+∞)上是增函数.∴当x=3时,函数F (x )有极小值,这个极小值即为函数F (x )在R 上的最小值即[F (x )]min =F (3)=﹣27,因此当2﹣a <﹣27,即a >29时,等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,故答案为:(29,+∞)2若不等式 2x -1>m(x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围。