矩阵分析与计算--08-矩阵极限与级数

合集下载

矩阵级数与矩阵函数

矩阵级数与矩阵函数
k=0 2 3 σ ij +(A) ij +(A ) ij +(A ) ij + L ∝
∑c A
k k=0

k
,(A =I)称为 A 的 幂级数.
0
∑A
k=0

k
称为 A 的 Neumann 级
显然 也是收敛的. 作为数项级数 , 其 通项趋于零是级数收敛的必要条件. 故
k (Ak ) ij → 0 , 即 A → 0 k→∝ k→∝
[证明]: 设 A 的特征值为λ λ L, λ 1, 2, n , 则 ϕ( λ )又可 写成 ϕ(λ )=(λ-λ L(λ-λ 1 )( λ-λ 2) n) 由 Schur 引理知, 存在 酉矩阵 U, 使得
λ * 1 λ 2 -1 U AU = O λ 0 n
第七讲 矩阵级数与矩阵函数
一、 矩阵序列
(k) 1. 定义 : 设有矩阵序列 A(k) , 其中 A(k) = (a(k) ij ), 且当 k →∝ 时 aij → aij , 则
{ }
Байду номын сангаас
称 A(k) 收敛, 并把 A = (aij )叫做 A(k) 的极限 , 或称 A(k) 收敛于 A. 记为
{ }
∝ (-1)n 2n+1 sin(z)= ∑ z n=0 (2n +1)! ∝ (-1)n 2n cos(z)= ∑ z n=0 (2n)!
均为 整个复平面上 收敛的级数, 故对任何的方阵 A
eA = ∑
1 n A n! n=0

∝ (-1)n sin(A)= ∑ A 2n+1 n=0 (2n +1)! ∝ (-1)n 2n cos(A)= ∑ A (2n)! n=0

矩阵级数与矩阵函数

矩阵级数与矩阵函数

{ A } 收敛于 A, 记为
(k )
lim A( k ) = A 或 A( k ) → A
k →∝ k →∝
不收敛的矩阵序列则称为发散的,其中又分为有界和无界的情况。 对于矩阵序列 A
(k ) aij <M
{ } ,若存在常数 M > 0 ,使得对一切 k 都有
(k )
则称 A
{ } 为有界的。
(k )
k =1
N
{S } 收敛,且有极限 S , 则称该矩阵级数收敛,且有和 S . 记为
S = ∑ A(k )
k =1 ∞
不收敛的矩阵级数称为是发散的。
6
若矩阵级数 对收敛。
∑A
k =1

(k )
的所有元素
∑a
k =1

(k ) ij
均绝对收敛,则称该级数为绝
2. 绝对收敛矩阵级数的性质 (1) 绝对收敛矩阵级数一定收敛,且任意调换它的项所得的级数仍收
k 0 k =0 k

I ) 是绝对收敛的。 反之, 若 A 存
在落在 ϕ ( z ) 的收敛圆外的特征值, 则 ϕ ( A) 是发散的。 证明略. [推论] 若幂级数在整个复平面上收敛, 则对任何的方阵 A , ϕ ( A) 均收 敛。
11
四、 矩阵函数 如: e , sin A , cos A 以矩阵为自变量的“函数”(实际上是“函矩阵”)
三、 方阵的幂级数
A 为方阵 ,
Neumann 级数。
∑ c A ,( A
k =0 k

= I ) 称为 A 的幂级数 .
∑A
k =0

k
称为 A 的
1. Neumann 级数收敛的充要条件 [定理] Neumann 级数收敛的充要条件是 A 为收敛矩阵,且在收敛时其和 为 ( I − A) 。 证明: [必要性]

矩阵分析及其应用

矩阵分析及其应用
其中
证明:仅证(2),(1)是(2)的特例。 由矩阵范数的等价性得:存在
k2 k 1 0,
k
使得 k1 A
k
A

A
k
A k2 A
A

1 k 1 k k A A A A A A k2 k1
从而 lim Ak A 0 lim Ak A
是有界的。
时有
,则称A 为收敛矩阵. 定理5.2
A O ( A) 1
k

设 A 的Jordan 标准形为J ,则存在可
1
逆矩阵 P 使 A PJP
k k 1
,于是有 A PJ P
k k
1
因为 J diag ( J (1 ), J (2 ),, J (s ))
A A lim ( A A) 0 显然 lim k k
(k ) (k )
例如:
1 1 k (k ) lim A lim k k k 1 1 k

1
2 1 0 k sin k e 0 k
k
矩阵序列极限有和数列极限相类似的性质。
性质1 设
,则
lim (A
k
(k )
B
(k )
) A B
, ,则
性质2 设
性质3 设 ,则 定理 5.1 设 ( 1) A
(k )
与 A都是可逆矩阵,且
.
,则
O A
(k )
0
(2) A( k ) A A( k ) A 0
k k

0
lim max aij

大学数学矩阵的基本操作与运算

大学数学矩阵的基本操作与运算

大学数学矩阵的基本操作与运算矩阵是线性代数中一种重要的数学工具,广泛应用于各个领域,尤其在大学数学课程中占据重要地位。

本文将介绍矩阵的基本操作与运算,帮助读者掌握矩阵的使用和计算方法。

一、矩阵的定义及表示方法矩阵是由m行n列的数按照一定的顺序排列成的矩形数表。

通常用大写字母表示矩阵,例如A、B、C等。

矩阵的元素可以是实数、复数或其他数域中的元素。

矩阵可以用方括号表示,如:A = [a11, a12, ..., a1n;a21, a22, ..., a2n;..... ;am1, am2, ..., amn]其中aij表示矩阵A的第i行第j列的元素。

二、矩阵的基本操作1. 矩阵的加法矩阵的加法定义为两个同维数(即行数和列数相等)的矩阵对应位置元素相加的运算。

设矩阵A和B的维数相同,则它们的和矩阵C的定义为:C = A + B其中C的每个元素等于A和B对应位置元素之和。

2. 矩阵的数乘矩阵的数乘定义为一个矩阵中的每个元素与一个常数(标量)相乘的运算。

设矩阵A和数c,则其数乘矩阵记作cA,定义为:cA = [ca11, ca12, ..., ca1n; ca21, ca22, ..., ca2n; ..... ; cam1, cam2, ..., camn]其中cA的每个元素等于c乘以A对应位置元素的积。

3. 矩阵的乘法矩阵的乘法是一种较为复杂的运算,需满足乘法规则。

设A为m行p列的矩阵,B为p行n列的矩阵,则矩阵A与B的乘积C为m行n列的矩阵。

矩阵乘法的定义为:C = AB其中C的第i行第j列的元素等于矩阵A第i行的元素与矩阵B第j列的元素的乘积之和。

三、矩阵的运算性质1. 矩阵加法满足交换律和结合律,即A + B = B + A,(A + B) + C =A + (B + C)。

2. 数乘矩阵满足分配律,即c(A + B) = cA + cB,(c + d)A = cA + dA。

3. 矩阵乘法不满足交换律,即AB ≠ BA。

矩阵分析及其应用

矩阵分析及其应用

1
k
1 3
矩阵级数
定义:设 A(k) (aikj )mn Cmn,如果mn个常数项级数
aij(k) , i 1, 2, , m; j 1, 2, , n
k 1
都收敛, 则称矩阵级数
A(k ) A(1) A(2)
k 1
收敛。如果mn个常数项级数
A(k )
aij(k) , i 1, 2, , m; j 1, 2, , n
ck J1k (1),
ck
J
k 2
(2
),,
ck
J
k r
(r
))
P
1
k 0
k 0
k 0
其中
ck ik
k0
k 0
ck
J
k i
(i
)
ck ck1ik1
k 0
ck ik
k 0
di 1 k di 1 c c k k i
k 0
ck ck1ik1
k 0
ck ik
k 0
di di
当 ( A) R 时,幂级数
k 1
k 1 i1 j1
i1 j1 k 1
根据范数等价性定理知结论对任何一种范数都正确。
矩阵幂级数
定义 设 A(k) (aikj )mn Cnn ,称形如
ck Ak c0I c1A c2 A2 ck Ak
k 0
的矩阵级数为矩阵幂级数。
定理 设幂级数 ck xk 的收敛半径为R,A为 n 阶方阵。
同样可以证明其余的结论。
注意:这里矩阵 A 与 B 的交换性条件是必不可少的。
例:设
1 1 1 1
A 0 0 , B 0 0

矩阵分析及矩阵函数

矩阵分析及矩阵函数

xi , 称为1 范数,
i 1
x
max
1in
xi
,
称为 范数,
n
1
x ( p
xi p ) p(, 1 p ), 称为p 范数,
i 1
n
1
当p=2时,x ( 2
xi 2 )2,称为2 范数,它是酉空间范数;
i 1
n
1
当xi为实数时,x 2 ( xi2 )2 为欧氏空间范数;
i 1
定义 设a1 ( X ), a2 ( X ), , am ( X )对xi的偏导数都存在, 定义向量函数aT ( X )对向量X的导数为
a1( X )
x1
daT ( X ) dX
a1 ( X x2
)
a1( X ) xn
a2 ( X ) x1
a2 ( X ) x2
a2 ( X ) xn
例 设 y 是Cm上的一种向量范数,给定矩阵ACmn ,
且矩阵A的n个列向量线性无关,对任意x (x1, , xn )T
Cn ,规定 x Ax ,则 x 是Cn中的向量范数。

(1)设A 1
,
...,
An是矩阵A的n个线性无关的列向量,
那么x=(x1,..., xn )T 0,有
Ax
( A1,..., An )(x1,..., xn )T
dX
dX dX
(2) d ( f ( X )g( X )) g( X ) df (X ) f ( X ) dg( X ) .
dX
dX
dX
向量函数对向量的微分
x1
a1( X )

X
x2
,
a(
X

矩阵论之矩阵级数

矩阵论之矩阵级数
谱半径为(A),则
1)当(A) R时, cmAm绝对收敛.(Abel型定理) m0
2)当(A) R时, cmAm发散. m0
推论: Am收敛 (A) 1(Neumann),此时和为(I-A)1. m0
证明 1)因为(A) R, 0,使(A)+ R.由Able定理知
cm ((A)+ )m收敛.由4.1节定理10知存在矩阵范数 使
k 1
k 1
令f1(z) k 2zk1,则f (z) zf1(z).当 | z | 1时, k 1
z
0 f1(z)dz
z
(
0
k 2zk-1)dz
z k 2zk-1dz kzk z kzk1.
0
k 1
k 1
k 1
k 1

z
(
kzk1)dz
0
k 1
k 1
z kzk-1dz zk
a(k) ij
Ak

1
k 1
1im
1 jn
由比较原理知,
a(k) ij
(1 i m,1 j n)收敛,即
Ak绝对收敛
k 1
k 1
" ":由条件
a(k) ij
(1 i m,1 j n)收敛,
(
a (k) ij
)
k 1
k 1 1im
1 jn
n
收敛,即
Ak
收敛.而任一范数(矩阵的向量范数)是等价的,
收敛
k 1
k 1
若 Ak绝对收敛,由性质2知, Ak 收敛.而 PAkQ P Ak Q
k 1
k 1
=k
A
(取相容的矩阵范数即可).则由比较原理知

矩阵论矩阵分析

矩阵论矩阵分析

第三章 矩阵分析在此之前我们只研究了矩阵的代数运算,但在数学的许多分支和工程实际中,特别是涉及到多元分析时,还要用到矩阵的分析运算.本章首先讨论矩阵序列的极限和矩阵级数,然后介绍矩阵函数和它的计算,最后介绍矩阵的微积分,以及矩阵分析在解微分方程组和线性矩阵方程中的应用.§3.1 矩阵序列 定义 3.1 设有Cm n⨯中的矩阵序列{}()k A ,其中()()()k k ij m nAa ⨯=.若()lim (1,2,,;1,2,,)k ij ij k a a i m j n →+∞=== ,则称矩阵序列{}()k A 收敛于()ij m n A a ⨯=,或称A 为矩阵序列{}()k A 的极限,记为()lim k k A A →+∞=或()()k A A k →→+∞不收敛的矩阵序列称为发散. 由定义可见,Cm n⨯中一个矩阵序列的收敛相当于mn 个数列同时收敛.因此,可以用初等分析的方法来研究它.但同时研究mn 个数列的极限未免繁琐.与向量序列一样,可以利用矩阵范数来研究矩阵序列的极限. 定理 3.1 设()k A,C (012)m n A k ,,,⨯∈= .则()lim k k AA →+∞=的充分必要条件是()lim 0k k A A →+∞-=,其中 是C m n ⨯上的任一矩阵范数.证 先取Cm n⨯上矩阵的G-范数.由于()()()()1=1k k k ij ij ij ij Gi,jm nk ijiji j a a a a A Aaa =-≤-=-≤-所以()lim k k A A →+∞=的充分必要条件是()lim 0k Gk A A→+∞-=.又由范数的等价性知,对C m n⨯上任一矩阵范数 ,存在正常数α,β,使得()()()k k k GGAAAA AA αβ-≤-≤-故()lim 0k Gk AA→+∞-=的充分必要条件是()lim 0k k A A →+∞-=.证毕推论 设()k A,C(012)m nA k ,,,⨯∈= ,()lim k k A A →+∞=.则()lim k k A A →+∞=其中 是Cm n⨯上任一矩阵范数.证 由()()k k AA A A -≤-即知结论成立.证毕需要指出的是,上述推论的相反结果不成立.如矩阵序列()1(1)112k k A k ⎛⎫- ⎪=+ ⎪ ⎪⎝⎭不收敛.但()Flim lim k k x A →+∞== 收敛的矩阵序列的性质,有许多与收敛数列的性质相类似. 定理3.2 设()lim k k AA →+∞=,()lim k k B B →+∞=,其中()k A ,()k B ,A ,B 为适当阶的矩阵,α,β∈C .则 (1)()()lim ()k k k AB A B αβαβ→+∞+=+;(2) ()()lim k k k A BAB →+∞=;(3)当()k A与A 均可逆时,()11lim ()k k AA --→+∞=.证 取矩阵范数 ,有()()()()()()()()()()()()()()()k k k k k k k k k k k k k A B A B A A B B A B ABA B A B A B AB A B B A A Bαβαβαβ+-+≤-+--=-+-≤-+-由定理3.1和推论知(1)和(2)成立.因为()1()k A -,1A -存在,所以()lim det det 0k k AA →+∞=≠,又有()lim adj adj k k A A →+∞=.于是()()11()adj adj lim ()lim det det k k k k k A AA A A A--→+∞→+∞=== 证毕 定理3.2(3)中条件()k A与A 都可逆是不可少的,因为即使所有的()k A可逆也不能保证A一定可逆.例如()11111k Ak ⎛⎫+ ⎪= ⎪ ⎪⎝⎭对每一个()k A都有逆矩阵()1()1k kk A k k --⎛⎫=⎪-+⎝⎭,但()11lim 11k k A A →+∞⎛⎫== ⎪⎝⎭而A 是不可逆的. 在矩阵序列中,最常见的是由一个方阵的幂构成的序列.关于这样的矩阵序列有以下的概念和收敛定理. 定义3.2 设n nA C ⨯∈,若()lim 0k k A→+∞=,则称A 为收敛矩阵.定理3.3 设n nA C⨯∈,则A 为收敛矩阵的充分必要条件是ρ(A )<1.证 必要性.已知A 为收敛矩阵,则由谱半径的性质,有(())()k k k A A A ρρ=≤其中 是Cn n⨯上任一矩阵范数,即有lim (())0kk A ρ→+∞=,故ρ(A )<1.充分性.由于ρ(A )<1,则存在正数ε,使得ρ(A )+ε<1.根据定理2.14,存在C n n⨯上的矩阵范数m ,使得()1m A A ρε≤+<从而由kk m mAA ≤得lim 0kmk A →+∞=.故lim 0k k A →+∞=. 证毕推论 设n nA C ⨯∈.若对Cn n⨯上的某一矩阵范数 有1A <,则A 为收敛矩阵.例3.1 判断下列矩阵是否为收敛矩阵:(1)181216A -⎛⎫= ⎪-⎝⎭; (2)0.20.10.20.50.50.40.10.30.2A ⎛⎫⎪= ⎪ ⎪⎝⎭. 解 (1)可求得A 的特征值为156λ=,212λ=-,于是5()16A ρ=<,故A 是收敛矩阵; (2)因为10.91A =<,所以A 是收敛矩阵.§3.2 矩阵级数定义3.3 由Cm n⨯中的矩阵序列{}()k A 构成的无穷和(0)(1)()k A A A ++++ 称为矩阵级数,记为()k k A+∞=∑.对任一正整数N ,称()()NN k k SA ==∑为矩阵级数的部分和.如果由部分和构成的矩阵序列{}()N S收敛,且有极限S ,即()lim N N SS →+∞=,则称矩阵级数()0k k A +∞=∑收敛,而且有和S ,记为()k k S A+∞==∑不收敛的矩阵级数称为发散的.如果记()()()k k ij m n Aa ⨯=,()ij m n S s ⨯=,显然()0k k S A +∞==∑相当于()(1,2,,;1,2,,)k ij ij k a s i m j n +∞====∑即mn 个数项级数都收敛. 例3.2 已知()1π24(0,1,)10(1)(2)k kk A k k k ⎛⎫⎪ ⎪== ⎪ ⎪++⎝⎭研究矩阵级数()k A+∞∑的敛散性.解 因为k 00()()001π2410(1)(2)1π1242341012N Nk Nk k N k N k k N N S A k k N ====⎛⎫⎪ ⎪== ⎪ ⎪++⎝⎭⎛⎫⎛⎫-- ⎪ ⎪⎝⎭ ⎪= ⎪- ⎪+⎝⎭∑∑∑∑所以()4π2lim 301N N S S →+∞⎛⎫⎪= ⎪ ⎪⎝⎭故所给矩阵级数收敛,且其和为S . 定义3.4 设()()()C (0,1,)k k m n ij m n Aa k ⨯⨯=∈= .如果mn 个数项级数()0(1,2,,;1,2,,)k ijk ai m j n +∞===∑ 都绝对收敛,即()k ijk a +∞=∑都收敛,则称矩阵级数()k k A+∞=∑绝对收敛.利用矩阵范数,可以将判定矩阵级数是否绝对收敛转化为判定一个正项级数是否收敛的问题.定理3.4 设()()()C(0,1,)k k m nij m nAa k ⨯⨯=∈= .则矩阵级数()0k k A +∞=∑绝对收敛的充分必要条件是正项级数()0k k A +∞=∑收敛,其中 是C m n ⨯上任一矩阵范数.证 先取矩阵的1m -范数.若1()k k m A +∞=∑收敛,由于1()()()11(1,2,,;1,2,,)mnk k k ijij i j m aa A i m j n ==≤===∑∑从而由正项级数的比较判别法知()k ijk a+∞=∑都收敛,故()k k A+∞=∑绝对收敛.反之,若()k k A+∞=∑绝对收敛,则()0k ijk a+∞=∑都收敛,从而其部分和有界,即()0(1,2,,;1,2,,)Nk ijijk aM i m j n =≤==∑ 记,max ij i jM M =,则有1()()()0011110()()NNmnm n Nk k k ijijk k i j i j k m AaamnM =========≤∑∑∑∑∑∑∑故1()k k m A +∞=∑收敛.这表明()k k A+∞=∑绝对收敛的充分必要条件是1()k k m A +∞=∑收敛.由矩阵范数的等价性和正项级数的比较判别法知,1()k k m A+∞=∑收敛的充分必要条件是()0k k A +∞=∑收敛,其中 是C m n ⨯上任一矩阵范数. 证毕利用矩阵级数收敛和绝对收敛的定义,以及数学分析中的相应结果,可以得到以下一些结论.定理3.5 设()k k AA +∞==∑,()0k k B B +∞==∑,其中()k A ,()k B ,A ,B 是适当阶的矩阵,则(1)()()0()k k k AB A B +∞=+=+∑;(2)对任意λ∈C ,有()k k AA λλ+∞==∑;(3)绝对收敛的矩阵级数必收敛,并且任意调换其项的顺序所得的矩阵级数仍收敛,且其和不变; (4)若矩阵级数()k k A+∞=∑收敛(或绝对收敛),则矩阵级数()k k PAQ +∞=∑也收敛(或绝对收敛),并且有()()0()(3.1)k k k k PAQ P A Q+∞+∞===∑∑(5)若()k k A+∞=∑与()k k B+∞=∑均绝对收敛,则它们按项相乘所得的矩阵级数(0)(0)(0)(1)(1)(0)(0)()(1)(1)(()()(3.2)k k k A B AB A B A B A B A B -++++++++ 也绝对收敛,且其和为AB . 证 只证(4)和(5).若()0k k A+∞=∑收敛,记()()0NN k k SA ==∑,则()lim N N S A →+∞=.从而()()00lim(lim)NNk k N N k k PAQ P AQ PAQ →+∞→+∞====∑∑可见()k k PAQ +∞=∑收敛,且式(3.1)成立.若()k k A+∞=∑绝对收敛,则由定理3.4知()k k A +∞=∑收敛,但()()()k k k PA Q P AQ Aα≤≤其中α是与k 是无关的正数,从而()k k PAQ +∞=∑收敛,即()k k PAQ +∞=∑绝对收敛.当()k k A+∞=∑和()k k B+∞=∑绝对收敛时,由定理3.4知()k k A+∞=∑和()0k k B +∞=∑收敛,设其和分别为1σ与2σ,从而它们按项相乘所得的正项级数(0)(0)(0)(1)(1)(0)(0)()(1)(1)()(0)()()k k k A B A B A B ABABAB-++++++++也收敛,其和为12σσ.因为(0)()(1)(1)()(0)(0)()(1)(1)()(0)k k k k k k A B A B A B ABABAB--+++≤+++所以矩阵级数(3.2)绝对收敛.记()()1NN k k SA==∑,()()2NN k k SB ==∑,()(0)()(1)(1)()(0)3()NN k k k k SA B A B A B -==+++∑则()()()(1)()(2)(1)(2)()()(1)()()123N N N N N N N N N S S S A B A B A B A B A B --=++++++又记()()1NN k k Aσ==∑,()()2NN k k B σ==∑,()(0)()(1)(1)()(0)3()NN k k k k A B A B A B σ-==+++∑显然()()()()()()123123N N N N N N S S S σσσ-≤-故由()()12lim N N N S S AB →+∞=和()()()123lim ()0N N N N σσσ→+∞-=,得()3lim N N S AB →+∞=证毕下面讨论一类特殊的矩阵级数——矩阵幂级数. 定义3.5 设n nA C⨯∈,C(0,1,)k a k ∈= .称矩阵级数kk k a A+∞=∑为矩阵A 的幂级数.利用定义来判定矩阵幂级数的敛散性,需要判别2n 个数项级数的敛散性,当矩阵阶数n 较大时,这是很不方便的,且在许多情况下也无此必要.显然,矩阵幂级数是复变量z 的幂级数0kk k a z+∞=∑的推广.如果幂级数kk k a z+∞=∑的收敛半径为r ,则对收敛圆z r <内的所有z ,kk k a z+∞=∑都是绝对收敛的.因此,讨论kk k a A+∞=∑的收敛性问题自然联系到kk k a z+∞=∑的收敛半径.定理3.6 设幂级数kk k a z+∞=∑的收敛半径为r ,Cn nA ⨯∈.则(1)当ρ(A )<r 时,矩阵幂级数0kk k a A+∞=∑绝对收敛;(2)当ρ(A )>r 时,矩阵幂级数kk k a A+∞=∑发散.证 (1)因为ρ(A )<r ,所以存在正数ε,使得ρ(A )+ε<r .根据定理2.14,存在Cn n⨯上的矩阵范数m ,使得m ()A A r ρε≤+<从m m(())kk k k k k a A a A a A ρε≤≤+而由于幂级数(())kkk aA ρε+∞=+∑收敛,故矩阵幂级数0k k k a A +∞=∑绝对收敛.(2)当ρ(A )>r 时,设A 的,n 个特征值为12,,,n λλλ ,则有某个l λ满足l r λ>.由Jordan 定理,存在n 阶可逆矩阵P ,使得11112(10)i n n P AP J λδδδλλ--⎛⎫⎪⎪== ⎪⎪⎝⎭代表或而kk k a J+∞=∑的对角线元素为0(1,2,,)k k jk a j n λ+∞==∑ .由于0k k lk a λ+∞=∑发散,从而0k k k a J +∞=∑发散.故由定理 3.5(4)知,kkk a A+∞=∑也发散. 证毕推论 设幂级数kkk a z +∞=∑的收敛半径为r ,C n n A ⨯∈.若存在C n n ⨯上的某一矩阵范数 使得A r <,则矩阵幂级数0kk k a A+∞=∑绝对收敛.例3.3 判断矩阵幂级数018216kkk k+∞=-⎛⎫ ⎪-⎝⎭∑的敛散性. 解 令181216A -⎛⎫= ⎪-⎝⎭.例3.1中已求得5()6A ρ=.由于幂级数0kk kz +∞=∑的收敛半径为r =1,故由ρ(A )<1知矩阵幂级数kk kA+∞=∑绝对收敛.最后,考虑一个特殊的矩阵幂级数. 定理3.7 设Cn nA ⨯∈.矩阵幂级数kk A+∞=∑(称为Neumann 级数)收敛的充分必要条件是ρ(A )<1,并且在收敛时,其和为1()I A --. 证 当ρ(A )<1时,由于幂级数kk z+∞=∑的收敛半径r =1,故由定理 3.6知矩阵幂级数0kk A+∞=∑收敛.反之,若kk A+∞=∑收敛,记0kk S A+∞==∑,()()0NN k k SA ==∑则()lim N N S S →+∞=.由于()(1)()(1)lim lim ()=lim lim N N N N N N N N N A S S S S O --→+∞→+∞→+∞→+∞==--故由定理3.3知ρ(A )<1.当kk A+∞=∑收敛时,ρ(A )<1,因此I -A 可逆,又因为()1()N N S I A I A +-=-所以()111()()N N S I A A I A -+-=---故()1lim ()N N S S I A -→+∞==- 证毕 例3.4 已知0.20.10.20.50.50.40.10.30.2A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,判断矩阵幂级数0k k A +∞=∑的敛散性.若收敛,试求其和.解 因为10.91A =<,所以kk A+∞=∑收敛,且102814141()44624214202535k k A I A +∞-=⎛⎫ ⎪=-= ⎪ ⎪⎝⎭∑ §3.3 矩阵函数矩阵函数是以矩阵为变量且取值为矩阵的一类函数.本节介绍矩阵函数的定义和计算方法,并讨论常用矩阵函数的性质. 一、矩阵函数的定义 定义3.5 设幂级数0k k k a z +∞=∑的收敛半径为r ,且当z r <时,幂级数收敛于函数f (z ),即0()()kk k f z a zz r +∞==<∑如果Cn nA ⨯∈满足ρ(A )<r ,则称收敛的矩阵幂级数kk k a A+∞=∑的和为矩阵函数,记为f (A ),即0()(3.3)kk k f A a A+∞==∑根据这个定义,可以得到在形式上和数学分析中的一些函数类似的矩阵函数.例如,对于如下函数的幂级数展开式02120101e ()!(1)sin ()(21)!(1)cos ()(2)!(1)(1)(1)ln(1)(1)1kzk k k k k kk kk k k k z r k z zr k z zr k z z r z zr k +∞=+∞+=+∞=+∞-=+∞+===+∞-==+∞+-==+∞-==-+==+∑∑∑∑∑ 相应地有矩阵函数01e !kk A A k +∞==∑(C n n A ⨯∈) 210(1)sin (21)!kk k A A k +∞+=-=+∑ (C n n A ⨯∈)20(1)cos (2)!k kk A A k +∞=-=∑ (C n n A ⨯∈)1()k k I A A +∞-=-=∑ (ρ(A )<1)1(1)ln()1k k k I A A k +∞+=-+=+∑ (ρ(A )<1)称e A为矩阵指数函数,sin A 为矩阵正弦函数,cos A 为矩阵余弦函数.如果把矩阵函数f (A )的变元A 换成At ,其中t 为参数,则相应得到()()(3.4)kk k f At a At +∞==∑在实际应用中,经常需要求含参数的矩阵函数.二、矩阵函数值的计算以上利用收敛的矩阵幂级数的和定义了矩阵函数f (A ),在具体应用中,要求将f (A )所代表的具体的矩阵求出来,即求出矩阵函数的值.这里介绍几种求矩阵函数值的方法.以下均假设式(3.3)或式(3.4)中的矩阵幂级数收敛. 方法一 利用Hamilton-Cayley 定理利用Hamilton-Cayley 定理找出矩阵方幂之间的关系,然后化简矩阵幂级数求出矩阵函数的值.举例说明如下. 例3.5 已知0110A ⎛⎫=⎪-⎝⎭,求e At.解 可求得2det()1I A λλ-=+.由Hamilton-Cayley 定理知2A I O +=,从而2A I =-,3A A =-,4A I =,5A A =,…即2(1)k k A I =-,21(1)(1,2,)k k A Ak +=-=故243501e 1!2!4!3!5!cos sin (cos )(sin )sin cos Atk k k t t t t A t I t Ak t t t I t A t t +∞=⎛⎫⎛⎫==-+-+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+= ⎪-⎝⎭∑例3.6 已知4阶方阵A 的特征值为π,-π,0,0,求sin A ,cos A .解 因为2422det()(π)(π)πI A λλλλλλ-=-+=-,所以422πA A O -=.于是422πA A =,523πA A =,642πA A =,743πA A =,…即2222πkk A A -=,21223π(2,3,)k k A A k +-==故213223023321323332(1)1(1)sin π(21)!3!(21)!11(1)π3!π(21)!sin ππ1ππk k k k k k k k k A A A A Ak k A A A k A A A A +∞+∞+-==+∞+=--==-+++⎛⎫-=-+ ⎪+⎝⎭=+=-∑∑∑-22222022222(1)1(1)cos π(2)!2!(2)!cos π12ππk k k k k k A A I A Ak k I A I A +∞+∞-==--==-+=+=-∑∑-方法二 利用相似对角化 设C n nA ⨯∈是可对角化的,即存在C n n n P ⨯∈,使得112diag(,,,)n P AP A λλλ-== 则有11112112()()()diag(,,,)diag((),(),,())kkk k k k k k k kk k k k k n k k k n f A a A a P P P a P P a a a P P f f f P λλλλλλ+∞+∞+∞--===+∞+∞+∞-===-==Λ=Λ==∑∑∑∑∑∑同理可得112()diag((),(),,())n f At P f t f t f t P λλλ-=例3.7 已知460350361A ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭,求e At,cos A .解 可求得2det()(2)(1)I A λλλ-=+-,即A 的特征值为12λ=-,231λλ==.对应12λ=-的特征向量为T 1(1,1,1)p =-,对应231λλ==的两个线性无关的特征向量为T 2(2,1,0)p =-,T 3(0,0,1)p =.于是120110101P --⎛⎫ ⎪= ⎪ ⎪⎝⎭ 使得1211P AP --⎛⎫⎪= ⎪ ⎪⎝⎭故22212222e 2e e 2e 2e 0e e e e2e e 0e e e 2e 2e e tt t t t At tt t t t t t t t tt P P --------⎛⎫⎛⎫-- ⎪ ⎪==--⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭1cos(2)cos cos1cos12cos1cos 22cos12cos 20cos 2cos12cos 2cos10cos 2cos12cos 22cos1cos1A P--⎛⎫⎪= ⎪ ⎪⎝⎭--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭方法三 利用Jordan 标准形 设Cn nA ⨯∈,且C n nn P ⨯∈,使得121s J J P AP J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭ 其中×1(1,2,,)1i iii i i r rJ i s λλλ⎛⎫ ⎪⎪== ⎪⎪⎝⎭由定理1.12得111111001(1)01(1C C ()C ()()1!(1)!()1!()()1!(1)!i i i i i i i r k r k k i k i k ik k k k i i k i k k k k k ik i r r k k k i k k k k k tr r i f J t a J t a t t t r a t t t f f f r λλλλλλλλλλλλλλλλ--+-+∞+∞-==--+∞==--⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭⎛⎫' ⎪- ⎪⎪= ⎪⎪'⎪ ⎪⎝⎭'-=∑∑∑)()()()1!()i tt f t f f λλλλλ=⎛⎫ ⎪ ⎪⎪ ⎪⎪' ⎪ ⎪⎝⎭从而1010110011()()()()()k kk kk k k k k k k k k k k k k k k s k s f At a A t a PJP t a J tP a J t P P P a J t f J t P Pf J t +∞+∞-==+∞=+∞--=+∞=-==⎛⎫⎪ ⎪== ⎪⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪= ⎪ ⎪⎝⎭∑∑∑∑∑例3.8 已知101120403A -⎛⎫⎪= ⎪ ⎪-⎝⎭,求e A,sin At .解 例1.9已求得100111210P ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,11112P AP J -⎛⎫⎪== ⎪ ⎪⎝⎭于是12222e e e 0ee e 3e e e 2e+e e 4e 03e A P P -⎛⎫⎛⎫ ⎪ ⎪==- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭-- 1sin cos sin sin sin 2sin 2cos 0cos sin 2cos sin 2sin 2cos sin sin 24cos 02cos sin t t t At P t Pt t t t t t t t t t t t t t t t t t t t -⎛⎫⎪= ⎪ ⎪⎝⎭-⎛⎫ ⎪=+---+ ⎪ ⎪-+⎝⎭根据Jordan 标准形理论可得 定理3.8 设Cn nA ⨯∈,1λ,2λ,…,n λ是A 的n 个特征值,则矩阵函数f (A )的特征值为1()f λ,2()f λ,…,()n f λ. 方法四 待定系数法 设Cn nA ⨯∈,且A 的特征多项式为1212()det()()()()(3.5)srr r s I A ψλλλλλλλλ=-=---其中1λ,2λ,…,s λ是A 的全部互异特征值,12s r r r n +++= .为计算矩阵函数()k kk k f At a A t +∞==∑,记0()k k k k f t a t λλ+∞==∑.将f (λt )改写为()(,)()(,)(3.6)f t q t r t λλψλλ=+其中q (λ,t )是含参数t 的λ的幂级数,r (λ,t )是含参数t 且次数不超过n -1的λ的多项式,即1110(,)()()()n n r t b t b t b t λλλ--=+++由Hamilton-Cayley 定理知ψ(A )=O ,于是由式(3.6)得1110()(,)()(,)()()()n n f At q A t A r A t b t Ab t A b t Iψ--=+=+++可见,只要求出()(0,1,,1)k b t k n =- 即可得到f (At ).注意到()()0(0,1,,1;1,2,,)l i i l r i s ψλ==-=将式(3.6)两边对λ求导,并利用上式,得d d ()(,)d d iil ll l f t r t λλλλλλλλ=== 即d d ()(,)(0,1,,1;1,2,,)(3.7)d d iil l li l l t t f r t l r i s μλλλμλμλ====-=由式(3.7)即得到以0()b t ,1()b t ,…,1()n b t -为未知量的线性方程组. 综上分析,用待定系数法求矩阵函数f (At )或f (A )的步骤如下: 第一步:求矩阵A 的特征多项式(3.5);第二步:设1110()n n r b b b λλλ--=+++ .根据()()()()(0,1,,1;1,2,,)i l l l i i tr t f l r i s λλλλ===-=或()()()()(0,1,,1;1,2,,)l l i i i r f l r i s λλ==-=列方程组求解0b ,1b ,…,1n b -;第三步:计算1110()(())()n n f At f A r A b A b A b I --==+++ 或.例3.9 已知101120403A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求e At,cos A .解 可求得2det()(1)(2)I A λλλ-=--.设2210()r b b b λλλ=++则由210212210(1)e (1)2e (2)42e tt t r b b b r b b t r b b b ⎧=++=⎪'=+=⎨⎪=++=⎩解得222120e e e 2e 2e 3e e 2e t t t t t t t t b t b t b t ⎧=--⎪=-++⎨⎪=-⎩于是2222210e 2e 0e e e e 2ee e e e 4e 02e e t tAt t t tt t t t t ttt t b A b A b I t t t t t ⎛⎫-⎪=++=-++-- ⎪ ⎪ ⎪-+⎝⎭而由21021210(1)cos1(1)2sin1(2)42cos 2r b b b r b b r b b b =++=⎧⎪'=+=-⎨⎪=++=⎩解得210sin1cos1cos 23sin12cos12cos 22sin1cos 2b b b =-+⎧⎪=-+-⎨⎪=+⎩从而22102sin1cos 20sin1cos 2sin1cos1cos 2cos 2sin1cos1cos 24sin102sin1cos1A b A b A b I +-⎛⎫ ⎪=++=-+--+ ⎪ ⎪-+⎝⎭如果求得矩阵A 的最小多项式,且其次数低于A 的特征多项式的次数,则计算矩阵函数就要容易一些.例3.10 已知311202113A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求e At ,sin A . 解 例1.9已求得A 的Jordan 标准形为2212J ⎛⎫⎪= ⎪ ⎪⎝⎭于是A 的最小多项式为2()(2)A m λλ=-.设10()r b b λλ=+由21021(2)2e (2)e t tr b b r b t ⎧=+=⎪⎨'==⎪⎩ 解得2120e (12)et t b t b t ⎧=⎪⎨=-⎪⎩ 于是2101e e 21221At t tt t b A b I t tt t t t +-⎛⎫ ⎪=+=-- ⎪ ⎪--+⎝⎭又由101(2)2sin 2(2)cos 2r b b r b =+=⎧⎨'==⎩ 解得10cos 2sin 22cos 2b b =⎧⎨=-⎩从而10sin 2cos 2cos 2cos 2sin 2cos 2sin 22cos 22cos 2cos 2cos 2sin 2cos 2A b A b I +-⎛⎫ ⎪=+=-- ⎪ ⎪--+⎝⎭三、常用矩阵函数的性质常用的矩阵函数有e A,sin A ,cos A ,它们有些性质与普通的指数函数和三角函数相同,但由于矩阵乘法不满足交换律,从而有些性质与一般指数函数和三角函数不相同. 定理3.9 对任意Cn n A ⨯∈,总有(1)sin(-A )=-sin A ,cos(-A )=cos A ; (2)i e cos isin AA A =+,i -i 1cos (e e )2A A A =+,i -i 1sin (e e )2iA A A =-. 证 (1)由sin A 与cos A 的矩阵幂级数形式直接得到;(2)i 221000i (1)(1)e i !(2)!(21)!cos isin k k k Ak k k k k k A A A k k k A A+∞+∞+∞+===--==++=+∑∑∑又有-i e cos()isin()cos isin A A A A A =-+-=- 从而i -i 1cos (e e )2A A A =+,i -i 1sin (e e )2iA A A =- 定理3.10 设A ,C n nB ⨯∈,且AB =BA ,则(1)ee e e e A BA B B A +==;(2)sin(A +B )=sin A cos B +cos A sin B ;(3)cos(A +B )=cos A cos B -sin A sin B .证 (1)0022011e e !!1()(2)2!1()e !A Bk k k k k A B k A B k k I A B A AB B A B k +∞+∞==+∞+=⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭=++++++=+=∑∑∑(2)i()-i()i i -i -i i -i i -i i -i i -i 11sin()(e e )(e e e e )2i 2i 1111(e e )(e e )(e e )(e e )2i 222i sin cos cos sin A B A B A B A B A A B B A A B B A B A B A B+++=-=-=-+++-=+ 同理可证(3). 证毕在定理3.10中,取A =B ,即得 推论 对任意Cn nA ⨯∈,有22cos 2cos sin A A A =-,sin2A =2sin A cos A 值得注意的是,当AB ≠BA 时,ee e A BA B +=或e e e A B B A +=不成立.如取0010A ⎛⎫= ⎪⎝⎭,0100B ⎛⎫= ⎪⎝⎭,则0110A B ⎛⎫+= ⎪⎝⎭,00100100AB BA ⎛⎫⎛⎫=≠= ⎪ ⎪⎝⎭⎝⎭且10e 11A⎛⎫= ⎪⎝⎭,11e 01B ⎛⎫= ⎪⎝⎭,-1-1-1-1e+e e e 1e 2e e e+e A B+⎛⎫= ⎪⎝⎭-- 可见1121e e e e 1211A BB A ⎛⎫⎛⎫=≠= ⎪ ⎪⎝⎭⎝⎭e e e A B A B +≠,e e e A B B A +≠定理3.11 设Cn nA ⨯∈,则有(1)tr dete eA A=;(2)1(e )e A A --=.证 (1)设A 的特征值为1λ,2λ,…,n λ.则由定理3.8知,e A的特征值为1e λ,2e λ,…,e n λ,从而1212tr dete =e e e e e n n A A λλλλλλ++==…+…(2)由于tr dete =e0AA≠,所以e A 总是可逆的.又由定理3.10,得e e e e A A A A OI--===故1(e )e A A --=. 证毕需要指出的是,对任何n 阶方阵A ,e A总是可逆的,但sin A 与cos A 却不一定可逆.如取π00π/2A ⎛⎫=⎪⎝⎭,则00sin 01A ⎛⎫= ⎪⎝⎭,10cos 00A -⎛⎫= ⎪⎝⎭.可见sin A 与cos A 都不可逆.§3.4 矩阵的微分和积分在研究微分方程组时,为了简化对问题的表述及求解过程,需要考虑以函数为元素的矩阵的微分和积分.在研究优化等问题时,则要碰到数量函数对向量变量或矩阵变量的导数,以及向量值或矩阵值函数对向量变量或矩阵变量的导数.本节简单地介绍这些内容. 一、函数矩阵的微分和积分定义 3.6 以变量t 的函数为元素的矩阵()(())i j m n A t a t ⨯=称为函数矩阵,其中()(1,2,,;1,2,,)ij a t i m j n == 都是变量t 的函数.若t ∈[a ,b ],则称A (t )是定义在[a ,b )上的;又若每个()ij a t 在[a ,b ]上连续、可微、可积,则称A (t )在[a ,b ]上是连续、可微、可积的.当A (t )可微时,规定其导数为()(())ijm n A t a t ⨯''=或d d ()()d d ij m nA t a t t t ⨯⎛⎫= ⎪⎝⎭而当A (t )在[a ,b ]上可积时,规定A (t )在[a ,b ]上的积分为()()d ()d bb ijaam nA t t a t t ⨯=⎰⎰例3.11 求函数矩阵23sin cos ()2e 01t t t t t A t t t ⎛⎫⎪= ⎪ ⎪⎝⎭的导数. 解2cos sin 1d ()2ln 2e 2d 003t t t t A t t t t -⎛⎫⎪= ⎪ ⎪⎝⎭关于函数矩阵,有下面的求导法则.定理3.12 设A (t )与B (t )是适当阶的可微矩阵,则(1)d d d(()())()()d d d A t B t A t B t t t t+=+ (2)当λ(t )为可微函数时,有d d d (()())()()()()d d d t A t t A t t A t t t t λλλ⎛⎫=+ ⎪⎝⎭(3)d d d (()())()()()()d d d A t B t A t B t A t B t t t t ⎛⎫=+ ⎪⎝⎭; (4)当u =f (t )关于t 可微时,有d d()()()d d A u f t A u t u'= (5)当1()A t -是可微矩阵时,有111d d (())()()()d d A t A t A t A t t t ---⎛⎫=- ⎪⎝⎭证 只证(2)和(5).设()(())ij m n A t a t ⨯=,()(())ij n p B t b t ⨯=,则111d d (()())(()())d d d d ()()()()d d d d ()()()()d d nik kj m n k n nik kj ik kj k k m nA tB t a t b t t t a t b t a t b t t t A t B t A t B t t t ⨯===⨯=⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+ ⎪⎝⎭∑∑∑由于1()()A t A t I-=,两边对t 求导,得11d d ()()()()d d A t A t A t A t O t t --⎛⎫+= ⎪⎝⎭从而111d d ()()()()d d A t A t A t A t t t ---⎛⎫=- ⎪⎝⎭证毕 定理3.13 设C n nA ⨯∈,则有(1)d e e e d AtAt At A A t ==; (2)dsin cos (cos )d At A At At A t ==;(3)dcos sin (sin )d At A At At A t=-=-.证 这里只证(1).(2)和(3)的证明与(1)类似.由0e !k Atkk t A k +∞==∑,并利用绝对收敛级数可以逐项求导,得101111d d e d d !(1)!e (1)!k k At k k k k k k Atk t t A A t t k k tA A A k -+∞+∞==-+∞-===-==-∑∑∑同样11111d e ==e d (1)!(1)!k k At k k At k k t t A A A A t k k --+∞+∞-==⎛⎫= ⎪--⎝⎭∑∑ 证毕根据定义和积分的有关性质,可得定理3.14 设A (t ),B (t )是区间[a ,b ]上适当阶的可积矩阵,A ,B 是适当阶的常数矩阵,λ∈C ,则 (1)(()())d ()d ()d bb baaaA tB t t A t t B t t +=+⎰⎰⎰;(2)()d ()d bba aA t t A t t λλ=⎰⎰;(3)()()d ()d bbaaA tB t A t t B =⎰⎰,()d ()d b baaAB t t A B t t =⎰⎰;(4)当A (t )在[a ,b ]上连续时,对任意t ∈(a ,b ),有()d ()d ()d t aA A t tττ=⎰(5)当A (t )在[a ,b]上连续可微时,有()d ()()baA t t A b A a '=-⎰以上介绍了函数矩阵的微积分概念及一些运算法则.由于d()d A t t仍是函数矩阵,如果它仍是可导矩阵,即可定义其二阶导数.不难给出函数矩阵的高阶导数11d d d ()()d d d k k k k A t A t t t t --⎛⎫= ⎪⎝⎭二、数量函数对矩阵变量的导数定义 3.7 设f (X )是以矩阵()ij m n X x ⨯=为自变量的mn 元函数,且(1,2,,;1,2,,)ijfi m j n x ∂==∂ 都存在,规定f 对矩阵变量X 的导数d d f X 为 1111d d ij m nm mn ff x x n f fX x ff x x ⨯∂∂⎛⎫ ⎪∂∂ ⎪⎛⎫∂ ⎪== ⎪ ⎪ ⎪∂⎝⎭∂∂ ⎪ ⎪∂∂ ⎪⎝⎭特别地,以T12(,,,)n x ξξξ= 为自变量的函数f (x )的导数T12d (,,,)d nf f f f x ξξξ∂∂∂=∂∂∂ 称为数量函数对向量变量的导数,即为在数学分析中学过的函数f 的梯度向量,记为grad f .例 3.12 设T 12(,,,)n a a a a = 是给定的向量,T 12(,,,)n x ξξξ= 是向量变量,且T T ()f x a x x a ==求d d f x. 解 因为1()nk kk f x a ξ==∑而(1,2,,)j jfa j n ξ∂==∂ 所以 TT 1212d (,,,)(,,,)d n nf f f f a a a a x ξξξ∂∂∂===∂∂∂ 例3.13 设()ij m n A a ⨯=是给定的矩阵,()ij n m X x ⨯=是矩阵变量,且()tr()f x Ax =求d d fX. 解 因为1()nikkj m m k AX ax ⨯==∑.所以11()tr()m nsk ks s k f X AX a x ====∑∑而(1,2,,;1,2,,)ijfi n j m x ∂==∂ 故T d ()d ji n m ij n mf f a A X x ⨯⨯⎛⎫∂=== ⎪ ⎪∂⎝⎭ 例 3.14 设()ij n n A a ⨯=是给定的矩阵,T 12(,,,)n x ξξξ= 是向量变量,且T ()f x x Ax =求d d f x. 解 因为T1111()()n nn ns sk ks sk k s k s k f x x Ax aa ξξξξ=======∑∑∑∑而1111,11,111()nj j j j jk k j jj j j j n nj k j n nsj s jk ks k fa a a a a a a a ξξξξξξξξξ--++===∂=+++++++∂=+∑∑∑所以1111111T T d d ()n ns s k k s k n nsn s nk k s k n f a a f x f a a A x Ax A A xξξξξξξ====∂⎛⎫⎛⎫+ ⎪ ⎪∂⎪ ⎪ ⎪== ⎪ ⎪ ⎪∂ ⎪ ⎪+ ⎪⎪∂⎝⎭⎝⎭=+=+∑∑∑∑ 特别地,当A 是对称矩阵时,有d 2d fAx x=例3.15 设()ij n n X x ⨯=是矩阵变量,且det X ≠0.证明1T ddet (det )()d X X X X-= 证 设ij x 的代数余子式为ij X .把det X 按等i 行展开,得1det nikik k X xX ==∑于是det ij ijX X x ∂=∂故 T1T 1Tddet det ()(adj )d ((det ))(det )()ij n n ij n nX X X X X x X X X X ⨯⨯--⎛⎫∂=== ⎪ ⎪∂⎝⎭== 三、矩阵值函数对矩阵变量的导数定义3.8 设矩阵()(())ij s t F X f X ⨯=的元素()(1,2,,;1,2,,)ij f X i s j t == 都是矩阵变量()ij m n X x ⨯=的函数,则称F (X )为矩阵值函数,规定F (X )对矩阵变量X 的导数d d FX为111d d 1FF x x n F X FF x x m mn ∂∂⎛⎫ ⎪∂∂ ⎪⎪= ⎪∂∂ ⎪ ⎪∂∂ ⎪⎝⎭ ,其中1111tij s stf f x x ij ij F x f f x x ij ij ∂∂⎛⎫ ⎪∂∂ ⎪∂⎪=⎪∂ ⎪∂∂ ⎪∂∂ ⎪⎝⎭即其结果为(ms )×(nt )矩阵. 作为特殊情形,这一定义包括了向量值函数对于向量变量的导数,向量值函数对于矩阵变量的导数,矩阵值函数对于向量变量的导数等.例3.16 设T12(,,,)n x ξξξ= 是向量变量,求T T d d d d x xx x=. 解 由定义,得T 1TT 2T 100010d d 001n nx x x I x x ξξξ⎛⎫∂ ⎪∂ ⎪⎛⎫ ⎪∂ ⎪⎪ ⎪===∂ ⎪ ⎪⎪ ⎪⎪⎝⎭ ⎪∂ ⎪∂⎝⎭同理可得T 12d ,,,d n n x x x x I x ξξξ⎛⎫∂∂∂== ⎪∂∂∂⎝⎭例3.17 设T1234(,,,)a a a a a =是给定向量,24()ij X x ⨯=是矩阵变量,求Td()d Xa X,d()d Xa X. 解 因为41121k k k n k k k x a Xa x a ==⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭∑∑,44T 1211()(,)k k k k k k Xa x a x a ===∑∑ 所以T T TT T 13141112T T T T 2122232431243124()()()()d()d ()()()()00000000Xa Xa Xa Xa x x x x Xa XXa Xa Xa Xa xx x x a aa a a a a a ⎛⎫∂∂∂∂⎪∂∂∂∂ ⎪=⎪∂∂∂∂ ⎪ ⎪∂∂∂∂⎝⎭⎛⎫= ⎪⎝⎭而131411122122232412341234()()()()d()()()()()d 00000000Xa Xa Xa Xa x x x x Xa Xa Xa Xa Xa Xxx x x a a a a a a a a ∂∂∂∂⎛⎫⎪∂∂∂∂ ⎪=⎪∂∂∂∂ ⎪∂∂∂∂⎝⎭⎛⎫⎪ ⎪=⎪⎪⎝⎭§3.5 矩阵分析应用举例本节介绍矩阵函数及矩阵微积分的一些应用. 一、求解一阶线性常系数微分方程组在数学或工程技术中,经常要研究一阶常系数微分方程组1111122112211222221122d ()()()()()d d ()()()()()d d ()()()()()d n n n n n n n nn n n x t a x t a x t a x t f t t x t a x t a x t a x t f t t x t a x t a x t a x t f t t ⎧=++++⎪⎪⎪=++++⎨⎪⎪=++++⎪⎩满足初始条件0()(1,2,,)i ix t c i n ==的解.如果记T12(),(,,,)ij n n n A a c c c c ⨯==T 12()((),(),,())n x t x t x t x t = ,T 12()((),(),,())n f t f t f t f t =则上述微分方程组可写为0d ()()()(3.8)d ()x t Ax t f t tx t c⎧=+⎪⎨⎪=⎩因为d d ()(e ())e ()()e d d d ()e ()e ()d At At At At At x t x t A x t t t x t Ax t f t t -----=-+⎛⎫=-= ⎪⎝⎭将上式两边在[0t ,t ]上积分,得00d (e ())d e ()d d tt A A t t x f τττττττ--=⎰⎰ 即00e()e()e ()d tAt A A t x t x t f ττττ----=⎰于是微分方程组的解为00()()e e e ()d tA t t At A t x t c f τττ--+⎰=例3.18 求解微分方程组初值问题113212313123d ()()()1d d ()()2()1d d ()4()3()2d (0)1,(0)0,(0)1x t x t x t t x t x t x t tx t x t x t t x x x ⎧=-++⎪⎪⎪=+-⎪⎨⎪=-++⎪⎪⎪===⎩ 解 记123()10111120,0,()(),()140312()x t A c x t x t f t x t -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪====- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭则微分方程组可以写成式(3.8)的矩阵形式.例3.9已求得222e 2e 0e e e e 2e e e e e 4e 02e e t t tAt t t tt t t t t t t t t t t t t ⎛⎫-⎪=-++-- ⎪ ⎪-+⎝⎭依次计算下列各量e e e e e 2e t t At t t t t c t t ⎛⎫- ⎪= ⎪ ⎪-⎝⎭,00e 1e e ()d e 1e 2e 22e t t t A t tf d τττττττ-------⎛⎫⎛⎫- ⎪ ⎪=-=-+ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎰⎰, 0e 1e e ()d e 12e 2t t At A t tf τττ-⎛⎫- ⎪=-+ ⎪ ⎪-⎝⎭⎰故微分方程组的解为123e e e 1(2)e 1()()()e e 1(1)e 1()e 2e 2e 2(32)e 2t t t tt t t t t t t t t x t x t x t t t x t t ⎛⎫⎛⎫⎛⎫----⎛⎫⎪ ⎪ ⎪ ⎪==+-+=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭二、求解矩阵方程在控制论与系统理论中,要遇到形如AX +XB =F 的矩阵方程求解问题,这个矩阵方程也称为Lyapunov 方程.关于这个矩阵方程的解有如下结果. 定理3.15 给定矩阵方程 AX +XB =F (3.9) 其中Cm mA ⨯∈,Cn nB ⨯∈,Cm nF ⨯∈.如果A 和B 的所有特征值具有负实部(这种矩阵称为稳定矩阵),则该矩阵方程有惟一解e e d At Bt X F t +∞=-⎰证 记()e e At Bt Y t F =.则有Y (0)=F ,且d ()e e e e ()()(3.10)d At Bt At Bt Y t A F F B AY t Y t B t=+=+设12,,,m λλλ 是A 的m 个特征值,12,,,n μμμ 是B 的n 个特征值.根据利用Jordan 标准形求矩阵函数的方法(见§3.3)知,e At的元素是形如e (0)j tr t r λ≥的项的线性组合.因为A 的所有特征值j λ的实部是负的,所以lim eAtt O →+∞=.同理lim e Bt t O →+∞=.于是lim ()lim e e At Bt t t Y t F O →+∞→+∞==又由于e e At BtF 的元素是形如()e (0)i j tr t r λμ+≥的项的线性组合,且积分()0ed i j tr t t λμ+∞+⎰都存在,故积分e e d At Bt F t +∞⎰存在.对式(3.10)两边从0到+∞积分,得()()0()(0)()d ()d Y Y AY t t Y t t B +∞+∞+∞-=+⎰⎰即()()0()d ()d A Y t t Y t t B F+∞+∞-+-=⎰⎰这说明0e e d At Bt X F t +∞=-⎰是矩阵方程(3.9)的解.惟一性的证明见第七章. 证毕 推论1 设Cm mA ⨯∈,Cn nB ⨯∈,Cm nF ⨯∈,则矩阵微分方程d ()()()d (0)X t AX t X t B tX F⎧=+⎪⎨⎪=⎩的解为()e e At BtX t F =推论2 设A ,C n nF ⨯∈,且A 的所有特征值具有负实部,则矩阵方程HA X XA F+=-的惟一解为H 0ee d (3.11)A tAt X F t+∞=⎰如果F 是Hermite 正定矩阵,则解矩阵X 也是Hermite 正定矩阵.证 只需证明后一结论.当F 是Hermite 正定矩阵时,由式(3.11)可知X 是Hermite 矩阵.又对0Cnx ≠∈,由于eAt总是可逆的,所以e 0Atx ≠,于是HH H e e (e )(e )0A t At At At x F x x F x =>.从而HH 0(e )(e )d 0At At x Xx x F x t +∞=>⎰故X 是Hermite 正定矩阵. 证毕三、最小二乘问题 设Cm nA ⨯∈,C n b ∈.当线性方程组Ax =b 无解时,则对任意C nx ∈都有Ax -b ≠0.此时希望找出这样的向量0C n x ∈,它使2Ax b -达到最小,即022Clim (3.12)nx Ax b Ax b ∈-=-称这个问题为最小二乘问题,称0x 为矛盾方程组Ax =b 的最小二乘解.以下结论给出了当A ,b 分别是实矩阵和实向量时,Ax =b 的最小二乘解所满足的代数方程.定理3.16 设R m nA ⨯∈,R mb ∈,0R n x ∈.若0R n x ∈是Ax =b 的最小二乘解,则0x 是方程组TT(3.13)A Ax A b=的解.称式(3.13)为Ax =b 的法方程组.证 由于2T 2TTTTTT()()()f x Ax b Ax b Ax b x A Ax x A b b Ax b b=-=--=--+若0x 为Ax =b 的最小二乘解,则它应是f (x )的极小值点,从而d 0(3.14)d x f x=根据例3.12和例3.14,得T T d 22d fA Ax A b x=- 由式(3.14)即知T T00A Ax A b -=,故0x 是式(3.13)的解. 证毕 对于含约束条件的最小二乘问题,有如下的结果. 例3.19 设Rm nA ⨯∈,R m b ∈,Rk nB ⨯∈,R kd ∈,且Bx =d 有解.试求约束极小。

矩阵分析简介

矩阵分析简介


∞ k =1

k =1
( a ijk ) = s ij
j = 1, 2, L , n) 即m×n个数项级数
∑ a 均为收敛的。
(k ) ij
例 研究矩阵级数 ∑ A k 的收敛性, 其中
k =1

⎛ N ⎞ N 11 ⎟ 1 1 ⎜ ∑ 1 − (k + 1)(k + 2)2 − N k ∑2 ⎟ 2 ⎜ k =0 N + 2 k =0 N ⎟ ,k =0,1,2,…, S N = ∑ Ak = ⎜ ⎜ k =0 π⎛ N π ⎞⎟ 1 ⎜ ⎜ 4 − Nk ⎟ ⎟ 0 ⎜ 3 ⎝∑ 4 ⎠ ⎟ k =0 4 ⎝ ⎠ 于是 ⎛1 2 ⎞ ⎟ S = lim SN = ⎜ 4 ⎟ N→∞ ⎜0 π⎟ ⎜ 3 ⎠ ⎝
一种矩阵范数,则矩阵序列 { Ak}k=1 收敛于矩阵A的充要条件

定理1 设 { Ak }k=1 为 C m × n 中的矩阵序列,⋅ 为 Cm×n 中的

是 Ak − A 收敛于零。 证:首先,利用范数的等价性知,对于 C m×n 中的任意 两个矩阵范数 ⋅ 即有
t
和 ⋅ s,存在常数 c1 ≥ c2 > 0 , 使得

{ Sk }k =1

收敛且 lim Sk = S ,则称矩阵级数 ∑ A 收敛, k →∞

k =1 k
而矩阵S称为矩阵级数的和矩阵,记为 S = ∑ Ak。不收敛的矩阵
k =1
级数称为发散的。 显然,和 ∑
(i = 1, 2, L , m,

k =1
Ak = S = ( s ij )的意义指的是:
k 练习题 判断对下列矩阵是否有 lim A = 0 k →∞

矩阵分析与计算--08-矩阵极限与级数

矩阵分析与计算--08-矩阵极限与级数
矩阵幂级数绝对收敛定理9若复变数幂级数的收敛半径为r而矩阵的谱半径为时方阵幂级数绝对收敛时方阵幂级数发散的谱半径为则对任意给引理定理9若复变数幂级数的收敛半径为r而矩阵的谱半径为时方阵幂级数收敛时方阵幂级数发散证明
Matrix Analysis and Computations
矩 阵 分 析 与 计 算 ——矩阵极限与矩阵级数 Matrix Limit & Series
λ J ( )= 1 λ
k J2
P -1 k Js
考虑一个一般的Jordan块,
1 λ C r r 1 λ

0 U=
0 1 0
1 0
1 0
C r r 1 0

矩阵序列Cauchy收敛准则 定理4: 矩阵序列{Ak}收敛的充要条件是:对于 任给的正数ε,总存在一个自然数N, 使得 n,m>N时,都有 ||An - Am||<ε

二 矩阵级数
1.矩阵级数的定义
定义 4 矩阵序列 Ak 的无穷和 A 1 + A2 +
n
+ Ak +
叫做矩阵级数, 而 Sn =
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
J ( )=( E i k i C k U U i i 0 i 0 i ! d k k
2、幂级数
定义 5

A 为方阵, ck Ak , A0 E 称为 A 的幂级数.
k=0

k A 称为 k=0
A 的 Neumann 级数.

《矩阵分析》课件

《矩阵分析》课件

Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义
将矩阵分解为一个正交矩阵Q和 一个上三角矩阵R的乘积。
Jordan标准型及其性质
Jordan标准型定义: 设A是n阶方阵,如果 存在一个可逆矩阵P, 使得P^(-1)AP为 Jordan矩阵,则称A 可以相似对角化为 Jordan标准型。
Jordan标准型的性质
Jordan标准型是唯一 的,即对于给定的方 阵A,其Jordan标准 型是唯一的。
Jordan标准型中的每 个Jordan块对应A的 一个特征值。
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不 能由其中的部分向量线性表示出来。换句话说, 只有当这组向量中任何一个向量都不能由其余向 量线性表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
初等变换和行阶梯形式
初等变换:对矩阵进行以下三种变换称为初等变 换 对调两行(列)。
以数k≠0乘某一行(列)中的所有元。
初等变换和到另一行(列)的对应元上去。
02
行阶梯形式:一个矩阵经过初等行变换可以化为行阶梯形式,
其特点是
非零行在零行的上面。
03
初等变换和行阶梯形式
方阵
行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。

高考数学中的矩阵解析技巧

高考数学中的矩阵解析技巧

高考数学中的矩阵解析技巧矩阵是高中数学中的一个重要知识点,也是高考数学必考内容之一。

矩阵不仅在数学中有着重要应用,还被广泛应用于物理、化学、工程等领域。

因此,掌握矩阵的解析技巧不仅有助于高考成绩的提升,也能为今后的学习和工作打下坚实的基础。

本文将就高考数学中的矩阵解析技巧进行详细的阐述和探讨。

一、矩阵的定义和基本运算矩阵由一组数排成的矩形数组组成,通常用大写字母表示。

矩阵的行数与列数分别称为矩阵的行数和列数。

例如,A=[a_ij ]表示一个m行n列的矩阵,其中a_ij是矩阵A的第i行第j列的元素。

矩阵中的元素可以是实数、复数、方程等。

矩阵的基本运算有加法、数乘、乘法三种。

加法:设A=[a_ij ],B=[b_ij ]是两个m行n列的矩阵,则矩阵A与B的和C=[c_ij ]定义为C=A+B,其中c_ij=a_ij+b_ij。

数乘:设k为实数,A=[a_ij ]是一个m行n列的矩阵,则k乘以矩阵A的结果为D=[d_ij ],其中d_ij=k×a_ij。

乘法:设A=[a_ij ]是一个m行n列的矩阵,B=[b_ij ]是一个n 行r列的矩阵,则A乘以B的积C=[c_ij ]定义为:c_ij=a_i1×b_1j+a_i2×b_2j+···+a_in×b_nj其中1≤i≤m,1≤j≤r,c_ij是矩阵C的第i行第j列的元素。

需要注意的是,两个矩阵相乘的前提是它们的行列数符合要求,即一个矩阵的列数等于另一个矩阵的行数。

二、矩阵的性质矩阵有一些重要的性质,掌握这些性质有助于更深入地理解矩阵并应用于实际问题的解决中。

1.矩阵的转置矩阵的转置是指将矩阵的行和列调换位置得到的结果。

设A=[a_ij ]为一个m行n列的矩阵,A的转置记作A^T,其中A^T=[b_ij ],b_ij=a_ji。

即将A的第i行变为A^T的第i列,A的第j列变为A^T的第j行。

附录矩阵分析word版

附录矩阵分析word版

附录I 矩阵分析介绍一、内容提要本章以矩阵序列的极限理论为基础的,介绍矩阵分析的一些基本内容, 包括矩阵序列的极限运算,矩阵序列和矩阵级数的收敛定理, 矩阵幂级数的极限运算和矩阵函数,矩阵的微积分等. 由于采用相似的极限理论为基础, 因此本章内容与通常的(函)数列, (函)数项级数, 幂级数具有许多类似的结果, 建议读者在学习本章时, 与高等数学中相应的内容进行对照, 比较异同, 加深理解.(一) 矩阵序列于矩阵级数1.矩阵序列定义 设{}1k k ∞=A 为m n⨯C中的矩阵序列, 其中()()k k ij a =A .如果ij k ijk a a =∞→)(lim 对i=1,2,…,m, j=1,2,…,n 均成立,则称矩阵序列{}1k k ∞=A 收敛,而()ij a =A 称为矩阵序列{}1k k ∞=A 的极限,记为limk k →∞=A A .不收敛的矩阵序列称为发散的. 从定义可知, 判断矩阵序列收敛需要判断所有矩阵元素组成的n m ⨯个数列同时收敛. 下面的定理告诉我们可以通过矩阵范数的收敛(一个数列)来判断矩阵序列的收敛.定理 设{}1k k ∞=A 为m n⨯C中的矩阵序列,⋅为m n⨯C中的一种矩阵范数,则矩阵序列{}1k k ∞=A 收敛于矩阵A 的充要条件是k -A A 收敛于零.从线性空间的观点来看, 一个矩阵可以看作是它所在的矩阵空间中的一个“点”,因此一个矩阵序列的收敛问题就可以看成是该矩阵空间中的“点列”的收敛问题,就可以用各点到极限点的距离(范数)来描述收敛。

矩阵序列收敛有如下性质: (1) 设{}1k k ∞=A 和{}1k k ∞=B 为m n⨯C中的矩阵序列,并且lim k k →∞=A A ,lim k k →∞=B B ,则()lim ,,k k k αβαβαβ→∞+=+∀∈A B A B C .(2) 设{}1k k ∞=A 和{}1k k ∞=B 分别为m n⨯C和n l⨯C中的矩阵序列,并且lim k k →∞=A A ,lim k k →∞=B B ,则 lim k k k →∞=A B AB .(3) 设{}1k k ∞=A ,A ∈n n⨯C中的矩阵序列,lim k k →∞=A A 并且(1,2,)k k =A 和A 均为可逆的,则 11lim k k --→∞=A A . (4) 设n n⨯∈A C,lim 0kk →∞=A 的充分必要条件是<1ρ(A).若对m n⨯C上的某种范数⋅,有1<A ,则lim 0kk →∞=A .(5) 设{}1k k ∞=A ,∈A m n⨯C ,并且lim k k →∞=A A ,则A A k k =∞→lim .2. 矩阵级数 定义2设{}1k k ∞=A 为m n⨯C 中的矩阵序列, 称12++++k A A A 为由矩阵序列{}1k k ∞=A 构成的矩阵级数,记为1kk ∞=∑A.定义3 记1kk ii ==∑S A,称之为矩阵级数1kk ∞=∑A的前k 项部分和.若矩阵序列{}1k k ∞=S 收敛且lim k k →∞=S S ,则称矩阵级数1kk ∞=∑A收敛,而矩阵S 称为矩阵级数的和矩阵,记为1k k ∞=∑S =A .不收敛的矩阵级数称为发散的.定义4 设1kk ∞=∑A为m n⨯C中的矩阵级数,其中()()k k ija=A .如果∑∞=1)(k k ija 对任意的1≤i≤m,1≤j≤n 均为绝对收敛的,则称矩阵级数1kk ∞=∑A绝对收敛.对比矩阵级数绝对收敛的定义以及高等数学中的数项级数的绝对收敛的定义可以得出矩阵级数收敛的一些性质. (1) 若矩阵级数1kk ∞=∑A是绝对收敛,则它一定是收敛的,并且任意调换各项的顺序所得到的级数还是收敛的,且级数和不变. (2) 矩阵级数1kk ∞=∑A为绝对收敛的充分必要条件是正项级数1k k ∞=∑A 收敛.(3) 设1kk ∞=∑A为m n⨯C中的绝对收敛的级数,1kk ∞=∑B为n l⨯C中的绝对收敛的级数,并且1k k ∞==∑A A , 1k k ∞==∑B B , 则1k k ∞=∑A ·1k k ∞=∑B 按任何方式排列得到的级数也是绝对收敛的,且和均为AB . (4) 设p m⨯∈P C和n q⨯∈Q C为给定矩阵,如果n m ⨯型矩阵级数kk ∞=∑A收敛(或绝对收敛),则q p ⨯矩阵级数0k k ∞=∑PA Q 也收敛(或绝对收敛),且有等式 00k k k k ∞∞==⎛⎫= ⎪⎝⎭∑∑PA Q P A Q . (二) 矩阵幂级数 定理 设∑∞=0k kk ta 为收敛半径为r 的幂级数,A 为n 阶方阵,则(1) ()r ρ<A 时,矩阵幂级数0kk k a ∞=∑A绝对收敛;(2) ()r ρ>A 时,矩阵幂级数kkk a ∞=∑A发散.推论 设∑∞=-0)(k kkz z a 为收敛半径为r 的幂级数,A 为n 阶方阵,如果A 的特征值均落在收敛圆内,即r z <-0λ,其中λ为A 的任意特征值,则矩阵幂级数∑∞=-0)(k kkz a I A 绝对收敛;若有某个0i λ使得r z i >-00λ,则幂级数∑∞=-0)(k kkz a I A 发散.根据幂级数性质,幂级数的和函数是收敛圆内的解析函数(任意次可微,在任一点处均可展成Taylor 级数),而一个圆内解析的函数可以展开成收敛的幂级数.于是,如果)(z f 是r z z <-0内的解析函数,其展成绝对收敛的幂级数为∑∞=-=00)()(k k k z z a z f ,则当矩阵n n⨯∈A C的特征值落在收敛圆r z z <-0内时,定义∑∞=∆-=00)()(k k k z a f I A A并称之为A 关于解析函数)(z f 的矩阵函数.常用的一些矩阵函数有:232!3!e =++++AA A I A ;24cos 2!4!=-+-A A A I ;35sin 3!5!=-+-A A A A ;123()--=++++I A I A A A ;23ln()23+=-+-A A I A A .对于一般的矩阵函数()f A ,可以利用矩阵的Jordan 分解写出其具体表达式.定理 设∑∞=-=)()(k kkz z a z f 为收敛半径为r 的幂级数,A 为n 阶方阵,1-=A TJT 为其Jordan 分解,()s J J J J ,,,2 1diag =.当A 的特征值均落在收敛圆内时,即r z <-0λ,其中λ为A 的任意特征值,则矩阵幂级数∑∞=-0)(k kkz a I A 绝对收敛, 并且和矩阵为()()()()()-12,,,T J J J T A f s f f f 1diag =其中()i f J 的定义为(1)''()()()(1)!()()()()n f f f n f f f f λλλλλλ-⎛⎫⎪- ⎪⎪= ⎪ ⎪ ⎪⎝⎭J . 另外,还可以通过待定系数的方法来求矩阵函数,避免求矩阵的Jordan 分解。

矩阵的各种运算详解

矩阵的各种运算详解

一、矩阵的线性运算定义1 设有两个矩阵和,矩阵与的和记作, 规定为注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵.设矩阵记,称为矩阵的负矩阵, 显然有.由此规定矩阵的减法为.定义2 数与矩阵A的乘积记作或, 规定为数与矩阵的乘积运算称为数乘运算.矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则(1)(2) ;(3)(4)(5)(6)(7)(8)注:在数学中,把满足上述八条规律的运算称为线性运算.二、矩阵的相乘定义3设矩阵与矩阵的乘积记作, 规定为其中,(记号常读作左乘或右乘.注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算.若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即.矩阵的乘法满足下列运算规律(假定运算都是可行的):(1)(2)(3)(4)注: 矩阵的乘法一般不满足交换律, 即例如, 设则而于是且从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出或此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设则但定义4如果两矩阵相乘, 有则称矩阵A与矩阵B可交换.简称A与B可换.注:对于单位矩阵, 容易证明或简写成可见单位矩阵在矩阵的乘法中的作用类似于数1.更进一步我们有命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。

命题2设均为n阶矩阵,则下列命题等价:(1)(2)(3)(4)三、线性方程组的矩阵表示设有线性方程组若记则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式:(2)其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程.如果是方程组(1)的解, 记列矩阵则,这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式成立, 则即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利.四、矩阵的转置定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或). 即若则.矩阵的转置满足以下运算规律(假设运算都是可行的):(1)(2)(3)(4)五、方阵的幂定义5设方阵, 规定称为的次幂.方阵的幂满足以下运算规律(假设运算都是可行的):(1)(2)注: 一般地,为自然数命题3 设均为n阶矩阵,则有为自然数,反之不成立。

矩阵序列与矩阵级数

矩阵序列与矩阵级数

⎡1⎤
⎢ 例:二维向量 x(k) = ⎢
2k
⎥ ⎥
⎢sin k ⎥
⎢⎣ k ⎥⎦
⎡1⎤
二维向量
x(k)
=
⎢ ⎢
2k
⎥ ⎥
⎣sin k ⎦
2,按向量范数收敛
量范数为 || x || .如果存在向量
α ∈Cn ,当 k → ∞ 时,|| x(k) − α ||→ 0 ,则称向量序列按向量范数收敛于α 。
第十五讲 矩阵序列与矩阵级数
[回顾]
1,数列 {ak
} k= 1,2,......
ai
∈C
数列收敛:
lim
k
ak
=
a
一、向量序列的两种收敛
1,按分量收敛;
{ } C n 中向量序列 x(k ) k=1,2,...... , x(k ) = (x(k )1,..., x(k )n ) ∈ C n
如果向量序列的每一个分量序列(为数列)都收敛,即
k→∝
(2) A(k)B(k) → AB k→∝
(3) (A(k))-1 → A-1,若(A(k))-1, A-1同时存在 k→∝
注意:如果不是同时,比如仅有(A(k))-1存在时,可能收敛矩阵并不可逆,(3)
的结论不成立,如
A(k )
=
⎡⎢1 + ⎢
1 k
⎢ ⎢⎣
1
1
⎤ ⎥

1+
1 k
⎥ ⎥⎦
(4) PA(k)Q → PAQ k→∝
3. 按矩阵范数收敛
两种矩阵收敛的等价性(P118,定理 5.5.)
特殊的矩阵序列,由方阵的幂构成的矩阵序列:
4. 收敛矩阵: 设 A 为方阵,且当k →∝ 时 Ak → 0 , 则称 A 为收敛矩阵.

矩阵分析课件

矩阵分析课件

初等变换及其性质
初等行变换
01
对矩阵进行某行乘以非零常数、交换两行、某行加上另一行的
若干倍的操作。
初等列变换
02
对矩阵进行某列乘以非零常数、交换两列、某列加上另一列的
若干倍的操作。
初等变换的性质
03
不改变矩阵的秩,且任意多次初等变换可用一个初等变换表示

矩阵等价性判断方法
1 2
矩阵等价的定义
若两个矩阵经过有限次初等变换可以相互转化, 则称这两个矩阵等价。
对角化条件及判别方法
对角化条件
n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量。
判别方法
计算A的特征多项式,求出全部特征值。对于每个特征值,求解(A-λE)x=0得到对应的特征向量。如果所有特征 向量线性无关,则A可对角化。
应用案例:动力学系统稳定性分析
01
系统稳定性定义
动力学系统的稳定性是指系统在受到微小扰动后,能否恢复到原来的平
06
CATALOGUE
矩阵函数与微分运算
常见矩阵函数类型及性质介绍
指数函数
矩阵指数函数具有类似于标量指数函数的性质, 如可微性、可积性等。
三角函数
矩阵三角函数与标量三角函数有类似的性质,如 周期性、奇偶性等。
ABCD
对数函数
矩阵对数函数在某些条件下可以定义为矩阵指数 函数的反函数,具有一些独特的性质。
标准型转化过程
通过正交变换或配方法,可以将二次型转化为标准型,即$f = lambda_1y_1^2 + lambda_2y_2^2 + ... + lambda_ny_n^2$,其中$lambda_i$为特征值。
正定、负定和半正定矩阵判别方法

矩阵级数的一种计算

矩阵级数的一种计算

p
(戴

`; “
:

,` ,

)
* ,

r 了 , ( ,` )

p

t ④

f
·
l
艺 一 气下 一 j 0

{
U
、/ ,

i
P

对所 有 脚

l和
1 }
:

< p,

\
第 期
~ ~ ~~ ~ ~ - - -~ ~ - -~ ~ .
,
陈惠民
:
拒 阵纽 教 的 一 神 计算
,
2
6 ,
11二 ,
忍.
,
,
当 ,、
·

(了 )
_ _
(n j ) x
(护 )

,
1
,
, 、
`


1
Ir
、几,
:
l
介。 即
:
=
` 二一 - U
,
,
〔品

(

i
·
1 f

)

p一

由矩
好项式
扭 ④ f· l
了 了
的 运 算得 到
l 艺 “
·
T
2


f,`T ,



·
0
(资
,
, 二
几 Z


* (“ , )
, )
p

)
,
p一
:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.矩阵序列Cauchy收敛准则
设 A1 , A1 , Ak , 0 是矩阵空间V中的元素序列,如果存在x V , 使得
k
lim Ak A0

则称序列{Ak }按 -范数收敛于A0
(k ) (0) 记Ak (aij ) , A ( a l p 0 ij ) l p
由数列Cauchy收敛准则,有
det(uE ( E A)) 0
det((u 1) E A) (1)n det((1 u) E A)
det((1 u) E A) 0
令1 u ,这说明为A的一特征值
0< μ <2 → μ ≠ 0
1 ( E A ) ( E A) 的行列式不为零,
A 称为其部分和, 称矩阵序列
k k=1
S1 , S2 ,
为矩阵级数的部分和序列
, Sk ,
若矩阵部分和序列 Sk 收敛,且有极限 S, 则称该级 数收敛,且有极限 S. 记为
A =S
k k=1

若矩阵级数
A 的所有元素 a
k k=1 k=1


(k ) ij

绝对收敛,则称该级数为绝对收敛
0 0 i U =
1 r r C 0 0
r-i-1
(1 i r ),U k 0 (k r )
示例
0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
1i n j 1 n
行范数
3)从属于向量的2-范数的算子范数为 A 2 1
—范数
谱范数
1是方阵AH A的最大特征值
练习
1 3 若A ,求 A 1 , A 2 , A 2 4 答案:A 1 7, A 6
5 5 A A 5 25
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
J ( )=( E U )
k
k
i 1 d i k i i k i C k U U i i 0 i 0 i ! d k k
2) 在有限维线性空间中,序列按范数收敛于x 等价于按坐标收敛于x
定理 设A (aij ) nn C nn , 则 1)从属于向量的1-范数的算子范数为 A 1 max aij
1 j n i 1 n
列范数
2)从属于向量的-范数的算子范数为 A max aij
k
证明: 对任何方阵A,均存在可逆矩阵P, 使得
A= PJP
J1 J= Js
-1
其中J为A的Jordan标准形
J2
λi Ji =
1 λi 1 λi
1 λi
J 1k k k -1 = P A = PJ P
1 t1 2 t2

tn 1 n
1
对任意矩阵B,定义
B
m
D PBP D
1

显然 B m 是C nn中方阵范数,对此方阵范数有
A m D1PAP1D
1 t1 2 t2
H k k
3.一类特殊矩阵序列—收敛矩阵
定义 3 设 A 为方阵,且当 k 时 A → 0 ,
k
则称 A 为收敛矩阵.
定理2 方阵 A 为收敛矩阵的充要条件是 A 的 所有特征值的模值均小于1.
如果n阶方阵A的谱半径 (A)= max i
1i n
定理2:A 0 ( A) 1
T
15 5 5
A 2 15 5 5
矩阵序列极限
设 x1 , x2 , xn ,
V F
mn
是线性空间V中的元素序列,如果存在x V , 使得
m
lim xm x 0
则称序列{xm }按 -范数收敛于x
1.矩阵序列极限
定义1: 设 为F
mn
中矩阵范数, An ,
等价于 → 0 i = 1,2,
k i
k
k i
i = 1, 2 , ,s , 而这
,s ,
只有
i 1 才可能也必能.
定理3
A 0 存在某种范数 ,使得 A 1
k
定理 设A C
mn
, A 是A的任意矩阵范
数,则 (A) A
上 讲 内 容
引理1
设A C nn的谱半径为 ( A), 则对任意给
2、幂级数
定义 5

A 为方阵, ck Ak , A0 E 称为 A 的幂级数.
k=0

k A 称为 k=0
A 的 Neumann 级数.
Neumann级数收敛的充要条件
定理 5 Neumann 级数收敛的充要条件是 A 1 ( E A ) 为收敛矩阵,且在收敛时其和为 .
证明: [必要性] 级数 A 收敛, 其元素为
nn
内上 容讲
引理1
设A C 的谱半径为 ( A), 则对任意给
m
定的 0,总有一方阵范数 A m ( A)
,使
充分性有定理2可推出,必要性由引理1可推出
例2 考虑矩阵是否为收敛矩阵
1 2 A 1 4 1 3 1 5
A 1 0.75 1, 故A收敛
Matrix Analysis and Computations
矩 阵 分 析 与 计 算 ——矩阵极限与矩阵级数 Matrix Limit & Series
理学院 2011年10月
本讲主要内容 矩阵极限、矩阵级数
矩阵极限 • 矩阵序列的收敛性 • 矩阵序列极限的性质 矩阵级数 • 矩阵级数的收敛性 • 判断规则 • 性质
1 1

2
2
t1 1 1 1 1 t 2 2 23 2t3 n 1 n
2
n 1
D1 JD D1PAP1D
1 1
4) PAk Q PAQ
k
收敛矩阵序列的性质

5) 设{xn }为有限维赋范线性空间V中向量序列,
mn
{ Ak }为F
n
中矩阵序列,Ak F
n
mn
, 则有
mn
(1) lim xn x lim xn x, y 0, 对y V (2) lim Ak A lim tr ( Ak A) B 0, 对B F

矩阵序列Cauchy收敛准则 定理4: 矩阵序列{Ak}收敛的充要条件是:对于 任给的正数ε,总存在一个自然数N, 使得 n,m>N时,都有 ||An - Am||<ε

二 矩阵级数
1.矩阵级数的定义
定义 4 矩阵序列 Ak 的无穷和 A 1 + A2 +
n
+ Ak +
叫做矩阵级数, 而 Sn =
A1 , A2 ,
是矩阵空间F mn中的矩阵序列,若A F mn ,s.t
i
lim Ai A 0

则称{Am }按范数 收敛于A, 记为Ai A

不收敛的矩阵序列称为发散的。
矩阵序列收敛性的另外一种定义
定义 2: 设有矩阵序列 Ak , 其中 Ak = (a ) 且当 k → 时 a
3 1
k 1, 2,
, n,
3 1 lim Ak = k → 0 1
2. 收敛矩阵序列的性质
设 Ak 、 Bk 分别收敛于 A、B, 则
1) aAk +bBk → aA+bB
k
2) Ak Bk AB
3) ( Ak ) A
1 1
k
k , ( Ak ) ,A 存在
(k) ij (k) ij mn ,
→ aij , 则称 Ak 收敛, 并
把 A= (aij )mn 叫做 Ak 的极限, 或称 Ak 收敛 于 A. 记为
lim Ak = A 或 Ak → A
k →

k
与依范数收敛有什么关系?答:两者等价
例1


3k 1 sin(k ) 3 1 k k Ak 2 sin k k 1 2 k k
一、矩阵极限
上讲内容(向量序列极限)
设 x1 , x2 , xn , 是线性空间V中的元素序列,如果存在x V , 使得
m
lim xm x 0
则称序列{xm }按 -范数收敛于x

定理 :有限维线性空间中任何两种向 量范数都是等价的
向量序列收敛性的判别

定理1 1) 在有限维线性空间中,若序列 {xm}按某种范 数收敛于x,则按任何范数收敛于x ,即在有限 维线性空间中按范数收敛是等价的。
1 , 2 , , n 为矩阵A的特征值,故

ti 1
D diag (1, , 2 , , n1 )

显然,D是可逆矩阵,且有
1 t1 2 n 1 t2
D1 JD D1PAP1D
1 tn 1 n n 1
k =
( )
k '
1 k '' ( ) 2! ( k ) '
相关文档
最新文档