3-1-1行程问题基础_题库学生版
小学奥数—行程问题基础
【巩固】 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上 山以 30 千米/时的速度,到达山顶后以 60 千米/时的速度下山.求该车的平均速度.
【巩固】 某人上山速度为每小时 8 千米,下山的速度为每小时 12 千米,问此人上下山的平均速度是多少?
【例 14】 一辆汽车从甲地出发到 300 千米外的乙地去,前 120 千米的平均速度为 40 千米/时,要想使这 辆汽车从甲地到乙地的平均速度为 50 千米/时,剩下的路程应以什么速度行驶?
速度×时间=路程 路程÷速度=时间 路程÷时间=速度
可简记为: s vt 可简记为: t s v 可简记为: v s t
三、平均速度
平均速度的基本关系式为: 平均速度 总路程 总时间; 总时间 总路程 平均速度; 总路程 平均速度 总时间。
板块一、简单行程公式解题
【例 1】 韩雪的家距离学校 480 米,原计划 7 点 40 从家出发 8 点可到校,现在还是按原时间离开家,不 过每分钟比原来多走 16 米,那么韩雪几点就可到校?
【例 17】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。 某人骑自行车过桥时,上坡、走平路和下坡的速度分别为 4 米/秒、6 米/秒和 8 米/秒,求他过桥 的平均速度。
【巩固】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某 人骑电动车过桥时,上坡、走平路和下坡的速度分别为 11 米/秒、22 米/秒和 33 米/秒,求 他过桥的平均速度.
【巩固】 小明从甲地到乙地,去时每时走 2 千米,回来时每时走 3 千米,来回共用了 15 小时.小明去时 用了多长时间?
【例 16】 小王每天用每小时 15 千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每 小时 10 千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同
小升初典型应用题精练——行程问题(学生版)
领航小升初专题四行程问题一、知识点1路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间X速度,时间=路程十速度,速度=路程十时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)十2,水流速度=(顺流速度-逆流速度)十2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:= t度和X相遇吋间,速J度和=总路程一相遇吋间T相遇时间=总路程一速度和f追击问题:[追及时间=追及路程逋度差,追及路程二速度差X追及吋间,I速度差=追及路程+追及时间*在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3、戈删比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
一元一次方程应用题专题——行程问题——学生版
例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
分析:这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。
1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
黑龙江省齐齐哈尔市小学数学小学奥数系列3-1-1行程问题(一)
黑龙江省齐齐哈尔市小学数学小学奥数系列3-1-1行程问题(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共23题;共115分)1. (5分) (2019三上·永福期中) 看图列式计算.(1)一共有多少个五角星?(2)2. (5分) (2019六上·福州期中) 甲、乙两地相距250km,一辆汽车从甲地开往乙地,行了5小时,行了全程的,这辆汽车行完全程一共需要多少小时?3. (5分) (2018四上·重庆期中) 商店运来苹果橘子各40筐.已知每筐苹果重15千克,每筐橘子重20千克.这两种水果共重多少千克?4. (5分)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?5. (5分) (2020四上·官渡期末) 埃及金字塔是世界七大奇迹之一,雄伟壮观。
经测算一座金字塔高106米,绕塔底一周近1000米,小明3分钟走了156米,照这样计算,21分钟能绕该金字塔走一周吗?6. (5分)商店运来500千克桔子,比香蕉多3箱,已知每箱桔子重20千克,每箱香蕉重26千克,运来的香蕉一共多少千克?7. (5分) (2016四下·甘肃月考) 在一次登山比赛中,王兵上山每分钟走50米,12分钟到达山顶,然后按原路下山,用了8分钟。
8. (5分)看图回答(1)小货车出发3时后,大约在什么位置?(用▲在图上作标记)(2)小货车8:00出发,走完一半路程是什么时间?(3)小货车要几时才能到达乙地?9. (5分) (四上·南浔期末) 甲、乙两车同时从A地出发开往B地。
甲车6小时到达,乙车8小时到达。
甲车比乙车每小时快24千米。
小学数学30道“行程问题”专题归纳,公式+例题+解析!
小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
3-1-1行程问题基础_题库
3.1.1行程问题基础1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源 我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s = vt路程÷速度=时间 可简记为:t = s÷v路程÷时间=速度 可简记为:v = s÷t三、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【解析】 原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640+=(米/分),那么现在上学所用的时间为:4804012÷=(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.【巩固】 甲、乙两地相距100千米。
分式方程的实际应用(3)-行程问题(学生版)
分式方程的实际问题(3)-行程问题1.小华早上从家出发到离家5千米的国际会展中心参观,实际每小时比原计划多走1千米,结果比原计划早到了15分钟,设小华原计划每小时行x千米,可列方程()A.55114x x-=+B.551+14x x-=C.5515+1x x-=D.55151x x-=+2.小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时B.9千米/时C.10千米/时D.15千米/时3.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+4.在学校组织的秋季登山活动中,某班分成甲、乙两个小组同时开始攀登一座450m高的山.乙组的攀登速度是甲组的1.2倍,乙组到达顶峰所用时间比甲组少15min.如果设甲组的攀登速度为m/minx,那么下面所列方程中正确的是()A.4504501.215x x=++B.450450151.2x x=-C.4504501.215x x=⨯+D.450450151.2x x=+5.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时6.甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前13h到达目的地,设甲的速度为3xkm/h,下列方程正确的是()A.1016433x x+=B.1016433x x-=C.1016334x x+=D.1016334x x-=7.某班学生周末乘汽车到外地参加活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车速度是慢车速度的2倍,如果设慢车的速度为/xkm h,那么可列方程为()A.1201212x x-=B.12012012x x-=+C.12012012x x-=D.12012012x x-=+8.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x米,则可得方程4000400010x x--=20,…”根据答案,题中被墨汁污染条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成9.已知A、B两个港口之间的距离为100千米,水流的速度为b千米/时,一艘轮船在静水中的速度为a千米/时,则轮船往返两个港口之间一次需要的时间是()A.100a+100bB.200a b+C.100a b++100a b-D.100a b+﹣100a b-10.小王从甲地到相距50千米的乙地办事,乘出租车去,乘公共汽车回来.已知出租车的平均速度比公共汽车的平均速度快15千米/小时,去时路上所用的时间比返回时少了13.设公共汽车的平均速度为x千米/小时,则下面列出的方程中,正确的是()A.50250153x x=⨯+B.50250315x x=⨯+C.50150153x x+=+D.50501153x x=-+11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为_________.12.甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院,如果步行速度是骑自行车速度的13,求步行与骑自行车的速度各是________.13.一船在一条江里顺流航行100km,逆流航行64km,共用9h.如果逆流航行80km,所需时间仍为9h,则轮船在静水中的速度为________.14.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,则汽车先后行驶的速度分别是________.15.小王步行的速度比跑步的速度慢50%,跑步的速度比骑车的速度慢50%.如果他骑车从A城到B城,再步行返回A城共需要两小时,那么小王跑步从A城到B城需要__________分钟.16.智能时代引领铁路的高速发展,已知某铁路现阶段列车的平均速度是200千米/时,未来还将提速,在相同的时间内,列车现阶段行驶300千米,提速后列车比现阶段多行驶450千米,问列车平均提速多少千米/小时?17.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/小时,求船在静水中的速度18.从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至该市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?19.某校教师前往距离学校10千米的党史学习教育基地参观学习,一部分教师骑自行车先走,过了20分钟后,其余教师乘汽车出发,结果他们同时到达,已知汽车的速度是骑车教师速度的3倍,求骑车教师的速度.20.某校组织学生参加远足活动,前往校外15km处的某地,高年级与低年级同时出发,已知高年级的速度是低年级的1.2倍,高年级比低年级提前0.5h抵达目的地.设低年级的速度是x(km/h).(1)完成下表(用含x的代数式表示);(2)求x的值.21.阅读:甲、乙两地相距600km,提速前动车的速度为v km/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,(1)由以上阅读材料,则可列方程为()A.60016003 1.2-=v vB.60060011.23v v=-C.600600201.2v v-=D.600600201.2v v=-(2)若设提速前行车时间为x h ,请列出关于x 的方程,并求解.22.列方程解应用题:某校同学在“十一”黄金周到距学校15千米的平谷大溶洞游玩,一部分同学骑自行车先走,30分钟后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍.求骑车同学的速度?23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h ,水流速度是a km/h .(1)2h 后两船相距多远?(2)2h 后甲船比乙船多航行多少千米?(3)一艘小快艇送游客在甲、乙两个码头间往返,其中去程的时间是回程的时间3倍,则小快艇在静水中的速度v 与水流速度a 的关系是 .24.某次列车平均提速/vkm h .用相同的时间,列车提速前行驶km s ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?25.小李从A 地出发去相距4.5千米的B 地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.(1)求小李步行的速度和骑自行车的速度;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?26.甲、乙两车从相距60千米的A ,B 两站同时出发相向而行.相遇后,甲车再过4小时到达B 站,乙车再过9小时到达A 站.求甲、乙两车的速度.27.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:大巴与小车的平均速度各是多少?28.一轮船往返于A 、B 两地之间,顺水比逆水快1小时到达.已知A 、B 两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.29.某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆,已知汽车的速度是自行车速度的3倍,求汽车的速度.30.列方程解应用题:初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)从学校到基地,张老师自驾车的时间比同学们乘坐大巴车的时间一共少________分钟;(2)大巴与小车的平均速度各是多少?(3)张老师追上大巴的地点到基地的路程有多远?。
行程问题讲义,学生版
行程问题知识点拨:发车问题( 1 )、一般间隔发车问题。
用 3 个公式迅速作答;汽车间距= (汽车速度+行人速度)×相遇事件时间间隔汽车间距= (汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔( 2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列 3 个好使公式——结合 s 全程= v ×t-结合植树问题数数。
( 3 ) 当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和 .⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和 .⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度 .对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行 .接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:( 1)车速不变 -班速不变-班数 2 个(最常见)(2)车速不变 -班速不变-班数多个(3)车速不变 -班速变-班数 2 个(4)车速变 -班速不变-班数 2 个标准解法:画图+列 3 个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格”。
一元一次方程的应用-行程问题(学生版)
一元一次方程的应用-行程问题1.从甲地到乙地,某人骑自行车比乘公共汽车多用2.5h ,已知骑自行车的平均速度为每小时15km ,公共汽车的平均速度为每小时40km ,求甲乙两地之间的路程(只列方程).2.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60m .下坡路每分钟走80m ,上坡路每分钟走40m .则他从家里到学校需10min ,从学校到家里需15min .问:从小华家到学校的平路和下坡路各有多远?设小华家到学校的平路为x ,用方程表示上述数量关系,并解出方程.3.张翔从学校出发骑自行车去县城,中途因道路施工步行一段距离,1.5h 后到达县城.他骑车的平均速度是15/km h ,步行的平均速度是5/km h ,路程长20km ,他骑车与步行各用多少时间?4.小明和小丽同时从甲村出发去乙村.小丽的速度为4/km h,小丽km h,小明的速度为5/比小明晚到15min,求甲、乙两村之间的路程.5.小明乘坐家门口的公共汽车前往西安北站去乘高铁,在行驶了三分之一路程时,小明估计继续乘公共汽车到北站时高铁将正好开出,于是小明下车改乘出租车,车速提高了一倍,结果赶在高铁开车前半小时到达西安北站.已知公共汽车的平均速度是20千米/小时(假设公共汽车及出租车保持匀速行驶,途中换乘、红绿灯等待等情况忽略不计),请回答以下两个问题:(1)出租车的速度为千米/小时;(2)小明家到西安北站有多少千米?6.列方程解应用题十一期间,张老师从北京出发走京津高速到天津.去时在京津高速上用了1.2小时,返回时在京津高速上比去时多用18分钟,返回时平均速度降低了22千米/小时.求张老师去时在京津高速上开车的平均速度.7.一辆汽车从A地前往B地,每小时行45公里,由B地按原路返回A地时,每小时行50公里,结果少用了1小时,求AB两地的距离.8.列方程解应用题:2019年年底某高铁即将开通.以前小红回老家只能坐绿皮车,车速才60/km h,但某高铁开通之后,车速可以达到240/km h.这样就能早到4.5小时.请问提速后小红回老家需要多长时间?9.亮亮在五一节期间和父母去济南旅游,他们先从宾馆出发去大明湖参观游览,在大明湖停留2.5h后,又去趵突泉,停留0.5h后返回宾馆.去时的速度是5/km h,回来时的速度是4/km h,来回(包括停留时间在内)一共用去8h,如果回来时的路程比去时多2km,求去时的路程.10.周末小新去爬山,他上山花了0.8小时,下山时按原路返回,用了0.5小时,已知他下山的平均速度比上山的平均速度快1.5千米/时,求小新上山时的平均速度.11.汽车从甲地到乙地,若每小时行驶45千米,则要比原计划延误半小时到达;若每小时行驶50千米,则就可以比原计划提前半小时到达.请你根据以上信息,就汽车行驶的“路程”或“时间”提出一个用一元一次方程解决的问题,并写出解答过程.(1)问题:;(2)解答:12.某人从家到学校时,13的路程走路,23的路程骑车;从学校回家时,前38的时间走路,后58的时间骑车,结果去学校的时间比回家所用的时间多0.5小时,已知他走路每小时行8千米,骑车每小时行16千米,则此人从家到学校的距离是多少千米?。
2023年比例解行程问题题库学生版
1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简朴明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们经常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表达,大体可分为以下两种情况:1. 当2个物体运营速度在所讨论的路线上保持不变时,通过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里由于时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运营速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
知识精讲教学目的比例解行程问题s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里由于路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的56。
当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。
甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地尚有多远,司机看了计程表后告诉乘客:已走路程的13加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是多少?上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?甲、乙两人从相距490米的A、B两地同时步行出发,相向而行,丙与甲同时从A出发,在甲、乙二人之间来回跑步(碰到乙立即返回,碰到甲也立即返回).已知丙每分钟跑240米,甲每分钟走40米,当丙第一次折返回来并与甲相遇时,甲、乙二人相距210米,那么乙每分钟走________米;甲下一次碰到丙时,甲、乙相距________米.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才干继续通行.已知小汽车的速度是大卡车速度的3倍,两车倒车的速度是各自速度的15,小汽车需倒车的路程是大卡车需倒车的路程的4倍.假如小汽车的速度是每小时50千米,那么要通过这段狭路最少用多少小时?一辆货车从甲地往乙地运货,然后空车返回,再继续运货。
行程问题练习题及答案(3篇)
行程问题练习题及答案(3篇)行程问题练习题及答案 1(一)超车问题(同向运动,追及问题)1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。
慢车在前面行驶,快车从后面追上到完全超过需要多少秒?思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。
(125+140)÷(22-17)=53(秒)答:快车从后面追上到完全超过需要53秒。
2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?(20-18)×110-120=100(米)3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?25-(150+160)÷31=15(米)小结:超车问题中,路程差=车身长的和超车时间=车身长的和÷速度差(二)过人(人看作是车身长度是0的火车)1、小王以每秒3米的速度沿着铁路跑步,迎面__一列长147米的火车,它的行使速度每秒18米。
问:火车经过小王身旁的时间是多少?147÷(3+18)=7(秒)答:火车经过小王身旁的时间是7秒。
2、小王以每秒3米的速度沿着铁路跑步,后面__一列长150米的火车,它的行使速度每秒18米。
问:火车经过小王身旁的时间是多少?150÷(18-3)=10(秒)答:火车经过小王身旁的时间是10秒。
(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)3、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。
问火车穿越隧道(进入隧道直至完全离开)要多少时间?(150+300)÷18=25(秒)答:火车穿越隧道要25秒。
4、一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?20×50-800=200(米)行程问题练习题及答案 2甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解答:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。
一元一次方程应用题专题——行程问题——学生版
一元一次方程应用题专题——行程问题——学生版例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
分析:这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。
1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.4.甲乙两地相距640千米。
一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间?1.建朋和建博两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,已知建朋比建博每小时多走2.5千米,问建博每小时走多少千米?2.A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?3.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?4.AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。
一元一次方程的应用——行程问题专题练习(学生版)
一元一次方程的应用——行程问题专题练习一、相遇问题1、小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得().A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4-x)=252、甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为().A. 75×1+(120-75)x=270B. 75×1+(120+75)x=270C. 120(x-1)+75x=270D. 120×1+(120+75)x=2703、汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是______米.4、A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇以后两车相距100km时,甲车共行驶了多少小时?5、甲骑摩托车,乙骑自行车从相距25km的两地相向而行.(1)甲,乙同时出发经过0.5小时相遇,且甲每小时行驶路程是乙每小时行驶路程的3倍少6km,求乙骑自行车的速度.(2)在甲骑摩托车和乙骑自行车与(1)相同的前提下,若乙先出发0.5小时,甲才出发,问:甲出发几小时后两人相遇?6、小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?二、追及问题7、《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是().A. 100x=60(x-100)B. 60x=100(x-100)C. 100x=60(x+100)D. 60x=100(x+100)8、甲、乙两人练习长跑,已知甲每分钟跑300米,乙每分钟跑260米,若乙在甲前方120米处与甲同时、同向起跑,则甲在______分钟后追上乙.9、五一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,则哥哥出发后______分钟追上弟弟和妈妈.10、2012年11月北京降下了六十年来最大的一场雪,暴雪导致部分地区供电线路损坏,该地供电局立即组织电工进行抢修.抢修车装载着所需材料先从供电局出发,20分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.若抢修车以每小时30千米的速度前进,吉普车的速度是抢修车的速度的1.5倍,求供电局到抢修工地的距离.11、列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率高,负氧离子多,真正达到了身心愉悦的进行体育锻炼.张老师和李老师登一座山,张老师每分钟登高10米,并且先出发30分钟,李老师每分钟登高15米,两人同时登上山顶,求这座山的高度.12、某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?三、环形跑道及多次相遇问题13、学校操场的环形跑道长400米,小聪的爸爸陪小聪锻炼,小聪跑步每秒行2.5米,爸爸骑自行车每秒行5.5米,两人从同一地点出发,反向而行,每隔______秒两人相遇一次.14、甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇,已知每秒钟甲比乙多行0.1米,那么两人第三次相遇的地点与点A沿跑道上的最短距离是______米.15、学校为提高同学身体素质,开展了冬季体育锻炼活动.班主任老师让甲、乙二人在长为400米的圆形跑道上进行跑步训练,已知甲每秒钟跑5米,乙每秒钟跑3米.请列方程解决下面的问题.(1)两人同时同地同向而跑时,经过几秒钟两人首次相遇?(2)两人同时同地背向而跑时,首次相遇时甲比乙多跑了多少米?16、小智和小康相约在学校的环形跑道上练习长跑.小智以5米/秒、小康以4米/秒的速度从同一地点同时出发,背向而行.途中小智的鞋带掉了,因此花了2秒停在原地系鞋带.当两人第一次相遇时,小康走了全程的511.那么跑道一圈的长度是多少米?17、已知甲乙两人在一个400米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置.(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?四、顺逆流问题18、一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水流速度为3千米/时,则轮船在静水中的速度是().A. 18千米/时B. 15千米/时C. 12千米/时D. 20千米/时19、甲乙两地相距180千米,已知轮船在静水中的航速是a千米/时,水流速度是10千米/时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是().A. 40千米B. 50千米C. 60千米D. 140千米20、轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流行驶到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.设两码头间的距离为xkm ,则列出方程正确的是( ).A. (20+4)x +(20-4)x =5B. 20x +4x =5C.20x +4x =5 D. 204x + +204x -=5 21、船在江面上航行,测得水的平均流速为5千米/小时,若船逆水航行3小时,再顺水航行2小时,共航行120千米,设船在静水中的速度为x 千米/小时,则列方程为______.22、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,静水中速度是每小时12千米,问这机帆船往返两港要多少小时?23、某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共用3小时,若水流速度为2千米/小时,船在静水中的速度为8千米/小时.已知甲、丙两地间的距离为2千米,求甲、乙两地间的距离是多少千米.(注:甲、乙、丙三地在同一条直线上)五、变速问题24、某人开车从甲地到乙地办事,原计划2小时到达,但因路上堵车,平均每小时比原计划少走了25千米,结果比原计划晚1小时到达,问原计划的速度是多少.25、一个邮递员骑自行车要在规定时间内把特快专递送到某单位.他如果每小时行15千米,可以早到10分钟,如果每小时行12千米,就要迟到10分钟,问规定的时间是多少小时?他去的单位有多远?26、某人因有急事,预定搭乘一辆小货车从A地赶往B地.实际上,他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的车速是每小时36千米,求两地间路程.27、列方程解决实际问题:京张高铁是2022年北京冬奥会的重要交通基础设施,最高运营时速为350公里.但考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段分为地下清华园隧道和地上区间两部分,运行速度分别设置为120公里/小时和200公里/小时.日前,清华园隧道正式开机掘进,这标志着京张高铁建设全面进入攻坚阶段.已知此路段的地下清华园隧道比地上区间多1公里,运行时间比地上多1.5分钟.求清华园隧道全长是多少公里.28、老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度25千米/小时.这辆摩托车后座可带多余一名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后都到达博物馆的时间不超过3小时.29、列方程解应用题:由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地.A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?六、过桥和过隧道问题30、博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为()米.A. 2075B. 1575C. 2000D. 150031、一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为______.32、一列火车长150m,每秒钟行驶19m,全车通过长800m的大桥,需要多长时间?33、已知某一铁路桥长1000m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40S.求火车的速度.34、一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.35、一列火车匀速行驶,经过一条长300m的隧道需要12s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是7s.(1)设火车的长度为xm,用含x的式子表示,从火车头进入隧道到车尾离开隧道这段时间内火车的平均速度(2)求这列火车的长度(3)若这列火车从甲地到乙地,速度提高10%,则可以提前503分钟到达,求甲乙两地的距离(火车的长度忽略不计)36、一辆车长为4米的小轿车和一辆车长为20米的大货车,在长为1200米隧道的两个入口同时开始相向而行,小轿车的速度是大货车速度的3倍,大货车速度为10m/s.(1)求两车相遇的时间.(2)求两车从相遇到完全离开所需的时间.(3)当小轿车车头和大货车车头相遇后,求小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间.。
行程问题典型题库
第一讲行程问题走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量。
从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数。
工作量=工作效率×时间。
因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题。
当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味。
它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容。
因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧。
这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米一、追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他。
这就产生了“追及问题"。
实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离—乙走的距离= 甲的速度×时间—乙的速度×时间=(甲的速度-乙的速度)×时间.通常,“追及问题"要考虑速度差。
例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1。
一元一次方程的应用——行程问题专题练习(学生版)
⼀元⼀次⽅程的应⽤——⾏程问题专题练习(学⽣版)⼀元⼀次⽅程的应⽤——⾏程问题专题练习⼀、相遇问题1、⼩明和⼩刚从相距25千⽶的两地同时相向⽽⾏,3⼩时后两⼈相遇,⼩明的速度是4千⽶/⼩时,设⼩刚的速度为x千⽶/⼩时,列⽅程得().A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4-x)=252、甲、⼄两地相距270千⽶,从甲地开出⼀辆快车,速度为120千⽶/时,从⼄地开出⼀辆慢车,速度为75千⽶/时,如果两车相向⽽⾏,慢车先开出1⼩时后,快车开出,那么再经过多长时间两车相遇?若设再经过x⼩时两车相遇,则根据题意列⽅程为().A. 75×1+(120-75)x=270B. 75×1+(120+75)x=270C. 120(x-1)+75x=270D. 120×1+(120+75)x=2703、汽车以每⼩时72千⽶的速度笔直地开向寂静的⼭⾕,驾驶员按⼀声喇叭,4秒后听到回响,已知声⾳的速度是每秒340⽶,听到回响时汽车离⼭⾕的距离是______⽶.4、A、B两地间的距离为360km,甲车从A地出发开往B地,每⼩时⾏驶72km;甲车出发25分钟后,⼄车从B地出发开往A地,每⼩时⾏驶48km,两车相遇后,各⾃仍按原速度、原⽅向继续⾏驶,求相遇以后两车相距100km时,甲车共⾏驶了多少⼩时?5、甲骑摩托车,⼄骑⾃⾏车从相距25km的两地相向⽽⾏.(1)甲,⼄同时出发经过0.5⼩时相遇,且甲每⼩时⾏驶路程是⼄每⼩时⾏驶路程的3倍少6km,求⼄骑⾃⾏车的速度.(2)在甲骑摩托车和⼄骑⾃⾏车与(1)相同的前提下,若⼄先出发0.5⼩时,甲才出发,问:甲出发⼏⼩时后两⼈相遇?6、⼩刚和⼩强从A、B两地同时出发,⼩刚骑⾃⾏车,⼩强步⾏,沿同⼀条路线相向匀速⽽⾏,出发后2h两⼈相遇,相遇时⼩刚⽐⼩强多⾏进24km,相遇后0.5h⼩刚到达B地,两⼈的⾏进速度分别是多少?相遇后经过多少时间⼩强到达A地?⼆、追及问题7、《九章算术》是中国古代数学专著,《九章算术》⽅程篇中有这样⼀道题:“今有善⾏者⾏⼀百步,不善⾏者⾏六⼗步,今不善⾏者先⾏⼀百步,善⾏者追之,问⼏何步及之?”这是⼀道⾏程问题,意思是说:⾛路快的⼈⾛100步的时候,⾛路慢的才⾛了60步;⾛路慢的⼈先⾛100步,然后⾛路快的⼈去追赶,问⾛路快的⼈要⾛多少步才能追上⾛路慢的⼈?如果⾛路慢的⼈先⾛100步,设⾛路快的⼈要⾛x步才能追上⾛路慢的⼈,那么,下⾯所列⽅程正确的是().A. 100x=60(x-100)B. 60x=100(x-100)C. 100x=60(x+100)D. 60x=100(x+100)8、甲、⼄两⼈练习长跑,已知甲每分钟跑300⽶,⼄每分钟跑260⽶,若⼄在甲前⽅120⽶处与甲同时、同向起跑,则甲在______分钟后追上⼄.9、五⼀长假⽇,弟弟和妈妈从家⾥出发⼀同去外婆家,他们⾛了1⼩时后,哥哥发现带给外婆的礼品忘在家⾥,便⽴刻带上礼品每⼩时6千⽶的速度去追,如果弟弟和妈妈每⼩时⾏2千⽶,则哥哥出发后______分钟追上弟弟和妈妈.10、2012年11⽉北京降下了六⼗年来最⼤的⼀场雪,暴雪导致部分地区供电线路损坏,该地供电局⽴即组织电⼯进⾏抢修.抢修车装载着所需材料先从供电局出发,20分钟后,电⼯乘吉普车从同⼀地点出发,结果他们同时到达抢修⼯地.若抢修车以每⼩时30千⽶的速度前进,吉普车的速度是抢修车的速度的1.5倍,求供电局到抢修⼯地的距离.11、列⽅程解应⽤题:登⼭运动是最简单易⾏的健⾝运动,在秀美的景⾊中进⾏有氧运动,特别是⼭脉中森林覆盖率⾼,负氧离⼦多,真正达到了⾝⼼愉悦的进⾏体育锻炼.张⽼师和李⽼师登⼀座⼭,张⽼师每分钟登⾼10⽶,并且先出发30分钟,李⽼师每分钟登⾼15⽶,两⼈同时登上⼭顶,求这座⼭的⾼度.12、某校七年级学⽣从学校出发步⾏去博物馆参观,他们出发半⼩时后,张⽼师骑⾃⾏车按相同路线⽤15分钟赶上学⽣队伍.已知张⽼师骑⾃⾏车的速度⽐学⽣队伍步⾏的速度每⼩时多8千⽶,求学⽣队伍步⾏的速度?三、环形跑道及多次相遇问题13、学校操场的环形跑道长400⽶,⼩聪的爸爸陪⼩聪锻炼,⼩聪跑步每秒⾏2.5⽶,爸爸骑⾃⾏车每秒⾏5.5⽶,两⼈从同⼀地点出发,反向⽽⾏,每隔______秒两⼈相遇⼀次.14、甲、⼄两⼈从400⽶的环形跑道的⼀点A背向同时出发,8分钟后两⼈第三次相遇,已知每秒钟甲⽐⼄多⾏0.1⽶,那么两⼈第三次相遇的地点与点A沿跑道上的最短距离是______⽶.15、学校为提⾼同学⾝体素质,开展了冬季体育锻炼活动.班主任⽼师让甲、⼄⼆⼈在长为400⽶的圆形跑道上进⾏跑步训练,已知甲每秒钟跑5⽶,⼄每秒钟跑3⽶.请列⽅程解决下⾯的问题.(1)两⼈同时同地同向⽽跑时,经过⼏秒钟两⼈⾸次相遇?(2)两⼈同时同地背向⽽跑时,⾸次相遇时甲⽐⼄多跑了多少⽶?16、⼩智和⼩康相约在学校的环形跑道上练习长跑.⼩智以5⽶/秒、⼩康以4⽶/秒的速度从同⼀地点同时出发,背向⽽⾏.途中⼩智的鞋带掉了,因此花了2秒停在原地系鞋带.当两⼈第⼀次相遇时,⼩康⾛了全程的511.那么跑道⼀圈的长度是多少⽶?17、已知甲⼄两⼈在⼀个400⽶的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4⽶,⼄平均每秒跑6⽶,若甲⼄两⼈分别从A、C两处同时相向出发(如图),则:(1)⼏秒后两⼈⾸次相遇?请说出此时他们在跑道上的具体位置.(2)⾸次相遇后,⼜经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪⼀条段跑道上?四、顺逆流问题18、⼀轮船往返于A、B两港之间,逆⽔航⾏需3⼩时,顺⽔航⾏需2⼩时,⽔流速度为3千⽶/时,则轮船在静⽔中的速度是().A. 18千⽶/时B. 15千⽶/时C. 12千⽶/时D. 20千⽶/时19、甲⼄两地相距180千⽶,已知轮船在静⽔中的航速是a千⽶/时,⽔流速度是10千⽶/时,若轮船从甲地顺流航⾏3⼩时到达⼄地后⽴刻逆流返航,则逆流⾏驶1⼩时后离⼄地的距离是().A. 40千⽶B. 50千⽶C. 60千⽶D. 140千⽶20、轮船在静⽔中速度为每⼩时20km ,⽔流速度为每⼩时4km ,从甲码头顺流⾏驶到⼄码头,再返回甲码头,共⽤5⼩时(不计停留时间),求甲、⼄两码头的距离.设两码头间的距离为xkm ,则列出⽅程正确的是().A. (20+4)x +(20-4)x =5B. 20x +4x =5C.20x +4x =5 D. 204x + +204x -=5 21、船在江⾯上航⾏,测得⽔的平均流速为5千⽶/⼩时,若船逆⽔航⾏3⼩时,再顺⽔航⾏2⼩时,共航⾏120千⽶,设船在静⽔中的速度为x 千⽶/⼩时,则列⽅程为______.22、甲、⼄两港相距360千⽶,⼀轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时,现有⼀机帆船,静⽔中速度是每⼩时12千⽶,问这机帆船往返两港要多少⼩时?23、某学⽣乘船由甲地顺流⽽下到⼄地,然后⼜逆流⽽上到丙地,共⽤3⼩时,若⽔流速度为2千⽶/⼩时,船在静⽔中的速度为8千⽶/⼩时.已知甲、丙两地间的距离为2千⽶,求甲、⼄两地间的距离是多少千⽶.(注:甲、⼄、丙三地在同⼀条直线上)五、变速问题24、某⼈开车从甲地到⼄地办事,原计划2⼩时到达,但因路上堵车,平均每⼩时⽐原计划少⾛了25千⽶,结果⽐原计划晚1⼩时到达,问原计划的速度是多少.25、⼀个邮递员骑⾃⾏车要在规定时间内把特快专递送到某单位.他如果每⼩时⾏15千⽶,可以早到10分钟,如果每⼩时⾏12千⽶,就要迟到10分钟,问规定的时间是多少⼩时?他去的单位有多远?26、某⼈因有急事,预定搭乘⼀辆⼩货车从A地赶往B地.实际上,他乘⼩货车⾏了三分之⼀路程后改乘⼀辆⼩轿车,车速提⾼了⼀倍,结果提前⼀个半⼩时到达.已知⼩货车的车速是每⼩时36千⽶,求两地间路程.27、列⽅程解决实际问题:京张⾼铁是2022年北京冬奥会的重要交通基础设施,最⾼运营时速为350公⾥.但考虑到不同路段的特殊情况,将根据不同的运⾏区间设置不同的时速.其中,北京北站到清河段分为地下清华园隧道和地上区间两部分,运⾏速度分别设置为120公⾥/⼩时和200公⾥/⼩时.⽇前,清华园隧道正式开机掘进,这标志着京张⾼铁建设全⾯进⼊攻坚阶段.已知此路段的地下清华园隧道⽐地上区间多1公⾥,运⾏时间⽐地上多1.5分钟.求清华园隧道全长是多少公⾥.28、⽼师带着两名学⽣到离学校33千⽶远的博物馆参观.⽼师乘⼀辆摩托车,速度25千⽶/⼩时.这辆摩托车后座可带多余⼀名学⽣,带⼈后速度为20千⽶/⼩时.学⽣步⾏的速度为5千⽶/⼩时.请你设计⼀种⽅案,使师⽣三⼈同时出发后都到达博物馆的时间不超过3⼩时.29、列⽅程解应⽤题:由甲地到⼄地前三分之⼆的路是⾼速公路,后三分之⼀的路是普通公路,⾼速公路和普通公路交界处是丙地.A车在⾼速公路和普通公路的⾏驶速度都是80千⽶/时;B车在⾼速公路上的⾏驶速度是100千⽶/时,在普通公路上的⾏驶速度是70千⽶/时,A、B两车分别从甲、⼄两地同时出发相向⾏驶,在⾼速公路上距离丙地40千⽶处相遇,求甲、⼄两地之间的距离是多少?六、过桥和过隧道问题30、博⽂中学学⽣郊游,学⽣沿着与笔直的铁路线并列的公路匀速前进,每⼩时⾛4500⽶,⼀列⽕车以每⼩时120千⽶的速度迎⾯开来,测得从车头与队⾸学⽣相遇,到车尾与队末学⽣相遇,共经过60秒,如果队伍长500⽶,那么⽕车长为()⽶.A. 2075B. 1575C. 2000D. 150031、⼀列⽕车匀速⾏驶,经过⼀条长600⽶的隧道需要45秒的时间,隧道的顶部⼀盏固定灯,在⽕车上垂直照射的时间为15秒,则⽕车的长为______.32、⼀列⽕车长150m,每秒钟⾏驶19m,全车通过长800m的⼤桥,需要多长时间?33、已知某⼀铁路桥长1000m,现有⼀列⽕车从桥上通过,测得⽕车从开始上桥到完全过桥共⽤1分钟,整个⽕车完全在桥上的时间为40S.求⽕车的速度.34、⼀列⽕车匀速⾏驶,经过⼀条长720⽶的隧道需要30秒的时间,隧道的顶上有⼀盏灯,垂直向下发光,灯光照在⽕车上的时间是6秒,求这列⽕车的速度和⽕车的长度.35、⼀列⽕车匀速⾏驶,经过⼀条长300m的隧道需要12s的时间,隧道的顶上有⼀盏灯,垂直向下发光,灯光照在⽕车上的时间是7s.(1)设⽕车的长度为xm,⽤含x的式⼦表⽰,从⽕车头进⼊隧道到车尾离开隧道这段时间内⽕车的平均速度(2)求这列⽕车的长度(3)若这列⽕车从甲地到⼄地,速度提⾼10%,则可以提前503分钟到达,求甲⼄两地的距离(⽕车的长度忽略不计)36、⼀辆车长为4⽶的⼩轿车和⼀辆车长为20⽶的⼤货车,在长为1200⽶隧道的两个⼊⼝同时开始相向⽽⾏,⼩轿车的速度是⼤货车速度的3倍,⼤货车速度为10m/s.(1)求两车相遇的时间.(2)求两车从相遇到完全离开所需的时间.(3)当⼩轿车车头和⼤货车车头相遇后,求⼩轿车车头与⼤货车车头的距离是⼩轿车车尾与⼤货车车尾的距离的4倍时所需的时间.。
五年级行程问题学生版
第一讲:相遇问题例1.南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?例2 .李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?例3. 甲乙二人分别从A出、B两地发相向而行,第一次相遇地点为C点,距离两地中点500米处,然后各自到达目的地后返回再次相遇的地点D距离B地300米,求AB两地的距离。
例4.甲乙二人上午8点分别开车从A、B两地出发,相向而行,10点时两人相距160千米,11点时两人相距40千米,问两人是在几点的时候相遇的?例5. 如图,甲、乙两辆汽车在周长为360米的圆形道上行驶,甲车每分钟行驶20米.它们分别从相距90米的A ,B 两点同时出发,背向而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车经过B 点后恰好又回到A 点.此时甲车立即调头前进,乙车经过B 点继续行驶.请问:再过多少分钟甲车与乙车再次相遇?例6. 甲、乙、丙3辆车同时出发,甲、乙两车的速度分别为每小时60千米和48千米;有一辆迎面开来的卡车分别在他们出发后的6小时、7小时、8小时先后与甲、乙、丙3辆车相遇.求丙车的速度是多少?例7. 两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时?甲 乙 A B例题8.甲乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟步行70千米。
他走后一半路程用了多长时间?例题9. 甲、乙两车分别从A,B两地同时出发相向而行,6小时后相遇在C点。
一次函数的实际应用-行程问题(学生版)
一次函数的实际应用-行程问题1.首条贯通丝绸之路经济带的高铁线--宝兰客专的运行对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,宝兰客专运行的某天,一列动车从西安匀速开往西宁,一列普通列车从西宁匀速开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x 之间的函数关系.当动车到达西宁时,普通列车还需行驶千米到达西安.2.甲从A地到B地,1分钟后乙沿同一条路线也从A地到B地,在A、B之间的C地乙追上甲,甲立即返回A地,乙继续向B地前行,两人到达各自目的地后停止行走,在整个过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟之间的关系如图所示,则乙到达B地时,甲与A地相距的路程是米.3.从A到B地,先是平路,再是上坡,最后是下坡,现有甲、乙两车,甲在平路的速度是上坡速度的1.5倍,下坡速度是上坡速度的2倍,乙在上坡的速度只是甲在上坡的速度的一半,但平路和下坡的速度与甲一样,甲、乙两车同时出发,甲从A地出发到B地立即返回A 地后就停止,乙从B地出发达到A地后就停止,如图()s km表示是甲、乙两车之间的距离,t h表示甲行驶的时间,求在此过程中,甲、乙两车相遇后,甲返回A地还需要的时间是()_______h(注:甲、乙两车在平路、上坡、下坡各段路程行驶中,以各自的速度保持匀速行驶).4.小亮和小明在同一直线跑道AB上跑步.小亮从AB之间的C地出发,到达终点B地停止运动,小明从起点A地与小亮同时出发,到达B地休息20秒后立即以原速度的1.5倍返回C地并停止运动,在返途经过某地时小明的体力下降,并将速度降至3米/秒跑回终点C 地,结果两人同时到达各自的终点.在跑步过程中,小亮和小明均保持匀速,两人距C地的路程和记为y(米),小亮跑步的时间记为x(秒),y与x的函数关系如图所示,则小明在返途中体力下降并将速度降至3米/秒时,他距C地还有米.5.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()y m与小雪离开出发地的时间()x min之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为米.6.甲和摩托车维修工乙骑摩托车分别从某大道上相距6000米的A、B两地同时出发,相向而行,匀速行驶一段时间后,到达C地的甲发现摩托车出了故障,立即停下电话通知乙,乙接到电话后立即以出发时速度的43倍向C地匀速骑行,到达C地后,用5分钟修好了甲的摩托车,然后乙仍以出发时速度的43倍匀速向终点A地骑行,甲仍以原速向B地匀速骑行,2分钟后,发现乙的一件维修工具落在了自己车上,于是立即掉头并以原速32倍的速度匀速返回.在这个过程中,两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(甲与乙打、接电话及掉头时间忽略不计).则当乙到达A地时,甲离A地的距离为_________米.7.甲、乙两车在依次有A、B、C三地的笔直公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车从B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶,在两车行驶的过程中,甲乙两车之间的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,距A地的距离为km.。
山西省吕梁市数学小学奥数系列3-1-1行程问题(二)
山西省吕梁市数学小学奥数系列3-1-1行程问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共23题;共115分)1. (5分)十月一聪聪去旅游,去时的速度是60千米/时,用了3小时,返回时用了2小时。
返回时平均每小时行多少千米?2. (5分) (2019四下·射阳期中) 甲乙两地相距895千米,一辆汽车从甲地开往乙地,已经行了5小时,剩下的路程比已经行的多145千米,这辆汽车的平均速度是多少千米/小时?(根据题意把线段图补充完整再解答.)3. (5分)小明从家去学校,步行的速度是64米每分,走了15分到学校。
(1)小明家离学校有多少米?(2)如果小明回家只用了10分钟,他放学回家的速度是多少?4. (5分) (2019六下·竞赛) 小明沿着一条与铁路平行的笔直的小路由南向北行走,这时有一列长米的火车从他背后开来,他在行进中测出火车从他身边通过的时间是秒,而在这段时间内,他行走了米.求这列火车的速度是多少?5. (5分) (2019六下·泗洪期中) 在比例尺是1:7500000的地图上,量得南京到北京的距离是12厘米,一列火车以每小时90千米的速度从南京开往北京要多少小时?6. (5分) (2018六上·海沧期中) A、B两城相距452.5km.甲车从A城市到B城市要行驶4小时,乙车从B 城市到A城市要行驶6小时.两车同时分别从A城市和B城市出发,几小时后相遇?7. (5分) (2020三上·尖草坪期末) 小明从学校经过书店到文化馆一共用了9分钟。
(1)小明平均每分钟走多少米?(2)他从学校直接到文化馆,7分钟能到达吗?8. (5分) (2019四下·新会期中) 从甲城到乙城的公路长360千米。
一辆汽车走高速路的速度是90千米 / 时,走普通公路的速度是60千米 / 时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s = vt 路程÷速度=时间 可简记为:t = s÷v 路程÷时间=速度 可简记为:v = s÷t三、平均速度平均速度的基本关系式为: 平均速度=总路程÷总时间; 总时间=总路程÷平均速度; 总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【巩固】 甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【巩固】 两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?知识精讲教学目标3-1-1-行程问题基础【巩固】甲、乙两辆汽车分别从A、B 两地出发相向而行,甲车先行三小时后乙车从 B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B 两地间相距多少千米?【巩固】一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【巩固】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【巩固】小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【例2】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【例3】一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)【例4】龟兔赛跑,同时出发,全程6990米,龟每分钟爬30米,兔每分钟跑330米,兔跑了10分钟就停下来睡了215分钟,醒来后立即以原速往前跑,问龟和兔谁先到达终点?先到的比后到的快多少米?【例5】甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?【巩固】甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?【例6】四年级一班在划船比赛前讨论了两个比赛方案.第一个方案是在比赛中分别以2米/秒和3米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2米/秒和3米/秒的速度各划行比赛时间的一半.你认为这两个方案哪个好?模块二、平均速度问题【例7】如图,从A到B是12千米下坡路,从B到C是8千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小张从A到D的平均速度是多少?ADCB【巩固】如图,从A到B是6千米下坡路,从B到C是4千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问从A 到D的平均速度是多少?DACB【巩固】摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.【巩固】甲乙两地相距200千米,小强去时的速度是10千米/小时,回来的速度是40千米/小时,求小强往返的平均速度.【巩固】一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?【巩固】一个运动员进行爬山训练.从A地出发,上山路长30千米,每小时行3千米.爬到山顶后,沿原路下山,下山每小时行6千米.求这位运动员上山、下山的平均速度.【例8】一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?【巩固】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?【巩固】飞机以720千米/时的速度从甲地到乙地,到达后立即以480千米/时的速度返回甲地.求该车的平均速度.【巩固】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。
求该车的平均速度。
【巩固】从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.【巩固】某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?【巩固】胡老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?【例9】小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。
小明往返一趟共行了多少千米?【巩固】小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?【例10】小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同【例11】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
【巩固】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.【巩固】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?【例12】(2007年4月“希望杯”四年级2试)赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?【例13】张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?【巩固】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D 全程为72千米,老王开车从A到D共需要多少时间?【例14】小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?模块三、假设法解行程题【例15】王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?【例16】解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?【巩固】某人要到60千米外的农场去,开始他以6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?【巩固】(第六届《小数报》数学竞赛初赛题第1题)小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?模块四、综合题目【例17】张明和李军分别从甲、乙两地同时相向而行。
张明平均每小时行5千米;而李军第一小时行1千米,第二小时行3千米,第三小时行5千米,……(连续奇数)。
两人恰好在甲、乙两地的中点相遇。
甲、乙两地相距多少千米?【例18】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【例19】(华杯赛试题)某人由甲地去乙地,如果他从甲地先骑摩托车行12小时,再换骑自行车行9小时,恰好到达乙地,如果他从甲地先骑自行车21小时,再换骑摩托车行8小时,也恰好到达乙地,问:全程骑摩托车需要几小时到达乙地?【例20】一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?课后练习。