直线的方向向量与平面的法向量判断线面位置关系学案
1.4.1用空间向量研究直线、平面的位置关系(第2课时)-高二数学(人教A版选择性必修第一册)
.
答案:平行
解析:因为u·n=(-1,2,-3)·(4,-1,-2)=0,所以u⊥n.所以直线与平面平行,即l∥β.
新知应用
题型一:利用方向向量、法向量判断位置关系
1.根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系:
(1)直线 l1,l2 的方向向量分别是
a=(1,-3,-1),b=(8,2,2);
1.如图所示,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,
问:当点Q在什么位置时,平面D1BQ∥平面PAO?
解:如图所示,分别以DA,DC,DD1所在直线为x,y,z轴,建立空间直角坐标系,
在CC1上任取一点Q,连接BQ,D1Q.设正方体的棱长为1,
如图.设正方体的棱长为1,则可求得
M 0,1,
1
2
,N
于是 =
1
2
1
2
,1,1 ,D(0,0,0),A1(1,0,1),B(1,1,0).
,0,
1
2
,
1 =(1,0,1),
=(1,1,0).
设平面 A1BD 的法向量为 n=(x,y,z),
+ = 0,
· 1 = 0,
则
得
+ = 0.
(2)平面α,β的法向量分别是
u=(1,3,0),v=(-3,-9,0);
(3)直线 l 的方向向量、平面α的法向量分别是
a=(1,-4,-3),u=(2,0,3);
(4)直线 l 的方向向量、平面α的法向量分别是
a=(3,2,1),u=(-1,2,-1).
新知应用
解:
高二数学选择性必修件直线的方向向量与平面的法向量
通过平行线计算
如果两条直线平行,那么它们的方向 向量也平行。因此,可以通过一条已 知直线的方向向量来找到另一条平行 直线的方向向量。
通过平面法向量计算
如果直线与平面垂直,那么直线的方 向向量与平面的法向量平行。因此, 可以通过平面的法向量来找到与之垂 直的直线的方向向量。
XX
PART 03
平面的法向量
预备知识
01
向量的基本概念和运算
了解向量的定义、表示方法、基本运算(如加法、减法、数乘等)以及
向量的共线、垂直等性质。
02 03
平面的基本性质和表示方法
了解平面的基本性质,如平面内任意两点可以确定一条直线,平面内不 共线的三点可以确定一个平面等。同时掌握平面的表示方法,如点法式 、一般式等。
空间直角坐标系和向量的坐标表示
XX
THANKS
感谢观看
REPORTING
XX
PART 04
直线与平面的位置关系
REPORTING
直线与平面平行
定义
一条直线与一个平面无公 共点,则称这条直线与这 个平面平行。
判定定理
如果平面外一条直线与平 面内一条直线平行,那么 这条直线就与该平面平行 。
性质定理
如果一条直线与一个平面 平行,那么过这条直线的 任一平面与此平面的交线 与该直线平行。
解决实际问题
空间几何问题
在解决空间几何问题时,方向向量和法向量可以帮助我们判断线线、线面、面面的位置关系,进而求解角度、距 离等问题。
物理问题
在物理学中,方向向量和法向量也有广泛的应用。例如,在力学中可以利用方向向量表示力的方向;在电磁学中 ,可以利用法向量表示电场或磁场的方向。通过掌握方向向量和法向量的应用方法,可以更好地理解和解决物理 问题。
高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案
即 a2 = 3x2 + 2(3x2 cos )
x=
1a
3 + 6 cos
∴ 这个四棱柱的对角线的长可以确定棱长。
(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求
两个平行平面的距离,通常归结为求两点间的距离)
分析:面面距离 点面距离 向量的模 回归图形
解: 过 A1点作 A1H ⊥ 平面 AC 于点 H.
解:
设平面 AEF 的法向量为
则有
6,如图所示建立坐标系,有
为平面 AEF 的单位法向量。
分别求平面 SAB 与平面 SDC 的法向量,并求出它们夹角的余弦。 解:因为 y 轴 平面 SAB,所以平面 SAB 的法向量为 设平面 SDC 的法向量为, 由
§3.2.2 空间角与距离的计算举例
【学情分析】:
空间中的几何元素
如图,在空间中,我们取一点 O 作为基点,那么空间中任意一点 P 点、直线、平面的
的位置就可以用向量 OP 来表示.称向量 OP 为点的位置向量。
位置的向量表示方 法。
●P
基点 O●
2. 思考:在空间中给定一个定点 A 和一个定方向(向量),能确定一条直
线在空间的位置吗? l
a
P
A
AP = a( R)
∴ sin BAD = 1− 9 = 32 , 105 35
五、小结 六、作业
∴ S ABCD =| AB | | AD | sin BAD = 8 6 .
1. 点、直线、平面的位置的向量表示。 2. 线线、线面、面面间的平行与垂直关系的向量表示。 A,预习课本 105~110 的例题。 B,书面作业:
(1)求证: AP 是平面 ABCD 的法向量; (2)求平行四边形 ABCD 的面积.
直线的方向向量与平面的法向量预习案
直线的方向向量与平面的法向量预习案
教学目标:
1.理解直线的方向向量与平面的法向量
2.会用待定系数法求平面的法向量
重点难点:直线的方向向量与平面的法向量的求法
自学过程:
一.问题情境
在平面向量中,我们借助向量研究了平面内两条直线平行、垂直等位置关系。
如何用向量刻画空间的两条直线、直线与平面、平面与平面的位置关系?
二.概念讲解
1.直线的方向向量
我们把直线l上的向量e(e0
≠)以及与e共线的非零向量叫做直线l的_______.
2.平面的法线
与平面的直线叫做平面的法线
3.平面的法向量
如果表示非零向量n的有向线段所在直线垂直于平面α,那么称向量n垂直于平面α,记作nα
⊥。
此时,我们把向量n叫做平面α的法向量。
一个平面的法向量有个,过一个定点作平面的法向量有个
三.基础自测
1.在空间直角坐标系O—xyz中,写出平面yOz的一个法向量
2.已知A(2,0,0),B(0,1,0),C(0,0,1),那么平面ABC的一个单位法向量的坐标是
3.已知A()3,0,1-,B()z
,2,且直线AB的一个方向向量是)2,1
y,
a,则=
,1(-
=
y =
z
4.平面α的法向量是n,平面β的法向量是m,若β
α⊥,则m,n的关系是。
用空间向量研究立体几何中的直线、平面的位置关系(课时教学设计)-高中数学人教A版2019选择性必修一
空间中直线、平面的平行、垂直教学设计(一)教学内容空间直线、平面间的平行、垂直关系的向量表示,证明直线、平面位置关系的判定定理.(二)教学目标通过用向量方法判断直线与直线、直线与平面、平面与平面的平行、垂直关系.发展用向量方法证明必修内容中有关直线、平面平行、垂直关系的判定定理的能力.提升学生的直观想象、逻辑推理、数学运算等素养.(三)教学重点及难点重点:用向量方法解决空间图形的平行、垂直问题.难点:建立空间图形基本要素与向量之间的关系,如何把立体几何问题转化为空间向量问题.(四)教学过程设计新课导入:因为空间向量可以表示空间中的点、直线、平面,所以自然地会联想到利用空间向量及其运算可以表示“直线与直线”“直线与平面”和“平面与平面”之间的平行、垂直等位置关系,解决此问题的关键是转化为研究直线的方向向量、平面的法向量之间的关系.教材对空间中直线、平面的平行和垂直两种位置关系分开研究,首先研究空间中直线、平面的平行.1.空间中直线、平面的平行问题1:由直线与直线、直线与平面或平面与平面的平行关系,可以得到直线的方向向量、平面的法向量间的什么关系?师生活动:学生思考,教师点拨.问题1.1由直线与直线平行,可以得到直线的方向向量间有什u1l1u2l2的方向向量分别为u,v ,则l 1//l 2u //v u =λv , λ∈R.问题1.2由直线与平面平行、平面与平面平行,可以得到直线与面平行.得出结论:直线与平面平行还可以用直线的方向向量与平面法向量垂直进行,平面平行可以转化为法向量共线,教师可以结合右图启发学生对此进行研究.设计意图: 实现将直线平行与直线的方向向量平行的互相转化,直线和平面的平行与直线的方向向量和平面法向量垂直的转化,平面平行与平面法向量共线的转化. 2.空间中直线、平面的平行例题例2. 已知:如图,a ⊄β,b ⊂β,a ⋂b =P , a //α,b //α. 求证:α//β.师生活动:学生读懂题意,尝试分析解答.老师引导分析.分析:设平面α的法向量为n ,直线a ,b 的方向向量分别为u ,v ,则由已知条件可得n·u =n·v =0,由此可以证明n 与平面β内的任意一个向量垂直,即n 也是β的法向量.学生完成证明, 教师示范解答. 证明:如图,取平面α的法向量n ,直线a ,b 的方向向量u ,v .αn 1βn 2a buvP αnβ因为a //α,b //α, 所以n·u =0,n·v =0.因为a ⊂β,b ⊂β,a ⋂b =P ,所以对任意点Q ∈β,存在x ,y ∈R,使得 PQ ⃗⃗⃗⃗⃗ =xu +yv . 从而n·PQ ⃗⃗⃗⃗⃗ =n·(xu +yv )=xn· u +yn· v =0. 所以,向量n 也是平面β的法向量.故α//β.设计意图:例2是用向量方法证明平面与平面平行的判定定理,设置例2的目的是使学生体会利用法向量证明两个平面平行的一般基本思路.例3.如图在长方体ABCD -A 1B 1C 1D 1中,AB=4,BC=3,CC 1=2. 线段BC 上是否存在点P ,使得A 1P//平面 ACD 1? 师生活动:学生读懂题意,尝试解答.老师引导分析.分析:根据条件建立适当的空间直角坐标系,那么问题中涉及的点、向量B 1C ⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,以及平面ACD 1的法向量n 等都可以用坐标表示.如果点P 存在,那么就有n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,由此通过向量的坐标运算可得结果.学生完成求解,教师示范解答.解:以D 为原点,DA ,DC ,DD 1,所在直线分别为x轴、y 轴、z 轴,建立如图所示的空间直角坐标系.因为A,C,D 1的坐标分别为(3,0,0),(0,4,0),(0,0,2), 所以AC ⃗⃗⃗⃗⃗ =(-3,4,0),AD ⃗⃗⃗⃗⃗ =(-3,0,2). 设n =(x,y,z )是平面ACD 1的法向量, 则n·AC ⃗⃗⃗⃗⃗ =0,n·AD ⃗⃗⃗⃗⃗ =0,即{−3x +4y =0−3x +2z =0),所以x =23z ,y =12z .取z =6,则x =4,y =3, 所以n =(4,3,6)是平面ACD 1的一个法向量,由A,C,B 1的坐标分别为(3,0,2),(0,4,0),(3,4,2), 得A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,4,0),B 1C ⃗⃗⃗⃗⃗⃗⃗ =(-3,0,-2)DABC D 1A 1B 1C 1设点P 满足B 1P ⃗⃗⃗⃗⃗⃗⃗ =λB 1C ⃗⃗⃗⃗⃗⃗⃗ (0<λ≤1), 则B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,0,-2λ),所以A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,4,-2λ).令n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,得-12λ+12-12λ=0,解得λ=12,这样的点P 存在 所以,当B 1P ⃗⃗⃗⃗⃗⃗⃗ =12B 1C ⃗⃗⃗⃗⃗⃗⃗ ,即P 为B 1C 的中点时,A 1P//平面ACD 1.设计意图:例3是用向量方法判断直线与平面平行的问题,设置例3的目的是使学生体会利用法向量和坐标法解决直线与平面平行问题的一般思路.本题也可以利用共面的充要条件求解. 3.空间中直线、平面的垂直问题2:在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?师生活动:教师引导学生结合图形研究线与面垂直,两平面垂直.教师引导学生类比已经经历了研究空间中直线、平面平行的过程,对直线与直线、直线与平面、平面与平面垂直关系的研究可以类似地进行,让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系,然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式.问题2.1 直线l 1,l 2的方向向量分别为v 1,v 2,直线l 1,l 2垂直时,方向向量v 1,v 2有什么关系?师生活动:让学生自主探究显现垂直时,直线方向向量v 1,v 2有什么关系,教师展示答案.问题 2.2:由直线与平面的垂直关系,可以得到直线的方向向量、平面的法向量间有什么关系呢?师生活动:让学生自主探究线面垂直时,直线的方向向量、平面的法向量间有什么关系,教师展示答案.问题2.3:由平面与平面的垂直关系,可以得到这两个平面的法向量间有什么关系呢?师生活动:让学生自主探究面面垂直时,两个平面的法向量间有什么关系,教师展示答案.设计意图:让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系.然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式,进一步体会空间向量在研究直线、平面间位置关系中的作用. 4.空间中直线、平面的垂直例题例4 如图,在平行六面体ABCD A 1B 1C 1D 1中,AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°,求证:直线A 1C ⊥平面BDD 1B 1.师生活动:学生读懂题意,尝试解答,老师引导分析.分析:根据条件建立适当的基底向量,通过向量运算证明直线A 1C ⊥平面BDD 1B 1.证明:设AB a =,AD b =,1AA c =,则{,,}a b c 为空间的一个基底且1AC a b c =+-,BD b a =-,1BB c =.因为AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°, 所以2221ab c ===,12a b b c c a ⋅=⋅=⋅=. 在平面BDD 1B 1上,取BD 、1BB 为基向量,则对于面BDD 1B 1上任意一点P ,存在唯一的有序实数对(λ,μ),使得1BP BD BB λμ=+. 所以,1111()()()0AC BP AC BD AC BB a b c b a a b c c λμλμ⋅=⋅+⋅=+-⋅-++-⋅=. 所以1AC 是平面BDD 1B 1的法向量. 所以A 1C ⊥平面BDD 1B 1.设计意图:设置例 4 的目的是使学生体会“基底法”比“坐标法”更具有一般性.教学时要注意让学生体会空间向量基本定理在证明中的作用,体会用空间向量解决问题的一般方法.例 5 证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线,则这两个平面垂直.师生活动:学生读懂题意,尝试解答.老师引导分析,学生完成证明.已知:如图,l⊥α,1⊂β,求证:α⊥β.证明:取直线 l 的方向向量u⃗,平面β的法向量n⃗.因为l⊥α,所以u⃗是平面α的法向量.因为1⊂β,而n⃗是平面β的法向量,所以u⃗⊥n⃗.所以α⊥β.设计意图:设置例 5 的目的是使学生体会利用法向量证明平面与平面垂直的一般思路.教学时要注意突出直线的方向向量和平面的法向量的作用,即通过直线的方向向量和平面的法向量,把直线与直线、直线与平面、平面与平面的关系完全转化为两个向量之间的关系,通过向量的运算,得到空间图形的位置关系.5.课堂小结,反思感悟(1)知识总结:(2)学生反思:①通过这节课,你学到了什么知识?②回顾这节课的学习,空间中用向量法判断直线、平面平行与垂直用的具体方法?③在解决问题时,用到了哪些数学思想?设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力,教给学生如何总结,提升学生的数学“学习力”. 6.课堂检测与评价1. 如图,在正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是面AB 1,面A 1C 1的中心. 求证:EF//平面ACD 1.证明:设正方体的棱长为2,以D 为坐标原点,BA ⃗⃗⃗⃗⃗ , DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ,的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz , 则根据题意A(2,0,0),C( 0,2,0),D 1(0,0,2 ),E( 2,1,1 ), F( 1,1,2 ) 所以EF ⃗⃗⃗⃗⃗ =(−1,0,1),AC ⃗⃗⃗⃗⃗ =(−2,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(−2,0,2), 设n=( x , y ,z )是平面ACD 1的一个法向量,则n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ . 所以{n ⋅AC⃗⃗⃗⃗⃗ =−2x +2y =0n ⋅AD 1⃗⃗⃗⃗⃗⃗⃗ =−2x +2z =0),取x = 1,则y =1,z = 1,所以n = ( 1,1,1 ) 又EF ⃗⃗⃗⃗⃗ ⋅n =(−1,0,1)·(1,1,1)= − 1+1=0,所以EF ⃗⃗⃗⃗⃗ ⊥n , 所以EF 平面ACD 1.2.如图所示,在直三棱柱ABC A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .证明:由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧ n 1·AA1→=0,n 1·AC→=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE→=0⇒⎩⎪⎨⎪⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0,令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .设计意图:第一题证明线面平行,第二题用向量法证明面面垂直,恰当建系向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度,可以使学生巩固课上所学习的知识.7.作业布置完成教材:第31页练习第1,2题第33页练习第1,2,3题第41 页习题1.4 第5,8,11题(六)教学反思1.认识与运用向量及其运算中数与形的关联,体会转化思想.教学中应结合几何图形予以探讨,特别要重视平行六面体、长方体模型作用,引导学生借助图形理解它们,注意避免不联系几何意义的死记硬背;2.深化理解向量运算的作用,正是有了向量运算,向量才显示其重要性.要引导学生结合几何问题,关注向量运算在分析解决问题中的作用;3.重视综合方法、基底向量方法、建立坐标系方法各自特点的分析与归纳,综合方法以逻辑推理作为工具解决问题,基底向量方法利用向量的概念及其运算解决问题,坐标方法利用数及其运算来解决问题,坐标方法常与向量运算结合起来使用,根据它们的具体条件和特点选择合适的方法.总之新的教材,让学生经历向量由平面向空间的推广,重视了知识的发生、发展过程,使学生学会数学思考和推理.。
《用空间向量研究直线、平面的位置关系》课件与导学案
则 A(1, 0, 0) , B(1, 2, 0) , E (0, 0, 3) , F (1, 2, 3) , ∴ BE (1, 2, 3) , AB (0, 2, 0) ,
实数对(x, y ),使得OP xa yb ,
这样点O与向量a , b 可以确定平面,
课堂探究
如下图,取定空间任意一点 O ,可以得到,空间一点 P 位于平
面ABC 内的充要条件是存在实数 x,y,使 = + + .
上式称为空间平面 ABC 的向量表示式. 由此可
设 n1=(x1,y1,z1)是平面 ADE 的法向量,
则 n1⊥,n1⊥,
1 = 0,
1 · = 21 = 0,
得
即
1 · = 21 + 1 = 0, 1 = -21 .
令 z1=2,则 y1=-1,
所以 n1=(0,-1,2).
因为1 ·n1=-2+2=0,所以1 ⊥n1.
法向量的平面完全确定,可以表示为集合 | · = 0 .
例题解析
例 1.已知长方体 ABCD-A 1B 1C1D1 中,AB=4,BC=3,CC1 =2,M
为 AB 中点.以 D 为原点,DA,DC,DD1 所在直线分别为 x 轴、y 轴、
z 轴建立如图所示空间直角坐标系,
(1)求平面 BCC1B 1 的一个法向量.
从而 n
PQ n ( xu yv ) xn u yn v 0 .
所以,向量 n 也是平面 的法向量. 故
a
b
.
P
v
n
例题解析
高中数学(人教A)选修2-1课件:3.2.1直线的方向向量和平面的法向量
人教A版 ·选修2-1
路漫漫其修远兮 吾将上下而求索
第三章 空间向量与立体几何
第三章 3.2 立体几何中的向量方法
第1课时 直线的方向向量和平面的法向量
1 自主预习学案 2 典例探究学案 3 巩固提高学案
自主预习学案
• 1.理解直线的方向向量,平面的法向量.
• 2.能够利用直线的方向向量和平面的法向量 处理线面的位置关系.
量来讨论直线的位置关系,那么在空间向量 中我们能否用直线的方向向量与平面的法向 量来讨论空间线面的位置关系呢?
• 新知导学
• 4.空间直线与平面的位置关系可以用直线的 方向向量与平面的法向量的位置关系来研究 .
Байду номын сангаас
• 设直线l、m的方向向量分别为a、b,平面α
、β的法向量分别为u、v,当l,m不重合,α
• 重点:平面的法向量. • 难点:利用向量知识处理立体几何问题.
直线的方向向量与平面的法向量
• 温故知新 • 1.回想在平面向量中,怎样求一条直线的方
向向量.
• 思维导航 • 1.怎样确定空间一条直线的方向向量? • 2.一点A和一个方向可以确定一条直线吗?
类似的,一点A和一个方向能确定一个平面 吗?这个方向对平面有何特殊意义?
• (4)l⊥α⇔_a∥_u______存⇔在k_∈_R,_使_a_=_ku____________
_.
u∥v
存在k∈R,使u=kv
• (5)α∥β⇔__u_⊥_v____⇔u·_v=_0________________ ___;
• (6)α⊥β⇔________⇔__________. • 注:①由前提知la⊄α,b,u,v都是非零向量.
直线的方向向量和平面的法向量
为n=(x,y,z ) 则 由n ⋅ DA = 0 ,n ⋅ DE = 0得
D1
z
C1 B1 E
A1 D A
x
F B
C y
1 又因为D1 F = (0, , −1) 2 所以 D1 F ⊥ 平 面ADE
x + 0+ 0 = 0 =0, 则x =0,不妨取y = 1,得z = −2 1 1, x + y + 2 z = 0 所以n=( 0, - 2)
或AP = ta
用向量来表示点、直线、 一、用向量来表示点、直线、平面在空间中 的位置
⑶平面 空间中平面 α 的位置可以由 α 内两
条相交直线(两个不共线向量)来确定. 条相交直线(两个不共线向量)来确定.
对于平面 对于平面 α 上的任 存在有序 有序实数 一点 P ,存在有序实数 对 ( x , y ) ,使得
注意:这里的线线平行包括线线重合,线 注意:这里的线线平行包括线线重合, 面平行包括线在面内,面面平行包 面平行包括线在面内,面面平行包 括面面重合. 括面面重合.
三、用方向向量和法向量判定位置关系
设直线 l , m 的方向向量分别为 a, b , 平面 α, β 的法向量分别为 u, v ,则
线线垂直 l ⊥ m ⇔ a ⊥ b ⇔ a ⋅ b = 0 ;
课时小结
一、平行关系: 平行关系:
设直线 l1 , l2 的方向向量分别为 e1 , e2 , 平面
α1 , α 2 的法向量分别为 n1 , n2 ,则
线线平行 l1 // l 2 ⇔ e1 // e 2 ⇔ e 1 = λ e 2 ;
空间直线的方向向量和平面的法向量 教学设计高二下学期数学湘教版(2019)选择性必修第二册
第二章 空间向量与立体几何2.4 空间向量在立体几何中的应用 2.4.1 空间直线的方向向量和平面的法向量 新课程标准解读核心素养 1.能用向量语言表述直线和平面 数学抽象 2.理解直线的方向向量与平面的法向量 数学抽象 3.会求直线的方向向量与平面的法向量数学运算、直观想象教学设计一、目标展示 二、情境导入如图所示的长方体ABCD -A 1B 1C 1D 1.问题 (1)怎样借助空间向量来表示空间点A ,B ,C ,D ,A 1,B 1,C 1,D 1? (2)设AB ―→=v ,如果只借助v ,能不能确定直线AB 在空间中的位置?(3)一般地,怎样借助空间向量来刻画空间中点和直线的位置? 三、合作探究知识点一 位置向量在空间中,取一定点O 作为原点,那么空间中任意一点P 的位置就可以用向量OP ―→来表示,OP ―→_称为点P 的位置向量.知识点二 直线的方向向量1.一般地,如果非零向量v 与直线l 平行,就称v 为l 的方向向量.2.已知空间直线l 上一个定点A 以及这条直线的一个方向向量,就可以确定这条空间直线的位置.3.一条直线有无穷多个方向向量,这些方向向量是相互平行的;直线l 的方向向量v 也是所有与l 平行的直线的方向向量.知识点三 平面的法向量1.如果非零向量n 所在直线与平面α垂直,则称n 为平面α的法向量.2.给定一点A 和一个向量n ,那么,过点A ,且以向量n 为法向量的平面是完全确定的. 3.一个平面的法向量有无穷多个.由于垂直于同一平面的直线是平行的,因而一个平面的所有法向量互相平行.四、精讲点拨【例1】 已知点A (2,4,0),B (1,3,3),如图,以AB ―→的方向为正向,在直线AB 上建立一条数轴,P ,Q 为轴上的两点,且分别满足条件:①AP ∶PB =1∶2; ②AQ ∶QB =2∶1. 求点P 和点Q 的坐标.【例2】 (1)已知直线l 的一个方向向量m =(2,-1,3),且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z =( )A .0B .1 C.32D .3(2)在如图所示的坐标系中,ABCD -A 1B 1C 1D 1为正方体,棱长为1,则直线DD 1的一个方向向量为________,直线BC 1的一个方向向量为________.【例3】 在正方体ABCD -A 1B 1C 1D 1中,棱长为1,G ,E ,F 分别为AA 1,AB ,BC 的中点,求平面GEF 的一个法向量.五、达标检测1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3)D .(3,2,1)2.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( ) A .(0,-3,1) B .(2,0,1) C .(-2,-3,1) D .(-2,3,-1)六、课堂小结1.确定空间中点的位置;2.直线的方向向量;3.求平面的法向量.。
用空间向量研究直线、平面的位置关系 高中数学获奖教案
1.4.1用空间向量研究直线、平面的位置关系(第三课时)(人教A版普通高中教科书数学选择性必修第一册第一章)一、教学目标1..能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.2. 能用向量方法证明必修内容中有关直线、平面垂直关系的判定定理.3. 能用向量方法证明空间中直线、平面的垂直关系.二、教学重难点1.用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系2.用向量方法证明空间中直线、平面的垂直关系三、教学过程1.创设情境,从图形中探究新知问题1:类似空间中直线、平面平行的向量表示,在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?观察下图回答。
【预设的答案】位置关系向量表示线线垂直设直线l1,l2的方向向量分别为u1,u2,则l1⊥l2⇔u1⊥u2⇔u1·u2=0线面垂直设直线l的方向向量为u,平面α的法向量为n,则l⊥α⇔u∥n⇔∃λ∈R,使得u=λn面面垂直设平面α,β的法向量分别为n1,n2,则α⊥β⇔n1⊥n2⇔n1·n2=0【设计意图】类比直线、平面平行的向量表示,提出运用向量解空间中的垂直问题,引导学生回顾空间中线线、线面、面面的平行问题的解法方法,类比学习用空间向量解决空间中的垂直问题,进一步体会空间几何问题代数化的基本思想.热身活动1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”. (1)若两条直线的方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )(4)若两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β互相垂直.( )【预设的答案】 (1)× (2)√ (3)× (4)√【设计意图】进一步将空间中线线、线面、面面的位置关系,转化为向量语言。
直线的方向向量与平面的法向量课件高二下学期数学选择性
1-
315052=
3352,
所以平行四边形 ABCD 的面积=|A→B|·|A→D|·sin ∠BAD=8 6.
内容索引
内容索引
1. 已知直线 l 的一个方向向量为 m=(2,-1,3),且直线 l 过 A(0,
y,3)和 B(-1,2,z)两点,则 y-z 等于
()
A. 0
B. 1C.Fra bibliotek3 2【答案】 AC
12345
内容索引
4. 在空间直角坐标系O-xyz中,设平面α经过点P(1,0,0),平面α 的法向量为e=(1,0,0),M(x,y,z)为平面α内任意一点,则x,y,z 满足的关系是______________.
【解析】 由题意可知 e·P→M=0,即(1,0,0)·(x-1,y,z)=0,所 以 x=1,y∈R,z∈R.
D. 3
【解析】 因为 A(0,y,3)和 B(-1,2,z),所以A→B=(-1,2-y, z-3).因为直线 l 的一个方向向量为 m=(2,-1,3),故设A→B=km, 所以-1=2k,2-y=-k,z-3=3k,解得 k=-12,y=32,z=32,所以 y-z=0.
【答案】 A
12345
Thank you for watching
直线l上的非零向量e以及与e共线的非零向量叫作直 直线的方向向量
线l的方向向量 如果表示非零向量n的有向线段所在直线垂直于平面 平面的法向量 α,那么称向量n垂直于平面α,记作n⊥α.此时,我 们把向量n叫作平面α的法向量
内容索引
(2) 用向量表示直线的位置:
直线 l 上一点 A 条件
直线的方向向量
如果在直线 l 上取A→B=a,那么对于直线 l 上任意一点 P, 性质
高中数学 第3章 空间向量与立体几何 3.2.2 空间线面关系的判定1数学教案
3.2.2 空间线面关系的判定设空间两条直线l 1,l 2的方向向量分别为e 1,e 2,两个平面α1,α2的法向量分别为n 1,n 2,则有下表:思考:否垂直?[提示] 垂直1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交B [∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α.]2.已知不重合的平面α,β的法向量分别为n 1=⎝ ⎛⎭⎪⎫12,3,-1,n 2=⎝ ⎛⎭⎪⎫-16,-1,13,则平面α与β的位置关系是________.平行 [∵n 1=-3n 2,∴n 1∥n 2,故α∥β.]3.设直线l 1的方向向量为a =(3,1,-2),l 2的方向向量为b =(-1,3,0),则直线l 1与l 2的位置关系是________.垂直 [∵a·b =(3,1,-2)·(-1,3,0)=-3+3+0=0,∴a⊥b ,∴l 1⊥l 2.] 4.若直线l 的方向向量为a =(-1,2,3),平面α的法向量为n =(2,-4,-6),则直线l 与平面α的位置关系是________.垂直 [∵n =-2a ,∴n ∥a ,又n 是平面α的法向量,所以l ⊥α.]利用空间向量证明线线平行【例1】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.[证明] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1→=⎝ ⎛⎭⎪⎫0,1,12,AF→=⎝ ⎛⎭⎪⎫0,1,12, ∵AE →=FC 1→,EC 1→=AF →, ∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直. 1.长方体ABCD A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝⎛⎭⎪⎫a ,b 3,23c . ∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.利用空间向量证明线面、面面平行[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理? 提示:可设几何体的棱长为1或a ,再求点的坐标.【例2】 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .[思路探究][证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →.即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 1.本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1),又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1.2.若本例换为:在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .向量法证明垂直问题【例3】 如图所示,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE . [思路探究] 建系→求相关点的坐标→求相关向量的坐标→判断向量的关系→确定线线、线面关系[证明] AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, ∴△ABC 为正三角形,∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE . ∵AB →=(1,0,0),∴PD →·AB →=0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面ABE .法二:AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE . 1.证明线线垂直常用的方法证明这两条直线的方向向量互相垂直. 2.证明线面垂直常用的方法(1)证明直线的方向向量与平面的法向量是共线向量; (2)证明直线与平面内的两个不共线的向量互相垂直. 3.证明面面垂直常用的方法 (1)转化为线线垂直、线面垂直处理; (2)证明两个平面的法向量互相垂直.2.在例3中,平面ABE 与平面PDC 是否垂直,若垂直,请证明;若不垂直,请说明理由.[解] 由例3,可知CD →=⎝ ⎛⎭⎪⎫-12,36,0,PD →=⎝ ⎛⎭⎪⎫0,233,-1,设平面PDC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CD →=-12x +36y =0,m ·PD →=233y -z =0,令y =3,则x =1,z =2,即m =(1,3,2),由例3知,平面ABE 的法向量为n =(0,2,-3), ∴m·n =0+23-23=0,∴m⊥n . 所以平面ABE ⊥平面PDC .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).3.(1)证明线面垂直问题,可以利用直线的方向向量和平面的法向量之间的关系来证明. (2)证明面面垂直问题,常转化为线线垂直、线面垂直或两个平面的法向量垂直. 1.判断(正确的打“√”,错误的打“×”)(1)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (3)若一直线与平面垂直,则该直线的方向向量与平面内所有直线的方向向量的数量积为0.( )(4)两个平面垂直,则其中一个平面内的直线的方向向量与另一个平面内的直线的方向向量垂直.( )[答案] (1)√ (2)√ (3)√ (4)×2.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx,5=λy , ∴x =6,y =152.]3.已知平面α和平面β的法向量分别为a =(1,2,3),b =(x ,-2,3),且α⊥β,则x =________.-5 [∵α⊥β,∴a ⊥b , ∴a ·b =x -4+9=0, ∴x =-5.]4.在正方体ABCD A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . [证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B1BD的法向量为n2=(1,-1,0),由n1·n2=0,知n1⊥n2,∴平面B1DE⊥平面B1BD.。
【教案】1.4.1用空间向量研究直线、平面的位置关系 教学设计-人教版(2019)选择性必修一
1.4.1用空间向量研究直线、平面的位置关系一、内容和内容解析1.内容空间中点、直线和平面的向量表示;直线的方向向量和平面的法向量.2.内容解析在本章前三节中,学生类比平面向量,学习了空间向量的概念、线性运算和数量积运算、空间向量基本定理及空间向量的坐标运算,体会了平面向量与空间向量的共性和差异.在这一节中,学生将会运用向量方法研究空间基本图形的平行、垂直等位置关系和距离、角度等度量问题,从中体会向量方法与几何方法的共性和差异,通过运用向量方法解决简单数学问题和实际问题,感悟向量是研究几何问题的有效工具.为了用空间向量解决立体几何问题,首先要把点、直线、平面等组成立体图形的要素用向量表示,使其成为可以运算的对象,将几何问题转化为向量问题;进而利用空间向量的运算,研究空间直线、平面间的平行、垂直等位置关系以及距离、夹角等度量问题;而解决这些问题经常要用到平面的法向量.结合以上分析,确定本节课的教学重点:平面法向量的概念及求法.二、目标和目标解析1.目标(1)能用向量表示空间中的点、直线和平面;(2)理解平面的法向量的概念,会求法向量;(3)经历用代数运算解决几何问题的过程,提升直观想象、数学运算素养.2.目标解析达成上述目标的标志是:(1)理解用位置向量与空间中的点建立对应关系,理解一个点和一个定方向唯一确定一条直线,一个定点和两个定方向确定一个平面,能推导出直线和平面向量表示式.(2)理解与平面垂直的直线的方向向量是平面的法向量,从而法向量不是唯一的,清楚在用待定系数法求法向量的坐标时,为什么只需要两个方程.三、教学问题诊断分析对于问题“空间中给定一个点A和一个方向就能唯一确定一条直线l.如何用向量表示直线l?”学生可能会感到比较抽象,不知道需要做什么.教师可以进行追问将问题描述地更加具体,起到提示和辅助学生的作用.比如换成思考“直线上任意一点P如何用向量表达式表示,式子中只含有点A和方向向量a”.上述问题解决后,在提出问题“一个定点和两个定方向能否确定一个平面?如果能确定,如何用向量表示这个平面?”时,学生可以利用直线的向量表示式的经验去思考.最后对于问题“一个定点和一个定方向能否确定一个平面?如果能确定,如何用向量表示这个平面?”,有的同学可能觉得“经过一条直线和直线外一点”也可以确定平面,这时教师要注意强调问题中的一个定点的任意性(即可能在直线上).这样提出“经过定点A且垂直于l的平面是唯一确定的”就比较自然.另外与前几个问题不同的是,在表示平面上任意一点P时,用到数量积运算而不是线性运算,究其原因一是让学生结合线面垂直的定义理解法向量与平面内的任意向量垂直,二是向量垂直关系用运算表达等价于数量积为0.本节课的教学难点是空间中的点、直线和平面的向量表示.四、教学过程设计引言:我们知道,点、直线和平面是空间的基本图形,点、线段和平面图形等是组成空间几何体的基本元素.因此,为了用空间向量解决立体几何问题,首先要用向量表示空间中的点、直线和平面.(一)思考空间中点、直线和平面的向量表示问题1:如何用向量表示空间中的一个点?追问:取空间中一个定点O为起点,空间中的向量与向量的终点间有怎样的关系?师生活动:教师引导学生类比平面中用向量表示点.设计意图:引发学生思考起点确定时,空间中任意一个点作为终点都可以得到一个空间向量,这种一一对应关系决定能用向量OP表示点P.问题2:我们知道,空间中给定一个点A 和一个方向就能唯一确定一条直线l .如何用向量表示直线l ?师生活动:教师在课件中给出图形,即点A 和直线l 的方向向量a ,并向学生阐明,用向量表示直线l ,就是用点A 和向量a 表示直线l 上的任意一点.学生观察图形,进行思考.追问:(1)P 是直线l 上的任意一点,由方向向量的定义可知,AP 怎样用a 来表示?(2)假设O 是空间任意一点,运用问题1中用位置向量表示点的方法,又可以怎样表示AP ? 师生活动:教师引导学生观察、讨论、分析.设计意图:教材第1节就给出了直线的方向向量的概念,根据空间向量数乘运算的意义,AP =t a (t ∈R ).通过追问2,让学生得到OA OP AP -=,从而得出直线的向量表示式a t OA OP +=,进一步深化理解点的向量表示.同时应指出,点P 在直线l 上的充要条件是存在实数t ,使a t OA OP +=.问题3:一个定点和两个定方向能否确定一个平面?如果能确定,如何用向量表示这个平面?追问:(1)我们知道,经过两条相交直线可以确定一个平面α,设这两条直线的交点为A ,方向向量为a 和b ,P 为平面α内任意一点,根据平面向量基本定理,如何表示AP ?(2)取定空间任意一点O ,类似于问题2,你能得到平面ABC 的向量表示式吗?师生活动:教师展示图形,引导学生思考并进行演算.设计意图:根据平面向量基本定理,存在唯一实数对(x ,y ),使得b a y x AP +=.类比问题2的推导过程,学生容易得到平面的向量表示式AC y AB x OA OP ++=,由学生自行推导,强调前后知识的联系,形成解决同类问题的思想方法.(二)平面的法向量的概念及求法问题4:一个定点和一个定方向能否确定一个平面?如果能确定,如何用向量表示这个平面?师生活动:教师展示图形,经过定点A 且垂直于l 的平面是唯一确定的,给出平面法向量的概念,即l ⊥α,l 的方向向量a 叫做α的法向量.对于第二个问题可进行如下追问.追问:(1)对于平面内任意一点P ,AP 与a 有怎样的关系?可以用哪种运算来表示这种关系?(2)如果另有一条直线m ⊥α,在m 上取向量b ,则b 与a 有什么关系?设计意图:让学生在思考中理解垂直关系可以用向量数量积为0来表示,为后面求平面的法向量提供依据.教师给出集合{}|0P AP •=a 表示平面,加强知识间的联系,用集合的观点表示图形.例 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2,M 是AB 中点,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.(1)求平面BCC 1B 1的法向量.(2)求平面MCA 1的法向量.设计意图:第(1)问是通过定义法求法向量,第(2)问是用待定系数法求法向量,加深学生对法向量的概念理解,熟练空间直角坐标系和空间向量的坐标表示.问题5:如果设平面MCA 1的法向量为n=(x ,y ,z ),如何得到x 、y 、z 满足的方程?师生活动:学生通过观察结合本节课所学,可知平面MCA 1可以看成由MC ,1MA ,1AC 中的两个向量所确定,运用法向量与它们的垂直关系,可转化为数量积运算列出方程.追问:为什么只需用n 与两个不共线的向量数量积为0列方程组就可以?设计意图:让学生通过线面垂直的判定定理理解用待定系数法求法向量的过程.同时教师应指出方程组有无数个解,我们只需求出平面的一个法向量,求直线的方向向量也是如此.(三)归纳总结、布置作业教师引导学生回顾本节知识,并回答以下问题:(1)如何用向量表示空间中的点、直线和平面?(2)什么是平面的法向量,如何求平面法向量?(3)通过本节课对你今后解决立体几何问题有哪些启发?设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书习题1.4第1,2题.思考:由直线与直线、直线与平面或平面与平面的平行、垂直关系,可以得到直线的方向向量和平面的法向量间的什么关系?五、目标检测设计1.如图,在三棱锥A -BCD 中,E 是CD 的中点,点F 在AE 上,且EF =2F A .设a =BC ,b =BD ,c =BA ,求直线AE 、BF 的方向向量.设计意图:考查学生用基底法求直线的方向向量.2.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=1,AA1=2.以A为原点,建立如图所示的空间直角坐标系.(1)求平面BCC1B1的法向量;(2)求平面A1BC的法向量.设计意图:考查学生用空间向量坐标运算求法向量.。
4.2 用向量方法讨论立体几何中的位置关系
∠BAC= ,故以点A为原点,AB,AC,AA'所在直线分别
2
为x轴、y轴、z轴建立空间直角坐标系(如图3-39).
设AA'=1,因为AB=AC= 2AA',所以A'(0,0,1) ,
B( 2,0,0), B'( 2,0,1),C(0, 2,0),C'(0, 2,1).
学而优 · 教有方
高中数学
-5
α⊥β,则 x=________.
解析 ∵α⊥β,∴a⊥b,∴a·b=x-4+9=0,∴x=-5.
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
4.已知 a=(0,1,1),b=(1,1,0),c=(1,0,1)分别是平面α,β,γ的法向
0
量,则α,β,γ三个平面中互相垂直的有________对.
求证:n丄α.
图 3-35
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
分析 设m是平面α内的任意一条直线.要证明n丄α,只需证明n丄m.如何充分
运用条件,表达“m是平面α内的任意一条直线''呢?可以考虑将直线m的方
向向量用平面α的 一组基表示.
证明 设m是平面α内的任意一条直线(如图3-35(2)),a,b,,n依次为直线
理、数学抽象素养.
学而优 · 教有方
高中数学
GAOZHONGSHUXUE
探究导学
探究点1 用向量方法表示几何位置关系
因为直线的方向向量与平面的法向量是确定直线和平面位置的关键
因素,所以可以利用直线的方向向量和平面的法向量表示空间直线与平
面间的平行、垂直等位置关系.
设向量l,m分别是直线l,m的方向向量,n1,n2分别是平面α,β的法向量,用
高二数学直线的方向向量与平面的法向量
一、直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定.
l
e
直线l上的向量 e 以及与 e 共线 的向量叫做直线l的方向向量。
e
A
B
二、平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以 用垂直于平面的直线的方向向量来刻画平面的“方向”。 平面的法向量:如果表示向量 n 的有向线段所在直线垂 直于平面 ,则称这个向量垂直于平面 ,记作 n ⊥ , 如果 n⊥ ,那 么 向 量 n 叫做平面 的法向量.
l1
e1
e2
l2
l1 l2 e1 e2 e1 e2 0
l
e1
n1
l1 1 e1 // n1 e1 n1
2
n2
n1
1
1 2 n1 n2 n1 n1 0
/ 博王时彩计划
盼着爷能过来 可总得别到信儿 就经常到院门口看您是否过来 那去の次数多咯 别小心就受咯风 ”“您们那帮奴才就别晓得劝劝您家主子吗?任由着她受咯风都别管别顾?都是 怎么当の差事?皮痒咯还是怎么着?”“爷 奴婢知错咯 求爷看在奴婢还要服侍主子の份上 暂且饶过奴婢那壹次 别要责罚!”菊香还别待说完 早就吓得扑通壹声跪在咯地上 声 音中还带着哭腔 “早怎么别去知会爷 都耗到咯那会儿才说?”“回爷 主子是怕爷担心 壹直别让奴婢跟秦公公说 只是 今天那病又加重咯 才请咯太医 可是喝咯药也别见好 那 到咯夜里头 非但别见好 还又咳上咯 奴婢才别顾主子の命令 斗胆去请您 ”淑清病咯 对此他の心中很是愧疚 那些天壹直在照顾水清 没想到淑清都病咯两天咯 他都别晓得 若别 是菊香去怡然居找他 别晓得还要耽搁多久才能来看望她 虽然他现在壹门心思都在水清身上 但是淑清也是他の诸人 别要说他们以前曾经有过那么深の感情 就算是他们以前关系 壹般 只要是他の诸人 他也别能熟视无睹 别管别顾 他是她们の夫君 他有责任将她们照顾好 于是他转过头来 对淑清说道:“您也是 那么大人咯 怎么也别晓得照顾好自己?爷 要是过来 自然会差人提前传口信 秋日里风凉 您更是要当心 那些天您就好好在床上躺着养病 别要整日里胡思乱想 把身子养好咯才是正经事 ”“多谢爷 妾身那点儿小病别碍事 若别是病在床上起别咯身 定是会拦咯菊香 别让她去找您の ”“您瞧瞧您 说の那叫啥啊话 您病咯 爷能别来看您吗?菊香能来找爷 那就对咯!爷确实是要责罚她 恰恰就是因为 她找得太晚咯 若是早两天 也别至于让您病成那样 ”第壹卷 第898章 回去他说の是真心话 他确实是嫌菊香找他找得太晚咯!但是他只说咯半截话 假设菊香能早些找他 他能早 些劝慰淑清 她の病也别至于壹日重过壹日 另外假设她能早两天找他 而别是今天那各尴尬の日子 他也别至于对冰水清如此愧疚 他们才刚刚两各人步入正轨 足足耗咯十三天の时 间 才借着撕衣裳那各极为难得の玩笑契机开始两各人第二次の浓情蜜意 可是为啥啊偏偏竟是今天?水清好别容易发自内心地接纳咯他 别再拘谨羞涩 好别容易在他の耐心安抚之 下沉入梦乡 别再惊慌得彻夜难眠 为啥啊偏偏就是今天?他要从热被窝里被请来烟雨园 留给她壹各人如此别堪の局面去独自面对 偏偏水清又是壹各极为敏感之人 虽然走之前他 特意看咯她壹眼 晓得她没什么被吵醒 仍在安然地沉睡 可是他の心中特别没什么底 他别晓得她那是真正の没什么被吵醒 还是善解人意地在装睡 毕竟她以前装昏、装睡、装病企 图蒙骗他の别良记忆太多咯 在与水清渐入佳境之际就偏偏赶上淑清又病下咯 那样の无巧别成书令他顾此失彼 应接别暇 陷入咯极度の矛盾之中 淑清病咯 别陪她于情于理说别过 去 可是水清呢?已经下定决心要陪伴她成长の每壹天 那才短短の十三天 他怎么能够将她壹各人扔下管 特别是今晚 那各最敏感の时刻 而且他第壹各缺席の日子竟然是陪伴在另 外壹各诸人の身边 假设今天因为别の事情他歇在朗吟阁 倒是还能有效地减轻他の内疚与自责 可却偏偏是烟雨园……他要回去!仿佛是壹瞬间 他没什么任何理由就决定咯他要回 去 毕竟淑清只是轻微の风寒 已经经过太医の诊治 药也喝下咯 也没什么发烧 只是还有些咳嗽 应该没什么大碍 关于病情 他确实有足够の理由踏实下心来 于是 他开口说道: “好咯 下次身子有啥啊别舒服 早些禀报爷 别再拖得那么久 幸好那壹次只是小病 万壹拖得时间长咯 可就别好咯 ”说完 他转向咯菊香:“那壹次看在您及时禀报の份上 爷就 别追究您服侍主子别力の错处 下次再若如此 爷决别会轻饶 从现在开始 好生服侍您家主子 先别要出门咯 特别注意把窗子关严实咯 小凉风更容易闹大病 ”“回爷 奴婢壹定好 生服侍主子 再也别
直线的方向向量、平面的法向量以及空间线面关系的判定
方程组
r nnr
• •
r ar b
0 0
aa12
x x
b1 y b2 y
c1z c2z
0 0
可。
(4)解方程组,取其中的一 个解,即得法向量。
例3. 在空间直角坐标系内,设平面 经过 点 P(x0 , y0 , z0 ) ,平面 的法向量为 e ( A, B, C), M (x, y, z) 为平面 内任意一点,求 x, y, z
三、平行关系:
ur ur
设直线
l1 , l2
的方向向量分别为
uur uur
e1 , e2
,平面
1
,
2
的法向量分别为
ur
nur1 ,
n2
,则
ur
ur
线线平行 l1 // l2 e1 // e2 e1 e2 ;
ur uur ur uur
线面平行 l1 // 1 e1 n1 e1 n1 0 ;
一、直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定.
l
r
r
r
e
直线l上的向量e 以及与e 共线
的向量叫做直线l的方向向量。
r
eB
A
二、平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以
用垂直于平面的直线的方向向量来刻画平面的“方向”。
平直如面于果的平nr⊥法面向,量,那:则如称么果这向表个量示向nr向量叫垂量做直nr平的于面有平向面 线的段法,记所向作在量nr直.⊥线垂,
平行
巩固性训练2
1.设 u, v 分别是平面α,β的法向量,根据
1.4.1用空间向量研究直线、平面的位置关系教学设计
1.4.1⽤空间向量研究直线、平⾯的位置关系教学设计教材分析本节课选⾃《普通⾼中课程标准数学教科书-选择性必修第⼀册》(⼈教A版)第⼀章《空间向量与⽴体⼏何》,本节课主要学习⽤向量语⾔描述直线、平⾯的垂直关系并且⽤向量⽅法证明垂直问题。
本节课的学习,可以培养学⽣提出猜想、验证猜想、作出数学发现的意识,增强“平⾯化”和“降维”的转化思想,以及发展空间想象能⼒。
⼆、教学⽬标1、能⽤向量语⾔表述直线与直线、直线与平⾯、平⾯与平⾯的垂直关系;2、能⽤向量⽅法证明必修内容中有关直线、平⾯垂直关系的判定定理;3、能⽤向量⽅法证明空间中直线、平⾯的垂直关系。
三、学科素养1.逻辑推理:⽤向量描述垂直关系;2.数学运算:向量的加减数乘、数量积运算;3.直观想象:直线、平⾯的垂直关系。
四、教学重难点1.教学重点:⽤向量语⾔表述直线与直线、直线与平⾯、平⾯与平⾯的垂直关系;2.教学难点:⽤向量⽅法证明空间中直线、平⾯的垂直关系。
五、教学准备多媒体 PPT教学过程(⼀)复习回顾,温故知新1. 回顾前⾯所学的怎么⽤⽤向量语⾔描述线线、线⾯、⾯⾯平⾏关系?学⽣回答:1)线线平⾏1. 线⾯平⾏1. ⾯⾯平⾏设计本环节意图:帮助学⽣通过复习所学的内容,巩固加深理解,并且通过类⽐上节所学内容,对本节所学内容起到⼀个承上启下的作⽤,从⽽帮助学⽣建⽴起学习数学的信⼼,激发学⽣的学习兴趣。
情景导学思考:类似空间中直线、平⾯平⾏的向量表⽰,在直线与直线、直线与平⾯、平⾯与平⾯垂直关系中,直线的⽅向向量、平⾯的法向量之间有什么关系?带着这个思考问题,⾃⾏阅读教材,类⽐平⾏的学习⽅法去想⼀下怎么⽤向量的⽅法去描述垂直问题。
(⼩组讨论)设计本环节意图: 抛出问题,让学⽣主动思考,⾃觉去阅读教材,主动积极去解决问题,从⽽提升学⽣的逻辑推理的学科素养⽔平。
学习新知通过阅读课本学习,相信同学们对怎么⽤向量来描述空间中的垂直关系已经有了⼀定的认识,那么,现在请同学们⼀起来探讨⼀下下⾯的三个思考。
高二数学直线的方向向量与平面的法向量
前面,我们把 平面向量 推广到
空间向量
向量 渐渐成为重要工具
立体几何问题
(研究的基本对象是点、直线、平面 以及由它们组成的空间图形)
从今天开始,我们将进一步来体会向量这一工 具在立体几何中的应用.
l // e n 0 a1a2 b1b2 c1c2 0;
例4 如图,已知矩形 ABCD和矩形 ADEF所在平面互相垂直,点
M, N 分别在对角线 BD, AE上,且 BM1BD,AN1AE,
求证:M N//平 面 CDE
3
3
简证:因为矩形ABCD和矩形ADEF 所在平面互相垂直,所以AB,AD,
几点注意:
n
1.法向量一定是非零向量;
A 2.一个平面的所有法向量都互相平行;
3.向量 n 是平面的法向量,向量 m 是
与平面平行或在平面内,则有
n m 0
例 1:在正方体 ABCD A1B1C1D1中,求
证: DB1 是平面 ACD1 的法向量
证:设正方体棱长为 1,
以 DA, DC, DD1 为单位正交基底,建立如 图所示空间坐标系 D xyz ,则 A(1,0,0), C(0,1,0),D1(0,0,1),B1(1,1,1) DB1 (1,1,1) , AC (1,1,0) , AD1 (1,0,1) DB1 AC 0, 所以 DB1 AC ,同理 DB1 AD1 又因为 AD1 AC A
为了用向量来研究空间的线面位置关系,首先我 们要用向量来表示直线和平面的“方向”。那么 如何用向量来刻画直线和平面的“方向”呢?
一、直线的方向向量
《直线的方向向量与平面的法向量(1)》示范公开课教案【高中数学北师大】
《直线的方向向量与平面的法向量(1)》教案1.能用向量语言描述直线,理解直线的方向向量的概念;2.在学习实践中认识向量方法是解决立体几何问题的基本方法,形成看待立体几何问题的多元、多维观点.重点:理解直线的方向向量的概念.难点:能用向量语言描述直线.一、情境导入情境:在前面的学习中,我们认识到用空间向量解决立体几何问题的基本步骤是:首先将立体几何问题转化为向量问题,然后运用向量方法求解,最后再回到立体几何问题.几何特征的代数表述起着重要的作用.我们知道,立体几何研究的基本对象是点、直线、平面,以及由它们组成的空间图形,因此用空间向量解决立体几何问题时,首先需要把点、直线、平面用向量分别表示出来.那么如何用向量方法描述空间中的一个点、一条直线呢?设计意图:梳理用空间向量解决立体几何的思路,在此基础上,提出新的问题,引发学生思考.二、新知探究问题1:如何用向量表示空间中的一个点P?答案:空间当中点的位置一定是相对于某一固定参照物来说的.如图,在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量OP⃗⃗⃗⃗⃗ 来表示,我们把向量OP⃗⃗⃗⃗⃗ 称为点P的位置向量.问题2:如何用向量表示空间中的一条直线l?答案:由两点确定一条直线可知,若给定直线上的两点,则这条直线的位置也就唯一确定了.如图,设点A,B是直线l上不重合的任意两点,称AB⃗⃗⃗⃗⃗ 为直线l的方向向量.◆教学目标◆教学重难点◆◆教学过程追问1:一条直线有多少个方向向量呢?答案:在数学中,我们学习的向量都是自由向量,因此,与AB⃗⃗⃗⃗⃗ 平行的任意非零向量a 也是直线l 的方向向量,故一条直线有无数个方向向量,且这些方向向量都平行.追问2:若给定直线上的一点及这条直线的方向,能否确定这条直线的位置? 答案:如图,已知点M 是直线l 上的一点,非零向量a 是直线l 的一个方向向量,显然直线l 的位置被唯一确定,即,空间中任意一条直线l 的位置可以由直线l 上的一个定点和该直线的方向向量唯一确定.对于直线l 上的任意一点P ,一定存在实数t ,使得MP⃗⃗⃗⃗⃗⃗ =ta . 反之,由几何知识不难确定,满足MP ⃗⃗⃗⃗⃗⃗ =ta 的点P 一定在直线l 上.因此,我们把这个式子称为直线l 的向量表示.问题3:取定空间中的任意一点O ,可以得到点P 在直线AB 上的充要条件是什么?答案:如图,根据直线的向量表示可知:点P 在直线AB 上等价于存在实数t ,使得AP⃗⃗⃗⃗⃗ =tAB ⃗⃗⃗⃗⃗ . 又因为AP⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ , 所以OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =t(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ), 整理,得OP ⃗⃗⃗⃗⃗ =(1−t )OA ⃗⃗⃗⃗⃗ +tOB⃗⃗⃗⃗⃗ . 即,点P 在直线AB 上的充要条件是OP ⃗⃗⃗⃗⃗ =(1−t )OA ⃗⃗⃗⃗⃗ +tOB ⃗⃗⃗⃗⃗ . 此结论可以证明空间三点共线.三、应用举例例1:在空间直角坐标系中,已知点A(4,2,0),B(1,3,3),点E 是线段AB 上的一点,且AE =12AB ,求点E 的坐标.解:设点E 的坐标为(x 1,y 1,z 1),由题意可知:AB ⃗⃗⃗⃗⃗ =(−3,1,3),且AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,∴(x 1−4,y 1−2,z 1)=12(−3,1,3).即,{ x 1−4=−32y 1−2=12z 1=32,解得{ x 1=52y 1=32z 1=32.∴点E 的坐标为(52,32,32).总结:此类问题常转化为向量的共线、向量相等解决,设出要求点的坐标,利用已知条件得关于要求点坐标的方程或方程组求解即可.例2:在空间直角坐标系中,已知点A(1,1,0),B(2,3,3),C(0,1,2),点D 为直线AB 上的一点,且CD ⊥AB ,求|AD ||AB |.解:依题意知,AB⃗⃗⃗⃗⃗ =(1,2,3),CA ⃗⃗⃗⃗⃗ =(1,0,−2). 因为点D 为直线AB 上的一点,所以存在实数λ,使得AD ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,则 CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =CA⃗⃗⃗⃗⃗ +λAB ⃗⃗⃗⃗⃗ =(1+λ,2λ,−2+3λ). 由CD ⊥AB ,得CD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,即(1+λ)+2(2λ)+3(−2+3λ)=0,解得λ=514.∴|AD ||AB|=514.四、课堂练习1.(多选)若点M(1,0,−1),N(2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A.(2,2,6) B.(1,1,3) C.(3,1,1)D.(−3,0,1)2.已知直线l 经过点A(1,−1,2),直线l 的一个方向向量为a =(1,−2,3).若P(x ,y ,z)是直线l 上任意一点,求x ,y ,z 满足的关系式.3.如图,在三棱台ABC −A 1B 1C 1中,AB =2A 1B 1,B 1D =2DC 1,CE =EC 1,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,以{a ,b ,c}为空间的一组基,求直线AE ,AD 的一个方向向量.参考答案:1.解:因为点M ,N 在直线l 上,MN ⃗⃗⃗⃗⃗⃗⃗ =(1,1,3),所以向量(1,1,3),(2,2,6)都是直线l 的方向向量.故选AB .2.解:由题意知AP ⃗⃗⃗⃗⃗ =(x −1,y +1,z −2).因为a =(1,−2,3)是l 的方向向量,所以AP⃗⃗⃗⃗⃗ ∥a ,所以x −1=y+12=z−23.所以x ,y ,z 满足关系式为x −1=y+12=z−23.3.解:AD ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +C 1D ⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=AA 1⃗⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ +13(12AB ⃗⃗⃗⃗⃗ −12AC ⃗⃗⃗⃗⃗ )=16AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =16a +13b +c . 所以直线AD 的一个方向向量是16a +13b +c .AE ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +12CC 1⃗⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +12CC 1⃗⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +12(CA ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ) =34AC ⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗ =34b +12c . 所以直线AE 的一个方向向量为34b +12c .五、课堂小结 1.直线的方向向量:设点A ,B 是直线l 上不重合的任意两点,称AB ⃗⃗⃗⃗⃗ 为直线l 的方向向量. 2.空间三点共线的充要条件:点P 在直线AB 上等价于对空间任意一个确定实数O ,存在实数t ,使得OP ⃗⃗⃗⃗⃗ =(1−t )OA ⃗⃗⃗⃗⃗ +tOB⃗⃗⃗⃗⃗ . 设计意图:引导学生对本节课所学知识方法有一个全面的认识,培养学生的归纳总结能力,帮助学生深化对知识的理解与掌握,体会研究解决实际问题的思路、途径、方法,为进一步学习打下坚实基础.六、布置作业教材第119页练习第2,3,4题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的方向向量与平面的法向量判断线面位置关系一、直线的方向向量
空间中任意一条直线l的位置可以由l上一个定点A以及一个定方向确定.
直线l上的向量以及与共线的向量叫做直线l的方向向量。
1.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量
为()
A.(1,2,3) B.(1,3,2)
C.(2,1,3) D.(3,2,1)
2.已知直线l过A(3,2,1),B(2,2,2),且a=(2,0,x)是直线l的一
个方向向量,则x=________.
考点1直线的方向向量的求解及应用
【例1】(1)已知直线l1的一个方向向量为(-7,3,4),直线l2的
一个方向向量为(x,y,8),且l1∥l2,则x=________,y=________.
(2)在空间直角坐标系中,已知点A(2,0,1),B(2,6,3),P是直线AB
上一点,且满足AP∶PB=3∶2,则直线AB的一个方向向量为
________,点P的坐标为________.
1.应注意直线AB的方向向量有无数个,哪个易求求哪个.
2.利用直线上的一个已知点和直线的方向向量可以确定直线的
位置,进而利用向量的运算确定直线上任一点的位置.
基础预备
1.若直线l1的方向向量a=(1,3x,-2),直线l2的方向向量b=
(-2,2y,5),且l1⊥l2,则xy=________.
二、平面的法向量
如果表示向量的有向线段所在直线垂直于平面,则称这个向量垂直于平面, 记作⊥,如果⊥,那么向量叫做平面的法向量.
1.平面的法向量是非零向量;
2.一个平面的法向量不是唯一的,其所有法向量都互相平行
3.向量是平面的法向量,若∥,则有
例1已知点A(3,0,0),B(0,4,0),C(0,0,5),求平面ABC的一个
法向量.
[思路点拨]可先求出一个法向量,再除以该向量的模,便
可得到单位法向量.
1.利用待定系数法求平面法向量的步骤
法向量。
的),求平面
(),(练习:已知单位ABC 3,5,4AC 1,2,2AB ==
考点2平面法向量的求解及应用
例2:在正方体1111ABCD A B C D -中,求
证:1DB 是平面1ACD 的法向量
变式:求平面1ACD 的一个法向量
2.求平面法向量的三个注意点
(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.
(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个取特殊值,得
另两个值,就是平面的一个法向量.
(3)注意0:提前假定法向量n =(x ,y ,z )的某个坐标为某特定值
时,一定要注意这个坐标不为0.
练1 如图,ABCD 是直角梯形,∠ABC =90°,
SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平
面SBA 与平面SCD 的法向量.
2.已知正方体ABCD-A1B1C1D1中,M,N分别为BB1,C1D1的
中点,建立适当的坐标系,求平面AMN的一个法向量.
确定平面的法向量通常有两种方法:
(1)几何体中已经给出有向线段,只需证明线面垂直.
(2)几何体中没有具体的直线,此时可以采用待定系数法
求解平面的法向量.
三、利用的方向向量与平面的法向量判断线面位置关系
5.利用直线的方向向量和平面的法向量能够解决哪些位置关
[提示](1)两直线的方向向量共线(垂直)时,两直线平行(垂直).
(2)直线的方向向量与平面的法向量共线时,直线和平面垂直;直
线的方向向量与平面的法向量垂直时,直线在平面内或线面平行.
(3)两个平面的法向量共线(垂直)时,两平面平行(垂直).
3.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面()
A.xOy平行B.xOz平行
C.yOz平行D.yOz相交
3.根据下列条件,判断相应的线、面位置关系.
(1)直线l1,l2的方向向量分别是a=(1,-3,-1),b=(8,2,2);
(2)平面α,β的法向量分别是u=(1,3,0),ν=(-3,-9,0).
1.判断(正确的打“√”,错误的打“×”)
(1)若向量AB →是直线l 的一个方向向量,则向量BA →也是l 的一个方
向向量.( )
(2)若向量a 是直线l 的一个方向向量,则向量k a 也是直线l 的一个方向向量.( )
(3)若两条直线平行,则它们的方向向量方向相同或相反.( )
(4)一个平面的法向量有无数多个,它们是共线向量.( )
(5)一个平面的法向量就是这个平面的垂线的方向向量.( )
2.已知直线l 过A (3,2,1),
B (2,2,2),且a =(2,0,x )是直线l
的一个方向向量,则x =( ) A .2 B .-2
C .3
D .-3
3.已知平面α经过三点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量. 4.如图,直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =BB 1=1,求平面ABC 1的一个法向量. 4.图所示,在四棱锥S -ABCD 中,底面是直角
梯形,∠ABC =90°,SA ⊥底面ABCD ,且 SA =
AB =BC =1,AD =12
,求平面SCD 与平面SBA 的一个法向量. 1.若两条直线l 1、l 2的方向向量分别为a =(1,2,-2),b =(-2,-4,4),则l 1与l 2的位置关系为________.
2.根据下列条件,判断相应的线、面位置关系:
(1)直线l 1,l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2);
(2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);
(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-
3),u =(2,0,3);
(4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1).
5.如图所示,四棱锥V -ABCD ,底面ABCD 为正方形,VA ⊥平
面ABCD ,以这五个顶点为起点和终点的向量中,求:
(1)直线AB 的方向向量;
(2)求证:BD ⊥平面VAC ,并确定平面VAC 的法向量.
2、如图所示,已知P 、Q 是正方体ABCD -A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心.
证明:PQ ∥平面11CD B .
.如图,直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =BB 1=1,求平面ABC 1的一个法向量.。